Estimación del orden en un modelo de cadena de markov oculta no homógeneo con presencia de co-variables

Cargando...
Miniatura

Autores

Mendoza Beltrán, Andryu Enrique

Director

Document language:

Español

Título de la revista

ISSN de la revista

Título del volumen

Documentos PDF

Resumen

El presente documento muestra la estimación del orden o número de estados de la cadena, en un modelo en cadenas de markov ocultas no homogéneas usando la inferencia bayesiana. Para la estimación, se usa el método de Markov Chain Monte Carlo (MCMC), tal que la simulación se realiza de manera conjunta con los demás parámetros del modelo. Adicionalmente cada variable del proceso observado pertenece a la familia exponencial. El uso de esta metodología establece el modelo que mejor ajusta los datos. Estos valores son generados de distribuciones no pseudo a priori, obteniendo convergencia e independencia a un gran número de iteraciones.
Abstract. This document shows the estimation of the order or number of states of the Chain, in a non homogeneous hidden markov model using the bayesian inference. For the estimation, we used the Markov Chain Monte Carlo method’s (MCMC) such that the simulation was performed in conjunction with the other parameters of the model, additionally each variable of the observed process belongs to the exponential family. The use of this method select the best model, This values was generated by the non pseudo prior distribution, obtaining convergence and not autocorrelation to a large number of iterations.

Abstract

Descripción

Palabras clave

Citación