Introducción al análisis estructural de proteínas y glicoproteínas

dc.contributor.authorVega Castro, Nohora Angélica
dc.contributor.authorReyes Montaño, Edgar Antonio
dc.date.accessioned2022-03-06T05:11:21Z
dc.date.available2022-03-06T05:11:21Z
dc.date.issued2020-05
dc.descriptionilustracionesspa
dc.description.abstractLos seres vivos están conformados por gran diversidad de proteínas con diferentes características físicas, químicas, estructurales y funcionales. Para entender la función de una proteína se necesita conocer su secuencia y, mejor aún, su estructura tridimensional. Hoy en día es significativo el incremento en el número de secuencias reportadas, al igual que el aumento en la determinación del número de estructuras tridimensionales por métodos experimentales e in silico. Todo este conjunto de estudios ha sido de gran importancia en la formulación de los conceptos modernos de la bioquímica y ha permitido entender la relación que se da entre estructura y función de las proteínas, esto es una premisa fundamental que guía el quehacer bioquímico. En el presente texto brindamos una descripción general de algunos de los aspectos más relevantes sobre los componentes estructurales de proteínas y glicoproteínas, así como algunas técnicas que se han usado para estudiar cada uno de los niveles estructurales que se encuentran en ellas.spa
dc.description.editionprimera ediciónspa
dc.description.tableofcontentsIntroducción -- Capítulo uno Estructura primaria de proteínas -- Requisitos para establecer la secuencia de una proteína -- Procesos de fragmentación de proteínas Métodos enzimáticos -- Mapeo peptídico -- Métodos químicos -- Fragmentación de la proteína -- Secuenciación de los péptidos -- Superposición de fragmentos -- Fuentes de error en la determinación de la estructura primaria -- Limitaciones de la determinación de la estructura primaria a partir de la secuencia de adn -- Referencias -- Capítulo dos Caracterización de proteínas por espectrometría de masas (ms)-- Ionización en modo electrospray (esi) -- Ionización/desorción láser asistida por matriz (Maldi) -- Analizador -- Otros analizadores -- Analizador de trampa iónica (it) -- Ciclotrón de resonancia de iones con transformada de Fourier (ft-icr) -- Orbitrap -- Determinación de la secuencia de proteínas por espectrometría de masas -- Fragmentación de la molécula -- Determinación de la secuencia N-terminal -- Cuantificación de proteínas en estudios de proteómica -- Utilidad de la espectrometría de masas como herramienta en el análisis de problemas relacionados con proteínas -- Identificación de nuevas variantes proteínas -- Evaluación del plegamiento de las proteínas -- Referencias -- Capítulo tres Consecuencias de la determinación de la estructura primaria de proteínas -- Proteínas que tienen la misma función y están en diferentes especies -- Proteínas que surgieron por la duplicación de un gen -- Proteínas con diferente función y localización relacionadas evolutivamente -- Referencias -- Estructura secundaria -- Capítulo cuatro -- Aspectos relevantes para la formación de estructuras secundarias -- El enlace peptídico -- Ángulos de torsión -- Estructuras secundarias -- Héliceα -- Estructuraβ -- Propensiones -- Girosβ -- Estructuras supersecundarias -- Conformación de α-hélice, estructuras β y cadenas laterales -- Estabilidad -- Determinación experimental de la estructura secundaria Dispersión óptica rotatoria (dor) -- Dicroísmo circular (dc) -- Comportamiento de macromoléculas -- Aplicaciones del dicroísmo circular (dc) -- Referencias -- Capítulo cinco Estructura terciaria -- Determinación experimental de la estructura terciaria -- Determinación de la estructura de proteínas por difracción de rayos X -- Resonancia magnética nuclear -- Microscopía crioelectrónica o criomicroscopía electrónica (Cryo-em) -- Referencias -- Capítulo seis Glicoproteínas y carbohidratos -- Diversidad estructural de los oligosacáridos -- Biosíntesis de oligosacáridos en las glicoproteínas -- Análisis estructural y funcional de glicanos -- Análisis de la glicosilación en glicoproteínas -- 1. ¿La proteína es glicosilada? -- 2. Caracterización de la glicosilación en la proteína intacta -- 3. Caracterización de los oligosacáridos -- Análisis de la estructura del oligosacárido --Métodos químicos -- Métodos enzimáticos -- Métodos enzimáticos para elucidar estructura primaria de oligosacáridos -- Estudios de glicosilación, funciones biológicas y posibles aplicaciones -- Patologías asociadas a glicoproteínas -- Referencias -- Bioinformática estructural: aplicaciones del modelamiento estructural de proteínas -- Predicción de estructura secundaria y terciaria de proteínas -- Métodos para predecir estructura secundaria de proteínas -- Predicción de estructura terciaria -- Metodología sugerida para generar modelos estructurales -- Capítulo siete modelamiento estructural de proteínas -- Aplicaciones -- Conclusiones -- Referenciasspa
dc.format.extent267 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.eisbn9789587944006
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81133
dc.language.isospaspa
dc.publisher.departmentSede Bogotáspa
dc.publisher.placeBogotá, Colombiaspa
dc.relation.ispartofseriesColección textos;
dc.relation.referencesSanger F, Thompson eOp. The amino-acid sequence in the glycyl chain of insulin. 1. The identification of lower peptides from partial hydrolysates. Biochemical Journal. 1953;53(3): 353.spa
dc.relation.referencesCreigthon TE. Disulphide bonds between cysteine residues. Creighton TE. (Ed.) Protein structure. A practical approach. Oxford, UK: irl Press; 1995.spa
dc.relation.referencesKoingsberg aWH y Steiman HM. Strategy and methods of sequence analysis. The Proteins. Vol. iii. New York: Academic Press; 1977.spa
dc.relation.referencesBio-rad. Glycoprotein and oligosaccharide analysis. P. 149-155, 1997spa
dc.relation.referencesDubois M, Gilles KA, Hamilton JK, Rebers P, Smith F. Colorimetric method for determination of sugars and related substances. Analytical chemistry. 1956;28(3):350-356.spa
dc.relation.referencesEdge AS, Faltynek CR, Hof L, Reichert Jle, Weber P. Deglycosylation of glycoproteins by trifluoromethanesulfonic acid. Analytical biochemistry. 1981;118(1):131-137.spa
dc.relation.referencesJ, Bouquelet S, Debray H, Lemoine J, Michalski JC, Spik G, Strecker G. “Glycoproteins” in Carbohydrate Analysis. A practical approach. Chaplin MF, Kennedy JF. irl Oxford University Press, 1994.spa
dc.relation.referencesEllman GL. Tissue sulfhydryl groups. Archives of biochemistry and biophysics. 1959; 82(1): 70-77.spa
dc.relation.referencesSpies JR, Chambers D. Determination of Tryptophan. Anal. Chem. 1948;20:30-39.spa
dc.relation.referencesHirs cHW, Moore S, Stein WH. The sequence of the amino acid residues in performic acid-oxidized ribonuclease. J Biol. Chem. 1960;235:633-647.spa
dc.relation.referencesHirs cHW, Moore S, Stein WH. Volatile buffers exchange columns; use of chromatography on asolation of amino acids. J. Biol. Chem. 1952;195:669-683.spa
dc.relation.referencesAitken E, Geisow MJ, Findlay Jbc, Holmes C, Yawoord A. Peptide preparation and characterization. Findlay Jbc, Geisow MM. Protein Sequencing. A Practical Approach. Oxford, UK: irl Press, Oxford University Press; 1989. P.43-68.spa
dc.relation.referencesRen J, Zhao M, Wang J, Cui C, Yang B. Spectrophotometric method for determination of tryptophan in protein hydrolysates. Food Technology and Biotechnology. 2007;45(4):360-366.spa
dc.relation.referencesVega N, Pérez G. Isolation and characterization of a lectin from Salvia bogotensis seeds that recognizes Tn Antigen. Phytochemistry. 2006;67:347-355.spa
dc.relation.referencesKhan AS, Faiz F. Amino acids analysis using ion exchange resins. Coden Jnsmac. 2008;48:1-17.spa
dc.relation.referencesSong C, Zhang SH, Ji Z, Li You J. Accurate determination of amino acids in serum samples by liquid chromatography tandem mass spectrometry using a stable isotope labeling strategy. Journal of Chromatographic Science. 2015; 53:1536-1541. dOi:10.1093/chromsci/bmv049.spa
dc.relation.referencesWalker JM. The Dansyl-Edman method for peptide sequencing. Walker JM. (ed.). Proteins. Methods in Molecular Biology. Vol I. Clifton, N. J.: Humana Press; 1984. 203-219.spa
dc.relation.referencesKlemm P. Manual Edman degradation of proteins and peptides. Walker JM (ed.). Methods in Molecular Biology. Proteins. Vol I. Clifton, N. J.: Humana Press, 1984. 243-254.spa
dc.relation.referencesMatsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene diflouride membranes. J. Biol. Chem. 1987;262:10035-10038.spa
dc.relation.referencesTaylor A. Aminopeptidases: Structure and Function. Faseb J. 1993;7(2):290-298.spa
dc.relation.referencesWittmann-Liebold B, Kimura M. Microsequencing of peptides and proteins with 4-N, N, Dimethylazobenzene 4 ́Isothiocyanate. Walker JM (ed.). Methods in Molecular Biology. Proteins. Vol I. Clifton, N. J.: Humana Press; 1984.spa
dc.relation.referencesDeng J, Zhang G y Huang NT. Identification of protein N-termini Using tmpp or dimethyl labeling and mass spectrometry. Methods Mol Biol. 2015;1295:249-258. dOi:10.1007/978-1-4939-2550-6_19.spa
dc.relation.referencesShen PT, Hsu JL, Chen SH. dimethyl isotope-coded affinity selection for the analysis of free and blocked N-termini of proteins using lc-ms/ms. Anal. Chem. 2007;79(24):9520-9530.spa
dc.relation.referencesHsu JL, Huang SY, Shiea JT, Huang WY, Chen SH. Beyond quantitative proteomics: signal enhancement of the a1 ion as a mass tag for peptide sequencing using dimethyl labeling. J. Proteome Res. 2005;4(1):101-108.spa
dc.relation.referencesShiveley JE (ed). Methods in microcharacterization. Clifton, N.J.: Human Press; 1986. Chapter 13, 338spa
dc.relation.referencesAvilés F y Vendrell J. Carboxypeptidase B in handbook of proteolytic enzymes (Third Edition). Ciudad: London. Academic Press; 2013.spa
dc.relation.referencesGreenblatt HM, Feinberg H, Tucker PA, Shoham G. Carboxypeptidase A: Native, Zinc-Removed and Mercury-Replaced Forms. Acta Crystallogr D Biol Crystallogr. 1. 1998; 54(Pt 3):289-305.spa
dc.relation.referencesRemington SJ, Breddam K. Carboxypeptidases C and D. Methods in Enzimology. 1994;244:231-248.spa
dc.relation.referencesKlemm P. Carboxy-terminal sequence determination of proteins and peptides with carboxypeptidase Y. Walker JM (ed.). Methods in Molecular Biology. Proteins. Vol I. Clifton, N. J.: Humana Press, 1984. 255-259.spa
dc.relation.referencesJung G, Ueno H, Hayashi R. Carboxypeptidase Y: Structural Basis for Protein Sorting and Catalytic Triad. J Biochem. 1999;126(1):1-6.spa
dc.relation.referencesShiveley JE. Methods in Microcharacterization. Clifton, N.J.: Human Press; 1986. Chapter 13, 338-346.spa
dc.relation.referencesNika H, Nieves E, Hawke D, Angeletti R. C-Terminal protein characterization by mass spectrometry using combined micro scale liquid and solid-phase derivatization. Journal of Biomolecular Techniques. 2013;24:17-31.spa
dc.relation.referencesThiede B, Wittmann-Liebold B, Bienert M, Krause e. Maldi-ms for C-terminal Sequence determination of peptides and proteins degraded by carboxypeptidase Y and P. febs Letters. 1995;357:65-69.spa
dc.relation.referencesMontreuil J, Bouquelet S, Debray H, Lemoine J, Michalski JC, Spik G, Strecker G. “Glycoproteins” in Carbohydrate Analysis. A practical approach. Oxford University Press; 1994. Chapter 5, 193spa
dc.relation.referencesKoingsberg WH, Steiman HM. Strategy and methods of sequence analysis. The Proteins. Vol. iii. New York: Academic Press; 1977.spa
dc.relation.referencesHustoft HK, Malerod H, Wilson SR, Reubsaet L, Lundanes E, Greibrokk T. A critical review of trypsin digestion for lc-ms based proteomics. Integrative Proteomics. 2012;(1):73-82.spa
dc.relation.referencesLewis WG, Basford JM, Walton PL. Specificity and inhibition studies of Armillaria mellea protease. Biochimica et Biophysica Acta (bba) – Enzymology.1978; 522(2): 551–560. dOi:10.1016/0005-2744(78)90087-6spa
dc.relation.referencesDrapeau GR. Protease from Staphyloccus aureus. Methods in Enzymology. 1976:469-475. dOi:10.1016/s0076-6879(76)45041-3spa
dc.relation.referencesOlsen JV, Ong SE, Mann M. Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Molecular & Cellular Proteomics. 2004;3(6):608-614.spa
dc.relation.referencesPauling L, Itano HA, Singer SJ, Wells IC. Sickle Cell Anemia, a Molecular Disease. Science. 1949;110(2865): 543–548. dOi:10.1126/ science.110.2865.543spa
dc.relation.referencesIngram VM. A specific chemical difference between the globins of normal human and sickle-cell anemia hemoglobin. Nature. 1956;178:792. dOi: 10.1038/178792a0spa
dc.relation.referencesCatsimpoolas N, Wood JL. Cleavage of the peptide bond at the cystine amino group by the action of cyanide. J Biol Chem. 1963;238:2887-2888.spa
dc.relation.referencesCatsimpoolas N, Wood JL. Specific Cleavage of Cystine Peptides by Cyanide. J. Biol. Chem. 1966;241:1790-1796.spa
dc.relation.referencesElashal HE, Raj M. Site-selective chemical cleavage of peptide bonds. Chemical Communications. 2016;52(37):6304-6307.spa
dc.relation.referencesLehninger AL, Nelson DL, Cox MM. Lehninger principles of biochemistry. New York: Macmillan; 2005.spa
dc.relation.referencesBandeira N, Victoria P, Pevzner P, Arnott D, y Lill J. Beyond Edman degradation: Automated de novo protein sequencing of monoclonal antibodies. Nature Biotechnology. 2008;26(12): 1336-1338. Disponible en: http://doi. org/10.1038/nbt1208-1336 (19 de febrero de 2020).spa
dc.relation.referencesPerez G, Perez C, Sousa-Cavada B, Moreira R, Richardson M. Comparison of the amino acid sequences of the lectins from seeds of Dioclea lehmanni and Canavalia maritima. Phytochemistry. 1991;30(8):2619-2621.spa
dc.relation.referencesBrown JR, Hartley BS. Location of disulfide bridges by diagonal paper electrophoresis. Biochem J. 1966;101: 241-228.spa
dc.relation.referencesWeeds AG, Hartley BS. Selective purification of the thiol peptides of myosin. Biochemical Journal, 1968; 107(4), 531-548.spa
dc.relation.referencesWeeds AG. Small sub-units of myosin. Biochemical Journal. 1967;105(2):25.spa
dc.relation.referencesTang J, Hartley BS. A diagonal electrophoretic method for selective purification of methionine peptides. Biochemical Journal. 1967;102(2):593.spa
dc.relation.referencesDixon HB, Perham RN. Reversible blocking of amino groups with citraconic anhydride. Biochemical Journal. 1968; 109(2): 312.spa
dc.relation.referencesPerham RN, Jones gmt. The determination of the order of lysine- containing: tryptic peptides of proteins by diagonal paper electrophoresis a carboxyl-terminal sequence for pepsin. European journal of biochemistry. 1967;2(1):84-89.spa
dc.relation.referencesPerham RN. A diagonal paper-electrophoretic technique for studying amino acid sequences around the cysteine and cystine residues of proteins. Biochemical Journal. 1967;105(3):1203-1207.spa
dc.relation.referencesButler pJg, Hartley BS. Maleylation of amino groups. In Methods in enzymology. Vol. 25. Academic Press. 1972.spa
dc.relation.referencesMilstein C. A simple procedure for the fractionation of the tryptic peptides of the c-terminal half of immunoglobulin lambda-chains. Biochemical Journal. 1968;110(4):652.spa
dc.relation.referencesMilstein C. Linked groups of of residues in immunoglobulin κ chains. Nature,spa
dc.relation.referencesWinger AM, Taylor NL, Heazlewood JL, Day DA, Millar AH. identification of intra- and intermolecular disulphide bonding in the plant mitochondrial proteome by diagonal gel electrophoresis. Proteomics. 2007;7:4158-4170. dOi:10.1002/pmic.200700209spa
dc.relation.referencesMcDonagh B. Diagonal electrophoresis for the detection of protein disulfides. In Protein Electrophoresis Humana Press; Totowa, NJ: 2012.spa
dc.relation.referencesWojcik R, Vannatta M, Dovichi N. Automated enzyme-based diagonal capillary electrophoresis: application to phosphopeptide characterization. Anal. Chem. 2010;82(4):1564-1567. dOi: 10.1021/ac100029uspa
dc.relation.referencesMann M, Hendrickson RC, Pandey A. Analysis of Proteins and Proteomes by Mass Spectrometry. Annu. Rev. Biochem. 2001;70:437-473.spa
dc.relation.referencesGriffiths WJ, Jonsson AP, Liu S, Rai DK, Wang Y. Electrospray and Tandem Mass Spectrometry in Biochemistry. Biochemical Journal. 2001;355(Pt 3):545-561.spa
dc.relation.referencesMano N, Goto J. Biomedical and Biological Mass Spectrometry. Analytical Sciences. 2003; 19(1): 3–14. dOi:10.2116/analsci.19.3.spa
dc.relation.referencesGibson D, Costello C. Mass Spectrometry of Biomolecules. Ahuja S (ed). Handbook of bioseparations. San Diego: Academic Press; 2000. 299-327.spa
dc.relation.referencesVega N. Caracterización bioquímica, funcional y biológica de la lectina de Salvia bogotensis y evaluación de su aplicación para la detección del antígeno Tn [Tesis de Doctorado]. Bogotá: Universidad Nacional de Colombia, 2004.spa
dc.relation.referencesSeattle Proteome Center (spc). Proteomics Tools. Disponible en: http://tools. proteomecenter.org/software.php. [4 de febrero de 2015].spa
dc.relation.referencesBandeira N, Pham V, Pevzner P, Arnott D, y Lill JR. Automated de novo protein sequencing of monoclonal antibodies. Nature Biotechnology. 2008;26(12):1336-1338. dOi:10.1038/nbt1208-1336spa
dc.relation.referencesBiemann K. Sequencing of Peptides by Tandem Spectrometry and High Energy Collision-Induced Dissociation. Methods in enzimology. 1990;193:455-479. dOi:10.1016/0076-6879(90)93433-lspa
dc.relation.referencesElviri L. etd and ecd Mass Spectrometry Fragmentation for the Characterization of Protein Post Translational Modifications. Jeevan KP. Tandem Mass Spectrometry-Applications and Principles. Croatia:InTech. 2012;7:161-178. Disponible en www.intechopen.com. dOi: 10.5772/35277. 2012spa
dc.relation.referencesChang E, Pourmal S, Zhou C, Kumar R, Teplova M, Pavletich NP, et al. N-terminal amino acid sequence determination of proteins by N-terminal dimethyl labeling: pitfalls and advantages when compared with Edman degradation sequence analysis. J Biomol. Tech. 2016;27(2):61-74. dOi: 10.7171/jbt.16-2702-002.spa
dc.relation.referencesDeng J, Zhang G, Huang F, Neubert T. Identification of protein N-termini using tmpp or dimethyl labeling and mass spectrometry. Methods Mol. Biol. 2015;1295:249-258. dOi: 10.1007/978-1-4939-2550-6_19spa
dc.relation.referencesShen PT, Hsu JL, Chen SH. Dimethyl isotope-coded affinity selection for the analysis of free and blocked N-termini of proteins using lc-ms/ms. Anal. Chem. 2007;79(24):9520-9530.spa
dc.relation.referencesLi L, Wu R, Yan G, Gao M, Deng C, Zhang X. A novel method to isolate protein N-terminal peptides from proteome samples using sulfydryl tagging and gold nanoparticle-based depletion. Anal Bioanal Chem. 2016;408(2):441-448. dOi: 10.1007/s00216-015-9136-x.spa
dc.relation.referencesTwyman RM. Strategies for protein quantitation. In Principles of Proteomics, 2nd ed. New York, NY, usa: Garland Science, Taylor & Francis Group, llc; 2014.spa
dc.relation.referencesKonerman L, Collings BA, Douglas DJ. Cytochrome C folding kinetics studied by time resolved electrospray ionization mass spectrometry. Biochemistry. 1997;36:5554-5559.spa
dc.relation.referencesKonermann L, Douglas D. Unfolding of proteins monitored by electrospray ionization mass spectrometry: A comparison of positive and negative ion modes. J. Am. Soc. Mass Spectrom. 1998;9(12):1248-1254.spa
dc.relation.referencesKonermann L, Pan J, Wilson D. Protein folding mechanisms studied by time-resolved electrospray mass spectrometry. BioTechniques. 2006;40(2):135-141.spa
dc.relation.referencesLoo JA. Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom. Rev. 1997;16:1-23. dOi:10.1016/j. jasms.2005.02.017spa
dc.relation.referencesM, Vega N, Pérez G. Isolating and characterising a lectin from Galactia lindenii seeds that recognise blood group H determinants. Arch.Biochem. Biophys. 2004;492:180-190.spa
dc.relation.referencesSharon M, Robinson C. The role of mass spectrometry in structure elucidation of dynamic protein complexes. Annu. Rev. Biochem. 2007;76:167-193.spa
dc.relation.referencesHeck AJ. Native Mass Spectrometry: A bridge between interactomics and structural biology. Nature Methods. 2008;5:927-933.spa
dc.relation.referencesDrew K, Lee C, Huizar RL, Tu F, Borgeson B, McWhite CD, et al. Integration of over 9000 mass spectrometry experiments builds a global map of human protein complexes. Molecular Systems Biology. 2017;13(6):932. dOi:10.15252/msb.20167490spa
dc.relation.referencesDickerson RE, Geis I. The structure and action of proteins. Londres: Harper & Row publishers, 1969.spa
dc.relation.referencesMultiple Sequence Alignment. Clustal. Disponible en: http:/www.ebi.ac.uk/ clustalw/. [Consultado 4 febrero 2020].spa
dc.relation.referencesExpasy. Bioinformatics Resource Portal. Disponible en: https://web.expasy. org/docs/relnotes/relstat.htm. [Consultado 4 febrero 2020].spa
dc.relation.referencesUniProtKB/Swiss-Prot UniProt release 2019. Disponible en: https://www. uniprot.org/statistics/Swiss-Prot. [Consultado 3 febrero 2020].spa
dc.relation.referencesChavali S, Chavali P, Chalacu G, Sanchez de Groot N, Gemayel R, Latysheva N, et al. Constraints and Consequences of the Emergence of Amino Acid Repeats. Eukaryotic Proteins Nature Structural & Molecular Biology. 2017;24:765-777. dOi:10.1038/nsmb.3441spa
dc.relation.referencesMularoni L, Ledda A, Toll Riera M, Alba M., Natural Selection Drives the Accumulation of Amino Acid Tandem Repeats in Human Proteins. Genome Res. 2010;20(6):745-754. dOi: 10.1101/gr.101261.109spa
dc.relation.referencesEisenberg D. The discovery of the α-helix and β-sheet, the principal structural features of proteins. Proceedings of the National Academy of Sciences. 2003;100(20):11207–11210. dOi:10.1073/pnas.2034522100spa
dc.relation.referencesWikimedia Commons. Peptide bond cis trans miguelferig. Disponible en: https://commons.wikimedia.org/wiki/File:Peptide_bond_cis_trans_ miguelferig.jpg. [04 de febrero de 2020].spa
dc.relation.referencesSchiffer M, Edmundson AB. Use of helical wheels to represent the structures of proteins and to identify segments with helical potential. Biophysical Journal. 1967;7(2):121–135. dOi:10.1016/s0006-3495(67)86579-2spa
dc.relation.referencesWikimedia commons. Helical Wheel 2nrl 77-92 KaelFischer Disponible en: https://commons.wikimedia.org/wiki/File:Helical_Wheel_2nrl_77-92_ KaelFischer.jpg. [04 de febrero de 2020].spa
dc.relation.referencesDunnill P. The use of helical net-diagrams to represent protein structures. Biophysical Journal. 1968;8(7): 865–875. dOi:10.1016/ s0006-3495(68)86525-7spa
dc.relation.referencesBerndt KD. Types of Secondary Structure. Protein Secondary Structure. Helices. Estocolmo: Karolinska Institute, 1996. Disponible en: http://www. cryst.bbk.ac.uk/pps2/course/section8/ss-960531_5.html [20 de febrero de 2020].spa
dc.relation.referencesSancho P. Tema 4a. Estructura tridimensional de las proteínas. Segundo curso de farmacia 2012-2013 [Presentación]. Universidad de Alcalá. Disponible en: http://www3.uah.es/bioquimica/Sancho/farmacia/temas/ tema-4a_proteinas-estructura.pdf [20 de febrero de 2020].spa
dc.relation.referencesCostantini S, Colonna G, Facchiano AM. Amino acid propensities for secondary structures are influenced by the protein structural class. Biochemical and Biophysical Research Communications. 2006; 342(2): 441–451. dOi:10.1016/j.bbrc.2006.01.159spa
dc.relation.referencesAshok KT. cfssp: Chou and Fasman Secondary Structure Prediction server. Wide spectrum: Research Journal. 2013; 1(9):15-19.spa
dc.relation.referencesKoehl P, Levitt M. Structure-based conformational preferences of amino acids. Proceedings of the National Academy of Sciences. 1999; 96(22): 12524–12529. dOi:10.1073/pnas.96.22.12524spa
dc.relation.referencesBranden C, Tooze J. Introduction to Protein Structure. Segunda edición. New York: Garland Pub; 1999.spa
dc.relation.referencesClothia C. Principles that Determine the Structure of Proteins. Ann. Rev. Biochem. 1984;53:537-572.spa
dc.relation.referencesEfimov AV. Super-secondary Structures and Modeling of Protein Folds. Methods Mol Biol. 2013;932:177-189. Disponible en dOi: 10.1007/978-1-62703-065-6_11.spa
dc.relation.referencesCraig L. Tertiary Structure Chapter 3, 4, & 5 [Presentación]. Slide Player. Disponible en: https://slideplayer.com/slide/6407321/ [20 de febrero de 2020].spa
dc.relation.referencesSheriff S, Hendrickson WA, Smith JL. Structure of myohemerythrin in the azidomet state at 1.7/1.3 A resolution. J. Mol. Biol. 1987;197:273-296. Disponible en: https://www.ebi.ac.uk/pdbe/entry/pdb/2mhr/ [20 de febrero de 2020].spa
dc.relation.referencesWilches tma. Aproximación a la estructura primaria de lectinas específicas para el antígeno tn e identificación de nuevas lectinas específicas para glucosa/manosa en semillas de Salvia bogotensis y Lepechinia bullata [Tesis de doctorado]. Universidad Nacional de Colombia; 2017.spa
dc.relation.referencesHidalgo D.J. Detección, purificación y caracterización parcial de lectinas presentes en algas marinas colombianas [Tesis de Maestría]. Universidad Nacional de Colombia; 2017.spa
dc.relation.referencesBranden CI, Tooze J. Introduction to protein structure. New York: Garland Science; 2012.spa
dc.relation.referencesWalshaw J, Mills A. Alpha/Beta Topologies. Protein Folds. Birkbeck College, Londres; 1995. Disponible en http://www.cryst.bbk.ac.uk/pps95/course/8_ folds/alph_bet_wnd.html [20 de febrero de 2020].spa
dc.relation.referencesBranden C, Tooze J. Introduction to Protein Structure. Segunda edición. New York: Garland Pub; 1999.spa
dc.relation.referencesWikimedia Commons. tim barrel. Disponible en: https://commons. wikimedia.org/wiki/File:tim_barrel.tif [20 de febrero de 2020].spa
dc.relation.referencesComputationally designed tim-barrel protein, Halfflr. dOi: 10.2210/ pdb3tdm/pdb. Disponible en: https://www.rcsb.org/structure/3tdm [05 de febrero de 2020].spa
dc.relation.references3qvO. Structure of a Rossmann-fold nad(p)-binding family protein from Shigella flexneri. dOi: 10.2210/pdb3qvO/pdb. Disponible en: https://www.rcsb. org/structure/3qvO [05 de febrero de 2020].spa
dc.relation.referencesrcsb pdb.The crystal structure of class I Major histocompatibility complex, H-2Kd at 2.0 A resolution. dOi: 10.2210/pdb1vgK/pdb. Disponible en: https://www.rcsb.org/structure/1vgK [05 de febrero de 2020].spa
dc.relation.referencesGeorgia State University.Polarización lineal. Hyperphysics. Disponible en: http://hyperphysics.phy-astr.gsu.edu/hbasees/phyopt/polclas.html. [05 de febrero de 2020].spa
dc.relation.referencesMancho C. Luz polarizada. El rincon de la Ciencia. 2008;48. Disponible en: http://rincondelaciencia.educa.madrid.org/Curiosid2/rc-114/rc-114.html. [05 de febrero de 2020].spa
dc.relation.referencesCortazar A, Silva EP. Métodos Físico-Químicos en Biotecnología pcr. México: Universidad Nacional Autónoma de México, Instituto de Biotecnología; 2004. Disponible en: http://www.ibt.unam.mx/computo/pdfs/ met/dicroismocircular2013.pdf. [05 de febrero de 2020].spa
dc.relation.referencesVan Holde KE. Circular Dichroism and Optical Rotatory Dispersion. Physical Biochemistry. New York: Prentice Hall; 1971. 202-220.spa
dc.relation.referencesMata E. Métodos fisco-químicos en biotecnología. Disponible en: http://www. ibt.unam.mx/computo/pdfs/met/dicroismocircular2013.pdf [05 de febrero de 2020].spa
dc.relation.referencesGreenfield NJ. Using circular dichroism spectra to estimate protein secondary structure. Nature Protocols. 2007;1(6):2876-2890. dOi:10.1038/ nprot.2006.202spa
dc.relation.referencesMicsonai A, Wien F, Kernya L, Lee YH, Goto Y, Réfrégiers M, Kardos J. Accurate Secondary Structure Prediction and Fold Recognition for Circular Dichroism Spectroscopy. Proc. Natl. Acad. Sci. 2015;112(24):E3095-E3103. Disponible en: dOi: 10.1073/pnas.1500851112.spa
dc.relation.referencesKelly M, Price N. The Application of Circular Dichroism to Studies of Protein Folding and Unfolding. Biochimica et Biophysica Acta. 1997;1338:161-185.spa
dc.relation.referencesPontificia Universidad Católica de Chile. Difracción de Bragg. Laboratorio de Difracción de Rayos X. Disponible en: http://servicios.fis.puc.cl/rayosx/teoria. html. [05 de febrero de 2020].spa
dc.relation.referencesMatthews BW. X-ray Structure of Proteins Structure. Neurath H, Hill R. The Proteins. Vol. iii. Tercera edición. Nueva York: Academic Press; 1977. 404-590.spa
dc.relation.referencesDickerson RE. X-Ray Analisys and Protein Structure. Hans N. The Proteins. Vol. II. Segunda edición. New York: Academic Press; 1964. 603-778.spa
dc.relation.referencesHendrickson WA. Anomalous diffraction in crystallographic phase evaluation. Quarterly Reviews of Biophysics. 2014;47(01):49-93. dOi:10.1017/ s0033583514000018spa
dc.relation.referencesWuthrich K. Protein structure determination in solution by nuclear magnetic resonance spectroscopy. Science. 1989;243(4887):45-50. dOi:10.1126/ science.2911719spa
dc.relation.referencesWüthrich K, Wider G, Wagner G, Braun W. Sequential resonance assignments as a basis for determination of spatial protein structures by high resolution proton nuclear magnetic resonance. Journal of Molecular Biology. 1982;155(3):311–319. dOi:10.1016/0022-2836(82)90007-9spa
dc.relation.referencesSchirra HJ. Analysis of nmr spectra. Structure Determination of Proteins with nmr Spectroscopy. Disponible en: http://www.cryst.bbk.ac.uk/pps2/ projects/schirra/html/assign.htm [20 de febrero de 2020].spa
dc.relation.referencesBangerter BW. Nuclear magnetic resonance. Glasel J, Deutscher M. Introduction to Biophysycal Methods for Protein and Nucleic Acid Research. San Diego, California: Academic Press; 1995. 317-379.spa
dc.relation.referencesBilleter M. Comparison of Protein Structures Determined by nmr in Solution and by X-Ray Diffraction in Single Crystals. Quart. Rev Biophys. 1992;25:325-377.spa
dc.relation.referencesDubochet J, Adrian M, Chang J, Homo J, Lepault J, McDowall M. Cryo-Electron Microscopy of Vitrified Specimens. Q. Rev. Biophys. 1988;21:129-228, Disponible en: http://dx.doi.org/10.1017/ S0033583500004297spa
dc.relation.referencesCheng Y, Grigorieff N, Penczek P, Walz T. A Primer to Single-Particle Cryoelectron Microscopy. Cell. 2015;161:438-449. Disponible en: http:// dx.doi.org/10.1016/j.cell.2015.03.050spa
dc.relation.referencesKühlbrandt, W. Cryo-em enters a new era. eLife, 3. 2014. dOi:10.7554/ elife.03678spa
dc.relation.referencesOrlova E, Saibil H. Structural Analysis of Macromolecular Assemblies by Electron Microscopy. Chem. Rev. 2011;111:7710-7748.spa
dc.relation.referencesEgelman E. Three-Dimensional Reconstruction of Helical Polymers. Arch. Biochem. Biophys. 2015;581:54-58. dOi:10.1016/j.abb.2015.04.004spa
dc.relation.referencesBriggs J. Structural Biology in situ. The potential of Subtomogram Averaging, Curr. Opin. Struct. Biol. 2013;23:261–267. Disponible en: http://dx.doi. org/10.1016/j.sbi.2013.02.003spa
dc.relation.referencesLucic V, Forster F, Baumeister W. Structural Studies By Electron Tomography: from Cells to Molecules. Annu. Rev. Biochem. 2005;74:833-865.spa
dc.relation.referencesSchenk A, Castaño-Diez D, Gipson B, Arheit M, Zeng X, Stahlberg H. 3D Reconstruction from 2D Crystal Image and Diffraction Data. Meth. Enzymol. 2010;482(2010):101–129. Disponible en: http://dx.doi.org/10.1016/ S0076-6879(10)82004-X.spa
dc.relation.referencesBooth D, Avila-Sakar A, Cheng Y. Visualizing Proteins and Macromolecular Complexes by Negative Stain em: from Grid Preparation to Image Acquisition. J. Vis. Exp. 2011;(58):e3227. dOi: 10.3791/3227spa
dc.relation.referencesLau WcY, Rubinstein JL. Single Particle Electron Microscopy. Electron Crystallography of Soluble and Membrane Proteins. 2012;401-426. dOi:10.1007/978-1-62703-176-9_22spa
dc.relation.referencesThompson R, Walker M, Siebert A, Muench S, Ranson N. An Introduction to sample preparation and imaging by Cryo-Electron Microscopy for structural biology. Methods. 2016;100:3-15.spa
dc.relation.referencesStark H. GraFix: Stabilization of fragile macromolecular complexes for single particle Cryo-em. Meth. Enzymol. 2010;481:109-126. Disponible en: http:// dx.doi.org/10.1016/S0076-6879(10)81005-5spa
dc.relation.referencesMcMullan G, Faruqi A, Clare D, Henderson R. Comparison of Optimal Performance at 300 Kev of Three Direct Electron Detectors for Use in Low Dose Electron Microscopy. Ultramicroscopy. 2014;147:156-163. Disponible en: http://dx.doi.org/10.1010/j.ultramic.2014.08.002.spa
dc.relation.referencesShriver Z, Raguram S, Sasisekharan R. Glycomics: a pathway to a class of new and improved therapeutics. Nature Reviews. 2004;3:863-873.spa
dc.relation.referencesBertozzi CR, Sasisekharan R. Glycomics. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds). Essentials of Glycobiology. Second Edition. Cold Spring Harbor, NY: ColdSpring Harbor Laboratory Press; 2009.spa
dc.relation.referencesHart G, Copeland R. Glycomics hits the big time. Cell. 2010;143:672-676.spa
dc.relation.referencesBucior I, Burguer MM. Carbohydrate-carbohydrate interactions in cell recognition. Curr. Opinion Struc. Biol.2004;14:631-637.spa
dc.relation.referencesWormald MR, Sharon N. Carbohydrates and Glycoconjugates. Progress in non-mammalian glycosylation, glycosyltransferases, invertebrate lectins and carbohydrate-carbohydrate interactions. Curr. Opinion Struc. Biol. 2004;14:591-592.spa
dc.relation.referencesLaine RA. The information potential in the sugar code. Gabius HJ, Gabius S (eds). Glycosciences. Status and perspectives. London: Chapman and Hall; 1997. 1-14.spa
dc.relation.referencesGabius HJ, Andre S, Kaltner H, Siebert HC. The sugar code: functional lectinomics. Biochim.Biophys. Acta. 2002;1572:165-177.spa
dc.relation.referencesVon der Lieth CW. Bioinformatics for glycomics: Status, methods, requirements and perspectives. Briefings in bioinformatics. 2004;5(2):164– 178. dOi:10.1093/bib/5.2.164spa
dc.relation.referencesBaycin Hizal D, Wolozny D, Colao J, Jacobson E, Tian Y, Krag SS et al. Glycoproteomic and glycomic databases. Clinical Proteomics. 2014;11(1):15. dOi:10.1186/1559-0275-11-15spa
dc.relation.referencesBöhm M, Bohne-Lang A, Frank M, Loss A, Rojas-Macías MA, Lütteke T. Glycosciences. db: an annotated data collection linking glycomics and proteomics data (2018 update). Nucleic Acids Disponible en; doi:10.1093/ nar/gky994. [6 de febrero de 2020].spa
dc.relation.referencesYan A, Lennarz W. Unraveling the mechanism of protein N-glycosylation. J.Biol. Chem. 2005;280:3121-3124. dOi:10.1074/jbc.R400036200spa
dc.relation.referencesMedeiros A, Bianchi S, Calvete JJ, Balter H, Bay S, Robles A, et al. Biochemical and functional characterization of the Tn-specific lectin from Salvia sclarea seeds. Eur. J. Biochem. 2000;267(5):1434-1440spa
dc.relation.referencesWilson I. Glycosylation of proteins in plants and invertebrates. Current Opinion in Structural Biology. 2002;12(5):569–577. dOi:10.1016/ s0959-440x(02)00367-6.spa
dc.relation.referencesHang HC, Bertozzi CR. The chemistry and biology of mucin-type O-linked glycosylation. Bioorg. Medicinal Chem. 2005;13:5021-5034.spa
dc.relation.referencesCaset A, Bobowski M, Burchell J, Delannoy P. Tumour-associated carbohydrate antigens in breast cancer. Breast Cancer Research. 2010;12:204-217.spa
dc.relation.referencesJu T, Aryal R, Kudelka M, Wang Y, Cummings R. The Cosmc connection to the Tn antigen in cancer. Cancer Biomarkers. 2014;14:63–81.spa
dc.relation.referencesJu T, Otto V, Cummings R. The Tn Antigen—Structural Simplicity and Biological Complexity. Angew. Chem. Int. Ed. 50: 1770 – 1791.2011spa
dc.relation.referencesKailemia MJ, Park D1, Lebrilla CB. Glycans and glycoproteins as specific biomarkers for cancer. Anal Bioanal Chem. 2017;409(2):395-410. dOi: 10.1007/s00216-016-9880-6.spa
dc.relation.referencesJu T, Wang Y, Aryal RP, Lehoux SD, Ding X, Kudelka MR et al. Tn and sialyl-Tn antigens, aberrant O-glycomics as human disease markers. Proteomics Clin Appl. 2013;(9-10):618-31. dOi: 10.1002/prca.201300024.spa
dc.relation.referencesLisowska E. Tn Antigens and their significance in Oncology. Acta Biochim. Pol. 1995;42:11-17.spa
dc.relation.referencesFreire T, Osinaga E. A Immunological and biomedical relevance of the Tn antigen. Inmunología. 2003;22(1):27-38.spa
dc.relation.referencesVan den steen P, Rudd P, Wormald M, Dwek, Opdenakker G. O-Linked glycosylation. Trends in Glycosc. Glycotech. 2000;12:35-49.spa
dc.relation.referencesMarth JD, Grewal PK. Mammalian glycosylation in immunity. Nature Reviews Immunology. 2008; 8(11), 874–887. dOi:10.1038/nri2417spa
dc.relation.referencesFukuda M. Roles of mucin-type O-glycans in cell adhesion. Biochim. Biophys. Acta. 2002;1573:194-405.spa
dc.relation.referencesTaylor-Papadimitriou J, Burchell J, Miles DW, Dalziel M. muc1 and cancer. Biochimica et Biophysica Acta (bba) - Molecular Basis of Disease. 1999;1455(2-3):301–313. dOi:10.1016/s0925-4439(99)00055-1spa
dc.relation.referencesLairson LL, Henrissat B, Davies GJ, Withers SG. Glycosyltransferases: Structures, functions, and mechanisms. Annual Review of Biochemistry. 2008;77(1):521–555. dOi:10.1146/annurev.biochem.76.061005.092322spa
dc.relation.referencesDrickamer K, Taylor ME. Glycan arrays for functional glycomics. Genome Biol. 2002;3: 1034.1-1034.4.spa
dc.relation.referencesDisney MD, Seeberger PH. Carbohydrate arrays as tools for the glycomics revolution. ddt:Targets. 2004;3:151-158.spa
dc.relation.referencesLiang PH, Wu CY, Greenberg WA, Wong CH. Glycan arrays: biological and medical applications. Curr.Opinion. Chem.Biol. 2008;12:86-92.spa
dc.relation.referencesPurohit S, Li T, Guan W, Song X, Song J, Tian Y, Li L, Sharma A, Dun B, Mysona D, Ghamande S, Rungruang B, Cummings RD, Wang PG, She JX. Multiplex glycan bead array for high throughput and high content analyses of glycan binding proteins. Nat Commun. 2018;9(1):258. dOi: 10.1038/ s41467-017-02747-y.spa
dc.relation.referencesTateno H, Mori A, Uchiyama N, Yabe R, Iwaki J, Shikanai TT et al. Glycoconjugate microarray based on an evanescent–field fluorescence-assisted detection principle for investigation of glycan-binding proteins. Glycobiology. 2008:18:789-798.spa
dc.relation.referencesOyelaran O, Gildersleeve JC. Application of carbohydrate array technology to antigen discovery and vaccine development. Expert Review of Vaccines. 2007;6(6):957–969. dOi:10.1586/14760584.6.6.957spa
dc.relation.referencesBedair M, El Rassi Z. Affinity chromatography with monolithic capillary columns II. Polymethacrylate monoliths with immobilized lectins for the separation of glycoconjugates by nano-liquid affinity chromatography J. Chromat. 2005;1079: 236-245.spa
dc.relation.referencesHajba L, Csanky E, Guttman A. Liquid phase separation methods for N-glycosylation analysis of glycoproteins of biomedical and biopharmaceutical interest. A critical review. Anal Chim Acta. 2016; 943:8- 16. dOi: 10.1016/j.aca.2016.08.035.spa
dc.relation.referencesHaojie Lu, Ying Zhang, Pengyuan Yang. Advancements in mass spectrometry-based glycoproteomics and glycomics, National Science Review. Disponible en: https://doi.org/10.1093/nsr/nww019. [06 de febrero de 2020].spa
dc.relation.referencesHirabayashi J, Kasai K. Separation technologies for glycomics. J. Chromat. B. 2002;771:67-87.spa
dc.relation.referencesKhajehpour M, Dashnau JL, Vanderkooi JM. Infrared spectroscopy used to evaluate glycosylation of proteins. Anal.Biochem. 2005; 348:40-48.spa
dc.relation.referencesDuverger E, Frison N, Roche AC, Monsigny M. Carbohydrate- lectin interactions assessed by surface plasmon resonance. Biochimie. 2003;85:167-179.spa
dc.relation.referencesReynolds M, Pérez S. Thermodynamics and chemical characterization of protein–carbohydrate interactions: The multivalency issue. Comptes Rendus Chimie. 2011;14(1):74-95.spa
dc.relation.referencesShimomura O, Oda T, Tateno H, Ozawa Y, Kimura S, Sakashita S, ... Ohkohchi N. A novel therapeutic strategy for pancreatic cancer: Targeting cell surface glycan using rBC2LC-N Lectin–Drug Conjugate (ldc). Molecular Cancer Therapeutics. 2017;17(1): 183–195. dOi:10.1158/1535-7163. mct-17-0232spa
dc.relation.referencesHirabayashi J. Oligosaccharide microarrays for glycomics. Trends Biotech. 2003;21:141-143.spa
dc.relation.referencesHirabayashi J, Tateno H, Shikanai T, Aoki-kinoshita KFf, Narimatsu H. The Lectin Frontier Database (lfdb), and data generation based on frontal affinity chromatography. Molecules. 2015;20(1):951-73. dOi: 10.3390/ molecules20010951.spa
dc.relation.referencesNakamura-Tsuruta S, Uchiyama N, Kominami J. Hirabayashi J. Frontal affinity chromatography: Systematization for quantitative interaction analysis between lectins and glycans. Nilsson CL (ed.) Lectins: Analytical technologies. Amsterdam: Elsevier, 2007. 239-266spa
dc.relation.referencesResearch Center for Medical Glycoscience. DataBase for glycan structure analysis and synthetic technology. Lectin Frontier Database. Disponible en: http://riodb.ibase.aist.go.jp/rcmg/glycodb/. [06 de febrero de 2020].spa
dc.relation.referencesNarimatsu H, Sawaki H, Kuno A, Kaji H, Ito H, Ikehara Y: A strategy for discovery of cancer glyco-biomarkers in serum using newly developed technologies for glycoproteomics. Febs Journal. 2010; 277:95–105.spa
dc.relation.referencesHizal DB, Wolozny D, Colao J, Jacobson E, Tian Y, Krag SS et al. Glycoproteomic and glycomic databases. Clinical proteomics. 2014;11(1):15.spa
dc.relation.referencesCermav (cnrs). Cermav. Disponible en: www.cermav.cnrs.fr. [06 de febrero de 2020].spa
dc.relation.referencesBrockhausen I. Pathways of O-glycan biosynthesis in cancer cells. Biochim. Biophys.Acta 1999;1473:67-95.spa
dc.relation.referencesFreeze HH. Update and perspectives on congenital disorders of glycosylation. Glycobiology. 2001;11:129R-143R.spa
dc.relation.referencesMadsen CB, Petersen C, Lavrsen K, Harndahl M, Buus S, Clausen H, Wandall HH. Cancer associated aberrant protein O-Glycosylation can modify antigen processing and immune response. PLoS One, 2012;7(11). e50139. http://doi.org/10.1371/journal.pone.0050139spa
dc.relation.referencesKailemia MJ, Park D1, Lebrilla CB. Glycans and glycoproteins as specific biomarkers for cancer. Anal Bioanal Chem. 2017;409(2):395-410.doi: 10.1007/s00216-016-9880-6.spa
dc.relation.referencesKuno A, Uchiyama N, Koseki-kuno S, Ebe Y, Takashima S, Yamada M, Hirabayashi J. Evanescent–field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nature Methods. 2005;2:851-856.spa
dc.relation.referencesMatsuda A, Kuno A, Ishida H, Kawamoto T, Shoda J, Hirabayashi J. Development of an all-in-one technology for glycan profiling targeting formalin-embedded tissue sections. Biochem. Biophys. Res. Comm. 2008;370:259-263.spa
dc.relation.referencesHu S, Wong DT. Lectin microarray. Proteomics - Clinical Applications. 2009;3(2):148–154. dOi:10.1002/prca.200800153spa
dc.relation.referencesEdgea Faltynek C, Hof L, Reichert L, Weber P. Deglycosilation of glycoprotenis by trifuoromethane sulfonic acid. Analytical Biochemistry. 1981;118: 131-137.spa
dc.relation.referencesMontreuil J, Bouquelet S, Debray H, Lemoine J, Michalski JC, Spik G, Strecker G. Glycoproteins in Carbohydrate Analysis. A practical approach 7. Chaplin MF, Kennedy J.F (eds). United Kingdom: irl Press, Oxford; 1994.spa
dc.relation.referencesWells L, Vosseller K, Cole RN, Cronshaw JM, Matunis MJ, Hart GW. Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol Cellspa
dc.relation.referencesProteomics. 2002;1:791–804.spa
dc.relation.referencesShajahan A, Heiss C, Ishihara M, Azadi P. Glycomic and glycoproteomic analysis of glycoproteins—a tutorial. Analytical and Bioanalytical Chemistry. 2017;409(19):4483–4505. dOi:10.1007/s00216-017-0406-7spa
dc.relation.referencesQuian Fan J, Namiky J, Matsuoka K, Lee YC. Comparison of acid hydrolitic conditions for asn linked oligosaccharides. Analytical Biochemistry. 1994;219: 375-378.spa
dc.relation.referencesBiorad. Glycoprotein and Oligosaccharide Analysis. 1997;149-155.spa
dc.relation.referencesChaplin MF. Monosacarides. Chaplin MF, Kennedy J.F (eds.) Carbohydrate Analysis. A practical approach. United Kingdom: irl Press, Oxford; 1994.spa
dc.relation.referencesPatel TP y Parekh RB. Release of oligosaccharides from glyco¬proteins by hydrazinolysis. Meth. Enzymol., 230, 57-66 (1994)spa
dc.relation.referencesOxford Glyco Systems. Tools for Glycobiology. Oxford: Oxford Glyco Systems; 1994. Pp. 152.spa
dc.relation.referencesLi SY, Höltje JV, Young KD. Comparison of high-performance liquid chromatography and fluorophore-assisted carbohydrate electrophoresis methods for analyzing peptidoglycan composition of Escherichia coli. Analytical Biochemistry. 2004; 326(1): 1–12. dOi:10.1016/j.ab.2003.11.007spa
dc.relation.referencesBigge J, Patel T, Bruce J, Goulding P, Cahrles S y Parekh R. Non selective and efficient fluorescent labeling of glycans using 2-amino benzamide and antranilic acid.Anal.Biochem. 1995;230:229-238.spa
dc.relation.referencesKenedy J, Pagliuca G. Oligosaccharides in Carbohydrate Analysis. A practical approach. Chaplin MF, Kennedy JF (eds) United Kingdom: irl Press, Oxford; 1994. Pp 64-67.spa
dc.relation.referencesCummings R, Pierce M. The challenge and promise of glycomics. Chem Biol. 2014;21(1): 1–15. dOi: 10.1016/j.chembiol.2013.12.010.spa
dc.relation.referencesBrocke C, Kunz H. Synthesis of tumor-associated glycopeptide antigens. Bioorg. Medicinal Chem. 2002;10: 3085-3112.spa
dc.relation.referencesHemmerich S. Glycomics: coming of age across the globe. ddt. 2005; 10:307-309.spa
dc.relation.referencesGouyer V, Leteurtre E, Zanetta J, Lesuffleur T, Delannoy P, Huer G. Inhibition of the glycosylation and alteration in the intracellular trafficking of mucins and other glycoproteins by GalNacαα-o-bn in muosal cell lines: an effect mediated through the intracellular synthesis of complex GalNacαα-o- bn oligosaccharides. Front. Biosc. 2001;6: 1235-1244.spa
dc.relation.referencesHirabayashi J, Kuno A, Tateno H. Lectin-based structural glycomics: A practical approach to complex glycans. Electrophoresis. 2011;32(10):1118– 1128. dOi:10.1002/elps.201000650spa
dc.relation.referencesHiono T, Matsuda A, Wagatsuma T, Okamatsu M, Sakoda Y, Kuno A. Lectin microarray analyses reveal host cell-specific glycan profiles of the hemagglutinins of influenza A viruses. Virology. 2019; 527:132–140. dOi:10.1016/j.virol.2018.11.010spa
dc.relation.referencesWang, YC, Nakagawa M, Garitaonandia I, Slavin I, Altun G, Lacharite RM, et al. Specific lectin biomarkers for isolation of human pluripotent stem cells identified through array-based glycomic analysis. Cell Research. 2011; 21(11): 1551–1563. doi:10.1038/cr.2011.148spa
dc.relation.referencesPomin V, Mulloy B. Glycosaminoglycans and Proteoglycans. Pharmaceuticals. 2018; 11(1):27. dOi:10.3390/ph11010027spa
dc.relation.referencesSasisekharan R, Raman R y Prabhakar V. Glycomics approach to structure-function relationships of glycosaminoglycans. Annual Review of Biomedical Engineering. 2006; 8(1): 181–231. dOi:10.1146/annurev. bioeng.8.061505.095745spa
dc.relation.referencesRicardo S, Marcos-Silva L, Pereira D, Pinto R, Almeida R, Söderberg O, Mandel U, Clausen H, Felix A, Lunet N, David L. Detection of glyco-mucin profiles improves specificity of muc16 and muc1 biomarkers in ovarian serous tumours. Mol Oncol. 2015; 9(2):503-12. dOi: 10.1016/j.molonc.2014.10.005.spa
dc.relation.referencesStorr SJ, Royle L, Chapman CJ, Hamid uma, Robertson JF, Murray A, ... y Rudd PM. The O-linked glycosylation of secretory/shed muc1 from an advanced breast cancer patient’s serum. Glycobiology.2008; 18: 456-462.spa
dc.relation.referencesRevoredo L, Wang SH, Bennett E, Clausen H, Moremen K, Jarvis D, Ten Hagen K, Tabak L y Gerken T. Mucin-type O-glycosylation is controlled by short- and long-range glycopeptide substrate recognition that varies among members of the polypeptide GalNAc transferase family Glycobiology. 2016; 4:360-376. dOi: 10.1093/glycob/cwv108.spa
dc.relation.referencesKishikawa T, Ghazizadeh M, Sasaki Y, Springer GF. Specific role of T and Tn tumor-associated antigens in adhesion between a human breast carcinoma cell line and normal human breast epithelial cell line. Jpn. J. Cancer Res.1999; 90: 326-332.spa
dc.relation.referencesLisowska E. Tn Antigens and their significance in Oncology. Acta Biochim. Pol. 1995;42: 11-17.spa
dc.relation.referencesDotan N. Anti-glycan antibodies as biomarkers for diagnosis and prognosis. Lupus. 2006;15:442-450.spa
dc.relation.referencesArnoudse CA, García JJ, Saeland E, Van Kooyk Y. Recognition of tumor glycans by antigen-presenting cells. Curr. Opinion Immunol. 2005; 17: 1-7.spa
dc.relation.referencesPrendergasT JM, Galvao Da Silva AP, Eavarone DA, Ghaderi D, Zhang M, Brady D, Wicks J, Desander J, Behrens J, Rueda BR. Novel anti-Sialyl- Tn monoclonal antibodies and antibody-drug conjugates demonstrate tumor specificity and anti-tumor activity. MAbs. 2017;9(4):615-627. dOi: 10.1080/19420862.2017.1290752spa
dc.relation.referencesBonomelli C, Crispin M, Scanlan CN, Doores KJ. Hiv Glycomics and Glycoproteomics. In: Pantophlet R. (eds). Hiv glycans in infection and immunity. New York, NY: Springer; 2014.spa
dc.relation.referencesWang D. Glyco-epitope diversity: An evolving area of glycomics research and biomarker discovery. Journal of Proteomics & Bioinformatics, 2014; 07(02). dOi:10.4172/jpb.10000e24spa
dc.relation.referencesLo-man R, Vichier-Guerre S, Bay S, Deriaud E, Cantacuzene D, Leclerc C. Anti-tumor immunity provided by synthetic multiple antigen glycopeptide displaying a tri-Tn glycotope. J. Immunol. 16: 2829-2854.2001spa
dc.relation.referencesVichier–Guerre S, Lo-man R, Huteau V, Deriaud E, Leclerc C, Bay S. Synthesis and immunological evaluation of an antitumor neoglycopeptide vaccine bearing a novel homoserine Tn antigen. Bioorg. Medicinal Chem Letters. 2004; 14: 3567-3570.spa
dc.relation.referencesMiyajima K, Takahiro N, Kiyoshi I, Kazuo A. Synthesis of Tn and sialil Tn antigen-lipid and analog conjugates for synthetic vaccines. Chem. Pharm. Bull. Tokyo. 1997;45: 1544-1546.spa
dc.relation.referencesBay S, Loman R, Osinaga E, Nakada H, Leclerc C, Cantacuzene D. Preparation of a multiple antigen glycopeptide (mag) carrying the Tn antigen-A possible approach to a synthetic carbohydrate vaccine. J. Peptide Res. 1997;49: 620-625.spa
dc.relation.referencesChan HS, Dill KA. The protein folding problem. Physics today. 1993;46(2):24-32.spa
dc.relation.referencesVoet D, Voet JG. Techniques of protein purification. Biochemistry. New York, NY: John Wiley and Sons Inc., 1990.75.spa
dc.relation.referencesRoy A, Zhang Y. Recognizing protein-ligand binding sites by global structural alignment and local geometry refinement. Structure. 2012;20(6):987-997.spa
dc.relation.referencesFloudas CA, Fung HK, McAllister SR, Mönnigmann M, Rajgaria R. Advances in protein structure prediction and de novo protein design: A review. Chemical Engineering Science. 2006;61(3):966-988.spa
dc.relation.referencesSingh M, Kim PS. Towards predicting coiled-coil protein interactions. recOmb01: The Fifth Annual International Conference on Computational Molecular Biology. Association for Computing Machinery: Quebec, Montreal, Canada; 2001. 279-286.spa
dc.relation.referencesChou PY, Fasman GD. Prediction of protein conformation. Biochemistry. 1974;13(2):222-245.spa
dc.relation.referencesGarnier J, Osguthorpe DJ, Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. Journal of molecular biology. 1978;120(1):97-120.spa
dc.relation.referencesGarnier J, Robson B. The gOr method for predicting secondary structures in proteins. Prediction of protein structure and the principles of protein conformation: Springer; 1989. 417-465.spa
dc.relation.referencesGibrat JF, Garnier J, Robson B. Further developments of protein secondary structure prediction using information theory: new parameters and consideration of residue pairs. Journal of molecular biology. 1987;198(3):425-443.spa
dc.relation.referencesGarnier J, Gibrat JF, Robson B. gOr method for predicting protein secondary structure from amino acid sequence. Methods in enzymology. 266: Elsevier; 1996. 540-553.spa
dc.relation.referencesKloczkowski A, Ting KL, Jernigan RL, Garnier J. Combining the gOr v algorithm with evolutionary information for protein secondary structure prediction from amino acid sequence. Proteins: Structure, Function and Bioinformatics. 2002;49(2):154-166.spa
dc.relation.referencesQian N, Sejnowski TJ. Predicting the secondary structure of globular proteins using neural network models. Journal of molecular biology. 1988;202(4):865-884.spa
dc.relation.referencesHolley LH, Karplus M. Protein secondary structure prediction with a neural network. Proceedings of the National Academy of Sciences. 1989;86(1):152-156.spa
dc.relation.referencesMaclin R, Shavlik JW. Using knowledge-based neural networks to improve algorithms: Refining the Chou-Fasman algorithm for protein folding. Machine Learning. 1994;11(2-3):195-215.spa
dc.relation.referencesRost B, Sander C. Prediction of protein secondary structure at better than 70 % accuracy. Journal of molecular biology. 1993;232(2):584-599.spa
dc.relation.referencesPollastri G, Przybylski D, Rost B, Baldi P. Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins: Structure, Function, and Bioinformatics. 2002;47(2):228-235.spa
dc.relation.referencesAnfinsen CB. Principles that govern the folding of protein chains. Science. 1973;181(4096):223-230.spa
dc.relation.referencesSimons KT, Kooperberg C, Huang E, Baker D. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. Journal of molecular biology. 1997;268(1):209-225.spa
dc.relation.referencesXu D, Zhang Y. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge‐based force field. Proteins: Structure, Function and Bioinformatics. 2012;80(7):1715-1735.spa
dc.relation.referencesMoult J, Fidelis K, Kryshtafovych A, Rost B, Tramontano A. Critical assessment of methods of protein structure prediction—Round viii. Proteins: Structure, Function and Bioinformatics. 2009;77(S9):1-4.spa
dc.relation.referencesJauch R, Yeo HC, Kolatkar PR, Clarke ND. Assessment of casp7 structure predictions for template free targets. Proteins: Structure, Function, and Bioinformatics. 2007;69(S8):57-67.spa
dc.relation.referencesMartí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Šali A. Comparative protein structure modeling of genes and genomes. Annual review of biophysics and biomolecular structure. 2000;29(1):291-325.spa
dc.relation.referencesRead RJ, Chavali G. Assessment of casp7 predictions in the high accuracy template‐based modeling category. Proteins: Structure, Function, and Bioinformatics. 2007;69(S8):27-37.spa
dc.relation.referencesBowie JU, Luthy R, Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science. 1991;253(5016):164-170.spa
dc.relation.referencesRychlewski L, Jaroszewski L, Li W, Godzik A. Comparison of sequence profiles. Strategies for structural predictions using sequence information. Protein Science. 2000;9(2):232-241.spa
dc.relation.referencesSöding J. Protein homology detection by Hmm–Hmm comparison. Bioinformatics. 2005;21(7):951-960.spa
dc.relation.referencesSkolnick J, Kihara D, Zhang Y. Development and large scale benchmark testing of the prOspectOr_3 threading algorithm. Proteins: Structure, Function, and Bioinformatics. 2004;56(3):502-518.spa
dc.relation.referencesXu Y, Xu D, Crawford OH, Einstein JR, Larimer F, Uberbacher E, et al. Protein threading by prOspect: a prediction experiment in casp3. Protein engineering. 1999;12(11):899-907.spa
dc.relation.referencesNeedleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of molecular biology. 1970;48(3):443-453.spa
dc.relation.referencesEddy SR. Profile hidden Markov models. Bioinformatics (Oxford, England). 1998;14(9):755-63.spa
dc.relation.referencesWu S, Zhang Y. muster: improving protein sequence profile–profile alignments by using multiple sources of structure information. Proteins: Structure, Function and Bioinformatics. 2008;72(2):547-556.spa
dc.relation.referencesYang Y, Faraggi E, Zhao H, Zhou Y. Improving protein fold recognition and template-based modeling by employing probabilistic-based matching between predicted one-dimensional structural properties of query and corresponding native properties of templates. Bioinformatics. 2011;27(15):2076-2082spa
dc.relation.referencesGinalski K, Elofsson A, Fischer D, Rychlewski L. 3d-Jury: a simple approach to improve protein structure predictions. Bioinformatics. 2003;19(8):1015-1018.spa
dc.relation.referencesWu S, Zhang Y. lOmets: a local meta-threading-server for protein structure prediction. Nucleic acids research. 2007;35(10):3375-3382.spa
dc.relation.referencesMacCallum JL, Hua L, Schnieders MJ, Pande VS, Jacobson MP, Dill KA. Assessment of the protein‐structure refinement category in casp8. Proteins: Structure, Function, and Bioinformatics. 2009;77(S9):66-80.spa
dc.relation.referencesSumma CM, Levitt M. Near-native structure refinement using in vacuo energy minimization. Proceedings of the National Academy of Sciences. 2007;104(9):3177-3182.spa
dc.relation.referencesSkolnick J. In quest of an empirical potential for protein structure prediction. Current opinion in structural biology. 2006;16(2):166-171.spa
dc.relation.referencesZhang Y, Kihara D, Skolnick J. Local energy landscape flattening: parallel hyperbolic Monte Carlo sampling of protein folding. Proteins: Structure, Function, and Bioinformatics. 2002;48(2):192-201.spa
dc.relation.referencesZhang Y. Template‐based modeling and free modeling by i‐tasser in casp7. Proteins: Structure, Function, and Bioinformatics. 2007;69(S8):108-117.spa
dc.relation.referencesLiwo A, Khalili M, Czaplewski C, Kalinowski S, Ołdziej S, Wachucik K, et al. Modification and optimization of the united-residue (unres) potential energy function for canonical simulations. I. Temperature dependence of the effective energy function and tests of the optimization method with single training proteins. The Journal of Physical Chemistry B. 2007;111(1):260-285.spa
dc.relation.referencesHolm L, Sander C. Database algorithm for generating protein backbone and side-chain co-ordinates from a C? trace. Journal of molecular biology. 1991;218(1):183-194.spa
dc.relation.referencesRotkiewicz P, Skolnick J. Fast procedure for reconstruction of full‐atom protein models from reduced representations. Journal of computational chemistry. 2008;29(9):1460-1465.spa
dc.relation.referencesLi Y, Zhang Y. remO: A new protocol to refine full atomic protein models from C‐alpha traces by optimizing hydrogen‐bonding networks. Proteins:from C‐alpha traces by optimizing hydrogen‐bonding networks. Proteins: Structure, Function, and Bioinformatics. 2009;76(3):665-676.spa
dc.relation.referencesZhang J, Liang Y, Zhang Y. Atomic-level protein structure refinement using fragment-guided molecular dynamics conformation sampling. Structure. 2011;19(12):1784-1795.spa
dc.relation.referencesZhang L, Skolnick J. What should the Z‐score of native protein structures be? Protein science. 1998;7(5):1201-1207.spa
dc.relation.referencesCozzetto D, Kryshtafovych A, Tramontano A. Evaluation of casp8 model quality predictions. Proteins: Structure, Function, and Bioinformatics. 2009;77(S9):157-166.spa
dc.relation.referencesFischer D. Servers for protein structure prediction. Current opinion in structural biology. 2006;16(2):178-182.spa
dc.relation.referencesKryshtafovych A, Fidelis K, Tramontano A. Evaluation of model quality predictions in casp9. Proteins: Structure, Function, and Bioinformatics. 2011;79(S10):91-106.spa
dc.relation.referencesZhang Y. Protein structure prediction: when is it useful? Current opinion in structural biology. 2009;19(2):145-155.spa
dc.relation.referencesSchlessinger A, Geier E, Fan H, Irwin JJ, Shoichet BK, Giacomini KM, et al. Structure-based discovery of prescription drugs that interact with the norepinephrine transporter, net. Proceedings of the National Academy of Sciences. 2011;108(38):15810-5.spa
dc.relation.referencesGiorgetti A, Raimondo D, Miele AE, Tramontano A. Evaluating the usefulness of protein structure models for molecular replacement. Bioinformatics. 2005;21(suppl_2):ii72-ii76.spa
dc.relation.referencesArakaki AK, Zhang Y, Skolnick J. Large-scale assessment of the utility of low-resolution protein structures for biochemical function assignment. Bioinformatics. 2004;20(7):1087-1096.spa
dc.relation.referencesMalmström L, Riffle M, Strauss cem, Chivian D, Davis TN, Bonneau R, et al. Superfamily assignments for the yeast proteome through integration of structure prediction with the gene ontology. plos biology. 2007;5(4). Disponible en: https://doi.org/10.1371/journal.pbio.0050076spa
dc.rightsUniversidad Nacional de Colombia, 2020spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.subject.ddc572 - Bioquímicaspa
dc.subject.lembBioquímica
dc.subject.lembAminoácidos
dc.subject.lembProteínas - Análisis
dc.titleIntroducción al análisis estructural de proteínas y glicoproteínasspa
dc.typeLibrospa
dc.type.coarhttp://purl.org/coar/resource_type/c_2f33spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Introducción al analisis estructural de proteinas y glicoproteinas.pdf
Tamaño:
12 MB
Formato:
Adobe Portable Document Format
Descripción:
Libro Introducción al análisis estructural de proteínas y glicoproteínas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción:

Colecciones