Estimation of a loading/unloading parking duration model for commercial vehicles in urban areas

dc.contributor.advisorPosada Henao, John Jairo
dc.contributor.advisorGonzález Calderón, Carlos Alberto
dc.contributor.authorVasco Diaz, Lina Maria
dc.contributor.researchgroupVias y Transporte (Vitra)spa
dc.coverage.cityMedellín (Antioquia, Colombia)
dc.date.accessioned2025-03-29T14:40:50Z
dc.date.available2025-03-29T14:40:50Z
dc.date.issued2025
dc.descriptionIlustraciones, mapasspa
dc.description.abstractA lo largo de los años, la entrega de bienes y servicios se ha enfrentado cada vez más a retos como la falta de zonas de parqueo para las entregas, el aumento de la demanda por parte de los usuarios y externalidades negativas como mayores niveles de accidentes y contaminación. En esta investigación se utiliza un modelo de regresión Lasso para estimar un modelo de duración del parqueo para actividades de carga y descarga. El modelo, desarrollado a partir de 247 observaciones de operaciones de camiones en Medellín (Colombia), se utiliza para identificar las principales variables que influyen en la duración del estacionamiento en el Área Metropolitana de Medellín. Los resultados del modelo indican cómo las principales variables que intervienen en el tiempo de estacionamiento son el peso de la carga (Ton), las unidades por Pallet, el número de empleados del establecimiento, el número de equipos manuales, el número de equipos mecánicos, y si la operación fue asistida con equipos de carga/descarga. También se descubrió que el modelo de regresión Lasso tiene un gran potencial para comprender y predecir la duración del estacionamiento de los viajes de camiones comerciales. La tesis concluye con recomendaciones para futuras investigaciones basadas en los resultados obtenidos al aplicar la metodología propuesta en este estudio. (Tomado de la fuente)spa
dc.description.abstractOver the years, the delivery of goods and services has increasingly faced challenges such as a lack of parking spaces for deliveries, increased demand from users, and negative externalities such as higher levels of accidents and pollution. This research uses a Lasso regression model to estimate a parking duration model for loading and unloading activities. The model, developed from 247 observations of truck operations in Medellin (Colombia), is used to identify the main variables influencing parking duration in Medellin’s metropolitan area. The model results indicate how the main variables that intervene in the parking time are cargo weight (Ton), units per Pallet, number of employees, number of manual equipment, number of mechanical equipment, and whether the operation was assisted with loading/unloading equipment. It was also found that the Lasso regression model has great potential to understand and predict the parking duration of commercial truck trips. The thesis concludes with recommendations for future research based on the results obtained by applying the methodology proposed in this study.eng
dc.description.curricularareaIngeniería Civil.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Infraestructura y Sistemas de Transportespa
dc.description.technicalinfoContiene matrices, gráficas, mapas y tablasspa
dc.format.extent63 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.repoRepositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87782
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Infraestructura y Sistemas de Transportespa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesComunas de Medellín. (2024, April 13). Medellín firma acuerdo para incentivar el desarrollo económico del país desde las regiones. Comunasme Comunicación Digital de Medellín. https://comunasdemedellin.com/medellin-firma-acuerdo-paraincentivar- el-desarrollo-economico-del-pais-desde-las-regiones/spa
dc.relation.referencesAlho, A., Oh, S., Seshadri, R., Dalla Chiara, G., Chong, W. H., Sakai, T., Cheah, L., & Ben-Akiva, M. (2022). An agent-based simulation assessment of freight parking demand management strategies for large urban freight generators. Research in Transportation Business and Management, 43. https://doi.org/10.1016/j.rtbm.2022.100804spa
dc.relation.referencesAmaya, J., Encarnación, T., & Delgado-Lindeman, M. (2023). Understanding Delivery Drivers’ Parking Preferences in Urban Freight Operations. Transportation Research Part A: Policy and Practice, 176. https://doi.org/10.1016/j.tra.2023.103823spa
dc.relation.referencesÁrea metropolitana del valle de Aburrá. (2019). Municipios, información básica del territorio a nivel Municipio. Aburrá Datos. https://www.metropol.gov.co/observatorio/Paginas/areadatosmapa. aspx#HeaderMapspa
dc.relation.referencesÁrea Metropolitana del Valle de Aburrá, & Universidad Nacional de Colombia. (2018). Estudio del transporte de carga en el Área Metropolitána del Valle de Aburrá.spa
dc.relation.referencesBarbero, J. A., & Guerrero, P. (2017). El transporte automotor de carga en américa latina, soporte logístico de la producción y el comercio. www.iadb.orgspa
dc.relation.referencesBartlett, J. E., Kotrlik, J. W., & Higgins, C. C. (2001). Organizational Research: Determining Organizational Research: Determining Appropriate Sample Size in Survey Research Appropriate Sample Size in Survey Research. In Information Technology, Learning, and Performance Journal (Vol. 19, Issue 1).spa
dc.relation.referencesBurns, A. J., Michalek, J. J., & Samaras, C. (2024). Estimating the potential for optimized curb management to reduce delivery vehicle double parking, traffic congestion and energy consumption. Transportation Research Part E: Logistics and Transportation Review, 187. https://doi.org/10.1016/j.tre.2024.103574spa
dc.relation.referencesCampbell, S., Holguín-Veras, J., Ramirez-Rios, D. G., González-Calderón, C., Kalahasthi, L., & Wojtowicz, J. (2018). Freight and service parking needs and the role of demand management. European Transport Research Review, 10(2). https://doi.org/10.1186/s12544-018-0309-5spa
dc.relation.referencesCastrellon, J. P., & Sanchez-Diaz, I. (2024). Effects of freight curbside management on sustainable cities: Evidence and paths forward. Transportation Research Part D: Transport and Environment, 130. https://doi.org/10.1016/j.trd.2024.104165spa
dc.relation.referencesCastrellon, J. P., Sanchez-Diaz, I., & Kalahasthi, L. K. (2023). Enabling Factors and Durations Data Analytics for Dynamic Freight Parking Limits. In Transportation Research Record (Vol. 2677, Issue 2, pp. 219–234). SAGE Publications Ltd. https://doi.org/10.1177/03611981221115086spa
dc.relation.referencesChatziioannou, I., Alvarez-Icaza, L., Bakogiannis, E., Kyriakidis, C., & Chias-Becerril, L. (2020). A structural analysis for the categorization of the negative externalities of transport and the hierarchical organization of sustainable mobility’s strategies. Sustainability (Switzerland), 12(15). https://doi.org/10.3390/su12156011spa
dc.relation.referencesDalla Chiara, G., & Goodchild, A. (2020). Do commercial vehicles cruise for parking? Empirical evidence from Seattle. Transport Policy, 97, 26–36. https://doi.org/10.1016/j.tranpol.2020.06.013spa
dc.relation.referencesFederal Highway Administration. (2017, January 31). Introduction To Vehicle Classification. Office of Research, Development, and Technology, Office of Infrastructure, RDT. https://www.fhwa.dot.gov/publications/research/infrastructure/pavements/ltpp/13091/002.cfmspa
dc.relation.referencesFeng, N., Zhang, F., Lin, J., Zhai, J., & Du, X. (2019). Statistical Analysis and Prediction of Parking Behavior. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11783 LNCS, 93–104. https://doi.org/10.1007/978-3-030-30709-7_8spa
dc.relation.referencesGao, J., & Ozbay, K. (2017). A data-driven approach to estimate double parking events using. Transportation Research Board 96th Annual Meeting, 1–15.spa
dc.relation.referencesGhizzawi, F., Galal, A., & Roorda, M. J. (2024). Modelling parking behaviour of commercial vehicles: a scoping review. Transport Reviews. https://doi.org/10.1080/01441647.2024.2305202spa
dc.relation.referencesHair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate data analysis (7th ed.). Pearson Education Limited.spa
dc.relation.referencesHolguin-Veras, J., Jaller, M., Destro, L., Ban, X., Lawson, C., & Levinson, H. (2011). Freight generation, freight trip generation, and the perils of using constant trip rates. Sage Journal, Volume 2224(Issue 1).spa
dc.relation.referencesJames, G., Gareth, M., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning : with applications in R. Springer. https://doi.org/10.1007/978-1- 4614-7138-7spa
dc.relation.referencesKalahasthi, L. K., Sánchez-Díaz, I., Pablo Castrellon, J., Gil, J., Browne, M., Hayes, S., & Sentís Ros, C. (2022). Joint modeling of arrivals and parking durations for freight loading zones: Potential applications to improving urban logistics. Transportation Research Part A: Policy and Practice, 166, 307–329. https://doi.org/10.1016/j.tra.2022.11.003spa
dc.relation.referencesKish, L. (1995). KISH Survey Sampling. Wiley-Interscience.spa
dc.relation.referencesKwak, S. K., & Kim, J. H. (2017). Statistical data preparation: Management of missing values and outliers. Korean Journal of Anesthesiology, 70(4), 407–411. https://doi.org/10.4097/kjae.2017.70.4.407spa
dc.relation.referencesLópez-Roldán, P., & Fachelli, S. (2015). Metodología de la investigación social cuantitativa: Vol. 1st edition. Universitat Autónoma de Barcelona.spa
dc.relation.referencesGreenberg, B. (2009). Introduction to the Practice of Statistics Sixth Edition (6th ed.). W.H. Freeman and Company.spa
dc.relation.referencesMorin, J. F., Olsson, C., & Atikcan, E. O. (2021). Research methods in the social sciences an A-Z of key concepts. Oxford University Press.spa
dc.relation.referencesMüller, A. C., & Guido, S. (2016). Introduction to Machine Learning with Python a guide for data scientists (1st ed.). O’Reilly Media.spa
dc.relation.referencesMurthy, P., Xie, M., & Jiang, R. (2004). Weibull Models (D. Blading & P. Bloomfield, Eds.). John Wiley & Sons, Inc.spa
dc.relation.referencesOrtúzar, J. de D., & Willumsen, L. G. (2011). Modelling Transport (J. de D. Ortuzar & L. G. Willumsen, Eds.; 4th ed.). WILEY John Wiley & Sons, Ltd.spa
dc.relation.referencesOtzen, T., & Manterola, C. (2017). Técnicas de Muestreo sobre una Población a Estudio Sampling Techniques on a Population Study. In Int. J. Morphol (Vol. 35, Issue 1).spa
dc.relation.referencesParmar, J., Das, P., & Dave, S. M. (2021). A machine learning approach for modelling parking duration in urban land-use. Physica A: Statistical Mechanics and Its Applications, 572. https://doi.org/10.1016/j.physa.2021.125873spa
dc.relation.referencesPinto, R., Lagorio, A., & Golini, R. (2019). The location and sizing of urban freight loading/unloading lay-by areas. International Journal of Production Research, 57(1), 83–99. https://doi.org/10.1080/00207543.2018.1461269spa
dc.relation.referencesProfillidis, V. A., Botzoris, G. N., & Galanis, A. T. (2014). Environmental Effects and Externalities from the Transport Sector and Sustainable Transportation Planning-A Review. International Journal of Energy Economics and Policy, 4(4), 647–661. www.econjournals.comspa
dc.relation.referencesRamirez-Rios, D. G., Kalahasthi, L. K., & Holguín-Veras, J. (2023). On-street parking for freight, services, and e-commerce traffic in US cities: A simulation model incorporating demand and duration. Transportation Research Part A: Policy and Practice, 169. https://doi.org/10.1016/j.tra.2023.103590spa
dc.relation.referencesRanstam, J., & Cook, J. A. (2018). Lasso regression. British Journal of Surgery, 105(10), 1348. https://doi.org/10.1002/bjs.10895spa
dc.relation.referencesRaschka, Sebastian., & Mirjalili, Vahid. (2017). Python machine learning : machine learning and deep learning with Python, scikit-learn, and TensorFlow. Packt Publishing.spa
dc.relation.referencesReed, S., Campbell, A. M., & Thomas, B. W. (2024). Does parking matter? The impact of parking time on last-mile delivery optimization. Transportation Research Part E: Logistics and Transportation Review, 181. https://doi.org/10.1016/j.tre.2023.103391spa
dc.relation.referencesSanchez-Diaz, I., Palacios-Argüello, L., Levandi, A., Mardberg, J., & Basso, R. (2020). A time-efficiency study of medium-duty trucks delivering in urban environments. Sustainability (Switzerland), 12(1). https://doi.org/10.3390/SU12010425spa
dc.relation.referencesSchmid, J., Wang, X. (Cara), & Conway, A. (2018). Commercial vehicle parking duration in New York City and its implications for planning. Transportation Research Part A: Policy and Practice, 116, 580–590. https://doi.org/10.1016/j.tra.2018.06.018spa
dc.relation.referencesScott, L. M., & Janikas, M. V. (2010). Spatial Statistics in ArcGIS. In Handbook of Applied Spatial Analysis (pp. 27–41). Springer Berlin Heidelberg. https://doi.org/10.1007/978- 3-642-03647-7_2spa
dc.relation.referencesSharman, B. W., Roorda, M. J., & Habib, K. M. N. (2012). Comparison of parametric and nonparametric hazard models for stop durations on urban tours with commercial vehicles. Transportation Research Record, 2269, 117–126. https://doi.org/10.3141/2269-14spa
dc.relation.referencesSilva, K., Labegalini, A., Lima, R. da S., & Yushimito, W. (2024). Improving freight parking needs in Brazilian cities with city logistics initiatives. Case Studies on Transport Policy, 16. https://doi.org/10.1016/j.cstp.2024.101184spa
dc.relation.referencesU.S. Department of transportation. (2022). Commodity Flow Survey Standard Classification of Transported Goods (SCTG) SCTG COMMODITY CODES.spa
dc.relation.referencesWackerly, D. D., Mendenhall III, W., & Scheaffer, R. L. (2008). Mathematical statistics with applications (7th ed.). Engage Learning.spa
dc.relation.referencesWalpole, R. E., Myers, R., Myers, S., & Ye, K. (2012). Probability & Statistics for Engineers & Scientists (Vol. 9th). Pearson Education, Inc.spa
dc.relation.referencesWashington, Simon., Karlaftis, M. G., & Mannering, F. L. (2003). Statistical and econometric methods for transportation data analysis. Chapman & Hall/CRC.spa
dc.relation.referencesWorld Bank Group. (2024). World Bank Country and Lending Groups. https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bankcountry- and-lending-groupsspa
dc.relation.referencesXiao, R. I., & Jaller, M. (2023). Prediction framework for parking search cruising time and emissions in dense urban areas. Transportation. https://doi.org/10.1007/s11116-023- 10455-4spa
dc.relation.referencesYang, S., Ma, W., Pi, X., & Qian, S. (2019). A deep learning approach to real-time parking occupancy prediction in transportation networks incorporating multiple spatiotemporal data sources. Transportation Research Part C: Emerging Technologies, 107, 248–265. https://doi.org/10.1016/j.trc.2019.08.010spa
dc.relation.referencesZou, W., Wang, X. (Cara), Conway, A., & Chen, Q. (2016). Empirical Analysis of Delivery Vehicle On-Street Parking Pattern in Manhattan Area. Journal of Urban Planning and Development, 142(2). https://doi.org/10.1061/(ASCE)UP.1943-5444.0000300spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::625 - Ingeniería de ferrocarriles y de carreteraspa
dc.subject.ddc380 - Comercio , comunicaciones, transporte::388 - Transportespa
dc.subject.lembTransporte - Planificación - Medellín (Colombia)
dc.subject.lembServicios de parqueo - Planificación - Medellín (Colombia)
dc.subject.lembCargue y descargue - Planificación - Medellín (Colombia)
dc.subject.lembDistribución física de mercancías - Planificación - Medellín (Colombia)
dc.subject.lembReparto de mercancías - Planificación - Medellín (Colombia)
dc.subject.proposalUrban parkingeng
dc.subject.proposalCommercial vehicleseng
dc.subject.proposalLasso regressioneng
dc.subject.proposalParking durationeng
dc.subject.proposalDuración de parqueospa
dc.subject.proposalRegresión Lassospa
dc.subject.proposalParqueo en zonas urbanasspa
dc.subject.proposalVehículos comercialesspa
dc.titleEstimation of a loading/unloading parking duration model for commercial vehicles in urban areaseng
dc.title.translatedEstimación de un modelo de duración de estacionamiento de vehículos comerciales para cargue y descargue en zonas urbanasspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1067944550.2025.pdf
Tamaño:
1.07 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería infraestructura y sistemas de transporte

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: