Efecto de la competencia entre especies de rizobacterias sobre los rasgos de promoción del crecimiento vegetal in vitro y el desarrollo del modelo vegetal Solanum lycopersicum bajo condiciones de vivero
dc.contributor.advisor | Bedoya Pérez, Juan Carlos | |
dc.contributor.advisor | Pérez Naranjo, Juan Carlos | |
dc.contributor.author | Ceballos Ruiz, Estefania | |
dc.contributor.cvlac | Ceballos Ruiz, Estefania | |
dc.contributor.orcid | Bedoya Pérez, Juan Carlos [0000-0003-3776-9190] | |
dc.contributor.researchgroup | Fitosanidad y Control biológico | |
dc.date.accessioned | 2025-09-05T15:55:01Z | |
dc.date.available | 2025-09-05T15:55:01Z | |
dc.date.issued | 2025-09-05 | |
dc.description | Ilustraciones, fotografías | spa |
dc.description.abstract | Los bioinoculantes a base de microorganismos benéficos representan una estrategia prometedora para mejorar la salud del suelo y la productividad de los cultivos. Sin embargo, su desempeño bajo condiciones de campo es inconsistente, lo que ha impulsado la investigación en muchas áreas del conocimiento con el fin de mejorar su efectividad. Una posible causa de esto puede estar relacionada con el ciclo de vida bacteriano en el suelo. El uso de inóculos microbianos implica constantes interacciones competitivas entre las comunidades presentes en el suelo y los agentes biológicos aplicados. La competencia microbiana con la microbiota residente del suelo, puede impedir que el microorganismo introducido sobreviva, se establezca y exprese los rasgos deseados lo que puede ejercer una presión selectiva e inducir la aparición de variantes fenotípicas con mayor capacidad para establecerse en un ambiente selectivo dado. Así, las interacciones microbianas podrían representar una alternativa para la obtención de fenotipos con mejores rasgos de promoción de crecimiento vegetal potenciando su aplicación como bioinoculantes en sistemas agrícolas. No obstante, para alcanzar esta instancia, es necesario comprender las interacciones microbianas y los principios ecológicos que las gobiernan. Este trabajo evaluó el efecto de la competencia entre rizobacterias sobre sus rasgos de promoción del crecimiento vegetal in vitro. Se aplicó un enfoque de evolución experimental basado en interacciones de competencia sucesivas en medio solido con la finalidad de inducir variaciones fenotípicas en tres aislados bacterianos previamente seleccionados por su capacidad biofertilizante. Se analizaron cambios en la morfología de las colonias bacterianas, rasgos de promoción de crecimiento vegetal in vitro (solubilización de fosfatos y producción de indoles totales), y el efecto de aislamientos seleccionados sobre el desarrollo de plántulas de Solanum lycopersicum bajo condiciones de vivero. La interacción microbiana generó cambios en la morfología colonial y variaciones significativas en los rasgos de promoción de crecimiento entre poblaciones seleccionadas de procesos de repique, competencia y los aislamientos parentales. Los resultados obtenidos sugieren que la competencia microbiana puede ser utilizada como una alternativa de selección de fenotipos mejorados para el desarrollo de bioinoculantes agrícolas más eficaces. (Tomado de la fuente) | spa |
dc.description.abstract | Bioinoculants based on beneficial microorganisms represent a promising strategy for improving soil health and crop productivity. However, their performance under field conditions is inconsistent, prompting research in many areas of knowledge aimed at improving their effectiveness. One possible cause of this may be related to the bacterial life cycle in the soil. The use of microbial inoculants involves constant competitive interactions between the communities present in the soil and the biological agents applied. Microbial competition with the resident soil microbiota can prevent the introduced microorganism from surviving, establishing, and expressing desired traits. This can exert selective pressure and induce the emergence of phenotypic variants with a greater capacity to establish in a given selective environment. Thus, microbial interactions could represent an alternative for obtaining phenotypes with improved plant growth-promoting traits, enhancing their application as bioinoculants in agricultural systems. However, to achieve this goal, it is necessary to understand microbial interactions and the ecological principles that govern them. This work evaluated the effect of competition among rhizobacteria on their plant growth-promoting traits in vitro. An experimental evolution approach based on successive competitive interactions in solid media was applied to induce phenotypic variations in three bacterial isolates previously selected for their biofertilizing capacity. Changes in bacterial colony morphology, in vitro plant growth-promoting traits (phosphate solubilization and total indole production), and the effect of selected isolates on the development of Solanum lycopersicum seedlings under nursery conditions were analyzed. Microbial interactions generated changes in colonial morphology and significant variations in growth-promoting traits among selected populations from stemming processes, competition, and parental isolates. The results obtained suggest that microbial competition can be used as an alternative for selecting improved phenotypes for the development of more effective agricultural bioinoculants. | eng |
dc.description.curriculararea | Biotecnología.Sede Medellín | |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ciencias - Biotecnología | |
dc.description.researcharea | Biotecnología Microbiana | |
dc.description.sponsorship | Ministerio de Ciencias, Fondo Francisco José de Caldas | |
dc.format.extent | 126 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88632 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | |
dc.publisher.faculty | Facultad de Ciencias | |
dc.publisher.place | Medellín, Colombia | |
dc.publisher.program | Medellín - Ciencias - Maestría en Ciencias - Biotecnología | |
dc.relation.indexed | LaReferencia | |
dc.relation.references | Abbamondi, G. R., Tommonaro, G., Weyens, N., Thijs, S., Sillen, W., Gkorezis, P., ... & Vangronsveld, J. (2016). Plant growth-promoting effects of rhizospheric and endophytic bacteria associated with different tomato cultivars and new tomato hybrids. Chemical and Biological Technologies in Agriculture, 3, 1-10. | |
dc.relation.references | Abrudan, M. I., Smakman, F., Grimbergen, A. J., Westhoff, S., Miller, E. L., Van Wezel, G. P., & Rozen, D. E. (2015). Socially mediated induction and suppression of antibiosis during bacterial coexistence. Proceedings of the National Academy of Sciences, 112(35), 11054-11059. | |
dc.relation.references | Achouak, W., Conrod, S., Cohen, V., & Heulin, T. (2004). Phenotypic variation of Pseudomonas brassicacearum as a plant root-colonization strategy. Molecular plant-microbe interactions, 17(8), 872-879. | |
dc.relation.references | Acinas, S. G., Marcelino, L. A., Klepac-Ceraj, V., & Polz, M. F. (2004). Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. Journal of Bacteriology, 186(9), 2629–2635. https://doi.org/10.1128/JB.186.9.2629-2635.2004 | |
dc.relation.references | Ackermann, M. (2015). A functional perspective on phenotypic heterogeneity in microorganisms. Nature Reviews Microbiology, 13(8), 497-508 | |
dc.relation.references | Ackermann, M. et al. Self-destructive cooperation mediated by phenotypic noise. Nature 454, 987–990 (2008). | |
dc.relation.references | Ahmad, I., Khan, M. S. A., Aqil, F., & Singh, M. (2011). Microbial applications in agriculture and the environment: a broad perspective. Microbes and microbial technology: agricultural and environmental applications, 1-27. | |
dc.relation.references | Alcaraz, L. D., Moreno-Hagelsieb, G., Eguiarte, L. E., Souza, V., Herrera-Estrella, L., & Olmedo, G. (2010). Understanding the evolutionary relationships and major traits of Bacillus through comparative genomics. BMC genomics, 11, 1-17. | |
dc.relation.references | Alzate Zuluaga, M. Y., Fattorini, R., Cesco, S., & Pii, Y. (2024). Plant-microbe interactions in the rhizosphere for smarter and more sustainable crop fertilization: the case of PGPR-based biofertilizers. Frontiers in Microbiology, 15, 1440978. | |
dc.relation.references | Ambrico, A., Trupo, M., & Magarelli, R. A. (2019). Influence of phenotypic dissociation in Bacillus subtilis strain ET-1 on iturin A production. Current Microbiology, 76(12), 1487-1494. | |
dc.relation.references | Agarwal, H., Bajpai, S., Mishra, A., Kohli, I., Varma, A., Fouillaud, M., ... & Joshi, N. C. (2023). Bacterial pigments and their multifaceted roles in contemporary biotechnology and pharmacological applications. Microorganisms, 11(3), 614. | |
dc.relation.references | Aquilanti, L., Favilli, F., & Clementi, F. (2004). Comparison of different strategies for isolation and preliminary identification of Azotobacter from soil samples. Soil Biology and biochemistry, 36(9), 1475-1483. | |
dc.relation.references | Armenta-Bojórquez, A. D., García-Gutiérrez, C., Camacho-Báez, J. R., Apodaca-Sánchez, M. Á., Gerardo-Montoya, L., & Nava-Pérez, E. (2010). Biofertilizantes en el desarrollo agrícola de México. Ra Ximhai, 6(1), 51-56. | |
dc.relation.references | Arnaouteli, S., Bamford, N. C., Stanley-Wall, N. R., & Kovács, Á. T. (2021). Bacillus subtilis biofilm formation and social interactions. Nature Reviews Microbiology, 19(9), 600-614. | |
dc.relation.references | Bacilio, M., J.P. Hernandez y Y. Bashan. 2006. Restoration of giant cardon cacti in barren desert soil amended with common compost and inoculated with Azospirillum brasilense. Biology and Fertility of Soils 43, 112-119. | |
dc.relation.references | Bailey, S. F., Rodrigue, N., & Kassen, R. (2015). The effect of selection environment on the probability of parallel evolution. Molecular biology and evolution, 32(6), 1436-1448. | |
dc.relation.references | Baishya, J., & Wakeman, C. A. (2019). Selective pressures during chronic infection drive microbial competition and cooperation. npj Biofilms and Microbiomes, 5(1), 16. | |
dc.relation.references | Balaban, N. Q., Merrin, J., Chait, R., Kowalik, L., & Leibler, S. (2004). Bacterial persistence as a phenotypic switch. Science, 305(5690), 1622-1625. | |
dc.relation.references | Barra, P. J., Inostroza, N. G., Mora, M. L., Crowley, D. E., & Jorquera, M. A. (2017). Bacterial consortia inoculation mitigates the water shortage and salt stress in an avocado (Persea americana Mill.) nursery. Applied Soil Ecology, 111, 39-47. | |
dc.relation.references | Barreto, H. C., Cordeiro, T. N., Henriques, A. O., & Gordo, I. (2020). Rampant loss of social traits during domestication of a Bacillus subtilis natural isolate. Sci Rep 10: 18886. | |
dc.relation.references | Bashan, Y., de-Bashan, L. E., Prabhu, S. R., & Hernandez, J. P. (2014). Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant and soil, 378, 1-33 | |
dc.relation.references | Bhattacharyya, P. N., & Jha, D. K. (2012). Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World Journal of Microbiology and Biotechnology, 28, 1327-1350. | |
dc.relation.references | Be'Er, A., Zhang, H. P., Florin, E. L., Payne, S. M., Ben-Jacob, E., & Swinney, H. L. (2009). Deadly competition between sibling bacterial colonies. Proceedings of the National Academy of Sciences, 106(2), 428-433. | |
dc.relation.references | Bhutani, N., Maheshwari, R., Kumar, P., & Suneja, P. (2021). Bioprospecting of endophytic bacteria from nodules and roots of Vigna radiata, Vigna unguiculata and Cajanus cajan for their potential use as bioinoculants. Plant Gene, 28, 100326. | |
dc.relation.references | Billah, M., Khan, M., Bano, A., Hassan, T. U., Munir, A., & Gurmani, A. R. (2019). Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiology Journal, 36(10), 904-916). | |
dc.relation.references | Borgeaud, S., Metzger, L. C., Scrignari, T., & Blokesch, M. (2015). The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science, 347(6217), 63-67. | |
dc.relation.references | Borisova, M., Gaupp, R., Duckworth, A., Schneider, A., Dalügge, D., Mühleck, M., ... & Mayer, C. (2016). Peptidoglycan recycling in Gram-positive bacteria is crucial for survival in stationary phase. MBio, 7(5), 10-1128. | |
dc.relation.references | Bowen, G. D., & Rovira, A. D. (1999). The rhizosphere and its management to improve plant growth. Advances in agronomy, 66, 1-102. | |
dc.relation.references | Bucci, V., Nadell, C. D., & Xavier, J. B. (2011). The evolution of bacteriocin production in bacterial biofilms. The American Naturalist, 178(6), E162-E173. | |
dc.relation.references | Bula, A. O. (2020). Importancia de la agricultura en el desarrollo socio-económico. | |
dc.relation.references | Casadesús, J., & Low, D. A. (2013). Programmed heterogeneity: epigenetic mechanisms in bacteria. Journal of Biological Chemistry, 288(20), 13929-13935. | |
dc.relation.references | Castaño, A. M. P., Durango, D. P. M., Echeverry, D. P., & Arias, J. A. C. (2021). Rizobacterias promotoras de crecimiento vegetal (PGPR): Una revisión sistemática 1990-2019. RIAA, 12(2), 9. | |
dc.relation.references | Cavalcante da Silva, M. J., Palmeira, S. F., Fortes, K., Nascimento, V. X., de Medeiros, A. S., Cavalcanti da Silva, S. J., ... & Sant'Ana, A. E. G. (2020). IAA production of indigenous isolate of plant growth promoting rhizobacteria in the presence of tryptophan. Australian Journal of Crop Science, 14(3), 537-544. | |
dc.relation.references | Chatterjee, A., Perevedentseva, E., Jani, M., Cheng, C. Y., Ye, Y. S., Chung, P. H., & Cheng, C. L. (2015). Antibacterial effect of ultrafine nanodiamond against gram-negative bacteria Escherichia coli. Journal of biomedical optics, 20(5), 051014-051014. | |
dc.relation.references | Chong, T. N., & Shapiro, L. (2024). Bacterial cell differentiation enables population level survival strategies. Mbio, 15(6), e00758-24. | |
dc.relation.references | CIAT, T. (1988). Simbiosis Leguminosa-Rizobio; manual de metodos de evaluación, selección y manejo agronómico | |
dc.relation.references | Cochard, B., Giroud, B., Crovadore, J., Chablais, R., Arminjon, L., & Lefort, F. (2022). Endophytic PGPR from tomato roots: isolation, in vitro characterization and in vivo evaluation of treated tomatoes (Solanum lycopersicum L.). Microorganisms, 10(4), 765. | |
dc.relation.references | Cornforth, D. M., & Foster, K. R. (2013). Competition sensing: the social side of bacterial stress responses. Nature Reviews Microbiology, 11(4), 285-293. | |
dc.relation.references | Cronenberg, T., Hennes, M., Wielert, I., & Maier, B. (2021). Antibiotics modulate attractive interactions in bacterial colonies affecting survivability under combined treatment. PLoS Pathogens, 17(2), e1009251. | |
dc.relation.references | Czárán, T. L., Hoekstra, R. F., & Pagie, L. (2002). Chemical warfare between microbes promotes biodiversity. Proceedings of the National Academy of Sciences, 99(2), 786-790. | |
dc.relation.references | De Salamone, I. E. G., & Di Salvo, L. P. (2019) Interactions Between Plant Genotypes and PGPR are a Challenge for Crop Breeding and Improvement Inoculation Responses. Microbiological Activity for Soil and Plant Health Management, 331. | |
dc.relation.references | Diabankana, R. G. C., Validov, S. Z., Vyshtakalyuk, A. B., Daminova, A., Safin, R. I., & Afordoanyi, D. M. (2022). Effects of phenotypic variation on biological properties of endophytic bacteria Bacillus mojavensis PS17. Biology, 11(9), 1305. | |
dc.relation.references | Dobritsa, A. P., Linardopoulou, E. V., & Samadpour, M. (2017). Transfer of 13 species of the genus Burkholderia to the genus Caballeronia and reclassification of Burkholderia jirisanensis as Paraburkholderia jirisanensis comb. nov. International journal of systematic and evolutionary microbiology, 67(10), 3846-3853. | |
dc.relation.references | Dragosits, M., & Mattanovich, D. (2013). Adaptive laboratory evolution–principles and applications for biotechnology. Microbial cell factories, 12, 1-17. | |
dc.relation.references | Duflos, R., Vailleau, F., & Roux, F. (2024). Toward Ecologically Relevant Genetics of Interactions Between Host Plants and Plant Growth-Promoting Bacteria. Advanced Genetics, 5(3), 2300210. | |
dc.relation.references | Eldar, A., Chary, V. K., Xenopoulos, P., Fontes, M. E., Losón, O. C., Dworkin, J., ... & Elowitz, M. B. (2009). Partial penetrance facilitates developmental evolution in bacteria. Nature, 460(7254), 510-514. | |
dc.relation.references | Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002). | |
dc.relation.references | Fajardo-Cavazos, P., Maughan, H., & Nicholson, W. L. (2016). Evolution in the Bacillaceae. The Bacterial Spore: From Molecules to Systems, 21-58. | |
dc.relation.references | Faller, L., Leite, M. F., & Kuramae, E. E. (2024). Enhancing phosphate-solubilising microbial communities through artificial selection. Nature Communications, 15(1), 1649. | |
dc.relation.references | Ferenci, T. (2016). Trade-off mechanisms shaping the diversity of bacteria. Trends in microbiology, 24(3), 209-223. | |
dc.relation.references | Fiegna, F., Moreno-Letelier, A., Bell, T., & Barraclough, T. G. (2015). Evolution of species interactions determines microbial community productivity in new environments. The ISME Journal, 9(5), 1235–1245. | |
dc.relation.references | Frankel, N. W., Pontius, W., Dufour, Y. S., Long, J., Hernandez-Nunez, L., & Emonet, T. (2014). Adaptability of non-genetic diversity in bacterial chemotaxis. Elife, 3, e03526.) | |
dc.relation.references | Gallart, M., Paungfoo-Lonhienne, C., & Trueman, S. J. (2022). Effects of a growth-promoting Paraburkholderia species on nitrogen acquisition by avocado seedlings. Scientia Horticulturae, 295, 110767. | |
dc.relation.references | Gamboa-Becerra, R., Desgarennes, D., Molina-Torres, J., Ramírez-Chávez, E., Kiel-Martínez, A. L., Carrión, G., & Ortiz-Castro, R. (2022). Plant growth-promoting and non-promoting rhizobacteria from avocado trees differentially emit volatiles that influence growth of Arabidopsis thaliana. Protoplasma, 1-20. | |
dc.relation.references | Garay-Arroyo, A., de la Paz Sánchez, M., García-Ponce, B., Álvarez-Buylla, E. R., & Gutiérrez, C. (2014). La homeostasis de las auxinas y su importancia en el desarrollo de Arabidopsis thaliana. Revista de educación bioquímica, 33(1), 13-22. | |
dc.relation.references | García-Fraile, P., Menéndez, E., & Rivas, R. (2015). Role of bacterial biofertilizers in agriculture and forestry. Aims Bioengineering, 2(3), 183-205 | |
dc.relation.references | Gao, J. L., Sun, P., Sun, X. H., Tong, S., Yan, H., Han, M. L., ... & Sun, J. G. (2018). Caulobacter zeae sp. nov. and Caulobacter radicis sp. nov., novel endophytic bacteria isolated from maize root (Zea mays L.). Systematic and applied microbiology, 41(6), 604-610. | |
dc.relation.references | Giri, S., Shitut, S., & Kost, C. (2020). Harnessing ecological and evolutionary principles to guide the design of microbial production consortia. Current Opinion in Biotechnology, 62, 228-238. | |
dc.relation.references | Gerhardt, K.E., X.D. Huang, B.R. Glick y B.M. Greenberg. 2009. Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Science 176, 20-30. | |
dc.relation.references | Goh, C. H., Veliz Vallejos, D. F., Nicotra, A. B., & Mathesius, U. (2013). The impact of beneficial plant-associated microbes on plant phenotypic plasticity. Journal of chemical ecology, 39, 826-839. | |
dc.relation.references | Ghoul, M., & Mitri, S. (2016). The ecology and evolution of microbial competition. Trends in microbiology, 24(10), 833-845. | |
dc.relation.references | González-Estrada, A., & Camacho Amador, M. (2017). Emisión de gases de efecto invernadero de la fertilización nitrogenada en México. Revista mexicana de ciencias agrícolas, 8(8), 1733-1745. | |
dc.relation.references | Gordon, S. A., & Weber, R. P. (1951). Colorimetric estimation of indoleacetic acid. Plant physiology, 26(1), 192. | |
dc.relation.references | Gorter, F. A., Tabares-Mafla, C., Kassen, R., & Schoustra, S. E. (2021). Experimental evolution of interference competition. Frontiers in microbiology, 12, 613450. | |
dc.relation.references | Goswami, D., Thakker, J. N., & Dhandhukia, P. C. (2016). Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food & Agriculture, 2(1), 1127500.) | |
dc.relation.references | Gupta, A., Gopal, M., & Tilak, K. V. B. (2000). Mechanism of plant growth promotion by rhizobacteria. | |
dc.relation.references | Han, C., Kuchkarova, N., Zhou, S., Zhang, C., Shi, K., Zou, T., & Shao, H. (2021). Plant growth-promoting abilities and community structure of culturable endophytic bacteria from the fruit of an invasive plant Xanthium italicum. 3 Biotech, 11, 1-15. | |
dc.relation.references | Hansen, S. K., Rainey, P. B., Haagensen, J. A., & Molin, S. (2007). Evolution of species interactions in a biofilm community. Nature, 445(7127), 533-536. | |
dc.relation.references | Hart, M. R., Quin, B. F., & Nguyen, M. L. (2004). Phosphorus runoff from agricultural land and direct fertilizer effects: A review. Journal of environmental quality, 33(6), 1954-1972. | |
dc.relation.references | Heffernan, J. M., & Wahl, L. M. (2002). The effects of genetic drift in experimental evolution. Theoretical population biology, 62(4), 349-356. | |
dc.relation.references | Heyrman, J., Vanparys, B., Logan, N. A., Balcaen, A., Rodríguez-Díaz, M., Felske, A., & De Vos, P. (2004). Bacillus novalis sp. nov., Bacillus vireti sp. nov., Bacillus soli sp. nov., Bacillus bataviensis sp. nov. and Bacillus drentensis sp. nov., from the Drentse A grasslands. International journal of systematic and evolutionary microbiology, 54(1), 47-57. | |
dc.relation.references | Hibbing, M. E., Fuqua, C., Parsek, M. R., & Peterson, S. B. (2010). Bacterial competition: surviving and thriving in the microbial jungle. Nature reviews | |
dc.relation.references | Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q., & Vinh, L. S. (2018). UFBoot2: Improving the ultrafast bootstrap approximation. Molecular Biology and Evolution, 35(2), 518–522. https://doi.org/10.1093/molbev/msx281 | |
dc.relation.references | Hoek, T. A., Axelrod, K., Biancalani, T., Yurtsev, E. A., Liu, J., & Gore, J. (2016). Resource availability modulates the cooperative and competitive nature of a microbial cross-feeding mutualism. PLoS biology, 14(8), e1002540. | |
dc.relation.references | Hu, J., Amor, D. R., Barbier, M., Bunin, G., & Gore, J. (2022). Emergent phases of ecological diversity and dynamics mapped in microcosms. Science, 378(6615), 85-89. | |
dc.relation.references | Hussien, R. H., Ezzat, S. M., El Sheikh, A. A., Taylor, J. W., & Butt, T. M. (2021). Comparative study of fungal stability between Metarhizium strains after successive subculture. Egyptian Journal of Biological Pest Control, 31, 1-6. | |
dc.relation.references | John, R. P., Tyagi, R. D., Brar, S. K., Surampalli, R. Y., & Prévost, D. (2011). Bio-encapsulation of microbial cells for targeted agricultural delivery. Critical reviews in biotechnology, 31(3), 211-226. | |
dc.relation.references | Johnson, D. R., Goldschmidt, F., Lilja, E. E., & Ackermann, M. (2012). Metabolic specialization and the assembly of microbial communities. The ISME journal, 6(11), 1985-1991.) | |
dc.relation.references | Johnson, L. F., E. A. Curl, J. H. Bond and H. A. Fribourg. (1959). Methods for studying soil microflora. Burgess Publishing Co. Minneapolis, Minnesota. | |
dc.relation.references | Jordán, M., & Casaretto, J. (2006). Hormonas y reguladores del crecimiento: auxinas, giberelinas y citocininas. Squeo, F, A., & Cardemil, L.(eds.). Fisiología Vegetal, 1-28.) | |
dc.relation.references | Kaminsky, L. M., Burghardt, L., & Bell, T. H. (2025). Evolving a plant-beneficial bacterium in soil vs. nutrient-rich liquid culture has contrasting effects on in-soil fitness. Applied and Environmental Microbiology, 91(4), e02085-24. | |
dc.relation.references | Kaminsky, L. M., Trexler, R. V., Malik, R. J., Hockett, K. L., & Bell, T. H. (2019). The inherent conflicts in developing soil microbial inoculants. Trends in Biotechnology, 37(2), 140-151. | |
dc.relation.references | Kämpfer, P., Glaeser, S. P., Blom, J., Wolf, J., Benning, S., Schloter, M., & Neumann-Schaal, M. (2022). Rhodococcus pseudokoreensis sp. nov. isolated from the rhizosphere of young M26 apple rootstocks. Archives of Microbiology, 204(8), 505. | |
dc.relation.references | Kato, S., Yamagishi, A., Daimon, S., Kawasaki, K., Tamaki, H., Kitagawa, W., ... & Kamagata, Y. (2018). Isolation of previously uncultured slow-growing bacteria by using a simple modification in the preparation of agar media. Applied and environmental microbiology, 84(19), e00807-18. | |
dc.relation.references | Kawecki, T. J., Lenski, R. E., Ebert, D., Hollis, B., Olivieri, I., & Whitlock, M. C. (2012). Experimental evolution. Trends in ecology & evolution, 27(10), 547-560. | |
dc.relation.references | Kayser, J., Schreck, C. F., Yu, Q., Gralka, M., & Hallatschek, O. (2018). Emergence of evolutionary driving forces in pattern-forming microbial populations. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1747), 20170106. | |
dc.relation.references | Kelsic, E. D., Zhao, J., Vetsigian, K., & Kishony, R. (2015). Counteraction of antibiotic production and degradation stabilizes microbial communities. Nature, 521(7553), 516-519. | |
dc.relation.references | Kim, W., Racimo, F., Schluter, J., Levy, S. B., & Foster, K. R. (2014). Importance of positioning for microbial evolution. Proceedings of the National Academy of Sciences, 111(16), E1639-E1647. | |
dc.relation.references | Konstantinidis, D., Pereira, F., Geissen, E. M., Grkovska, K., Kafkia, E., Jouhten, P., ... & Patil, K. R. (2021). Adaptive laboratory evolution of microbial co-cultures for improved metabolite secretion. Molecular systems biology, 17(8), e10189. | |
dc.relation.references | Koshti, R., Jagtap, A., Noronha, D., Patkar, S., Nazareth, J., Paulose, R., ... & Chakraborty, P. (2022). Evaluation of antioxidant potential and UV protective properties of four bacterial pigments. Microbiology and Biotechnology Letters, 50(3), 375-386 | |
dc.relation.references | Lambrecht, M., Okon, Y., Broek, A. V., & Vanderleyden, J. (2000). Indole-3-acetic acid: a reciprocal signalling molecule in bacteria–plant interactions. Trends in microbiology, 8(7), 298-300. | |
dc.relation.references | Kour, D., Rana, K. L., Yadav, N., Yadav, A. N., Kumar, A., Meena, V. S., ... & Saxena, A. K. (2019). Rhizospheric microbiomes: biodiversity, mechanisms of plant growth promotion, and biotechnological applications for sustainable agriculture. Plant growth promoting rhizobacteria for agricultural sustainability: from theory to practices, 19-65. | |
dc.relation.references | Kovács, Á. T., & Dragoš, A. (2019). Evolved biofilm: review on the experimental evolution studies of Bacillus subtilis pellicles. Journal of molecular biology, 431(23), 4749-4759. | |
dc.relation.references | Kram, K. E., Geiger, C., Ismail, W. M., Lee, H., Tang, H., Foster, P. L., & Finkel, S. E. (2017). Adaptation of Escherichia coli to long-term serial passage in complex medium: evidence of parallel evolution. Msystems, 2(2), 10-1128. | |
dc.relation.references | Krause, S., Le Roux, X., Niklaus, P. A., Van Bodegom, P. M., Lennon, J. T., Bertilsson, S., ... & Bodelier, P. L. (2020). Trait-based approaches for understanding microbial biodiversity and ecosystem functioning. Frontiers in Microbiology, 11, 574 | |
dc.relation.references | Kumar, A., Kumar, A., & Pratush, A. (2014). Molecular diversity and functional variability of environmental isolates of Bacillus species. SpringerPlus, 3, 1-11. | |
dc.relation.references | Kysela, D. T., Randich, A. M., Caccamo, P. D., & Brun, Y. V. (2016). Diversity takes shape: understanding the mechanistic and adaptive basis of bacterial morphology. PLoS Biology, 14(10), e1002565. | |
dc.relation.references | Lawrence, D., Fiegna, F., Behrends, V., Bundy, J. G., Phillimore, A. B., Bell, T., & Barraclough, T. G. (2012). Species interactions alter evolutionary responses to a novel environment. PLoS biology, 10(5), e1001330. | |
dc.relation.references | Lachance, M. A. (2022). Phylogenies in yeast species descriptions: In defense of neighbor-joining. Yeast, 39(10), 513-520.Lambert, G., & Kussell, E. (2014). Memory and fitness optimization of bacteria under fluctuating environments. PLoS genetics, 10(9), e1004556. 97) | |
dc.relation.references | Lee, Y., Kim, Y. S., Balaraju, K., Seo, Y. S., Park, J., Ryu, C. M., ... & Jeon, Y. (2020). Molecular changes associated with spontaneous phenotypic variation of Paenibacillus polymyxa, a commonly used biocontrol agent, and temperature-dependent control of variation. Scientific reports, 10(1), 1-12. | |
dc.relation.references | Lenz, P., & Søgaard-Andersen, L. (2011). Temporal and spatial oscillations in bacteria. Nature Reviews Microbiology, 9(8), 565-577. | |
dc.relation.references | LeRoux, M., Peterson, S. B., & Mougous, J. D. (2015). Bacterial danger sensing. Journal of molecular biology, 427(23), 3744-3753. | |
dc.relation.references | Li, E., Zhang, H., Jiang, H., Pieterse, C. M., Jousset, A., Bakker, P. A., & de Jonge, R. (2021). Experimental-evolution-driven identification of Arabidopsis rhizosphere competence genes in Pseudomonas protegens. MBio, 12(3), 10-1128. | |
dc.relation.references | Li, X., Kong, R., Wang, J., Wu, J., He, K., & Wang, X. (2023). The formation mechanism of Bacillus subtilis biofilm surface morphology under competitive environment. Canadian Journal of Microbiology, 69(7), 251-261. | |
dc.relation.references | Li, Y., Wang, M., Sun, Z. Z., & Xie, B. B. (2021). Comparative genomic insights into the taxonomic classification, diversity, and secondary metabolic potentials of Kitasatospora, a genus closely related to Streptomyces. Frontiers in Microbiology, 12, 683814. | |
dc.relation.references | Li, Z., Sheng, Y., Yang, J., & Burton, E. D. (2016). Phosphorus release from coastal sediments: Impacts of the oxidation-reduction potential and sulfide. Marine pollution bulletin, 113(1-2), 176-181.) | |
dc.relation.references | Lin, H. R., Shu, H. Y., & Lin, G. H. (2018). Biological roles of indole-3-acetic acid in Acinetobacter baumannii. Microbiological research, 216, 30-39) | |
dc.relation.references | Liu, B., Eydallin, G., Maharjan, R. P., Feng, L., Wang, L., & Ferenci, T. (2017). Natural Escherichia coli isolates rapidly acquire genetic changes upon laboratory domestication. Microbiology, 163(1), 22-30. | |
dc.relation.references | Liu, Y., Kyle, S., & Straight, P. D. (2018). Antibiotic stimulation of a Bacillus subtilis migratory response. MSphere, 3(1), 10-1128. | |
dc.relation.references | Liu, Y., Lai, Q., Du, J., & Shao, Z. (2016). Bacillus zhangzhouensis sp. nov. and Bacillus australimaris sp. nov. International journal of systematic and evolutionary microbiology, 66(3), 1193-1199. | |
dc.relation.references | Lopez, J. R., Dieguez, A. L., Doce, A., De la Roca, E., De la Herran, R., Navas, J. I., ... & Romalde, J. L. (2012). Pseudomonas baetica sp. nov., a fish pathogen isolated from wedge sole, Dicologlossa cuneata (Moreau). International journal of systematic and evolutionary microbiology, 62(Pt_4), 874-882. | |
dc.relation.references | Lyng, M., Jørgensen, J. P., Schostag, M. D., Jarmusch, S. A., Aguilar, D. K., Lozano-Andrade, C. N., & Kovács, Á. T. (2024). Competition for iron shapes metabolic antagonism between Bacillus subtilis and Pseudomonas marginalis. The ISME journal, 18(1), wrad001. | |
dc.relation.references | Macara, I. G. & Mili, S. Polarity and differential inheritance – universal attributes of life? Cell 135, 801–812 (2008). | |
dc.relation.references | Mącik, M., Gryta, A., & Frąc, M. (2020). Biofertilizers in agriculture: An overview on concepts, strategies and effects on soil microorganisms. Advances in agronomy, 162, 31-87. | |
dc.relation.references | Maheshwari, D. K. (Ed.). (2010). Plant growth and health promoting bacteria (Vol. 18). Springer Science & Business Media. | |
dc.relation.references | Malusà, E., Pinzari, F., & Canfora, L. (2016). Efficacy of biofertilizers: challenges to improve crop production. Microbial Inoculants in Sustainable Agricultural Productivity: Vol. 2: Functional Applications, 17-40. | |
dc.relation.references | Mandic-Mulec, I., Stefanic, P., & van Elsas, J. D. (2016). Ecology of bacillaceae. The bacterial spore: From molecules to systems, 59-85. | |
dc.relation.references | Manzoor, M., Abbasi, M. K., & Sultan, T. (2017). Isolation of phosphate solubilizing bacteria from maize rhizosphere and their potential for rock phosphate solubilization–mineralization and plant growth promotion. Geomicrobiology journal, 34(1), 81-95) | |
dc.relation.references | Manríquez, B., Muller, D., & Prigent-Combaret, C. (2021). Experimental evolution in plant-microbe systems: A tool for deciphering the functioning and evolution of plant-associated microbial communities. Frontiers in Microbiology, 12, 619122. | |
dc.relation.references | Martin, M., Hölscher, T., Dragoš, A., Cooper, V. S., & Kovács, Á. T. (2016). Laboratory evolution of microbial interactions in bacterial biofilms. Journal of bacteriology, 198(19), 2564-2571. | |
dc.relation.references | Martiny, J. B., Jones, S. E., Lennon, J. T., & Martiny, A. C. (2015). Microbiomes in light of traits: a phylogenetic perspective. Science, 350(6261), aac9323. | |
dc.relation.references | Mekonnen, E., Kebede, A., Nigussie, A., Kebede, G., & Tafesse, M. (2021). Isolation and characterization of urease-producing soil bacteria. International journal of microbiology, 2021(1), 8888641. | |
dc.relation.references | Minh, B. Q., Nguyen, M. A. T., & Von Haeseler, A. (2013). Ultrafast approximation for phylogenetic bootstrap. Molecular biology and evolution, 30(5), 1188-1195. | |
dc.relation.references | Méndez-Bravo, A., Cortazar-Murillo, E. M., Guevara-Avendaño, E., Ceballos-Luna, O., Rodríguez-Haas, B., Kiel-Martínez, A. L., ... & Reverchon, F. (2018). Plant growth-promoting rhizobacteria associated with avocado display antagonistic activity against Phytophthora cinnamomi through volatile emissions. PLoS One, 13(3), e0194665. | |
dc.relation.references | Mordor Intelligent (2024). Tamaño del mercado de inoculantes agrícolas y análisis de participación tendencias de crecimiento y pronósticos (2024-2029), mordorintelligence, 2024). https://www.mordorintelligence.com/es/industry-reports/agricultural-inoculants-market | |
dc.relation.references | Moreira, Z. P. M., Chen, M. Y., Ortuno, D. L. Y., & Haney, C. H. (2023). Engineering plant microbiomes by integrating eco-evolutionary principles into current strategies. Current Opinion in Plant Biology, 71, 102316. | |
dc.relation.references | Moreno-Fenoll, C., Ardré, M., & Rainey, P.B. (2024). Polar accumulation of pyoverdin and exit from stationary phase. microLife, 5, uqae001. https://doi.org/10.1093/femsml/uqae001 | |
dc.relation.references | Montoya, B., & Osorio, N. W. (2009). Mycorrhizal dependency of avocado at different levels of soil solution phosphorus. Revista Suelos Ecuatoriales, 39(2), 143-147. | |
dc.relation.references | Mould, D. L., & Hogan, D. A. (2021). Intraspecies heterogeneity in microbial interactions. Current Opinion in Microbiology, 62, 14-20. | |
dc.relation.references | Mullins, A. J., & Mahenthiralingam, E. (2021). The hidden genomic diversity, specialized metabolite capacity, and revised taxonomy of Burkholderia sensu lato. Frontiers in microbiology, 12, 726847. | |
dc.relation.references | Nadeem, S. M., Shaharoona, B., Arshad, M., & Crowley, D. E. (2012). Population density and functional diversity of plant growth promoting rhizobacteria associated with avocado trees in saline soils. Applied Soil Ecology, 62, 147-154. | |
dc.relation.references | Nava-Pérez, E., García-Gutiérrez, C., Camacho-Báez, J. R., & Vázquez-Montoya, E. L. (2012). Bioplaguicidas: una opción para el control biológico de plagas. Ra Ximhai, 8(3), 17-29. | |
dc.relation.references | Nestor, E., Toledano, G., & Friedman, J. (2023). Interactions between culturable bacteria are predicted by individual species’ growth. Msystems, e00836-22. | |
dc.relation.references | Nordgaard, M., Blake, C., Maróti, G., Hu, G., Wang, Y., Strube, M. L., & Kovács, Á. T. (2022). Experimental evolution of Bacillus subtilis on Arabidopsis thaliana roots reveals fast adaptation and improved root colonization. Iscience, 25(6) | |
dc.relation.references | Nosheen, S., Ajmal, I., & Song, Y. (2021). Microbes as biofertilizers, a potential approach for sustainable crop production. Sustainability, 13(4), 1868. | |
dc.relation.references | Nursofiah, S., Hartoyo, Y., Amalia, N., Febrianti, T., Febriyana, D., Saraswati, R. D., ... & Multihartina, P. (2021, November). Long-term storage of bacterial isolates by using tryptic Soy Broth with 15% glycerol in the deep freezer (-70 to-80 C). In IOP Conference Series: Earth and Environmental Science (Vol. 913, No. 1, p. 012070). IOP Publishing. | |
dc.relation.references | Osorio, N. W., & Osorno, L. (2015). Biofertilization with mycorrhizal fungi and phosphate solubilizing microorganisms enhance effectiveness of phosphate fertilizers in tropical soils. Fertilizer Technology, 2, 298-326. | |
dc.relation.references | Pantoja-Guerra, M., Valero-Valero, N., & Ramírez, C. A. (2023). Total auxin level in the soil–plant system as a modulating factor for the effectiveness of PGPR inocula: A review. Chemical and Biological Technologies in Agriculture, 10(1), 6.) | |
dc.relation.references | Paredes-Mendoza, M., & Espinosa-Victoria, D. (2010). Organic acids produced by phosphate solubilizing rhizobacteria: a critical review. Terra Latinoamericana, 28(1), 61-70. | |
dc.relation.references | Patten, C. L., Blakney, A. J., & Coulson, T. J. (2013). Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. Critical reviews in microbiology, 39(4), 395-415.) | |
dc.relation.references | Perfetti, J. J., Hernández, A., Leibovich, J., & Balcázar, Á. (2013). Políticas para el desarrollo de la agricultura en Colombia. | |
dc.relation.references | Pomerleau, M., Charron-Lamoureux, V., Léonard, L., Grenier, F., Rodrigue, S., & Beauregard, P. B. (2024). Adaptive laboratory evolution reveals regulators involved in repressing biofilm development as key players in Bacillus subtilis root colonization. Msystems, 9(2), e00843-23. | |
dc.relation.references | Polonca, S. (2020). Environment shapes the intra-species diversity of Bacillus subtilis isolates. Microbial ecology, 79(4), 853-864. | |
dc.relation.references | Ptaszek, M., Canfora, L., Pugliese, M., Pinzari, F., Gilardi, G., Trzciński, P., & Malusà, E. (2023). Microbial-Based Products to Control Soil-Borne Pathogens: Methods to Improve Efficacy and to Assess Impacts on | |
dc.relation.references | Reddy, C. A., & Saravanan, R. S. (2013). Polymicrobial multi-functional approach for enhancement of crop productivity. In Advances in applied microbiology (Vol. 82, pp. 53-113). Academic Press. | |
dc.relation.references | Rehan, M., Al-Turki, A., Abdelmageed, A. H., Abdelhameid, N. M., & Omar, A. F. (2023). Performance of plant-growth-promoting rhizobacteria (PGPR) isolated from sandy soil on growth of tomato (Solanum lycopersicum L.). Plants, 12(8), 1588. 144) | |
dc.relation.references | Reséndez, A. M., Mendoza, V. G., Carrillo, J. L. R., Arroyo, J. V., & Ríos, P. C. (2018). Plant growth promoting rhizobacteria: A biofertilization alternative for sustainable agriculture. Revista Colombiana de Biotecnología, 20(1), 68 | |
dc.relation.references | Reuven, P. & Eldar, A. Macromotives and microbehaviors: the social dimension of bacterial phenotypic variability. Curr. Opin. Genet. Dev. 21, 759–767 (2011). | |
dc.relation.references | Reva, O. N., Swanevelder, D. Z., Mwita, L. A., Mwakilili, A. D., Muzondiwa, D., Joubert, M., ... & Meijer, J. (2019). Genetic, epigenetic and phenotypic diversity of four Bacillus velezensis strains used for plant protection or as probiotics. Frontiers in microbiology, 10, 2610. | |
dc.relation.references | Rivera-Hernández, G., Tijerina-Castro, G. D., Cortés-Pérez, S., Ferrera-Cerrato, R., & Alarcón, A. (2024). Evaluation of functional plant growth-promoting activities of culturable rhizobacteria associated to tunicate maize (Zea mays var. tunicata A. St. Hil), a Mexican exotic landrace grown in traditional agroecosystems. Frontiers in Microbiology, 15, 1478807. | |
dc.relation.references | Rivera Páez, F. A., González Salazar, V., González Acosta, J. G., & Ossa López, P. A. (2016). Caracterización molecular, análisis morfológico y colonización micorrízica en la rizósfera del aguacate (Persea americana Mill) en Caldas, Colombia. Acta Agronómica, 65(4), 398-405. | |
dc.relation.references | Rodríguez-Verdugo, A., & Ackermann, M. (2021). Rapid evolution destabilizes species interactions in a fluctuating environment. The ISME journal, 15(2), 450-460. | |
dc.relation.references | Rudzite, M., Subramoni, S., Endres, R. G., & Filloux, A. (2023). Effectiveness of Pseudomonas aeruginosa type VI secretion system relies on toxin potency and type IV pili-dependent interaction. PLoS Pathogens, 19(5), e1011428. | |
dc.relation.references | Safronova, V. I., Kuznetsova, I. G., Sazanova, A. L., Belimov, A. A., Andronov, E. E., Chirak, E. R., ... & Tikhonovich, I. A. (2017). Microvirga ossetica sp. nov., a species of rhizobia isolated from root nodules of the legume species Vicia alpestris Steven. International Journal of Systematic and Evolutionary Microbiology, 67(1), 94-100. | |
dc.relation.references | Sánchez, M. C., Vergara, V., Polo, L. D., & Álvarez Aldana, A. (2017). Primer acercamiento del estudiante de Microbiología a las técnicas de recuento en superficie, profundidad y cámara De Neubauer. | |
dc.relation.references | Sarmah, R., & Sarma, A. K. (2022). Phosphate Solubilizing Microorganisms: A Review. Communications in Soil Science and Plant Analysis, 54(10), 1306–1315. https://doi.org/10.1080/00103624.2022.2142238). | |
dc.relation.references | Scheuerl, T., et al. (2019). Bacterial adaptation is constrained in complex communities. Nature Communications, 10(1), 1–9. | |
dc.relation.references | Schreiber, F., Littmann, S., Lavik, G., Escrig, S., Meibom, A., Kuypers, M. M., & Ackermann, M. (2016). Phenotypic heterogeneity driven by nutrient limitation promotes growth in fluctuating environments. Nature microbiology, 1(6), 1-7. | |
dc.relation.references | Sessitsch, A., Pfaffenbichler, N., & Mitter, B. (2019). Microbiome applications from lab to field: facing complexity. Trends in plant science, 24(3), 194-198. | |
dc.relation.references | Sharifi, R., Ahmadzadeh, M., Sharifi-Tehrani, A., & Talebi-Jahromi, K. (2010). Pyoverdine production in Pseudomonas fluorescens UTPF5 and its association with suppression of common bean damping off caused by Rhizoctonia solani (Kühn). Journal of Plant Protection Research | |
dc.relation.references | Shrestha, R. K., Rosenberg, T., Makarovsky, D., Eckshtain-Levi, N., Zelinger, E., Kopelowitz, J., ... & Burdman, S. (2013). Phenotypic variation in the plant pathogenic bacterium Acidovorax citrulli. PLoS One, 8(9), e73189. | |
dc.relation.references | Sharma, S., Gupta, R., Dugar, G., & Srivastava, A. K. (2012). Impact of application of biofertilizers on soil structure and resident microbial community structure and function. Bacteria in agrobiology: Plant probiotics, 65-77.Siddiqui, Z. A. (Ed.). (2006). PGPR: biocontrol and biofertilization (pp. 111-142). Dordrecht: Springer) | |
dc.relation.references | Siddiq, S., Saleem, U., Ahmad, K., Anayat, A., Affan, Q. M., Anwar, M. F., ... & Asghar, N. (2018). Comparison of conventional and non-conventional carriers for bacterial survival and plant growth. Int. J. Agric. Innov. Res, 6(4), 126-129. | |
dc.relation.references | Smits, W. K., Kuipers, O. P., & Veening, J. W. (2006). Phenotypic variation in bacteria: the role of feedback regulation. Nature Reviews Microbiology, 4(4), 259-271. | |
dc.relation.references | Singh, D. P., Gupta, V. K., & Prabha, R. (Eds.). (2019). Microbial interventions in agriculture and environment: Volume 2: Rhizosphere, microbiome and agro-ecology. Springer Nature | |
dc.relation.references | Solórzano-Acosta, R. A., & Quispe, K. R. (2024). Assessing the role of field isolated Pseudomonas and Bacillus as growth-promoting rizobacteria on avocado (Persea americana) seedlings. Journal of Sustainable Agriculture and Environment, 3(3), e12114. | |
dc.relation.references | Somerville, G. A., Beres, S. B., Fitzgerald, J. R., DeLeo, F. R., Cole, R. L., Hoff, J. S., & Musser, J. M. (2002). In vitro serial passage of Staphylococcus aureus: changes in physiology, virulence factor production, and agr nucleotide sequence. Journal of bacteriology, 184(5), 1430-1437. | |
dc.relation.references | Sousa, A. M., Machado, I., Nicolau, A., & Pereira, M. O. (2013). Improvements on colony morphology identification towards bacterial profiling. Journal of microbiological methods, 95(3), 327-335. | |
dc.relation.references | Souza, R. D., Ambrosini, A., & Passaglia, L. M. (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and molecular biology, 38, 401-419 | |
dc.relation.references | Spaepen, S., & Vanderleyden, J. (2011). Auxin and plant-microbe interactions. Cold Spring Harbor perspectives in biology, 3(4), a001438 | |
dc.relation.references | Spratt, M. R., & Lane, K. (2022). Navigating Environmental Transitions: the Role of Phenotypic Variation in Bacterial Responses. Mbio, 13(6), e02212-22. | |
dc.relation.references | Stephens, J. H. G., & Rask, H. M. (2000). Inoculant production and formulation. Field Crops Research, 65(2-3), 249-258. | |
dc.relation.references | Stevens, K. E., & Sebert, M. E. (2011). Frequent beneficial mutations during single-colony serial transfer of Streptococcus pneumoniae. PLoS genetics, 7(8), e1002232. | |
dc.relation.references | Stewart, P. S., & Franklin, M. J. (2008). Physiological heterogeneity in biofilms. Nature Reviews Microbiology, 6(3), 199-210. | |
dc.relation.references | Stubbendieck, R. M., & Straight, P. D. (2015). Escape from lethal bacterial competition through coupled activation of antibiotic resistance and a mobilized subpopulation. PLoS genetics, 11(12), e1005722. | |
dc.relation.references | Suemori, A., Nakajima, K., Kurane, R., & Nakamura, Y. (1995). Degradation of aromatic amino acids by Rhodococcus erythropolis. Letters in applied microbiology, 21(1), 55-59.) | |
dc.relation.references | Suhag, M. (2016). Potential of biofertilizers to replace chemical fertilizers. Int. Adv. Res. J. Sci. Eng. Technol, 3(5), 163-167. | |
dc.relation.references | Suman, A., Govindasamy, V., Ramakrishnan, B., Aswini, K., SaiPrasad, J., Sharma, P., ... & Annapurna, K. (2022). Microbial community and function-based synthetic bioinoculants: A perspective for sustainable agriculture. Frontiers in Microbiology, 12, 4400. | |
dc.relation.references | Sun, D. L., Jiang, X., Wu, Q. L., & Zhou, N. Y. (2013). Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity. Applied and Environmental Microbiology, 79(19), 5962–5969. https://doi.org/10.1128/AEM.01282-13 | |
dc.relation.references | Szajdak, L., & Maryganova, V. (2007). Occurrence of IAA auxin in some organic soils. Agron Res, 5(2), 175-187.) | |
dc.relation.references | Tabassum, B., Khan, A., Tariq, M., Ramzan, M., Khan, M. S. I., Shahid, N., & Aaliya, K. (2017). Bottlenecks in commercialisation and future prospects of PGPR. Applied Soil Ecology, 121, 102-117. | |
dc.relation.references | Takors, R. (2012). Scale-up of microbial processes: impacts, tools and open questions. Journal of biotechnology, 160(1-2), 3-9. | |
dc.relation.references | Tang, A., Haruna, A. O., Majid, N. M. A., & Jalloh, M. B. (2020). Potential PGPR properties of cellulolytic, nitrogen-fixing, phosphate-solubilizing bacteria in rehabilitated tropical forest soil. Microorganisms, 8(3), 442. | |
dc.relation.references | Thattai, M., & Van Oudenaarden, A. (2004). Stochastic gene expression in fluctuating environments. Genetics, 167(1), 523-530. | |
dc.relation.references | Traxler, M. F., Watrous, J. D., Alexandrov, T., Dorrestein, P. C., & Kolter, R. (2013). Interspecies interactions stimulate diversification of the Streptomyces coelicolor secreted metabolome. MBio, 4(4), 10-1128. | |
dc.relation.references | Trinh, N. H., & Kim, J. (2020). Paraburkholderia flava sp. nov., isolated from cool temperate forest soil. International Journal of Systematic and Evolutionary Microbiology, 70(4), 2509-2514. | |
dc.relation.references | Tsukanova, K. A., Meyer, J. J. M., & Bibikova, T. N. (2017). Effect of plant growth-promoting Rhizobacteria on plant hormone homeostasis. South African journal of botany, 113, 91-102. | |
dc.relation.references | Tzec-Interián, J. A., Desgarennes, D., Carrión, G., Monribot-Villanueva, J. L., Guerrero-Analco, J. A., Ferrera-Rodríguez, O., ... & Ortiz-Castro, R. (2020). Characterization of plant growth-promoting bacteria associated with avocado trees (Persea americana Miller) and their potential use in the biocontrol of Scirtothrips perseae (avocado thrips). PLoS One, 15(4), e0231215. | |
dc.relation.references | Van den Bergh, B., Swings, T., Fauvart, M., & Michiels, J. (2018). Experimental design, population dynamics, and diversity in microbial experimental evolution. Microbiology and Molecular Biology Reviews, 82(3), 10-1128. | |
dc.relation.references | Vasilchenko, N. G., Prazdnova, E. V., & Lewitin, E. (2022). Epigenetic Mechanisms of Gene Expression Regulation in Bacteria of the Genus Bacillus. Russian Journal of Genetics, 58(1), 1-19. | |
dc.relation.references | Vega-Celedón, P., Canchignia Martínez, H., González, M., & Seeger, M. (2016). Biosíntesis de ácido indol-3-acético y promoción del crecimiento de plantas por bacterias. Cultivos tropicales, 37, 33-39. | |
dc.relation.references | Větrovský, T., & Baldrian, P. (2013). The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PloS one, 8(2), e57923. | |
dc.relation.references | Vetsigian, K., Jajoo, R., & Kishony, R. (2011). Structure and evolution of Streptomyces interaction networks in soil and in silico. PLoS biology, 9(10), e1001184. | |
dc.relation.references | Vial, L., Groleau, M. C., Lamarche, M. G., Filion, G., Castonguay-Vanier, J., Dekimpe, V., ... & Déziel, E. (2010). Phase variation has a role in Burkholderia ambifaria niche adaptation. The ISME journal, 4(1), 49-60. | |
dc.relation.references | Volfson, V., Fibach-Paldi, S., Paulucci, N. S., Dardanelli, M. S., Matan, O., Burdman, S., & Okon, Y. (2013). Phenotypic variation in Azospirillum brasilense Sp7 does not influence plant growth promotion effects. Soil Biology and Biochemistry, 67, 255-262. | |
dc.relation.references | Wakamoto, Y. et al. Dynamic persistence of antibioticstressed mycobacteria. Science 339, 91–95 (2013). | |
dc.relation.references | Wang, X., Zhang, D., Dong, F., Liu, S., Zhang, J., & Zhao, H. (2021). Cell differentiation and motion determine the Bacillus subtilis biofilm morphological evolution under the competitive growth. Journal of Basic Microbiology, 61(5), 396-405. | |
dc.relation.references | Weber, O., Delince, J., Duan, Y., Maene, L., McDaniels, T., Mew, M., ... & Krishnan, V. (2014). Trade and finance as cross-cutting issues in the global phosphate and fertilizer market. In Sustainable phosphorus management: A global transdisciplinary roadmap (pp. 275-299). Dordrecht: Springer Netherlands. | |
dc.relation.references | Westhoff, S., Kloosterman, A. M., van Hoesel, S. F., van Wezel, G. P., & Rozen, D. E. (2021). Competition sensing changes antibiotic production in streptomyces. MBio, 12(1), 10-1128. | |
dc.relation.references | Wezel, A., Casagrande, M., Celette, F., Vian, J. F., Ferrer, A., & Peigné, J. (2014). Agroecological practices for sustainable agriculture. A review. Agronomy for sustainable development, 34(1), 1-20. | |
dc.relation.references | Wisniewski-Dyé, F., Vial, L., Burdman, S., Okon, Y., & Hartmann, A. (2015). Phenotypic variation in Azospirillum spp. and other root-associated bacteria. Biological nitrogen fixation, 1047-1054. | |
dc.relation.references | Xie, C. H., & Yokota, A. (2005). Reclassification of Alcaligenes latus strains IAM 12599T and IAM 12664 and Pseudomonas saccharophila as Azohydromonas lata gen. nov., comb. nov., Azohydromonas australica sp. nov. and Pelomonas saccharophila gen. nov., comb. nov., respectively. International Journal of Systematic and Evolutionary Microbiology, 55(6), 2419-2425 | |
dc.relation.references | Yanez-Ocampo, G., Mora-Herrera, M. E., Wong-Villarreal, A., De La Paz-Osorio, D. M., De La Portilla-Lopez, N., Lugo, J., ... & Del Aguila, P. (2020). Isolated phosphate-solubilizing soil bacteria promotes in vitro growth of Solanum tuberosum L. Polish Journal of Microbiology, 69(3), 357. | |
dc.relation.references | Yang, T., Wei, Z., Friman, V. P., Xu, Y., Shen, Q., Kowalchuk, G. A., & Jousset, A. (2017). Resource availability modulates biodiversity-invasion relationships by altering competitive interactions. Environmental Microbiology, 19(8), 2984-2991. | |
dc.relation.references | Yan, Q., Lopes, L. D., Shaffer, B. T., Kidarsa, T. A., Vining, O., Philmus, B., ... & Loper, J. E. (2018). Secondary metabolism and interspecific competition affect accumulation of spontaneous mutants in the GacS-GacA regulatory system in Pseudomonas protegens. MBio, 9(1), 10-1128. | |
dc.relation.references | Yanofsky, C. (2007). RNA-based regulation of genes of tryptophan synthesis and degradation, in bacteria. Rna, 13(8), 1141-1154. | |
dc.relation.references | Zhang, T., Jian, Q., Yao, X., Guan, L., Li, L., Liu, F., ... & Lu, L. (2024). Plant growth-promoting rhizobacteria (PGPR) improve the growth and quality of several crops. Heliyon, 10(10). | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.agrovoc | Rizobacterias | |
dc.subject.agrovoc | Flora microbiana | |
dc.subject.agrovoc | Lycopersicon esculentum | |
dc.subject.agrovoc | Biofertilizantes | |
dc.subject.ddc | 580 - Plantas | |
dc.subject.ddc | 580 - Plantas | |
dc.subject.lemb | Crecimiento (Plantas) | |
dc.subject.proposal | Rizobacterias | spa |
dc.subject.proposal | Biofertilizantes | spa |
dc.subject.proposal | Variación fenotípica | spa |
dc.subject.proposal | Competencia microbiana | spa |
dc.subject.proposal | Evolución experimental | spa |
dc.subject.proposal | Rhizobacteria | eng |
dc.subject.proposal | Biofertilizers | eng |
dc.subject.proposal | Phenotypic variation | eng |
dc.subject.proposal | Microbial competition | eng |
dc.subject.proposal | Experimental evolution | eng |
dc.title | Efecto de la competencia entre especies de rizobacterias sobre los rasgos de promoción del crecimiento vegetal in vitro y el desarrollo del modelo vegetal Solanum lycopersicum bajo condiciones de vivero | spa |
dc.title.translated | Effect of competition among rhizobacteria species on in vitro plant growth promotion traits and the development of plant model Solanum lycopersicum under nursery conditions | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Maestros | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | |
oaire.awardtitle | Productos y procesos tecnológicos con microorganismos rizosféricos para la restauración de suelos degradados en ecosistemas agroforestales y agrícolas | |
oaire.fundername | Contrato 450 de 2021, Ministerio de Ciencias, Fondo Francisco José de Caldas |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis de Maestría en Ciencias - Biotecnología
- Tamaño:
- 3.17 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: