Bentonita pilarizada con hierro y cobre para la degradación de amoxicilina presente en agua

dc.contributor.advisorMoreno Guáqueta, Sonia
dc.contributor.authorBueno Corredor, Julieth Natalia
dc.contributor.researchgroupEstado Sólido y Catálisis Ambientalspa
dc.contributor.scopusBueno Corredor, Natalia [58169421400]spa
dc.date.accessioned2023-07-27T13:46:07Z
dc.date.available2023-07-27T13:46:07Z
dc.date.issued2023
dc.description.abstractUna bentonita colombiana fue exitosamente pilarizada con precursores poliméricos de polihidroxocationes de Al, Al-Fe, Al-Cu y Al-Fe-Cu en estado sólido cuya síntesis es novedosa. Se estudió el efecto del contenido de Fe y Cu sobre las propiedades fisicoquímicas de la bentonita pilarizada con base en técnicas de caracterización como fluorescencia de rayos X (FRX), difracción de rayos X (DRX), microscopía electrónica de barrido (SEM), espectroscopia de fotoelectrones de rayos X (XPS), análisis térmicos y análisis textural (fisisorción de nitrógeno). Se utilizó el diseño de experimentos estadísticos de Box-Behnken para determinar los parámetros óptimos de las variables independientes: peróxido de hidrógeno (0.120-0.144 M), carga de catalizador (0.5-1.5 g/L) y tipo de catalizador (PILC FeCu1, FeCu5, FeCu10) en la oxidación catalítica de peróxido húmedo (CWPO) de amoxicilina. Las condiciones optimizadas de peróxido de hidrógeno (0.137 M) y carga del catalizador (0.7 g/L) se emplearon para comparar el desempeño catalítico de los catalizadores del 1, 5 y 10 % de metal (Fe, Cu), alcanzando una remoción entre el 91-100% de amoxicilina. Las constantes de velocidad obtenidas permitieron identificar el mejor sólido de cada serie para estudiar el grado de mineralización, resultando como el mejor catalizador la PILCAlFeCu10 con una remoción de TOC del 24.6% a las 2h de reacción. Después de tres ciclos de reúso el catalizador mantuvo su actividad catalítica en la eliminación de amoxicilina. Se estudió el sistema con doble agente oxidante (peróxido de hidrogeno- persulfato de potasio) en el que se verificaron mejoras en el desempeño catalítico de PILC-AlFeCu10 debido a un efecto cooperativo en la producción simultánea de radicales hidroxilo y anión sulfato. (Texto tomado de la fuente)spa
dc.description.abstractA Colombian bentonite is successfully pillared with Al, Al-Fe, Al-Cu and Al-Fe-Cu polyhydroxications in solid state. The effect of the Fe and Cu content on the physicochemical properties of the pillared bentonite was evaluated using characterization techniques such as X-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), thermal analysis and textural analysis (nitrogen physisorption). The Box-Behnken statistical experiment design was used to determine the optimal parameters of the independent variables hydrogen peroxide (0.120-0.144 M), catalyst load (0.5-1.5 g/L) and type of catalyst (PILC FeCu1, FeCu5, FeCu10) in the catalytic oxidation (CWPO) of amoxicillin. The optimized conditions of hydrogen peroxide (0.137 M) and catalyst loading (0.7 g/L) were used to compare the catalytic performance of the catalysts with 1, 5 and 10 % AlFe, AlCu and AlFeCu reaching a removal between 91-100% of amoxicillin at T and ambient pressure. The rate constants determined allowed the identification of the best catalyst of each series to study the degree of mineralization and choose the best catalyst: the pillared clay with AlFeCu10, with a TOC removal of 24.6% after 2 hours of reaction. After three cycles of reuse, the catalyst maintained its catalytic activity in removing amoxicillin without leaching any metal. The system with double oxidizing agent (hydrogen peroxide-potassium persulfate) was studied, in which improvements in the catalytic performance of PILC-AlFeCu10 were identified due to a cooperative effect in the simultaneous production of hydroxyl and sulfate anion radicals.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.description.researchareaCatálisis heterogéneaspa
dc.format.extentxv, 111 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84299
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesUNICEF & WHO. Progress on Household Drinking Water, Sanitation and Hygiene 2000-2017. Unicef/Who 2019, 140.spa
dc.relation.referencesAmeta, S. C. Introduction. Adv. Oxid. Process. Wastewater Treat. Emerg. Green Chem. Technol. 2018, 1–12. https://doi.org/10.1016/B978-0-12-810499-6.00001-2.spa
dc.relation.referencesWang, N.; Zheng, T.; Zhang, G.; Wang, P. A Review on Fenton-like Processes for Organic Wastewater Treatment. J. Environ. Chem. Eng. 2016, 4 (1), 762–787. https://doi.org/10.1016/j.jece.2015.12.016.spa
dc.relation.referencesBabuponnusami, A.; Muthukumar, K. A Review on Fenton and Improvements to the Fenton Process for Wastewater Treatment. J. Environ. Chem. Eng. 2014, 2 (1), 557–572. https://doi.org/10.1016/j.jece.2013.10.011.spa
dc.relation.referencesMohapatra, D. P.; Brar, S. K.; Tyagi, R. D.; Picard, P.; Surampalli, R. Y. Analysis and Advanced Oxidation Treatment of a Persistent Pharmaceutical Compound in Wastewater and Wastewater Sludge-Carbamazepine. Sci. Total Environ. 2014, 470–471, 58–75. https://doi.org/10.1016/j.scitotenv.2013.09.034.spa
dc.relation.referencesYang, Y.; Ok, Y. S.; Kim, K. H.; Kwon, E. E.; Tsang, Y. F. Occurrences and Removal of Pharmaceuticals and Personal Care Products (PPCPs) in Drinking Water and Water/Sewage Treatment Plants: A Review. Sci. Total Environ. 2017, 596–597, 303–320. https://doi.org/10.1016/j.scitotenv.2017.04.102.spa
dc.relation.referencesWorld Health Organization. Pharmaceuticals in drinking-water https://apps.who.int/iris/handle/10665/44630 (accessed Nov 21, 2021).spa
dc.relation.referencesPatel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C. U.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119 (6), 3510–3673. https://doi.org/10.1021/acs.chemrev.8b00299.spa
dc.relation.referencesGolovko, O.; Örn, S.; Sörengård, M.; Frieberg, K.; Nassazzi, W.; Lai, F. Y.; Ahrens, L. Occurrence and Removal of Chemicals of Emerging Concern in Wastewater Treatment Plants and Their Impact on Receiving Water Systems. Sci. Total Environ. 2021, 754, 142122. https://doi.org/10.1016/j.scitotenv.2020.142122.spa
dc.relation.referencesLi, F.; Chen, L.; Bao, Y.; Zheng, Y.; Huang, B.; Mu, Q.; Feng, C.; Wen, D. Identification of the Priority Antibiotics Based on Their Detection Frequency, Concentration, and Ecological Risk in Urbanized Coastal Water. Sci. Total Environ. 2020, 747, 141275. https://doi.org/10.1016/j.scitotenv.2020.141275.spa
dc.relation.referencesMijangos, L.; Ziarrusta, H.; Ros, O.; Kortazar, L.; Fernández, L. A.; Olivares, M.; Zuloaga, O.; Prieto, A.; Etxebarria, N. Occurrence of Emerging Pollutants in Estuaries of the Basque Country: Analysis of Sources and Distribution, and Assessment of the Environmental Risk. Water Res. 2018, 147, 152–163. https://doi.org/10.1016/j.watres.2018.09.033.spa
dc.relation.referencesBotero-Coy, A. M.; Martínez-Pachón, D.; Boix, C.; Rincón, R. J.; Castillo, N.; Arias-Marín, L. P.; Manrique-Losada, L.; Torres-Palma, R.; Moncayo-Lasso, A.; Hernández, F. ‘An Investigation into the Occurrence and Removal of Pharmaceuticals in Colombian Wastewater.’ Sci. Total Environ. 2018, 642, 842–853. https://doi.org/10.1016/j.scitotenv.2018.06.088.spa
dc.relation.referencesAus der Beek, T.; Weber, F. A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A. Pharmaceuticals in the Environment-Global Occurrences and Perspectives. Environ. Toxicol. Chem. 2016, 35 (4), 823–835. https://doi.org/10.1002/etc.3339.spa
dc.relation.referencesAhmed, M. B.; Zhou, J. L.; Ngo, H. H.; Guo, W.; Thomaidis, N. S.; Xu, J. Progress in the Biological and Chemical Treatment Technologies for Emerging Contaminant Removal from Wastewater: A Critical Review. J. Hazard. Mater. 2017, 323, 274–298. https://doi.org/10.1016/j.jhazmat.2016.04.045.spa
dc.relation.referencesMurray, C. J.; Ikuta, K. S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; Johnson, S. C.; Browne, A. J.; Chipeta, M. G.; Fell, F.; Hackett, S.; Haines-Woodhouse, G.; Kashef Hamadani, B. H.; Kumaran, E. A. P.; McManigal, B.; Agarwal, R.; Akech, S.; Albertson, S.; Amuasi, J.; Andrews, J.; Aravkin, A.; Ashley, E.; Bailey, F.; Baker, S.; Basnyat, B.; Bekker, A.; Bender, R.; Bethou, A.; Bielicki, J.; Boonkasidecha, S.; Bukosia, J.; Carvalheiro, C.; Castañeda-Orjuela, C.; Chansamouth, V.; Chaurasia, S.; Chiurchiù, S.; Chowdhury, F.; Cook, A. J.; Cooper, B.; Cressey, T. R.; Criollo-Mora, E.; Cunningham, M.; Darboe, S.; Day, N. P. J.; De Luca, M.; Dokova, K.; Dramowski, A.; Dunachie, S. J.; Eckmanns, T.; Eibach, D.; Emami, A.; Feasey, N.; Fisher-Pearson, N.;Forrest, K.; Garrett, D.; Gastmeier, P.; Giref, A. Z.; Greer, R. C.; Gupta, V.; Haller, S.; Haselbeck, A.; Hay, S. I.; Holm, M.; Hopkins, S.; Iregbu, K. C.; Jacobs, J.; Jarovsky, D.; Javanmardi, F.; Khorana, M.; Kissoon, N.; Kobeissi, E.; Kostyanev, T.; Krapp, F.; Krumkamp, R.; Kumar, A.; Kyu, H. H.; Lim, C.; Limmathurotsakul, D.; Loftus, M. J.; Lunn, M.; Ma, J.; Mturi, N.; Munera-Huertas, T.; Musicha, P.; Mussi-Pinhata, M. M.; Nakamura, T.; Nanavati, R.; Nangia, S.; Newton, P.; Ngoun, C.; Novotney, A.; Nwakanma, D.; Obiero, C. W.; Olivas-Martinez, A.; Olliaro, P.; Ooko, E.; Ortiz-Brizuela, E.; Peleg, A. Y.; Perrone, C.; Plakkal, N.; Ponce-de-Leon, A.; Raad, M.; Ramdin, T.; Riddell, A.; Roberts, T.; Robotham, J. V.; Roca, A.; Rudd, K. E.; Russell, N.; Schnall, J.; Scott, J. A. G.; Shivamallappa, M.; Sifuentes-Osornio, J.; Steenkeste, N.; Stewardson, A. J.; Stoeva, T.; Tasak, N.; Thaiprakong, A.; Thwaites, G.; Turner, C.; Turner, P.; van Doorn, H. R.; Velaphi, S.; Vongpradith, A.; Vu, H.; Walsh, T.; Waner, S.; Wangrangsimakul, T.; Wozniak, T.; Zheng, P.; Sartorius, B.; Lopez, A. D.; Stergachis, A.; Moore, C.; Dolecek, C.; Naghavi, M. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399 (10325), 629–655. https://doi.org/10.1016/S0140-6736(21)02724-0/ATTACHMENT/B227DEB3-FF04-497F-82AC-637D8AB7F679/MMC1.PDF.spa
dc.relation.referencesAntimicrobial resistance https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance (accessed May 29, 2022).spa
dc.relation.referencesJim O’Neill. Tackling drug-resistant infections globally: final report and recommendations. The review on antimicrobial resistance https://apo.org.au/node/63983 (accessed May 29, 2022).spa
dc.relation.referencesGlobal Action Plan on Antimicrobial Resistance. Microbe Mag. 2015, 10 (9), 354–355. https://doi.org/10.1128/microbe.10.354.1.spa
dc.relation.referencesCuerda-Correa, E. M.; Alexandre-Franco, M. F.; Fernández-González, C. Advanced Oxidation Processes for the Removal of Antibiotics from Water. An Overview. Water (Switzerland) 2020, 12 (1). https://doi.org/10.3390/w12010102.spa
dc.relation.referencesMacías-Quiroga, I. F.; Henao-Aguirre, P. A.; Marín-Flórez, A.; Arredondo-López, S. M.; Sanabria-González, N. R. Bibliometric Analysis of Advanced Oxidation Processes (AOPs) in Wastewater Treatment: Global and Ibero-American Research Trends. Environ. Sci. Pollut. Res. 2020 2819 2020, 28 (19), 23791–23811. https://doi.org/10.1007/S11356-020-11333-7.spa
dc.relation.referencesRibeiro, A. R.; Nunes, O. C.; Pereira, M. F. R.; Silva, A. M. T. An Overview on the Advanced Oxidation Processes Applied for the Treatment of Water Pollutants Defined in the Recently Launched Directive 2013/39/EU. Environ. Int. 2015, 75, 33–51. https://doi.org/10.1016/J.ENVINT.2014.10.027.spa
dc.relation.referencesJ. M. Thomas andW. J. Thomas. Principles and Practice of Heterogeneous Catalysis; 2015.spa
dc.relation.referencesNavalon, S.; Alvaro, M.; Garcia, H. Heterogeneous Fenton Catalysts Based on Clays, Silicas and Zeolites. Appl. Catal. B Environ. 2010, 99 (1–2), 1–26. https://doi.org/10.1016/j.apcatb.2010.07.006.spa
dc.relation.referencesHuang, C. P.; Dong, C.; Tang, Z. Advanced Chemical Oxidation: Its Present Role and Potential Future in Hazardous Waste Treatment. Waste Manag. 1993, 13 (5–7), 361–377. https://doi.org/10.1016/0956-053X(93)90070-D.spa
dc.relation.referencesNidheesh, P. V. Heterogeneous Fenton Catalysts for the Abatement of Organic Pollutants from Aqueous Solution: A Review. RSC Adv. 2015, 5 (51), 40552–40577. https://doi.org/10.1039/c5ra02023a.spa
dc.relation.referencesWorld Health Organization. WHO Report on Surveillance of Antibiotic Consumption. Who 2018, 128.spa
dc.relation.referencesElizalde-Velázquez, A.; Gómez-Oliván, L. M.; Galar-Martínez, M.; Islas-Flores, H.; Dublán-García, O.; SanJuan-Reyes, N. Amoxicillin in the Aquatic Environment, Its Fate and Environmental Risk. Environ. Heal. Risk - Hazard. Factors to Living Species 2016. https://doi.org/10.5772/62049.spa
dc.relation.referencesDe Franco, M. A. E.; de Carvalho, C. B.; Bonetto, M. M.; Soares, R. de P.; Féris, L. A. Removal of Amoxicillin from Water by Adsorption onto Activated Carbon in Batch Process and Fixed Bed Column: Kinetics, Isotherms, Experimental Design and Breakthrough Curves Modelling. J. Clean. Prod. 2017, 161, 947–956. https://doi.org/10.1016/j.jclepro.2017.05.197.spa
dc.relation.referencesRoy, J. The Top Five Most Common or Long-Selling Drugs. An Introd. to Pharm. Sci. 2011, 231–296. https://doi.org/10.1533/9781908818041.231.spa
dc.relation.referencesDoi, Y.; Chambers, H. F. Penicillins and β-Lactamase Inhibitors. Mand. Douglas, Bennett’s Princ. Pract. Infect. Dis. 2015, 1, 263-277.e3. https://doi.org/10.1016/B978-1-4557-4801-3.00020-5.spa
dc.relation.referencesPesqueira, J. F. J. R.; Pereira, M. F. R.; Silva, A. M. T. Environmental Impact Assessment of Advanced Urban Wastewater Treatment Technologies for the Removal of Priority Substances and Contaminants of Emerging Concern: A Review. J. Clean. Prod. 2020, 261. https://doi.org/10.1016/j.jclepro.2020.121078.spa
dc.relation.referencesThomas, N.; Dionysiou, D. D.; Pillai, S. C. Heterogeneous Fenton Catalysts: A Review of Recent Advances. J. Hazard. Mater. 2021, 404, 124082. https://doi.org/10.1016/j.jhazmat.2020.124082.spa
dc.relation.referencesA. Ya. Sychev; V. G. Isak. Iron Compounds and the Mechanisms of the Homogeneous Catalysis of the Activation of O2 and H2O2 and of the Oxidation of Organic Substrates. Russ. Chem. Rev. 1995, 64 (12), 1105–1129.spa
dc.relation.referencesGuo, R.; Xie, X.; Chen, J. The Degradation of Antibiotic Amoxicillin in the Fenton-Activated Sludge Combined System. Environ. Technol. (United Kingdom) 2015, 36 (7), 844–851. https://doi.org/10.1080/09593330.2014.963696.spa
dc.relation.referencesTrovó, A. G.; Melo, S. A. S.; Nogueira, R. F. P. Photodegradation of the Pharmaceuticals Amoxicillin, Bezafibrate and Paracetamol by the Photo-Fenton Process—Application to Sewage Treatment Plant Effluent. J. Photochem. Photobiol. A Chem. 2008, 198 (2–3), 215–220. https://doi.org/10.1016/J.JPHOTOCHEM.2008.03.011.spa
dc.relation.referencesTrovó, A. G.; Pupo Nogueira, R. F.; Agüera, A.; Fernandez-Alba, A. R.; Malato, S. Degradation of the Antibiotic Amoxicillin by Photo-Fenton Process - Chemical and Toxicological Assessment. Water Res. 2011, 45 (3), 1394–1402. https://doi.org/10.1016/j.watres.2010.10.029.spa
dc.relation.referencesAyodele, O. B.; Lim, J. K.; Hameed, B. H. Pillared Montmorillonite Supported Ferric Oxalate as Heterogeneous Photo-Fenton Catalyst for Degradation of Amoxicillin. Appl. Catal. A Gen. 2012, 413–414, 301–309. https://doi.org/10.1016/j.apcata.2011.11.023.spa
dc.relation.referencesZha, S.; Cheng, Y.; Gao, Y.; Chen, Z.; Megharaj, M.; Naidu, R. Nanoscale Zero-Valent Iron as a Catalyst for Heterogeneous Fenton Oxidation of Amoxicillin. Chem. Eng. J. 2014, 255, 141–148. https://doi.org/10.1016/j.cej.2014.06.057.spa
dc.relation.referencesAyodele, O. B. Effect of Phosphoric Acid Treatment on Kaolinite Supported Ferrioxalate Catalyst for the Degradation of Amoxicillin in Batch Photo-Fenton Process. Appl. Clay Sci. 2013, 72, 74–83. https://doi.org/10.1016/j.clay.2013.01.004.spa
dc.relation.referencesKalantary, R. R.; Farzadkia, M.; Kermani, M.; Rahmatinia, M. Heterogeneous Electro-Fenton Process by Nano-Fe3O4 for Catalytic Degradation of Amoxicillin: Process Optimization Using Response Surface Methodology. J. Environ. Chem. Eng. 2018, 6 (4), 4644–4652. https://doi.org/10.1016/j.jece.2018.06.043.spa
dc.relation.referencesLiu, Y.; Zha, S.; Rajarathnam, D.; Chen, Z. Divalent Cations Impacting on Fenton-like Oxidation of Amoxicillin Using NZVI as a Heterogeneous Catalyst. Sep. Purif. Technol. 2017, 188 (July), 548–552. https://doi.org/10.1016/j.seppur.2017.07.061.spa
dc.relation.referencesFenton, H. J. H. LXXIII. - Oxidation of Tartaric Acid in Presence of Iron. J. Chem. Soc. Trans. 1894, 65, 899–910. https://doi.org/10.1039/CT8946500899.spa
dc.relation.referencesGiwa, A.; Yusuf, A.; Balogun, H. A.; Sambudi, N. S.; Bilad, M. R.; Adeyemi, I.; Chakraborty, S.; Curcio, S. Recent Advances in Advanced Oxidation Processes for Removal of Contaminants from Water: A Comprehensive Review. Process Saf. Environ. Prot. 2021, 146, 220–256. https://doi.org/10.1016/j.psep.2020.08.015.spa
dc.relation.referencesliu, X. Progress in the Mechanism and Kinetics of Fenton Reaction. MOJ Ecol. Environ. Sci. 2018, 3 (1). https://doi.org/10.15406/mojes.2018.03.00060.spa
dc.relation.referencesZhu, Y.; Zhu, R.; Xi, Y.; Zhu, J.; Zhu, G.; He, H. Strategies for Enhancing the Heterogeneous Fenton Catalytic Reactivity: A Review. Appl. Catal. B Environ. 2019, 255 (May), 117739. https://doi.org/10.1016/j.apcatb.2019.05.041.spa
dc.relation.referencesSzultka, M.; Krzeminski, R.; Jackowski, M.; Buszewski, B. Identification of In Vitro Metabolites of Amoxicillin in Human Liver Microsomes by LC-ESI/MS. Chromatographia 2014, 77 (15), 1027–1035. https://doi.org/10.1007/S10337-014-2648-2.spa
dc.relation.referencesHe, J.; Yang, X.; Men, B.; Wang, D. Interfacial Mechanisms of Heterogeneous Fenton Reactions Catalyzed by Iron-Based Materials: A Review. J. Environ. Sci. (China) 2016, 39, 97–109. https://doi.org/10.1016/j.jes.2015.12.003.spa
dc.relation.referencesWang, N.; Zheng, T.; Zhang, G.; Wang, P. A Review on Fenton-like Processes for Organic Wastewater Treatment. J. Environ. Chem. Eng. 2016, 4 (1), 762–787. https://doi.org/10.1016/j.jece.2015.12.016.spa
dc.relation.referencesNie, M.; Li, Y.; He, J.; Xie, C.; Wu, Z.; Sun, B.; Zhang, K.; Kong, L.; Liu, J. Degradation of Tetracycline in Water Using Fe3O4 Nanospheres as Fenton-like Catalysts: Kinetics, Mechanisms and Pathways. New J. Chem. 2020, 44 (7), 2847–2857. https://doi.org/10.1039/d0nj00125b.spa
dc.relation.referencesHakimi, M.; Alikhani, M. Characterization of α-Fe2O3 Nanoparticles Prepared from a New [Fe(Ofloxacin)2Cl2] Precursor: A Heterogeneous Photocatalyst for Removal of Methylene Blue and Ciprofloxacin in Water. J. Inorg. Organomet. Polym. Mater. 2020, 30 (2), 504–512. https://doi.org/10.1007/s10904-019-01210-3.spa
dc.relation.referencesHe, F.; Ma, W.; Zhong, D.; Yuan, Y. Degradation of Chloramphenicol by α-FeOOH-Activated Two Different Double-Oxidant Systems with Hydroxylamine Assistance. Chemosphere 2020, 250, 126150. https://doi.org/10.1016/j.chemosphere.2020.126150.spa
dc.relation.referencesAhmad, A. R. D.; Imam, S. S.; Oh, W. Da; Adnan, R. Fenton Degradation of Ofloxacin Using a Montmorillonite–Fe3o4 Composite. Catalysts 2021, 11 (2), 1–17. https://doi.org/10.3390/catal11020177.spa
dc.relation.referencesAhmad, A. R. D.; Imam, S. S.; Oh, W. Da; Adnan, R. Fe3O4-Zeolite Hybrid Material as Hetero-Fenton Catalyst for Enhanced Degradation of Aqueous Ofloxacin Solution. Catalysts 2020, 10 (11), 1–19. https://doi.org/10.3390/catal10111241.spa
dc.relation.referencesZheng, C. M.; Yang, C. W.; Cheng, X. Z.; Xu, S. C.; Fan, Z. P.; Wang, G. H.; Wang, S. B.; Guan, X. F.; Sun, X. H. Specifically Enhancement of Heterogeneous Fenton-like Degradation Activities for Ofloxacin with Synergetic Effects of Bimetallic Fe-Cu on Ordered Mesoporous Silicon. Sep. Purif. Technol. 2017, 189, 357–365. https://doi.org/10.1016/j.seppur.2017.08.015.spa
dc.relation.referencesLiu, J.; Wu, X.; Liu, J.; Zhang, C.; Hu, Q.; Hou, X. Ofloxacin Degradation by Fe3O4-CeO2/AC Fenton-like System: Optimization, Kinetics, and Degradation Pathways. Mol. Catal. 2019, 465, 61–67. https://doi.org/10.1016/j.mcat.2018.12.020.spa
dc.relation.referencesTang, J.; Wang, J. Metal Organic Framework with Coordinatively Unsaturated Sites as Efficient Fenton-like Catalyst for Enhanced Degradation of Sulfamethazine. Environ. Sci. Technol. 2018, 52 (9), 5367–5377. https://doi.org/10.1021/acs.est.8b00092.spa
dc.relation.referencesDe Melo Costa-Serge, N.; Gonçalves, R. G. L.; Rojas-Mantilla, H. D.; Santilli, C. V.; Hammer, P.; Nogueira, R. F. P. Fenton-like Degradation of Sulfathiazole Using Copper-Modified MgFe-CO3 Layered Double Hydroxide. J. Hazard. Mater. 2021, 413, 125388. https://doi.org/10.1016/j.jhazmat.2021.125388.spa
dc.relation.referencesHernández, W.; Moreno, S.; Molina, R. Caracterización Estructural y Textural de Una Bentonita Colombiana. Rev. colomb. quím. 2007, 36 (1), 213–225.spa
dc.relation.referencesCarriazo, J. Saavedra, M. Molina, F. Estudio Por DRX de La Intercalación de Un Mineral de Arcilla Tipo 2:1 Con Especies Polioxocationicas de Aluminio. Rev. Mex. Ing. Química 2009, 8 (1), 299–305.spa
dc.relation.referencesGonzalez-Olmos, R.; Martin, M. J.; Georgi, A.; Kopinke, F. D.; Oller, I.; Malato, S. Fe-Zeolites as Heterogeneous Catalysts in Solar Fenton-like Reactions at Neutral PH. Appl. Catal. B Environ. 2012, 125, 51–58. https://doi.org/10.1016/j.apcatb.2012.05.022.spa
dc.relation.referencesLiu, T. X.; Liu, Y.; Zhang, Z. J.; Li, F. B.; Li, X. Z. Comparison of Aqueous Photoreactions with TiO2 in Its Hydrosol Solution and Powdery Suspension for Light Utilization. Ind. Eng. Chem. Res. 2011, 50 (13), 7841–7848. https://doi.org/10.1021/ie102584j.spa
dc.relation.referencesKay, A.; Cesar, I.; Grätzel, M. New Benchmark for Water Photooxidation by Nanostructured α-Fe 2O3 Films. J. Am. Chem. Soc. 2006, 128 (49), 15714–15721. https://doi.org/10.1021/ja064380l.spa
dc.relation.referencesXiang, Q.; Yu, J.; Wong, P. K. Quantitative Characterization of Hydroxyl Radicals Produced by Various Photocatalysts. J. Colloid Interface Sci. 2011, 357 (1), 163–167. https://doi.org/10.1016/j.jcis.2011.01.093.spa
dc.relation.referencesTehrani-Bagha, A. R.; Balchi, T. Catalytic Wet Peroxide Oxidation. Adv. Oxid. Process. Wastewater Treat. Emerg. Green Chem. Technol. 2018, 375–402. https://doi.org/10.1016/B978-0-12-810499-6.00012-7.spa
dc.relation.referencesKumar, A.; Rana, A.; Sharma, G.; Naushad, M.; Dhiman, P.; Kumari, A.; Stadler, F. J. Recent Advances in Nano-Fenton Catalytic Degradation of Emerging Pharmaceutical Contaminants. J. Mol. Liq. 2019, 290. https://doi.org/10.1016/j.molliq.2019.111177.spa
dc.relation.referencesMirzaei, A.; Chen, Z.; Haghighat, F.; Yerushalmi, L. Removal of Pharmaceuticals from Water by Homo/Heterogonous Fenton-Type Processes – A Review. Chemosphere 2017, 174, 665–688. https://doi.org/10.1016/j.chemosphere.2017.02.019.spa
dc.relation.referencesHamd, W. S.; Dutta, J. Heterogeneous Photo-Fenton Reaction and Its Enhancement upon Addition of Chelating Agents; Elsevier Inc., 2020. https://doi.org/10.1016/b978-0-12-818489-9.00011-6.spa
dc.relation.referencesBergaya, F.; Theng, B. K. G.; Lagaly, G. Handbook of Clay Science; 2006; Vol. 1. https://doi.org/10.1016/S1572-4352(05)01039-1.spa
dc.relation.referencesMacías-Quiroga, I. F.; Rengifo-Herrera, J. A.; Arredondo-López, S. M.; Marín-Flórez, A.; Sanabria-González, N. R. Research Trends on Pillared Interlayered Clays (PILCs) Used as Catalysts in Environmental and Chemical Processes: Bibliometric Analysis. Sci. World J. 2022, 2022. https://doi.org/10.1155/2022/5728678.spa
dc.relation.referencesGaleano, L. A.; Gil, A.; Vicente, M. A. Effect of the Atomic Active Metal Ratio in Al/Fe-, Al/Cu- and Al/(Fe-Cu)-Intercalating Solutions on the Physicochemical Properties and Catalytic Activity of Pillared Clays in the CWPO of Methyl Orange. Appl. Catal. B Environ. 2010, 100 (1–2), 271–281. https://doi.org/10.1016/j.apcatb.2010.08.003.spa
dc.relation.referencesSanabria, N.; Álvarez, A.; Molina, R.; Moreno, S. Synthesis of Pillared Bentonite Starting from the Al-Fe Polymeric Precursor in Solid State, and Its Catalytic Evaluation in the Phenol Oxidation Reaction. Catal. Today 2008, 133–135 (1–4), 530–533. https://doi.org/10.1016/j.cattod.2007.12.082.spa
dc.relation.referencesSanabria, N. R.; Centeno, M. A.; Molina, R.; Moreno, S. Pillared Clays with Al-Fe and Al-Ce-Fe in Concentrated Medium: Synthesis and Catalytic Activity. Appl. Catal. A Gen. 2009, 356 (2), 243–249. https://doi.org/10.1016/j.apcata.2009.01.013.spa
dc.relation.referencesMartínez T, L. M.; Domínguez, M. I.; Sanabria, N.; Hernández, W. Y.; Moreno, S.; Molina, R.; Odriozola, J. A.; Centeno, M. A. Deposition of Al-Fe Pillared Bentonites and Gold Supported Al-Fe Pillared Bentonites on Metallic Monoliths for Catalytic Oxidation Reactions. Appl. Catal. A Gen. 2009, 364 (1–2), 166–173. https://doi.org/10.1016/j.apcata.2009.05.046.spa
dc.relation.referencesOlaya, A.; Moreno, S.; Molina, R. Synthesis of Pillared Clays with Al13-Fe and Al13-Fe-Ce Polymers in Solid State Assisted by Microwave and Ultrasound: Characterization and Catalytic Activity. Appl. Catal. A Gen. 2009, 370 (1–2), 7–15. https://doi.org/10.1016/j.apcata.2009.08.018.spa
dc.relation.referencesSanabria, N. R.; Molina, R.; Moreno, S. Development of Pillared Clays for Wet Hydrogen Peroxide Oxidation of Phenol and Its Application in the Posttreatment of Coffee Wastewater. Int. J. Photoenergy 2012, 2012 (1). https://doi.org/10.1155/2012/864104.spa
dc.relation.referencesPeralta, Y. M.; Sanabria, N. R.; Carriazo, J. G.; Moreno, S.; Molina, R. Catalytic Wet Hydrogen Peroxide Oxidation of Phenolic Compounds in Coffee Wastewater Using Al–Fe-Pillared Clay Extrudates. Desalin. Water Treat. 2015, 55 (3), 647–654. https://doi.org/10.1080/19443994.2014.920279.spa
dc.relation.referencesSanabria, N.; Molina, R.; Moreno, S. Efecto Del Ultrssonido En La Síntesis de Arcilla Pilarizada Con Aluminio En Medio Concentrado. Rev. Colomb. Química 2008, 37 (3), 325–335.spa
dc.relation.referencesGonzález, O. P.; Becerra, J. E.; Irreño, N. A. T.; Vargas, S. S.; Ávila, A. P.; Primelles, R. F. L.; González, R. G.; González, H.; Ortiz, F. J. Z.; Rincón, G. P.; Aponte, C. L. G.; Cárdenas, S. C. Recursos Minerales de Colombia. Libr. del Serv. Geológico Colomb. 2019, 1. https://doi.org/10.32685/9789585246973.spa
dc.relation.referencesHussain, S.; Aneggi, E.; Goi, D. Catalytic Activity of Metals in Heterogeneous Fenton-like Oxidation of Wastewater Contaminants: A Review. Environ. Chem. Lett. 2021, No. 0123456789. https://doi.org/10.1007/s10311-021-01185-z.spa
dc.relation.referencesBokare, A. D.; Choi, W. Review of Iron-Free Fenton-like Systems for Activating H2O2 in Advanced Oxidation Processes; Elsevier B.V., 2014; Vol. 275. https://doi.org/10.1016/j.jhazmat.2014.04.054.spa
dc.relation.referencesLin, S. S.; Gurol, M. D. Catalytic Decomposition of Hydrogen Peroxide on Iron Oxide: Kinetics, Mechanism, and Implications. Environ. Sci. Technol. 1998, 32 (10), 1417–1423. https://doi.org/10.1021/es970648k.spa
dc.relation.referencesWang, X.; Zhang, X.; Zhang, Y.; Wang, Y.; Sun, S. P.; Wu, W. D.; Wu, Z. Nanostructured Semiconductor Supported Iron Catalysts for Heterogeneous Photo-Fenton Oxidation: A Review. J. Mater. Chem. A 2020, 8 (31), 15513–15546. https://doi.org/10.1039/d0ta04541a.spa
dc.relation.referencesLai, C.; Shi, X.; Li, L.; Cheng, M.; Liu, X.; Liu, S.; Li, B.; Yi, H.; Qin, L.; Zhang, M.; An, N. Enhancing Iron Redox Cycling for Promoting Heterogeneous Fenton Performance: A Review. Sci. Total Environ. 2021, 775, 145850. https://doi.org/10.1016/j.scitotenv.2021.145850.spa
dc.relation.referencesLi, Y.; Dong, H.; Li, L.; Tang, L.; Tian, R.; Li, R.; Chen, J.; Xie, Q.; Jin, Z.; Xiao, J.; Xiao, S.; Zeng, G. Recent Advances in Waste Water Treatment through Transition Metal Sulfides-Based Advanced Oxidation Processes. Water Res. 2021, 192, 116850. https://doi.org/10.1016/j.watres.2021.116850.spa
dc.relation.referencesNguyen, T. B.; Dong, C. Di; Huang, C. P.; Chen, C. W.; Hsieh, S. L.; Hsieh, S. Fe-Cu Bimetallic Catalyst for the Degradation of Hazardous Organic Chemicals Exemplified by Methylene Blue in Fenton-like Reaction. J. Environ. Chem. Eng. 2020, 8 (5), 104139. https://doi.org/10.1016/J.JECE.2020.104139.spa
dc.relation.referencesQian, H.; Qianwen, S.; Qi, Z.; Yanhui, N.; Yongqiang, W. Development of Mesh-Type Fenton-like Cu/Fex/γ-Al2O3/Al Catalysts and Application for Catalytic Degradation of Dyes. Water Sci. Technol. 2020, 81 (10), 2057–2065. https://doi.org/10.2166/WST.2020.261.spa
dc.relation.referencesHurtado, L.; Romero, R.; Mendoza, A.; Brewer, S.; Donkor, K.; Gómez-Espinosa, R. M.; Natividad, R. Paracetamol Mineralization by Photo Fenton Process Catalyzed by a Cu/Fe-PILC under Circumneutral PH Conditions. J. Photochem. Photobiol. A Chem. 2019, 373, 162–170. https://doi.org/10.1016/J.JPHOTOCHEM.2019.01.012.spa
dc.relation.referencesKhankhasaeva, S. T.; Dashinamzhilova, E. T.; Dambueva, D. V. Oxidative Degradation of Sulfanilamide Catalyzed by Fe/Cu/Al-Pillared Clays. Appl. Clay Sci. 2017, 146, 92–99. https://doi.org/10.1016/J.CLAY.2017.05.018.spa
dc.relation.referencesHadjltaief, H. B.; Zina, M. Ben; Galvez, M. E.; Da Costa, P. Photo-Fenton Oxidation of Phenol over a Cu-Doped Fe-Pillared Clay. Comptes Rendus Chim. 2015, 18 (10), 1161–1169. https://doi.org/10.1016/J.CRCI.2015.08.004.spa
dc.relation.referencesZhou, S.; Zhang, C.; Hu, X.; Wang, Y.; Xu, R.; Xia, C.; Zhang, H.; Song, Z. Catalytic Wet Peroxide Oxidation of 4-Chlorophenol over Al-Fe-, Al-Cu-, and Al-Fe-Cu-Pillared Clays: Sensitivity, Kinetics and Mechanism. Appl. Clay Sci. 2014, 95, 275–283. https://doi.org/10.1016/J.CLAY.2014.04.024.spa
dc.relation.referencesZhao, G.; Zou, J.; Chen, X.; Liu, L.; Wang, Y.; Zhou, S.; Long, X.; Yu, J.; Jiao, F. Iron-Based Catalysts for Persulfate-Based Advanced Oxidation Process: Microstructure, Property and Tailoring. Chem. Eng. J. 2021, 421, 127845. https://doi.org/10.1016/J.CEJ.2020.127845.spa
dc.relation.referencesWang, J.; Wang, S. Activation of Persulfate (PS) and Peroxymonosulfate (PMS) and Application for the Degradation of Emerging Contaminants. Chem. Eng. J. 2018, 334, 1502–1517. https://doi.org/10.1016/j.cej.2017.11.059.spa
dc.relation.referencesDuan, X.; Yang, S.; Wacławek, S.; Fang, G.; Xiao, R.; Dionysiou, D. D. Limitations and Prospects of Sulfate-Radical Based Advanced Oxidation Processes. J. Environ. Chem. Eng. 2020, 8 (4), 103849. https://doi.org/10.1016/J.JECE.2020.103849.spa
dc.relation.referencesDulova, N.; Kattel, E.; Trapido, M. Degradation of Naproxen by Ferrous Ion-Activated Hydrogen Peroxide, Persulfate and Combined Hydrogen Peroxide/Persulfate Processes: The Effect of Citric Acid Addition. Chem. Eng. J. 2017, 318, 254–263. https://doi.org/10.1016/J.CEJ.2016.07.006.spa
dc.relation.referencesKyzas, G. Z.; Mengelizadeh, N.; Saloot, M. khodadadi; Mohebi, S.; Balarak, D. Sonochemical Degradation of Ciprofloxacin by Hydrogen Peroxide and Persulfate Activated by Ultrasound and Ferrous Ions. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 642, 128627. https://doi.org/10.1016/J.COLSURFA.2022.128627.spa
dc.relation.referencesLi, M.; Yang, X.; Wang, D. S.; Yuan, J. Enhanced Oxidation of Erythromycin by Persulfate Activated Iron Powder–H2O2 System: Role of the Surface Fe Species and Synergistic Effect of Hydroxyl and Sulfate Radicals. Chem. Eng. J. 2017, 317, 103–111. https://doi.org/10.1016/J.CEJ.2016.12.126.spa
dc.relation.referencesKarimifard, S.; Alavi Moghaddam, M. R. Application of Response Surface Methodology in Physicochemical Removal of Dyes from Wastewater: A Critical Review. Sci. Total Environ. 2018, 640–641, 772–797. https://doi.org/10.1016/J.SCITOTENV.2018.05.355.spa
dc.relation.referencesPeixoto, A. L. de C.; Costalonga, A. G. C.; Esperança, M. N.; Salazar, R. F. dos S. Design of Experiments Applied to Antibiotics Degradation by Fenton’s Reagent. Stat. Approaches With Emphas. Des. Exp. Appl. to Chem. Process. 2018. https://doi.org/10.5772/68097.spa
dc.relation.referencesPulido, H. G.; Salazar, R. de la V. Análisis y Diseño de Experimentos, Segunda ed.; Mc Graw Hill, 2008.spa
dc.relation.referencesNair, A. T.; Makwana, A. R.; Ahammed, M. M. The Use of Response Surface Methodology for Modelling and Analysis of Water and Wastewater Treatment Processes: A Review. Water Sci. Technol. 2014, 69 (3), 464–478. https://doi.org/10.2166/WST.2013.733.spa
dc.relation.referencesAy, F.; Kargi, F. Advanced Oxidation of Amoxicillin by Fenton’s Reagent Treatment. J. Hazard. Mater. 2010, 179 (1–3), 622–627. https://doi.org/10.1016/J.JHAZMAT.2010.03.048.spa
dc.relation.referencesYazdanbakhsh, A. R.; Daraei, H.; Rafiee, M.; Kamali, H. Performance of Iron Nano Particles and Bimetallic Ni/Fe Nanoparticles in Removal of Amoxicillin Trihydrate from Synthetic Wastewater. Water Sci. Technol. 2016, 73 (12), 2998–3007. https://doi.org/10.2166/WST.2016.157.spa
dc.relation.referencesVerma, M.; Haritash, A. K. Photocatalytic Degradation of Amoxicillin in Pharmaceutical Wastewater: A Potential Tool to Manage Residual Antibiotics. Environ. Technol. Innov. 2020, 20, 101072. https://doi.org/10.1016/J.ETI.2020.101072.spa
dc.relation.referencesCasey, W. H. Large Aqueous Aluminum Hydroxide Molecules. Chem. Rev. 2006, 106 (1), 1–16. https://doi.org/10.1021/CR040095D/ASSET/CR040095D.FP.PNG_V03.spa
dc.relation.referencesWen, K.; Wei, J.; He, H.; Zhu, J.; Xi, Y. Keggin-Al30: An Intercalant for Keggin-Al30 Pillared Montmorillonite. Appl. Clay Sci. 2019, 180, 105203. https://doi.org/10.1016/J.CLAY.2019.105203.spa
dc.relation.referencesCardona, Y.; Korili, S. A.; Gil, A. Understanding the Formation of Al13 and Al30 Polycations to the Development of Microporous Materials Based on Al13-and Al30-PILC Montmorillonites: A Review. Appl. Clay Sci. 2021, 203, 105996. https://doi.org/10.1016/J.CLAY.2021.105996.spa
dc.relation.referencesSarpola, A. The Hydrolysis of Aluminium, A Mass Spectrometric Study; 2007.spa
dc.relation.referencesFurrer, G.; Ludwig, C.; Schindler, P. W. On the Chemistry of the Keggin Al13 Polymer. J. Colloid Interface Sci. 1992, 149 (1), 56–67. https://doi.org/10.1016/0021-9797(92)90391-x.spa
dc.relation.referencesCorona., O. C.; Pastrana., L. El Método de La Intensidad Absoluta Por Fluorescencia de Rayos X Para El Análisis Cuantitativo de Elementos Pesados. Rev. Mex. Física 1962, 11 (2), 79–128.spa
dc.relation.referencesJenkins, R.; Snyder, R. L. Introduction to X-Ray Powder Diffractometry. Introd. to X-ray Powder Diffractometry 1996. https://doi.org/10.1002/9781118520994.spa
dc.relation.referencesReimschussel, A. M.; Fredericks, R. J. Application of Scanning Electron Microscopy to the Study of the Morphology of Multicomponent Catalyst Systems. J. Mater. Sci. 1969 410 1969, 4 (10), 885–889. https://doi.org/10.1007/BF00549779.spa
dc.relation.referencesIpohorski, M.; Bozzano, P. B. Microscopía Electrónica de Barrido En La Caracterización de Materiales. Cienc. Invest. 2013, 63 (3), 43–53.spa
dc.relation.referencesHemminger, W.; Sarge, S. M. Definitions, Nomenclature, Terms and Literature. Handb. Therm. Anal. Calorim. 1998, 1, 1–73. https://doi.org/10.1016/S1573-4374(98)80004-6.spa
dc.relation.referencesKloprogge, J. T.; Geus, J. W.; Jansen, J. B. H.; Seykens, D. Thermal Stability of Basic Aluminum Sulfate. Thermochim. Acta 1992, 209 (C), 265–276. https://doi.org/10.1016/0040-6031(92)80204-A.spa
dc.relation.referencesGaleano, L. A.; Vicente, M. Á.; Gil, A. Catalytic Degradation of Organic Pollutants in Aqueous Streams by Mixed Al/M-Pillared Clays (M = Fe, Cu, Mn). Catal. Rev. - Sci. Eng. 2014, 56 (3), 239–287. https://doi.org/10.1080/01614940.2014.904182.spa
dc.relation.referencesAouad, A.; Pineau, A.; Tchoubar, D.; Bergaya, F. Al-Pillared Montmorillonite Obtained in Concentrated Media. Effect of the Anions (Nitrate, Sulfate and Chloride) Associated with the Al Species. Clays Clay Miner. 2006, 54 (5), 626–637. https://doi.org/10.1346/CCMN.2006.0540509.spa
dc.relation.referencesBaloyi, J.; Ntho, T.; Moma, J. Synthesis and Application of Pillared Clay Heterogeneous Catalysts for Wastewater Treatment: A Review. RSC Adv. 2018, 8 (10), 5197–5211. https://doi.org/10.1039/c7ra12924f.spa
dc.relation.referencesBanwart, W. .; Stucki, J. . Advanced Chemical Methods for Soil and Clay Minerals Research; 1979. https://doi.org/10.1007/978-94-009-9094-4.spa
dc.relation.referencesOlaya, A.; Blanco, G.; Bernal, S.; Moreno, S.; Molina, R. Synthesis of Pillared Clays with Al–Fe and Al–Fe–Ce Starting from Concentrated Suspensions of Clay Using Microwaves or Ultrasound, and Their Catalytic Activity in the Phenol Oxidation Reaction. Appl. Catal. B Environ. 2009, 93 (1–2), 56–65. https://doi.org/10.1016/J.APCATB.2009.09.012.spa
dc.relation.referencesDaza, C. E.; Gallego, R. M. Estudio Morfológico y Estructural de Una Arcilla Colombiana Pilarizada En Presencia de Ultrasonido y Microondas. Sci. Tech. 2011, 3 (49), 292–297. https://doi.org/10.22517/23447214.1547.spa
dc.relation.referencesGil, A.; Korili, S. A.; Trujillano, R.; Vicente, M. A. A Review on Characterization of Pillared Clays by Specific Techniques. Appl. Clay Sci. 2011, 53 (2), 97–105. https://doi.org/10.1016/J.CLAY.2010.09.018.spa
dc.relation.referencesMarinkovic-Neducin, R. P.; Kiss, E. E.; Cukic, T. Z.; Obadovic, D. Z. Thermal Behavior of Al-, AlFe- And AlCu-Pillared Interlayered Clays. J. Therm. Anal. Calorim. 2004, 78 (1), 307–321. https://doi.org/10.1023/B:JTAN.0000042177.82033.d0.spa
dc.relation.referencesGaleano, L. A.; Gil, A.; Vicente, M. A. Strategies for Immobilization of Manganese on Expanded Natural Clays: Catalytic Activity in the CWPO of Methyl Orange. Appl. Catal. B Environ. 2011, 104 (3–4), 252–260. https://doi.org/10.1016/j.apcatb.2011.03.023.spa
dc.relation.referencesGregg, S. J.; Sing, K. S. W.; Salzberg, H. W. Adsorption Surface Area and Porosity. J. Electrochem. Soc. 1967, 114 (11), 279Ca. https://doi.org/10.1149/1.2426447.spa
dc.relation.referencesRouquerol, F.; Rouquerol, J. (Jean); Sing, K. S. W. Adsorption by Powders and Porous Solids : Principles, Methodology, and Applications. 1999, 467.spa
dc.relation.referencesWagner, C. D.; Davis, L. E.; Zeller, M. V.; Taylor, J. A.; Raymond, R. H.; Gale, L. H. Empirical Atomic Sensitivity Factors for Quantitative Analysis by Electron Spectroscopy for Chemical Analysis. Surf. Interface Anal. 1981, 3 (5), 211–225. https://doi.org/10.1002/SIA.740030506.spa
dc.relation.referencesWagner, C. D. Sensitivity Factors for XPS Analysis of Surface Atoms. J. Electron Spectros. Relat. Phenomena 1983, 32 (2), 99–102. https://doi.org/10.1016/0368-2048(83)85087-7.spa
dc.relation.referencesDegaga, G. D.; Trought, M.; Nemsak, S.; Crumlin, E. J.; Seel, M.; Pandey, R.; Perrine, K. A. Investigation of N2 Adsorption on Fe3O4(001) Using Ambient Pressure X-Ray Photoelectron Spectroscopy and Density Functional Theory. J. Chem. Phys. 2020, 152 (5), 054717. https://doi.org/10.1063/1.5138941.spa
dc.relation.referencesPoulin, S.; França, R.; Moreau-Bélanger, L.; Sacher, E. Confirmation of X-Ray Photoelectron Spectroscopy Peak Attributions of Nanoparticulate Iron Oxides, Using Symmetric Peak Component Line Shapes. J. Phys. Chem. C 2010, 114 (24), 10711–10718. https://doi.org/10.1021/JP100964X/ASSET/IMAGES/MEDIUM/JP-2010-00964X_0009.GIF.spa
dc.relation.referencesGrosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S. Investigation of Multiplet Splitting of Fe 2p XPS Spectra and Bonding in Iron Compounds. Surf. Interface Anal. 2004, 36 (12), 1564–1574. https://doi.org/10.1002/SIA.1984.spa
dc.relation.referencesAsif, M.; Haitao, W.; Shuang, D.; Aziz, A.; Zhang, G.; Xiao, F.; Liu, H. Metal Oxide Intercalated Layered Double Hydroxide Nanosphere: With Enhanced Electrocatalyic Activity towards H2O2 for Biological Applications. Sensors Actuators B Chem. 2017, 239, 243–252. https://doi.org/10.1016/J.SNB.2016.08.010.spa
dc.relation.referencesWeng, X.; Chen, Z.; Chen, Z.; Megharaj, M.; Naidu, R. Clay Supported Bimetallic Fe/Ni Nanoparticles Used for Reductive Degradation of Amoxicillin in Aqueous Solution: Characterization and Kinetics. Colloids Surfaces A Physicochem. Eng. Asp. 2014, 443, 404–409. https://doi.org/10.1016/j.colsurfa.2013.11.047.spa
dc.relation.referencesSostenible, M. de A. y D. Resolución 631 de 2015 https://www.minambiente.gov.co/documento-normativa/resolucion-631-de-2015/ (accessed Nov 26, 2022).spa
dc.relation.referencesCarriazo, J.; Guélou, E.; Barrault, J.; Tatibouët, J. M.; Molina, R.; Moreno, S. Catalytic Wet Peroxide Oxidation of Phenol by Pillared Clays Containing Al-Ce-Fe. Water Res. 2005, 39 (16), 3891–3899. https://doi.org/10.1016/j.watres.2005.06.034.spa
dc.relation.referencesFranck, S.; Fuhrmann-Selter, T.; Joseph, J. F.; Michelet, R.; Casilag, F.; Sirard, J. C.; Wicha, S. G.; Kloft, C. A Rapid, Simple and Sensitive Liquid Chromatography Tandem Mass Spectrometry Assay to Determine Amoxicillin Concentrations in Biological Matrix of Little Volume. Talanta 2019, 201, 253–258. https://doi.org/10.1016/J.TALANTA.2019.03.098.spa
dc.relation.referencesWeng, X.; Cai, W.; Lin, S.; Chen, Z. Degradation Mechanism of Amoxicillin Using Clay Supported Nanoscale Zero-Valent Iron. Appl. Clay Sci. 2017, 147 (July), 137–142. https://doi.org/10.1016/j.clay.2017.07.023.spa
dc.relation.referencesWeng, X.; Sun, Q.; Lin, S.; Chen, Z.; Megharaj, M.; Naidu, R. Enhancement of Catalytic Degradation of Amoxicillin in Aqueous Solution Using Clay Supported Bimetallic Fe/Ni Nanoparticles. Chemosphere 2014, 103, 80–85. https://doi.org/10.1016/j.chemosphere.2013.11.033.spa
dc.relation.referencesHirte, K.; Seiwert, B.; Schüürmann, G.; Reemtsma, T. New Hydrolysis Products of the Beta-Lactam Antibiotic Amoxicillin, Their PH-Dependent Formation and Search in Municipal Wastewater. Water Res. 2016, 88, 880–888. https://doi.org/10.1016/j.watres.2015.11.028.spa
dc.relation.referencesCha, J. M.; Yang, S.; Carlson, K. H. Trace Determination of β-Lactam Antibiotics in Surface Water and Urban Wastewater Using Liquid Chromatography Combined with Electrospray Tandem Mass Spectrometry. J. Chromatogr. A 2006, 1115 (1–2), 46–57. https://doi.org/10.1016/j.chroma.2006.02.086.spa
dc.relation.referencesTimm, A.; Borowska, E.; Majewsky, M.; Merel, S.; Zwiener, C.; Bräse, S.; Horn, H. Photolysis of Four Β‑lactam Antibiotics under Simulated Environmental Conditions: Degradation, Transformation Products and Antibacterial Activity. Sci. Total Environ. 2019, 651, 1605–1612. https://doi.org/10.1016/j.scitotenv.2018.09.248.spa
dc.relation.referencesNägele, E.; Moritz, R. Structure Elucidation of Degradation Products of the Antibiotic Amoxicillin with Ion Trap MSn and Accurate Mass Determination by ESI TOF. J. Am. Soc. Mass Spectrom. 2005, 16 (10), 1670–1676. https://doi.org/10.1016/j.jasms.2005.06.002.spa
dc.relation.referencesLängin, A.; Alexy, R.; König, A.; Kümmerer, K. Deactivation and Transformation Products in Biodegradability Testing of SS-Lactams Amoxicillin and Piperacillin. Chemosphere 2009, 75 (3), 347–354. https://doi.org/10.1016/j.chemosphere.2008.12.032.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::546 - Química inorgánicaspa
dc.subject.ddc500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionadosspa
dc.subject.proposalArcilla pilarizadaspa
dc.subject.proposalPolihidroxicatiónspa
dc.subject.proposalKeggin Al-Fe-Cuspa
dc.subject.proposalOxidación catalítica de peróxido húmedospa
dc.subject.proposalAmoxicilinaspa
dc.subject.proposalSuperficie de respuestaspa
dc.subject.proposalDiseño Box Behnkenspa
dc.subject.proposalPillared clayeng
dc.subject.proposalAl-Fe-Cu Keggineng
dc.subject.proposalPolyhydroxycationeng
dc.subject.proposalWet peroxide catalytic oxidationeng
dc.subject.proposalAmoxicillineng
dc.subject.proposalResponse surfaceeng
dc.subject.proposalBox Behnken designeng
dc.titleBentonita pilarizada con hierro y cobre para la degradación de amoxicilina presente en aguaspa
dc.title.translatedBentonite pillared with iron and copper for the degradation of amoxicillin present in watereng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameEstado Sólido y Catálisis Ambiental (ESCA)spa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1023915695.2023.pdf
Tamaño:
6.89 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: