Mineralogical and fluid characterization of the Providencia, Las Verticales and Carla deposits in Segovia-Remedios mining district, Colombia

dc.contributor.advisorMolano Mendoza, Juan Carlosspa
dc.contributor.advisorCadena Sánchez, Ariel Oswaldospa
dc.contributor.authorPulido Fernandez, Natalyspa
dc.coverage.countryColombiaspa
dc.coverage.regionSegovia-Remediosspa
dc.coverage.regionAntioquiaspa
dc.date.accessioned2025-03-28T19:27:58Z
dc.date.available2025-03-28T19:27:58Z
dc.date.issued2023
dc.descriptionilustraciones, diagramas, fotografías a color, mapas, tablasspa
dc.description.abstractEl Distrito Minero Segovia-Remedios (DMSR) se localiza en el flanco oriental de la Cordillera Central de Colombia, en el departamento de Antioquia. Este distrito es ampliamente reconocido por su significativa mineralización aurífera, siendo uno de los más relevantes a nivel nacional. En los sistemas Providencia, Las Verticales y Carla, dentro de este distrito, el análisis petrográfico identifica tres eventos hidrotermales distintos: el evento 1 se caracteriza por la presencia de pirita (Py), marcasita (Mrc), pirrotina (Po), galena (Gn), calcopirita (Ccp) y cuarzo lechoso (Qz), con la Py formándose a partir de la transformación de la Mrc y la Po. Un evento de cizalla separa el evento 1 del evento 2, lo que provoca una Py altamente fracturada y un Qz con textura de mosaico. En el evento 2, el ensamblaje mineral consiste en pirita (Py), esfalerita (Sp), galena (Gn) y oro (Au), con calcopirita (Cpp) y arsenopirita (Apy). El evento 3 se caracteriza por la mineralización de carbonatos (Cb). Este análisis petrográfico también sugiere que los ensamblajes minerales de los eventos 1 y 2 pertenecen a un sistema de baja sulfuración, distinguido por la presencia de arsenopirita, esfalerita rica en hierro, galena y pirrotina. La microtermometría sugiere que la evolución general de los fluidos en los sistemas de Providencia, Las Verticales y Carla, muestra una tendencia de enfriamiento entre el evento 1 y 2, con las inclusiones fluidas sugiriendo una tendencia de mezcla de fluidos. Por otro lado, a pesar de cierta variabilidad en la salinidad, las inclusiones fluidas sugieren que el mismo sistema de fluidos estuvo presente durante ambos eventos, con una mezcla de fluidos ocurriendo antes de cada evento. Los análisis de LA-ICP-MS resaltan la importancia del hierro (Fe) en el sistema, especialmente en las etapas de baja sulfuración. El Fe, encontrado en esfalerita rica en Fe y magnetita, juega un papel importante en la precipitación de oro, con altas concentraciones de oro vinculadas a la disponibilidad de hierro. Los datos petrográficos apoyan esta relación entre los ensamblajes minerales y la mineralización aurífera. Además, los resultados de LAICP-MS muestran que los fluidos formadores de mena son una mezcla de fluidos magmáticohidrotermales y salmueras de cuenca, como lo evidencian las concentraciones de rubidio (Rb), sodio (Na) y manganeso (Mn) en los sistemas. El análisis isotópico de Pb-Pb revela una fuente heterogénea para los fluidos mineralizantes, con contribuciones de la corteza superior y un origen orogénico. La mineralización de oro en el DMSR parece estar asociada con el segundo pulso magmático del Batolito de Antioquia, vinculando la intrusión de diques porfíricos con la precipitación de oro (Texto tomado de la fuente).spa
dc.description.abstractThe Segovia-Remedios Mining District (DMSR) is located on the eastern flank of the Central Cordillera of Colombia, in the department of Antioquia. It is renowned for its significant gold mineralization, standing out as one of the most important in Colombia. In the Providencia, Las Verticales, and Carla systems within this district, the petrographic analysis identifies three distinct hydrothermal events: Event 1 is characterized by the presence of pyrite (Py), marcasite (Mrc), pyrrhotite (Po), galena (Gn), chalcopyrite (Ccp), and milky quartz (Qz), with pyrite forming from the transformation of marcasite and pyrrhotite. A shear event separates event 1 from event 2, leading to highly fractured pyrite and a mosaic-textured quartz. In event 2, the mineral assemblage consists of pyrite, sphalerite (Sp), galena, and gold, with chalcopyrite and arsenopyrite (Apy). Event 3 is characterized by carbonate mineralization. The petrographic also suggests that both event 1 and event 2 mineral assemblages belong to a low-sulfidation system, distinguished by arsenopyrite, iron-rich sphalerite, galena, and pyrrhotite. Microthermometry suggests that the overall evolution of fluids in the Providencia, Las Verticales, and Carla systems shows a cooling trend between events 1 and 2, with fluid inclusions suggesting a fluid mixing trend. Despite some variability in salinity, the fluid inclusions suggest that the same fluid system was involved during both events, with fluid mixing occurring prior to each event. The LA-ICP-MS analyses highlight the importance of iron in the system, particularly in low-sulfidation events. Iron, found in Fe-rich sphalerite and magnetite, plays an important role in gold precipitation, with high gold concentrations linked to the availability of iron. The petrographic data support this relationship between mineral assemblages and gold mineralization. Furthermore, LA-ICP-MS results show that the ore-forming fluids are a mixture of magmatic-hydrothermal fluids and basinal brines, as evidenced by the concentrations of rubidium (Rb), sodium (Na), and manganese (Mn) in the systems. Isotopic analysis of Pb-Pb reveals a heterogeneous source for the mineralizing fluids, with contributions from the upper crust and an orogenic origin. The gold mineralization in the DMSR appears to be associated with the second magmatic pulse of the Antioquia Batholith, linking the intrusion of porphyritic dikes to the precipitation of gold.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias - Geologíaspa
dc.description.methodsThe field trip to the Segovia-Remedios Mining District in Antioquia, Colombia, took place from October 3rd to 17th, 2021. The visit was conducted by a group of four students: undergraduate geology students and a master's student in geology from the Universidad Nacional de Colombia, Sede Bogotá, accompanied by exploration geologists from Aris Mining. The survey focused on sampling the Providencia, Las Verticales, and Carla systems located in the southern sector of the Segovia-Remedios Gold District. Sampling was conducted in the Providencia system in the Providencia mine, in the Las Verticales system, sampling took place in La Abundancia, Las Aves, and Bocamina Mercelet mines. Lastly, within the Carla system, sampling was performed in the Carla mine (Table 1). The mines were accessed for 11 days. The visits began with La Abundancia, Las Aves, Bocamina Mercelet, Carla, and Providencia mine.spa
dc.description.researchareaMetalogenia y Recursos Mineralesspa
dc.format.extent153 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87780
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Geologíaspa
dc.relation.referencesAlvarez, M. (2013). Petrologia, geoquímica isotópica e metalogenia dos depósitos de ouro El Silencio e La Gran Côlombia, Distrito Mineiro Segovia-Remedios, Colômbia.spa
dc.relation.referencesÁlvarez, M. J., Ordóñez-Carmona, O., Valencia, M., & Romero, A. (2007). Geology of the Influence Zone of the Otu Fault in the Segovia-Remedios Mining District. Dyna, 74(153), 41–51.spa
dc.relation.referencesAspden, J. A., McCourt, W. J., & Brook, M. (1987). Geometrical control of subduction-related magmatism: the Mesozoic and Cenozoic plutonic history of western Colombia. Journal of the Geological Society, 144(6), 893–905. https://doi.org/10.1144/gsjgs.144.6.0893spa
dc.relation.referencesAtkinson Jr., A.B., 2002. A model for the PTX properties of H2O–NaCl. Unpublished M.Sc. Thesis, Virginia Tech, Blacksburg, pp. 133spa
dc.relation.referencesBabinski, M., & Martins, V. (2022). Laboratório de Química Isotópica.spa
dc.relation.referencesBauer, M. E., Burisch, M., Ostendorf, J., Krause, J., Frenzel, M., Seifert, T., & Gutzmer, J. (2019). Trace element geochemistry of sphalerite in contrasting hydrothermal fluid systems of the Freiberg district, Germany: insights from LA-ICP-MS analysis, near-infrared light microthermometry of sphalerite-hosted fluid inclusions, and sulfur isotope geochemistry. Mineralium Deposita, 54(2), 237–262. https://doi.org/10.1007/s00126-018-0850-0spa
dc.relation.referencesBayona, G., Rapalini, A., & Costanzo-Alvarez, V. (2006). Paleomagnetism in Mesozoic rocks of the Northern Andes and its Implications in Mesozoic Tectonics of Northwestern South America. In Earth Planets Space (Vol. 58).spa
dc.relation.referencesBlanco-Quintero, I. F., García-Casco, A., Toro, L. M., Moreno, M., Ruiz, E. C., Vinasco, C. J., Cardona, A., Lázaro, C., & Morata, D. (2014). Late Jurassic terrane collision in the northwestern margin of Gondwana (Cajamarca Complex, eastern flank of the Central Cordillera, Colombia). International Geology Review, 56(15), 1852–1872. https://doi.org/10.1080/00206814.2014.963710spa
dc.relation.referencesBodnar, R. (1985). Geology and Geochemistry of Epithermal Systems. https://www.researchgate.net/publication/312888330spa
dc.relation.referencesBodnar, R. J. (1993). Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. In Geochimica et Cosmochimica Act12 (Vol. 57).spa
dc.relation.referencesBodnar, R. J., Lecumberri-Sanchez, P., Moncada, D., & Steele-MacInnis, M. (2013). Fluid Inclusions in Hydrothermal Ore Deposits. In Treatise on Geochemistry: Second Edition (Vol. 13, pp. 119–142). Elsevier Inc. https://doi.org/10.1016/B978-0-08-095975-7.01105-0spa
dc.relation.referencesBonev, I. (1977). Primary fluid inclusions in galena crystals. I. Morphology and origin. Mineralium Deposita, 12, 64–76spa
dc.relation.referencesBonev, I. K., Garcia-Ruiz, J. M., Atanassova, R., Otalora, F., & Petrussenko, S. (2006). Genesis of filamentary pyrite associated with calcite crystals. European Journal of Mineralogy, 17(6), 905–913. https://doi.org/10.1127/0935-1221/2005/0017-0905spa
dc.relation.referencesBonev, I. K., & Kouzmanov, K. (2002). Fluid inclusions in sphalerite as negative crystals: a case study. European Journal of Mineralogy, 14(3), 607–620. https://doi.org/10.1127/0935-1221/2002/0014-0607spa
dc.relation.referencesBootorabi, S., Mehrnia, R., Khakzad, A., & Nezafati, N. (2020). PETROGRAPHIC, FLUID INCLUSION AND OXYGEN ISOTOPE CHARACTERISTICS OF RAMAND AREA, NW IRAN. Geosaberes, 11, 450. https://doi.org/10.26895/geosaberes.v11i0.1047spa
dc.relation.referencesBustamante, C., Cardona, A., Archanjo, C. J., Bayona, G., Lara, M., & Valencia, V. (2017). Geochemistry and isotopic signatures of Paleogene plutonic and detrital rocks of the Northern Andes of Colombia: A record of post-collisional arc magmatism. Lithos, 277, 199–209. https://doi.org/10.1016/j.lithos.2016.11.025spa
dc.relation.referencesCamprubí, A. (2010). Criterios para la exploración minera mediante microtermometría de inclusiones fluidas. Boletin de La Sociedad Geologica Mexicana, 62(1), 25–42. https://doi.org/10.18268/BSGM2010v62n1a2spa
dc.relation.referencesCediel, F. & Caceres, C., (2000), Geological Map of Colombia: Geotec, Ltd., Bogotá, 3rd Edition, digital format with legend and tectono-stratigraphic chart.spa
dc.relation.referencesCediel, F., & Shaw, R. P. (2019). Geology and Tectonics of Northwestern South America. http://www.springer.com/series/7066spa
dc.relation.referencesCardona, A. (2023). Origen y evolución de fluidos mineralizantes de oro en los sistemas El Silencio y Cristales del Distrito Minero Segovia-Remedios, Antioquia, Colombia. Universidad Nacional de Colombiaspa
dc.relation.referencesCorrea, A.M., Pimentel, M., Restrepo, J.J., Nilson, A., Ordoñez, O., Martens, U., Laux, J.E., Junges, S., 2006, U-Pb zircon ages and Nd-Sr isotopes of the Altavista Stock and the San Diego Gabbro – new insights on Cretaceous arc magmatism in the Colombian Andes [abs.]: V Simposio Sudamericano de Geología Isotópica 24 - 27 abril 2006, Punta del Este – Uruguay (http://www. v s s a g i . c o m / i g c p 4 7 8 / AbstractsVSSAGI/212.pdf).spa
dc.relation.referencesDavid Manco, J. P., Carlos Molano, J. M., & Ordóñez Carmona, O. (2012). ANALISIS PARAGENÉTICO Y MICROTERMOMÉTRICO DE LAS MINERALIZACIONES AUROARGENTÍFERAS DEL DISTRITO MINERO SEGOVIA-REMEDIOS (DMSR): IMPLICACIONES PARA LA FUENTE Y NATURALEZA DE LOS FLUIDOS MINERALIZANTES PARAGENETIC AND MICROTHERMOMETRIC ANALYSIS OF THE AU-AG ORES FROM THE SEGOVIAREMEDIOS MINING DISTRIC (SRMD): IMPLICATIONS FOR THE SOURCE AND NATURE OF THE ORE-FORMING FLUIDS (Vol. 32).spa
dc.relation.referencesDiamond, L. W. (2001). Review of the systematics of CO2-H2O fluid inclusions. Lithos, 55(1–4), 69–99. https://doi.org/10.1016/S0024-4937(00)00040-9spa
dc.relation.referencesEcheverri, B. (2006a). Genesis and thermal history of gold mineralization in the Segovia-Remedios mining district of northern Colombia [Tesis de maestría]. Shimane University.spa
dc.relation.referencesEcheverri, B. (2006b). Genesis and thermal history of gold mineralization in the Segovia-Remedios mining district of northern Colombia.spa
dc.relation.referencesFeininger, T., Barrero, D., & Castro, N. (1972). Geología de parte de los departamentos de Antioquia y Caldas. Boletin Geologico, 20(2), 1–173. https://revistas.sgc.gov.co/index.php/boletingeo/article/view/321spa
dc.relation.referencesFrezzotti, M. L., Tecce, F., & Casagli, A. (2012). Raman spectroscopy for fluid inclusion analysis. In Journal of Geochemical Exploration (Vol. 112, pp. 1–20). https://doi.org/10.1016/j.gexplo.2011.09.009spa
dc.relation.referencesGuillong, M., Meier, D. L., Allan, M. M., Heinrich, C. A., & Yardley, B. W. D. (2008). SILLS: A Matlab-Based Program for the Reduction of Laser Ablation ICP-MS Data of Homogeneous Materials and Inclusions. Mineralogical Association of Canada Short Course, 40, 328–333.spa
dc.relation.referencesGonzález, H. (1996). Mapa geológico del departamento de Antioquia - geología, recursos minerales y amenazas potenciales escala 1:400.000 : memoria explicativa / Instituto Nacional de Investigaciones Geológico Mineras (INGEOMINAS).spa
dc.relation.referencesGonzalez, H., & Londoño, A. (2002). Batolito de Sabanalarga (K2S) Graven del Cauca Cordillera Central Departamento de Antioquia. Catálogo de las unidades litoestratigráficas de Colombia. Instituto Colombiano de Geología y Minería (INGEOMINAS).spa
dc.relation.referencesGonzález, H., Núñez, A., & Paris, G. (1988). Mapa geológico de Colombia 1988 : memoria explicativa / Instituto Nacional de Investigaciones Geológico Mineras (INGEOMINAS), [et al.]. - Bogotá, Colombia : Instituto Nacional de Investigaciones Geológico Mineras (INGEOMINAS).spa
dc.relation.referencesKerrich, R. (1976). Some Effects of Tectonic Recrystallisation on Fluid Inclusions in Vein Quartz. In Contrib. Mineral. Petrol (Vol. 59).spa
dc.relation.referencesKorges, M. ; Weis, P. ; Lüders, V. ; & Laurent, O. (2017). Depressurization and boiling of a single magmatic fluid as a mechanism for tin-tungsten deposit formation. https://doi.org/10.3929/ethz-b-000278300spa
dc.relation.referencesKouzmanov, K., Bailly, L., Ramboz, C., Rouer, O., & Bény, J. M. (2002). Morphology, origin and infrared microthermometry of fluid inclusions in pyrite from the Radka epithermal copper deposit, Srednogorie zone, Bulgaria. Mineralium Deposita, 37(6–7), 599–613. https://doi.org/10.1007/s00126-002-0270-yspa
dc.relation.referencesLeal-Mejía, H. (2004). PHANEROZOIC GOLD METALLOGENY IN THE COLOMBIAN ANDES: A TECTONO-MAGMATIC APPROACH.spa
dc.relation.referencesLeal-Mejía, H. (2011). Phanerozoic gold metallogeny in the Colombian Andes; A tectonomagmatic approach [Universidad de Barcelona]. https://dialnet.unirioja.es/servlet/tesis?codigo=253720spa
dc.relation.referencesLeal-Mejía, H., Shaw, R. P., & Draper, J. C. M., 2019. Spatial-Temporal Migration of Granitoid Magmatism and the Phanerozoic Tectono- Magmatic Evolution of the Colombian Andes. In F. Cediel & R. P. Shaw (Eds.), Geology and Tectonics of Northwestern South America (p.1010). Cham, Switzerland: Springer International Publishing.spa
dc.relation.referencesMancano, D. and C. A. (1995). Microthermometry of enargite-hosted fluid inclusions from the Lepanto, Philippines, high-sulfidation Cu-Au deposit. Geochimica et Cosmochimica Acta, 1995, 3909–3916spa
dc.relation.referencesMaya, M., & González, H. (1995). Unidades litodémicas en la cordillera Central de Colombia / Instituto de investigaciones en Geociencias, Minería y Química (INGEOMINAS). Servicio Geológico Colombiano (SGC) Boletín Geológico, 44–57spa
dc.relation.referencesMejía, L., Pulido, O., Angarita, L., & Buenaventura, J. (1986). Mapa de ocurrencias minerales de Colombia. INGEOMINAS (Preliminary Edition).spa
dc.relation.referencesMineral Resources and Geofluids group at the Department of Earth Sciences, U. of G. (2022). Université de Genève - Laser Ablation ICP-MS Laboratory. http://minresunige.ch/la-icpms/spa
dc.relation.referencesMolano-Ramirez, R. (2023). Evolución espacio – temporal de las ocurrencias de metales preciosos e implicaciones metalogenéticas para el Distrito Minero de SegoviaRemedios, Antioquia, Colombia. Universidad Nacional de Colombia.spa
dc.relation.referencesMurowchick, J. B. (1992). Marcasite Inversion and the Petrographic Determination of Pyrite Ancestry (Vol. 87).spa
dc.relation.referencesMutis, V. (1993). Catálogo de los yacimientos, prospectos y manifestaciones minerales de Colombia, 2nd edn. INGEOMINAS (13th ed.).spa
dc.relation.referencesMoncada, D., Baker, D., & Bodnar, R. J. (2017). Mineralogical, petrographic and fluid inclusion evidence for the link between boiling and epithermal Ag-Au mineralization in the La Luz area, Guanajuato Mining District, México. Ore Geology Reviews, 89, 143–170. https://doi.org/10.1016/j.oregeorev.2017.05.024spa
dc.relation.referencesOrdóñez-Carmona, O., & Marín, M. V. (2005). METALOGENIA Y EVOLUCIÓN TECTONOMAGMÁTICA DEL DISTRITO MINERO SEGOVIA-REMEDIOS, PRIMERA APROXIMACIÓN. https://doi.org/10.13140/2.1.4782.8486spa
dc.relation.referencesRandive, K. R., Hari, K. R., Dora, M. L., Malpe, D. B., & Bhondwe, A. A. (2014). Study of Fluid Inclusions: Methods, Techniques and Applications. In Geol. Mag., V (Vol. 29)spa
dc.relation.referencesRestrepo, J. J., & Toussaint, J. F. (1988). Terranes and continental accretion in the Colombian Andes. Episodes, 11(3), 189–193. https://doi.org/10.18814/epiiugs/1988/v11i3/006spa
dc.relation.referencesRestrepo, J. J., & Toussaint, J. F. (2020). Tectonostratigraphic terranes in Colombia: An update first part: Continental terranes. In J. Gómez & D. Mateus–Zabala (Eds.), The Geology of Colombia (Vol. 1, p. 27). Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 35. https://doi.org/https://doi.org/10.32685/pub.esp.35.2019.03spa
dc.relation.referencesRoedder, E. (1984). Volume 12: fluid inclusions. Mineralogical Society of America, 12.spa
dc.relation.referencesRossetti, P., & Colombo, F. (1999). Adularia-sericite gold deposits of Marmato (Caldas, Colombia): field and petrographical data. Geological Society Special Publication, 155, 167–182. https://doi.org/10.1144/GSL.SP.1999.155.01.13spa
dc.relation.referencesRosso, K. M., & Bodnar, R. J. (1995). Microthermometric and Raman spectroscopic detection limits of CO2 in fluid inclusions and the Raman spectroscopic characterization of CO,*. In Geochimica et Cosmochimica Acta (Vol. 59, Issue 19).spa
dc.relation.referencesSamson, I. M., Williams-Jones, A. E., Ault, K. M., Gagnon, J. E., & Fryer, B. J. (2008). Source of fluids forming distal Zn-Pb-Ag skarns: Evidence from laser ablation-inductively coupled plasma-mass spectrometry analysis of fluid inclusions from El Mochito, Honduras. Geology, 36(12), 947–950. https://doi.org/10.1130/G25214A.1spa
dc.relation.referencesShaw, R. P., Leal-Mejía, H., & Melgarejo i Draper, J. C. (2019a). Phanerozoic metallogeny in the Colombian Andes: A tectono-magmatic analysis in space and time. In Frontiers in Earth Sciences (pp. 411–549). Springer Verlag. https://doi.org/10.1007/978-3-319-76132-9_6spa
dc.relation.referencesSRK consulting. (2017). NI 43-101 Technical Report Preliminary Economic Assessment Segovia Project Colombia.spa
dc.relation.referencesSteele-MacInnis, M., Lecumberri-Sanchez, P., & Bodnar, R. J. (2012). HokieFlincs_H2O-NaCl: A Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H 2O-NaCl. Computers and Geosciences, 49, 334–337. https://doi.org/10.1016/j.cageo.2012.01.022spa
dc.relation.referencesTosdal, R., Wooden, J., & Bouse, R. (1999). Pb Isotopes, Ore Deposits and Metallogenic Terranes. Application of Radiogenic Isotopes to Ore Deposit Research and Exploration.spa
dc.relation.referencesVelasco, F. (2004). INTRODUCCION AL ESTUDIO DE LAS INCLUSIONES FLUIDAS.spa
dc.relation.referencesVillagómez, D., Spikings, R., Magna, T., Kammer, A., Winkler, W., & Beltrán, A. (2011). Geochronology, geochemistry and tectonic evolution of the Western and Central cordilleras of Colombia. Lithos, 125(3–4), 875–896. https://doi.org/10.1016/j.lithos.2011.05.003spa
dc.relation.referencesVillegas, A. (1987). Recursos Minerales de Colombia, vol 1, 2nd edn. INGEOMINAS, Publicaciones Geológicas Especiales.spa
dc.relation.referencesVinasco, C. J., Cordani, U. G., Gonzalez, H., Weber, M., & Pelaez, C. (2006). Geochronological, isotopic, and geochemical data from Permo-Triassic granitic gneisses and granitoids of the Colombian Central Andes. Journal of South American Earth Sciences., 21, 355–371spa
dc.relation.referencesVinasco, C. J., Cordani, U. G., González, H., Weber, M., & Pelaez, C. (2006). Geochronological, isotopic, and geochemical data from Permo-Triassic granitic gneisses and granitoids of the Colombian Central Andes. Journal of South American Earth Sciences, 21(4), 355–371. https://doi.org/10.1016/j.jsames.2006.07.007spa
dc.relation.referencesVolker Lueders. (1996). Contribution of infrared microscopy to fluid inclusion studies in some opaque minerals (wolframite, stibnite, bournonite). Economic Geology, 8, 1462–1468.spa
dc.relation.referencesWilkinson, J. J. (2001). Fluid inclusions in hydrothermal ore deposits. In Lithos (Vol. 55). www.elsevier.nlrlocaterlithosspa
dc.relation.referencesWilliams-Jones, I. M. SAMSON, K. M. AULT, J. E. GAGNON, & B. J. FRYER. (2010). The Genesis of Distal Zinc Skarns: Evidence from the Mochito Deposit, Honduras. Economic Geology, 105, 1411–1440.spa
dc.relation.referencesZartman, R. E., & Doe, B. R. (1981a). Plumbotectonics-the model. Tectonophysics, 75(1–2), 135–162. https://doi.org/10.1016/0040-1951(81)90213-4spa
dc.relation.referencesZartman, R. E., & Doe, B. R. (1981b). Plumbotectonics-the model. Tectonophysics, 75(1–2), 135–162. https://doi.org/10.1016/0040-1951(81)90213-4spa
dc.relation.referencesZhao, Z. H., Ni, P., Sheng, Z. L., Dai, B. Z., Wang, G. G., Ding, J. Y., Wang, B. H., Zhang, H. D., Pan, J. Y., & Li, S. N. (2020). Thermal regime reconstruction and fluid inclusion LA–ICP–MS analysis on intermediate-sulfidation epithermal Pb–Zn veins: Implications for porphyry Cu deposits exploration in the Xianhualing District, Anhui, China. Ore Geology Reviews,124. https://doi.org/10.1016/j.oregeorev.2020.103658spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc550 - Ciencias de la tierra::553 - Geología económicaspa
dc.subject.ddc550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Surspa
dc.subject.lembINDUSTRIA MINERAspa
dc.subject.lembMining industry and financeeng
dc.subject.lembMINASspa
dc.subject.lembMines and mineral resourceseng
dc.subject.lembMINAS DE OROspa
dc.subject.lembGold mines and miningeng
dc.subject.lembGEOLOGIA DE MINASspa
dc.subject.lembMining geologyeng
dc.subject.proposalDistrito Minero Segovia-Remedioseng
dc.subject.proposalFluid Inclusionseng
dc.subject.proposalLA-ICP-MSeng
dc.subject.proposalPb-Pbeng
dc.subject.proposalGoldeng
dc.subject.proposalFluidseng
dc.subject.proposalDistrito Minero Segovia-Remediosspa
dc.subject.proposalInclusiones Fluidasspa
dc.subject.proposalLA-ICP-MSspa
dc.subject.proposalPb-Pbspa
dc.subject.proposalOrospa
dc.subject.proposalFluidosspa
dc.titleMineralogical and fluid characterization of the Providencia, Las Verticales and Carla deposits in Segovia-Remedios mining district, Colombiaeng
dc.title.translatedCaracterización mineralógica y de fluidos de los depósitos de Providencia, Las Verticales y Carla en el distrito minero de Segovia-Remedios, Colombiaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1136887147_2023.pdf
Tamaño:
8.27 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Geología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: