Procesamiento de información cuántica mediante la utilización de variables continuas de la luz

dc.contributor.advisorVargas Chaparro, Edgar Miguel
dc.contributor.advisorNuñez Portela, Mayerlin
dc.contributor.authorTenorio Albañil, Johnny Alberto
dc.contributor.subjectmatterexpertValencia Gonzalez, Alejandra Catalina
dc.date.accessioned2021-04-09T15:11:11Z
dc.date.available2021-04-09T15:11:11Z
dc.date.issued2020
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractEn este trabajo se presenta una forma de transmitir información haciendo uso de las variables continuas de la luz. Se estudiaron las propiedades de coherencia de dos tipos de fuentes de luz, luz láser y luz pseudotérmica. Se midió, para cada fuente de luz, el grado de coherencia de segundo orden en las variables espaciales y temporales. A partir de las medidas de la función de correlación espacial de segundo orden de una fuente de luz pseudotérmica, g(2)(x1-x2), se caracterizó la longitud transversal de coherencia. Utilizando la propiedad de coherencia de este tipo de fuente de luz se implementó un experimento de imagen fantasma o Ghost Imaging en el que se puede recuperar la información del per fil espacial de un objeto a partir de la medida de correlación.spa
dc.description.abstractThis document presents a way to transmit information using the continuous variables of light. The coherence properties of two types of light sources, laser light and pseudo-thermal light, were studied. The degree of coherence in the spatial and temporal variables of the light was measured for each light source. From the measurements of the second-order spatial correlation function for a pseudo-thermal light source, g(2) (x1-x2), the coherence transverse length was characterized. Using the coherence property of this kind of light source, a Ghost Imaging experiment was implemented in which the spatial pro le information of an object can be retrieved from the correlation measure.eng
dc.description.degreelevelMaestríaspa
dc.description.researchareaSeñales e Informaciónspa
dc.format.extent1 recurso en linea (76 paginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional UNspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79392
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Ingeniería de Sistemas e Industrialspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotáspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Telecomunicacionesspa
dc.relation.references[1] I. L. C. Michael A. Nielsen, Quantum Computation and Quantum Information. Cambridge University Press, 2010.spa
dc.relation.references[2] Y. Shih, "The physics of ghost imaging," in Advances in Lasers and Electro Optics, InTech, 2010.spa
dc.relation.references[3] T. Spiller, Quantum information processing: cryptography, computation, and teleportation," Proceedings of the IEEE, vol. 84, no. 12, pp. 1719-1746, 1996.spa
dc.relation.references[4] R. H. Brown and R. Q. Twiss, "Correlation between photons in two coherent beams of light," Nature, vol. 177, no. 4497, pp. 0027-29, 1956.spa
dc.relation.references[5] G. Scarcelli, V. Berardi, and Y. Shih, "Can two-photon correlation of chaotic light be considered as correlation of intensity fluctuations?," Physical Review Letters, vol. 96, no. 6, p. 063602, 2006.spa
dc.relation.references[6] E. M. Purcell, "The question of correlation between photons in coherent light rays," Nature, vol. 178, no. 4548, pp. 1449-1450, 1956.spa
dc.relation.references[7] R. H. Brown and D. Scarl, "The intensity interferometer, its application to astronomy," Physics Today, vol. 28, no. 9, pp. 54-55, 1975.spa
dc.relation.references[8] Y. Shih, "Quantum imaging," IEEE Journal of Selected Topics in Quantum Electronics, vol. 13, no. 4, pp. 1016-1030, 2007.spa
dc.relation.references[9] R. Meyers, K. S. Deacon, and Y. Shih, "Ghost-imaging experiment by measuring re- ected photons," Physical Review A, vol. 77, no. 4, p. 041801, 2008.spa
dc.relation.references[10] R. E. Meyers, K. S. Deacon, and Y. Shih, "Turbulence-free ghost imaging," Applied Physics Letters, vol. 98, no. 11, p. 111115, 2011.spa
dc.relation.references[11] T. Zhong, H. Zhou, R. D. Horansky, C. Lee, V. B. Verma, A. E. Lita, A. Restelli, J. C. Bienfang, R. P. Mirin, T. Gerrits, S. W. Nam, F. Marsili, M. D. Shaw, Z. Zhang, L. Wang, D. Englund, G. W. Wornell, J. H. Shapiro, and F. N. C. Wong, "Photon-e cient quantum key distribution using time-energy entanglement with highdimensional encoding," New Journal of Physics, vol. 17, no. 2, p. 022002, 2015.spa
dc.relation.references[12] J. Yang, X.-H. Bao, H. Zhang, S. Chen, C.-Z. Peng, Z.-B. Chen, and J.-W. Pan, "Experimental quantum teleportation and multiphoton entanglement via interfering narrowband photon sources," Physical Review A, vol. 80, no. 4, p. 042321, 2009.spa
dc.relation.references[13] P. S. Michelberger, T. F. M. Champion, M. R. Sprague, K. T. Kaczmarek, M. Barbieri, X. M. Jin, D. G. England, W. S. Kolthammer, D. J. Saunders, J. Nunn, and I. A. Walmsley, "Interfacing GHz-bandwidth heralded single photons with a warm vapour raman memory," New Journal of Physics, vol. 17, no. 4, p. 043006, 2015.spa
dc.relation.references[14] G. M. A.Valencia, "La luz: color y mucho m as," Hipótesis, no. 18, pp. 23-31, 2015.spa
dc.relation.references[15] A. Lipson, S. G. Lipson, and H. Lipson, Optical Physics. Cambridge University Press, 2009.spa
dc.relation.references[16] B. D. Guenther, Modern Optics. Oxford University Press, 2015.spa
dc.relation.references[17] E. Hecht, Optics. Boston: Pearson Education, Inc, 2017.spa
dc.relation.references[18] R. J. Glauber, "Nobel lecture: One hundred years of light quanta," Reviews of Modern Physics, vol. 78, no. 4, pp. 1267-1278, 2006.spa
dc.relation.references[19] M. Fox, Quantum Optics An Introduccion. Oxford University Press, 2006.spa
dc.relation.references[20] F. T. Arecchi, "Measurement of the statistical distribution of gaussian and laser sources," Physical Review Letters, vol. 15, no. 24, pp. 912-916, 1965.spa
dc.relation.references[21] L. E. Estes, L. M. Narducci, and R. A. Tuft, "Scattering of light from a rotating ground glass," Journal of the Optical Society of America, vol. 61, no. 10, p. 1301, 1971.spa
dc.relation.references[22] W. Martienssen and E. Spiller, "Coherence and uctuations in light beams," American Journal of Physics, vol. 32, no. 12, pp. 919-926, 1964.spa
dc.relation.references[23] A. Gatti, D. Magatti, and F. Ferri, "Three-dimensional coherence of light speckles: Theory," Physical Review A, vol. 78, no. 6, p. 063806, 2008.spa
dc.relation.references[24] T. A. Kuusela, "Measurement of the second-order coherence of pseudothermal light," American Journal of Physics, vol. 85, no. 4, pp. 289-294, 2017.spa
dc.relation.references[25] P. K. C. Gerry, Introductory Quantum Optics. Cambridge University Press, 2005.spa
dc.relation.references[26] P. W. P. Koczyk and C. Radzewicz, "Photon counting statistics|undergraduate experiment," American Journal of Physics, vol. 64, no. 3, pp. 240-245, 1996.spa
dc.relation.references[27] H.-A. Bachor and T. C. Ralph, A Guide to Experiments in Quantum Optics. Wiley, 2019.spa
dc.relation.references[28] A. Zavatta, M. Bellini, P. L. Ramazza, F. Marin, and F. T. Arecchi, "Time-domain analysis of quantum states of light: noise characterization and homodyne tomography," Journal of the Optical Society of America B, vol. 19, no. 5, p. 1189, 2002.spa
dc.relation.references[29] G. Breitenbach, S. Schiller, and J. Mlynek, "Measurement of the quantum states of squeezed light," Nature, vol. 387, no. 6632, pp. 471-475, 1997.spa
dc.relation.references[30] D. T. Smithey, M. Beck, M. G. Raymer, and A. Faridani, "Measurement of the wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum," Physical Review Letters, vol. 70, no. 9, pp. 1244-1247, 1993.spa
dc.relation.references[31] I. Khan, D. Elser, T. Dirmeier, C. Marquardt, and G. Leuchs, "Quantum communication with coherent states of light," Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 375, no. 2099, p. 20160235, 2017.spa
dc.relation.references[32] T. Jennewein and B. Higgins, "The quantum space race," Physics World, vol. 26, no. 03, pp. 52-56, 2013.spa
dc.relation.references[33] F. Laudenbach, C. Pacher, C.-H. F. Fung, A. Poppe, M. Peev, B. Schrenk, M. Hentschel, P.Walther, and H. Hübel, "Continuous-variable quantum key distribution with gaussian modulation-the theory of practical implementations," Advanced Quantum Technologies, vol. 1, no. 1, p. 1800011, 2018.spa
dc.relation.references[34] R. Bedington, J. M. Arrazola, and A. Ling, "Progress in satellite quantum key distribution," Nature Partner Journals Quantum Information, vol. 3, no. 1, p. 30, 2017.spa
dc.relation.references[35] M. Beck, "Comparing measurements of g^(2)(0) performed with di erent coincidence detection techniques," Journal of the Optical Society of America B, vol. 24, no. 12, p. 2972, 2007.spa
dc.relation.references[36] Y. Shih, An Introduction to Quantum Optics Photon and Biphoton Physics. CRC Press, 2011.spa
dc.relation.references[37] D. Branning, S. Bhandari, and M. Beck, "Low-cost coincidence-counting electronics for undergraduate quantum optics," American Journal of Physics, vol. 77, no. 7, pp. 667-670, 2009.spa
dc.relation.references[38] R. Joost and R. Salomon, "CDL, a precise, low-cost coincidence detector latch," Electronics, vol. 4, no. 4, pp. 1018-1032, 2015.spa
dc.relation.references[39] B. K. Park, Y.-S. Kim, O. Kwon, S.-W. Han, and S. Moon, "High-performance reconfigurable coincidence counting unit based on a field programmable gate array," Applied Optics, vol. 54, no. 15, p. 4727, 2015.spa
dc.relation.references[40] B. J. Pearson and D. P. Jackson, "A hands-on introduction to single photons and quantum mechanics for undergraduates," American Journal of Physics, vol. 78, no. 5, pp. 471-484, 2010.spa
dc.relation.references[41] C.-H. Huang, Y.-H. Wen, and Y.-W. Liu, "Measuring the second order correlation function and the coherence time using random phase modulation," Optics Express, vol. 24, no. 4, p. 4278, 2016.spa
dc.relation.references[42] G. Scarcelli, A. Valencia, and Y. Shih, "Experimental study of the momentum correlation of a pseudothermal field in the photon-counting regime," Physical Review A, vol. 70, no. 5, p. 051802, 2004.spa
dc.relation.references[43] B. Bai, Y. Zhou, R. Liu, H. Zheng, Y. Wang, F. Li, and Z. Xu, "Hanbury brown-twiss efect without two-photon interference in photon counting regime," Scientific Reports, vol. 7, no. 1, p. 2145, 2017.spa
dc.relation.references[44] R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, "Quantum and classical coincidence imaging," Physical Review Letters, vol. 92, no. 3, p. 033601, 2004.spa
dc.relation.references[45] A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, "Ghost imaging with thermal light: Comparing entanglement and ClassicalCorrelation," Physical Review Letters, vol. 93, no. 9, p. 093602, 2004.spa
dc.relation.references[46] A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, "Correlated imaging, quantum and classical," Physical Review A, vol. 70, no. 1, p. 013802, 2004.spa
dc.relation.references[47] A. Valencia, G. Scarcelli, M. DAngelo, and Y. Shih, "Two-photon imaging with thermal light," Physical Review Letters, vol. 94, no. 6, p. 063601, 2005.spa
dc.relation.references[48] F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, "Highresolution ghost image and ghost diffraction experiments with thermal light," Physical Review Letters, vol. 94, no. 18, p. 183602, 2005.spa
dc.relation.references[49] F. Ferri, D. Magatti, L. A. Lugiato, and A. Gatti, "Differential ghost imaging," Physical Review Letters, vol. 104, no. 25, p. 253603, 2010.spa
dc.relation.references[50] Y. Cai and S.-Y. Zhu, "Ghost interference with partially coherent radiation," Optics Letters, vol. 29, no. 23, p. 2716, 2004.spa
dc.relation.references[51] Y. Cai and S.-Y. Zhu, "Ghost imaging with incoherent and partially coherent light radiation," Physical Review E, vol. 71, no. 5, p. 056607, 2005.spa
dc.relation.references[52] M. DAngelo, A. Valencia, M. H. Rubin, and Y. Shih, "Resolution of quantum and classical ghost imaging," Physical Review A, vol. 72, no. 1, p. 013810, 2005.spa
dc.relation.references[53] M. Bache, D. Magatti, F. Ferri, A. Gatti, E. Brambilla, and L. A. Lugiato, "Coherent imaging of a pure phase object with classical incoherent light," Physical Review A, vol. 73, no. 5, p. 053802, 2006.spa
dc.relation.references[54] F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, "Longitudinal coherence in thermal ghost imaging," Applied Physics Letters, vol. 92, no. 26, p. 261109, 2008.spa
dc.relation.references[55] I. Vidal, D. P. Caetano, E. J. S. Fonseca, and J. M. Hickmann, "Effects of pseudothermal light sources transverse size and coherence width in ghost-interference experiments," Optics Letters, vol. 34, no. 9, p. 1450, 2009.spa
dc.relation.references[56] N. S. Bisht, E. K. Sharma, and H. C. Kandpal, "The in uence of source and object characteristics on coincidence imaging," Journal of Optics, vol. 12, no. 4, p. 045701, 2010.spa
dc.relation.references[57] B. I. Erkmen, "Computational ghost imaging for remote sensing," Journal of the Optical Society of America A, vol. 29, no. 5, p. 782, 2012.spa
dc.relation.references[58] W. Gong, C. Zhao, H. Yu, M. Chen, W. Xu, and S. Han, "Three-dimensional ghost imaging lidar via sparsity constraint," Scientific Reports, vol. 6, no. 1, p. 26133, 2016.spa
dc.relation.references[59] P. Clemente, V. Durán, V. Torres-Company, E. Tajahuerce, and J. Lancis, "Optical encryption based on computational ghost imaging," Optics Letters, vol. 35, no. 14, p. 2391, 2010.spa
dc.relation.references[60] S. Li, X.-R. Yao, W.-K. Yu, L.-A. Wu, and G.-J. Zhai, "High-speed secure key distribution over an optical network based on computational correlation imaging," Optics Letters, vol. 38, no. 12, p. 2144, 2013.spa
dc.relation.references[61] G. A. Howland and J. Howell, "Compressive sensing for imaging spatial entanglement," SPIE Newsroom, 2013.spa
dc.relation.references[62] D. Liu, L. Li, H. Chen, Y. Kang, T. Zhang, W. Zhao, W. Dong, and K. Shi, "Complementary normalized compressive ghost imaging with entangled photons," IEEE Photonics Journal, vol. 10, no. 2, pp. 1-7, 2018.spa
dc.relation.references[63] Y. He, G. Wang, G. Dong, S. Zhu, H. Chen, A. Zhang, and Z. Xu, "Ghost imaging based on deep learning," Scientific Reports, vol. 8, no. 1, p. 6469, 2018.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::621 - Física aplicadaspa
dc.subject.proposalLasereng
dc.subject.proposalPseudothermal Lighteng
dc.subject.proposalCoherenceeng
dc.subject.proposalCorrelation Functioneng
dc.subject.proposalQuantum Informationeng
dc.subject.proposalHomodyne Detectioneng
dc.subject.proposalGhost Imagingeng
dc.subject.proposalLáserspa
dc.subject.proposalLuz pseudotérmicaspa
dc.subject.proposalCoherenciaspa
dc.subject.proposalFunción de correlaciónspa
dc.subject.proposalInformación Cuánticaspa
dc.subject.proposalDetección Homodinaspa
dc.subject.unescoRayo láser
dc.subject.unescoLuz
dc.titleProcesamiento de información cuántica mediante la utilización de variables continuas de la luzspa
dc.title.translatedQuantum information processing through the use of continuous variables of light
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032439330.2020.pdf
Tamaño:
2.6 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Telecomunicaciones

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: