Aprovechamiento del bagazo de la caña procedente de la industria panelera, a través del tratamiento hidrotermal

dc.contributor.advisorGuerrero Fajardo, Carlos Albertospa
dc.contributor.authorMoreno Choconta, Leidy Nataliaspa
dc.contributor.researchgroupAprovechamiento Energético de Recursos Naturalesspa
dc.date.accessioned2024-06-18T22:10:03Z
dc.date.available2024-06-18T22:10:03Z
dc.date.issued2024-06-18
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractEl desarrollo sostenible del planeta se enfrenta a amenazas por el agotamiento de los recursos fósiles, con el fin de buscar alternativas que contrarresten las problemáticas generadas por la demanda de energía y materias primas, se ha optado por aprovechar una de las fuentes renovables más abundantes, la biomasa. Colombia, por sus condiciones agroclimáticas se destaca por producir grandes cantidades de biomasa residual. La producción panelera es la segunda agroindustria de mayor importancia social en el país; la caña de azúcar genera alrededor de 7 millones de toneladas anuales de biomasa. Teniendo en cuenta el contexto anterior, el objetivo de este trabajo fue evaluar las condiciones y parámetros de operación en un sistema hidrotermal para la obtención de productos sólidos y productos químicos. Por este motivo, se realizó un estudio experimental a escala laboratorio de un sistema de reacción de carbonización hidrotermal (HTC), en donde se seleccionaron las temperaturas favorables según la literatura y una estimación preliminar del sistema de reacción, para así evaluar los parámetros: tamaño de partícula y relación biomasa agua en la producción de hidrocarbones y productos químicos de valor agregado presentes en la fase acuosa del proceso hidrotermal. A partir de los productos obtenidos en las reacciones de conversión hidrotermal, se determinaron las condiciones en las que se obtuvieron los mayores rendimientos de los químicos plataforma, presentes en la fase acuosa; estos parámetros fueron: en una relación biomasa: agua 1:50, temperatura 220 °C, tamaño de partícula 212 µm, tiempo de residencia 1 h y presión autogenerada, con lo cual se obtuvo un rendimiento del 43,015% en base seca de productos acuosos. Así mismo, las condiciones de operación en la cuales se obtuvieron hidrocarbones con mayores contenidos de carbono y morfológicamente más porosas con respecto a la biomasa de partida fueron: relación biomasa agua 1:50, temperatura de reacción 260 °C, tamaño de partícula 600 µm, tiempo de residencia 1 h, y presión autogenerada. El mayor porcentaje de conversión de producto sólido en base seca fue de 85,85% con un tamaño de partícula de 106 µm y las condiciones descritas anteriormente. (Texto tomado de la fuente).spa
dc.description.abstractThe sustainable development of the planet is facing threats due to the depletion of fossil resources. To find alternatives to counteract the problems generated by the demand for energy and raw materials, it has been decided to take advantage of one of the most abundant renewable sources, biomass. Colombia, due to its agroclimatic conditions, stands out for producing large quantities of residual biomass. Sugarcane production is the second most socially important agroindustry in the country; sugarcane generates around 7 million tons of biomass per year. Considering the above context, the objective of this work was to evaluate the operating conditions and parameters in a hydrothermal system for obtaining solid products and chemical products. For this reason, an experimental study was carried out at the laboratory scale of a hydrothermal carbonization reaction system (HTC), where favorable temperatures were selected according to the literature and a preliminary estimation of the reaction system was made to evaluate the parameters: particle size and biomass water ratio in the production of hydrocarbons and value-added chemical products present in the aqueous phase of the hydrothermal process. From the products obtained in the hydrothermal conversion reactions, the conditions under which the highest yields of the platform chemicals present in the aqueous phase were obtained were determined; these parameters were: biomass: water ratio 1:50, temperature 220 °C, particle size 212 µm, residence time 1 h, and self-generated pressure, with which a yield of 43,015% was obtained on a dry basis of aqueous products. Likewise, the operating conditions under which hydrocarbons with higher carbon contents and morphologically more porous with respect to the starting biomass were obtained were: biomass water ratio 1:50, reaction temperature 260 °C, particle size 600 µm, residence time 1 h, and self-generated pressure. The highest percentage conversion of solid product on a dry basis was 85.85% with a particle size of 106 µm and the conditions described above.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.description.researchareaAprovechamiento energético de subproductos de recursos naturales renovablesspa
dc.format.extentxxi, 111 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86262
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesDANE, “DANE - PIB Información técnica,” DANE. Accessed: Dec. 07, 2023. [Online]. Available: https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-trimestrales/pib-informacion-tecnicaspa
dc.relation.referencesFINAGRO, “Crecimiento del sector agropecuario y AgroExpo 2023, un reto hacia el desarrollo del campo | Finagro.” Accessed: Dec. 07, 2023. [Online]. Available: https://www.finagro.com.co/noticias/articulos/crecimiento-del-sector-agropecuario-agroexpo-2023-reto-desarrollo-del-campo-0spa
dc.relation.referencesR. Virginia, G. Paz, S. Viviana, and M. Silva, “Estudio del poder calorífico del bagazo de caña de azúcar en la Industria Azúcarera de la Zona de Risaralda,” Universidad Tecnológica de Pereira, 2007. Accessed: Jan. 03, 2022. [Online]. Available: http://repositorio.utp.edu.co/dspace/handle/11059/825spa
dc.relation.referencesH. Iván, V. Arredondo, ; Farid, C. Janna, A. Felipe, and A. Santamaría, “DIAGNÓSTICO ENERGÉTICO DE LOS PROCESOS PRODUCTIVOS DE LA PANELA EN COLOMBIA”.spa
dc.relation.referencesS. A. Nicolae et al., “Recent advances in hydrothermal carbonisation: from tailored carbon materials and biochemicals to applications and bioenergy,” Green Chemistry, vol. 22, no. 15, pp. 4747–4800, Aug. 2020, doi: 10.1039/D0GC00998A.spa
dc.relation.referencesDANE, “Boletín Encuesta Nacional Agropecuaria 2019,” DANE.spa
dc.relation.referencesMinAgricultura, “Censo Nacional Agropecuario 2014,” MINAGRICULTURA.spa
dc.relation.referencesMINISTERIO DE AGRICULTURA Y DESARROLLO RURAL, “RESOLUCIÓN NÚMERO 000464 DE 2017,” MINISTRO DE AGRICULTURA.spa
dc.relation.referencesDANE, “Un camino para la inclusión, la equidad y el reconocimiento.” Accessed: Dec. 08, 2023. [Online]. Available: https://www.mineducacion.gov.co/1759/articles-362822_recurso.pdfspa
dc.relation.referencesForero C. César A., Cárdenas F. Hugo A, and Roa O. Santiago A., Caña Panelera, 1st ed., vol. 1. Bogotá: Minagricultura, 2021.spa
dc.relation.referencesAgronet, “Colombia es el segundo mayor productor de panela a nivel mundial con 16% del mercado,” gov.co. Accessed: Dec. 12, 2023. [Online]. Available: https://www.agronet.gov.co/Noticias/Paginas/Colombia-es-el-segundo-mayor-productor-de-panela-a-nivel-mundial-con-16-del-mercado.aspxspa
dc.relation.referencesZea Navarro Rodolfo, Acosta Latorre Claudia, Porras Rodríguez Pedro, and Castro Pulido Magda, Cultivo de caña de azúcar panelera, 1st ed., vol. 1. Bogotá, 2021. Accessed: Dec. 13, 2023. [Online]. Available: https://upra.gov.co/en/Publicaciones/Zonas_aptas_canapanelera.pdfspa
dc.relation.referencesY. R. Giraldo et al., “Aspectos generales del cultivo de caña de azúcar para la producción panelera en Cundinamarca,” Editorial AGROSAVIA, Jun. 2022, doi: 10.21930/AGROSAVIA.NBOOK.7405422.spa
dc.relation.referencesFedepanela, “La Mejor Panela Colombiana: Manual de producción y beneficios,” Minagricultura. Accessed: Dec. 13, 2023. [Online]. Available: https://www.heincke.co/es/la-mejor-panela-colombiana-manual-de-produccion-y-beneficios/spa
dc.relation.referencesA. I. de Lucas Herguedas, E. Sanz González, M. Sánchez Martín, C. del Peso Taranco, E. Rodríguez García, and P. Prieto Paniagua, “BIOMASA, BIOCOMBUSTIBLES Y SOSTENIBILIDAD,” Madrid, 2012.spa
dc.relation.referencesMinisterio de Minas y Energía de Colombia, “Atlas del Potencial Energético de la Biomasa Residual en Colombia,” 2017. Accessed: Nov. 06, 2021. [Online]. Available: https://www1.upme.gov.co/siame/Paginas/atlas-del-potencial-energetico-de-la-biomasa.aspxspa
dc.relation.referencesMinisterio de Minas y Energía de Colombia, “ANEXOS: Atlas del Potencial Energético de la Biomasa Residual en Colombia,” 2017. Accessed: Nov. 06, 2021. [Online]. Available: https://www1.upme.gov.co/siame/Paginas/atlas-del-potencial-energetico-de-la-biomasa.aspxspa
dc.relation.referencesH. Escalante, H., Orduz, J., & Zapata, Atlas del potencial energético de la biomasa residual en Colombia. Colombia: Ministerio de Minas y Energía. 2011.spa
dc.relation.referencesC. M. Vanegas Salazar, “Manejo del bagazo en la agroindustria de la caña panelera en el nordeste antioqueño a partir de la gestión integral de residuos: estudio de caso municipio de Yolombó,” 2017. Accessed: Jan. 03, 2022. [Online]. Available: https://ridum.umanizales.edu.co/xmlui/handle/20.500.12746/2880spa
dc.relation.referencesAlokika, Anu, A. Kumar, V. Kumar, and B. Singh, “Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective,” Int J Biol Macromol, vol. 169, pp. 564–582, Feb. 2021, doi: 10.1016/j.ijbiomac.2020.12.175.spa
dc.relation.referencesA. Yousuf, D. Pirozzi, and F. Sannino, “Fundamentals of lignocellulosic biomass,” in Lignocellulosic Biomass to Liquid Biofuels, Elsevier, 2020, pp. 1–15. doi: 10.1016/B978-0-12-815936-1.00001-0.spa
dc.relation.referencesM. Stöcker, “Biofuels and Biomass-To-Liquid Fuels in the Biorefinery: Catalytic Conversion of Lignocellulosic Biomass using Porous Materials,” Angewandte Chemie International Edition, vol. 47, no. 48, pp. 9200–9211, Nov. 2008, doi: 10.1002/ANIE.200801476.spa
dc.relation.referencesS. N. Rincón, “Aprovechamiento de biomasa lignocelulósica proveniente de rosas utilizando el proceso organosolv,” 2020.spa
dc.relation.referencesT. L. Bezerra and A. J. Ragauskas, “A review of sugarcane bagasse for second‐generation bioethanol and biopower production,” Biofuels, Bioproducts and Biorefining, vol. 10, no. 5, pp. 634–647, Sep. 2016, doi: 10.1002/bbb.1662.spa
dc.relation.referencesP. Bajpai, Pretreatment of Lignocellulosic Biomass for Biofuel Production. in SpringerBriefs in Molecular Science. Singapore: Springer Singapore, 2016. doi: 10.1007/978-981-10-0687-6.spa
dc.relation.referencesM. Chávez-Sifontes and M. E. Domine, “Lignina, estructura y aplicaciones: métodos de despolimerización para la obtención de derivados aromáticos de interés industrial,” Avances en Ciencias e Ingenería, vol. 4, no. 4, 2013.spa
dc.relation.referencesUNEP, “Informe sobre la Brecha de Emisiones 2023 | UNEP - UN Environment Programme,” ONU. Accessed: Dec. 14, 2023. [Online]. Available: https://www.unep.org/es/resources/informe-sobre-la-brecha-de-emisiones-2023spa
dc.relation.referencesL. J. Jönsson and C. Martín, “Pretreatment of lignocellulose: Formation of inhibitory by-products and strategies for minimizing their effects,” Bioresour Technol, vol. 199, pp. 103–112, Jan. 2016, doi: 10.1016/j.biortech.2015.10.009.spa
dc.relation.referencesY. Piñeros Castro, Aprovechamiento de Biomasa lignocelulósica, algunas experiencias de investigación en Colombia, UTADEO. Colombia, 2014. Accessed: Nov. 06, 2021. [Online]. Available: http://avalon.utadeo.edu.co/servicios/ebooks/2015/aprovechamiento_de_biomasa/files/assets/basic-html/page12.htmlspa
dc.relation.referencesA. M. Espinosa Negrín, L. M. López González, and N. L. Casdelo Gutiérrez, “PRETRATAMIENTO DE BIOMASAS LIGNOCELULÓSICAS: BREVE REVISIÓN DE LOS PRINCIPALES MÉTODOS UTILIZADOS,” Centro Azúcar, vol. 48, no. 3, pp. 108–119, 2021, Accessed: Jan. 24, 2022. [Online]. Available: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S2223-48612021000300108spa
dc.relation.referencesK. McCormick and N. Kautto, “The Bioeconomy in Europe: An Overview,” Sustainability, vol. 5, no. 6, pp. 2589–2608, Jun. 2013, doi: 10.3390/su5062589.spa
dc.relation.referencesR. Velmurugan and K. Muthukumar, “Ultrasound-assisted alkaline pretreatment of sugarcane bagasse for fermentable sugar production: Optimization through response surface methodology,” Bioresour Technol, vol. 112, pp. 293–299, May 2012, doi: 10.1016/J.BIORTECH.2012.01.168.spa
dc.relation.referencesM. R. Esfahani and M. Azin, “Pretreatment of sugarcane bagasse by ultrasound energy and dilute acid,” Asia-Pacific Journal of Chemical Engineering, vol. 7, no. 2, pp. 274–278, Mar. 2012, doi: 10.1002/APJ.533.spa
dc.relation.referencesM. M. de S. Moretti et al., “Pretreatment of sugarcane bagasse with microwaves irradiation and its effects on the structure and on enzymatic hydrolysis,” Appl Energy, vol. 122, pp. 189–195, Jun. 2014, doi: 10.1016/J.APENERGY.2014.02.020.spa
dc.relation.referencesS. Kumar, P. Dheeran, S. P. Singh, I. M. Mishra, and D. K. Adhikari, “Kinetic studies of two-stage sulphuric acid hydrolysis of sugarcane bagasse,” Renew Energy, vol. 83, pp. 850–858, Nov. 2015, doi: 10.1016/J.RENENE.2015.05.033.spa
dc.relation.referencesS. C. Rabelo, H. Carrere, R. Maciel Filho, and A. C. Costa, “Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept,” Bioresour Technol, vol. 102, no. 17, pp. 7887–7895, Sep. 2011, doi: 10.1016/J.BIORTECH.2011.05.081.spa
dc.relation.referencesL. Moghaddam, Z. Zhang, R. M. Wellard, J. P. Bartley, I. M. O’Hara, and W. O. S. Doherty, “Characterisation of lignins isolated from sugarcane bagasse pretreated with acidified ethylene glycol and ionic liquids,” Biomass Bioenergy, vol. 70, pp. 498–512, Nov. 2014, doi: 10.1016/J.BIOMBIOE.2014.07.030.spa
dc.relation.referencesM. H. L. Silveira, A. K. Chandel, B. A. Vanelli, K. S. Sacilotto, and E. B. Cardoso, “Production of hemicellulosic sugars from sugarcane bagasse via steam explosion employing industrially feasible conditions: Pilot scale study,” Bioresour Technol Rep, vol. 3, pp. 138–146, Sep. 2018, doi: 10.1016/J.BITEB.2018.07.011.spa
dc.relation.referencesM. N. Borand and F. Karaosmanoǧlu, “Effects of organosolv pretreatment conditions for lignocellulosic biomass in biorefinery applications: A review,” Journal of Renewable and Sustainable Energy, vol. 10, no. 3, May 2018, doi: 10.1063/1.5025876/285440.spa
dc.relation.referencesM. E. Vallejos, M. D. Zambon, M. C. Area, and A. A. da S. Curvelo, “Low liquid-solid ratio fractionation of sugarcane bagasse by hot water autohydrolysis and organosolv delignification,” Ind Crops Prod, vol. 65, pp. 349–353, Mar. 2015, doi: 10.1016/J.INDCROP.2014.11.018.spa
dc.relation.referencesY. Gao, J. Xu, Y. Zhang, Q. Yu, Z. Yuan, and Y. Liu, “Effects of different pretreatment methods on chemical composition of sugarcane bagasse and enzymatic hydrolysis,” Bioresour Technol, vol. 144, pp. 396–400, Sep. 2013, doi: 10.1016/J.BIORTECH.2013.06.036.spa
dc.relation.referencesC. Krishnan, L. da C. Sousa, M. Jin, L. Chang, B. E. Dale, and V. Balan, “Alkali‐based AFEX pretreatment for the conversion of sugarcane bagasse and cane leaf residues to ethanol,” Biotechnol Bioeng, vol. 107, no. 3, pp. 441–450, Oct. 2010, doi: 10.1002/bit.22824.spa
dc.relation.referencesM. Chávez-Sifontes, “La biomasa: fuente alternativa de combustibles y compuestos químicos,” Anales de Química - RSEQ, vol. 115, no. 5, 2019.spa
dc.relation.referencesA. A. Peterson, F. Vogel, R. P. Lachance, M. Fröling, M. J. Antal, Jr., and J. W. Tester, “Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies,” Energy Environ Sci, vol. 1, no. 1, p. 32, Jul. 2008, doi: 10.1039/b810100k.spa
dc.relation.referencesH. S. Kambo and A. Dutta, “A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications,” Renewable and Sustainable Energy Reviews, vol. 45, pp. 359–378, May 2015, doi: 10.1016/j.rser.2015.01.050.spa
dc.relation.referencesK. Tekin, S. Karagöz, and S. Bektaş, “A review of hydrothermal biomass processing,” Renewable and Sustainable Energy Reviews, vol. 40, pp. 673–687, Dec. 2014, doi: 10.1016/j.rser.2014.07.216spa
dc.relation.referencesB. Zhang, B. K. Biswal, J. Zhang, and R. Balasubramanian, “Hydrothermal Treatment of Biomass Feedstocks for Sustainable Production of Chemicals, Fuels, and Materials: Progress and Perspectives,” Chem Rev, vol. 123, no. 11, pp. 7193–7294, Jun. 2023, doi: 10.1021/ACS.CHEMREV.2C00673/ASSET/IMAGES/MEDIUM/CR2C00673_0049.GIF.spa
dc.relation.referencesF. Jin et al., “Water Under High Temperature and Pressure Conditions and Its Applications to Develop Green Technologies for Biomass Conversion,” pp. 3–28, 2014, doi: 10.1007/978-3-642-54458-3_1.spa
dc.relation.referencesD. C. Elliott, “Hydrothermal Processing,” in Thermochemical Processing of Biomass, Chichester, UK: Wiley, 2011, pp. 200–231. doi: 10.1002/9781119990840.ch7.spa
dc.relation.referencesP. E. Savage, R. B. Levine, and C. M. Huelsman, “Hydrothermal Processing of Biomass,” in Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals, The Royal Society of Chemistry, 2010, pp. 192–221. doi: 10.1039/9781849732260-00192.spa
dc.relation.referencesS. Ewanick and R. Bura, “Hydrothermal pretreatment of lignocellulosic biomass,” in Bioalcohol Production, Elsevier, 2010, pp. 3–23. doi: 10.1533/9781845699611.1.3.spa
dc.relation.referencesD. Lachos-Perez, P. César Torres-Mayanga, E. R. Abaide, G. L. Zabot, and F. De Castilhos, “Hydrothermal carbonization and Liquefaction: differences, progress, challenges, and opportunities,” Bioresour Technol, vol. 343, p. 126084, Jan. 2022, doi: 10.1016/J.BIORTECH.2021.126084.spa
dc.relation.referencesY. Shen, “A review on hydrothermal carbonization of biomass and plastic wastes to energy products,” Biomass Bioenergy, vol. 134, p. 105479, Mar. 2020, doi: 10.1016/j.biombioe.2020.105479spa
dc.relation.referencesC. J. Coronella, J. G. Lynam, M. T. Reza, and M. H. Uddin, “Hydrothermal Carbonization of Lignocellulosic Biomass,” pp. 275–311, 2014, doi: 10.1007/978-3-642-54458-3_12.spa
dc.relation.referencesX. Zhuang et al., “Insights into the evolution of chemical structures in lignocellulose and non-lignocellulose biowastes during hydrothermal carbonization (HTC),” Fuel, vol. 236, pp. 960–974, Jan. 2019, doi: 10.1016/J.FUEL.2018.09.019.spa
dc.relation.referencesM. Heidari, A. Dutta, B. Acharya, and S. Mahmud, “A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion,” Journal of the Energy Institute, vol. 92, no. 6, pp. 1779–1799, Dec. 2019, doi: 10.1016/J.JOEI.2018.12.003.spa
dc.relation.referencesT. Wang, Y. Zhai, Y. Zhu, C. Li, and G. Zeng, “A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties,” Renewable and Sustainable Energy Reviews, vol. 90, pp. 223–247, Jul. 2018, doi: 10.1016/j.rser.2018.03.071.spa
dc.relation.referencesA. L. Pauline and K. Joseph, “Hydrothermal carbonization of organic wastes to carbonaceous solid fuel – A review of mechanisms and process parameters,” Fuel, vol. 279, p. 118472, Nov. 2020, doi: 10.1016/j.fuel.2020.118472.spa
dc.relation.referencesB. Biswas, A. Arun Kumar, Y. Bisht, R. Singh, J. Kumar, and T. Bhaskar, “Effects of temperature and solvent on hydrothermal liquefaction of Sargassum tenerrimum algae,” Bioresour Technol, vol. 242, pp. 344–350, Oct. 2017, doi: 10.1016/j.biortech.2017.03.045.spa
dc.relation.referencesP. K. Adapa, L. G. Tabil, and G. J. Schoenau, “Compression Characteristics of Non-Treated and Steam-exploded Barley, Canola, Oat, and Wheat Straw Grinds,” Appl Eng Agric, vol. 26, no. 4, pp. 617–632, Jan. 2010, doi: 10.13031/2013.32052.spa
dc.relation.referencesM. Mohan, T. Banerjee, and V. V. Goud, “Hydrolysis of bamboo biomass by subcritical water treatment,” Bioresour Technol, vol. 191, pp. 244–252, Sep. 2015, doi: 10.1016/j.biortech.2015.05.010.spa
dc.relation.referencesR. Lin et al., “Subcritical water hydrolysis of rice straw for reducing sugar production with focus on degradation by-products and kinetic analysis,” Bioresour Technol, vol. 186, pp. 8–14, Jun. 2015, doi: 10.1016/j.biortech.2015.03.047.spa
dc.relation.referencesP. C. Torres-Mayanga et al., “Subcritical water hydrolysis of brewer’s spent grains: Selective production of hemicellulosic sugars (C-5 sugars),” J Supercrit Fluids, vol. 145, pp. 19–30, Mar. 2019, doi: 10.1016/j.supflu.2018.11.019.spa
dc.relation.referencesY.-H. Ju, L.-H. Huynh, N. S. Kasim, T.-J. Guo, J.-H. Wang, and A. E. Fazary, “Analysis of soluble and insoluble fractions of alkali and subcritical water treated sugarcane bagasse,” Carbohydr Polym, vol. 83, no. 2, pp. 591–599, Jan. 2011, doi: 10.1016/j.carbpol.2010.08.022.spa
dc.relation.referencesS. K. Hoekman, A. Broch, and C. Robbins, “Hydrothermal carbonization (HTC) of lignocellulosic biomass,” Energy and Fuels, vol. 25, no. 4, pp. 1802–1810, Apr. 2011, doi: 10.1021/ef101745n.spa
dc.relation.referencesI. A. Basar, H. Liu, H. Carrere, E. Trably, and C. Eskicioglu, “A review on key design and operational parameters to optimize and develop hydrothermal liquefaction of biomass for biorefinery applications,” Green Chemistry, vol. 23, no. 4. Royal Society of Chemistry, pp. 1404–1446, Feb. 21, 2021. doi: 10.1039/d0gc04092d.spa
dc.relation.referencesW. Abdelmoez, S. M. Nage, A. Bastawess, A. Ihab, and H. Yoshida, “Subcritical water technology for wheat straw hydrolysis to produce value added products,” J Clean Prod, vol. 70, pp. 68–77, May 2014, doi: 10.1016/j.jclepro.2014.02.011.spa
dc.relation.referencesS. K. Hoekman, A. Broch, C. Robbins, B. Zielinska, and L. Felix, “Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks,” Biomass Convers Biorefin, vol. 3, no. 2, pp. 113–126, Jun. 2013, doi: 10.1007/s13399-012-0066-y.spa
dc.relation.referencesJ. Cai, B. Li, C. Chen, J. Wang, M. Zhao, and K. Zhang, “Hydrothermal carbonization of tobacco stalk for fuel application,” Bioresour Technol, vol. 220, pp. 305–311, Nov. 2016, doi: 10.1016/j.biortech.2016.08.098.spa
dc.relation.referencesK. Nakason, B. Panyapinyopol, V. Kanokkantapong, N. Viriya-empikul, W. Kraithong, and P. Pavasant, “Hydrothermal carbonization of unwanted biomass materials: Effect of process temperature and retention time on hydrochar and liquid fraction,” Journal of the Energy Institute, vol. 91, no. 5, pp. 786–796, Oct. 2018, doi: 10.1016/j.joei.2017.05.002.spa
dc.relation.referencesL. Suárez, I. Benavente-Ferraces, C. Plaza, S. de Pascual-Teresa, I. Suárez-Ruiz, and T. A. Centeno, “Hydrothermal carbonization as a sustainable strategy for integral valorisation of apple waste,” Bioresour Technol, vol. 309, p. 123395, Aug. 2020, doi: 10.1016/j.biortech.2020.123395.spa
dc.relation.referencesP. Zhao, Y. Shen, S. Ge, Z. Chen, and K. Yoshikawa, “Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment,” Appl Energy, vol. 131, pp. 345–367, Oct. 2014, doi: 10.1016/j.apenergy.2014.06.038.spa
dc.relation.referencesS. A. Nicolae et al., “Recent advances in hydrothermal carbonisation: from tailored carbon materials and biochemicals to applications and bioenergy,” Green Chemistry, vol. 22, no. 15, pp. 4747–4800, Aug. 2020, doi: 10.1039/D0GC00998A.spa
dc.relation.referencesThermo Fisher Scientific Inc., “FLASH 2000 CHNS/O Analyzers.” Accessed: Jan. 10, 2024. [Online]. Available: https://www.thermofisher.com/order/catalog/product/11230245spa
dc.relation.referencesA. A. Castro Vega, “Estudio de la naturaleza química de biocrudos obtenidos mediante licuefacción hidrotérmica de biomasa lignocelulósica,” 2011, Accessed: Jan. 26, 2024. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/8651spa
dc.relation.referencesG. A. Rodríguez Borray et al., Modelo productivo de la caña de azúcar (Saccharum officinarum) para la producción de panela en Cundinamarca. Corporación Colombiana de Investigación Agropecuaria (Agrosavia), 2020. doi: 10.21930/agrosavia.model.7403305.spa
dc.relation.referencesD. Wüst, C. R. Correa, D. Jung, M. Zimmermann, A. Kruse, and L. Fiori, “Understanding the influence of biomass particle size and reaction medium on the formation pathways of hydrochar,” Biomass Convers Biorefin, vol. 10, no. 4, pp. 1357–1380, Dec. 2020, doi: 10.1007/S13399-019-00488-0/METRICS.spa
dc.relation.referencesM. Heidari, S. Salaudeen, A. Dutta, and B. Acharya, “Effects of Process Water Recycling and Particle Sizes on Hydrothermal Carbonization of Biomass,” Energy & Fuels, vol. 32, no. 11, pp. 11576–11586, Nov. 2018, doi: 10.1021/acs.energyfuels.8b02684.spa
dc.relation.referencesC. Driemeier, M. M. Oliveira, F. M. Mendes, and E. O. Gómez, “Characterization of sugarcane bagasse powders,” Powder Technol, vol. 214, no. 1, pp. 111–116, Nov. 2011, doi: 10.1016/j.powtec.2011.07.043.spa
dc.relation.referencesR. Khatami, C. Stivers, K. Joshi, Y. A. Levendis, and A. F. Sarofim, “Combustion behavior of single particles from three different coal ranks and from sugar cane bagasse in O2/N2 and O2/CO2 atmospheres,” Combust Flame, vol. 159, no. 3, pp. 1253–1271, Mar. 2012, doi: 10.1016/j.combustflame.2011.09.009.spa
dc.relation.referencesA. O. Onokwai, E. S. A. Ajisegiri, I. P. Okokpujie, R. A. Ibikunle, M. Oki, and J. O. Dirisu, “Characterization of lignocellulose biomass based on proximate, ultimate, structural composition, and thermal analysis,” Mater Today Proc, vol. 65, pp. 2156–2162, 2022, doi: 10.1016/j.matpr.2022.05.313spa
dc.relation.referencesE. M. A. Edreis, G. Luo, and H. Yao, “Investigations of the structure and thermal kinetic analysis of sugarcane bagasse char during non-isothermal CO2 gasification,” J Anal Appl Pyrolysis, vol. 107, pp. 107–115, May 2014, doi: 10.1016/j.jaap.2014.02.010.spa
dc.relation.referencesA. A. Castro Vega, L. I. Rodríguez Varela, and J. de J. Díaz Velásquez, “Subcritical hydrothermal conversion of organic wastes and biomass. Reaction pathways,” Ingeniería e Investigación, vol. 27, no. 1, pp. 41–50, Jan. 2007, doi: 10.15446/ing.investig.v27n1.14777.spa
dc.relation.referencesA. A. Castro Vega, “Estudio de la naturaleza química de biocrudos obtenidos mediante licuefacción hidrotérmica de biomasa lignocelulósica,” 2011. Accessed: Dec. 08, 2021. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/8651spa
dc.relation.referencesC. Qian, Q. Li, Z. Zhang, X. Wang, J. Hu, and W. Cao, “Prediction of higher heating values of biochar from proximate and ultimate analysis,” Fuel, vol. 265, p. 116925, Apr. 2020, doi: 10.1016/j.fuel.2019.116925.spa
dc.relation.referencesA. O. Onokwai, I. P. Okokpujie, E. S. Ajisegiri, M. Oki, A. O. Adeoye, and E. T. Akinlabi, “Characterization of Lignocellulosic Biomass Samples in Omu-Aran Metropolis, Kwara State, Nigeria, as Potential Fuel for Pyrolysis Yields,” International Journal of Renewable Energy Development, vol. 11, no. 4, pp. 973–981, Nov. 2022, doi: 10.14710/IJRED.2022.45549.spa
dc.relation.referencesL. Juliana Suárez Collazos and G. Gordillo Ariza Profesor Asociado, “Pirólisis del bagazo de caña panelera para la producción de combustibles líquidos,” 2015.spa
dc.relation.referencesT. R. Sarker, F. Pattnaik, S. Nanda, A. K. Dalai, V. Meda, and S. Naik, “Hydrothermal pretreatment technologies for lignocellulosic biomass: A review of steam explosion and subcritical water hydrolysis,” Chemosphere, vol. 284, p. 131372, Dec. 2021, doi: 10.1016/j.chemosphere.2021.131372.spa
dc.relation.referencesG. Hincapié, A. Soto, and D. López, “Pre-tratamiento ácido y básico de bagazo de caña y de compuestos modelo para la producción de bio-aceite vía licuefacción hidrotérmica,” Energética, vol. 47, pp. 23–30, Jan. 2016, Accessed: Jan. 14, 2024. [Online]. Available: https://repositorio.unal.edu.co/handle/unal/64263spa
dc.relation.referencesG. J. M. Rocha, A. R. Gonçalves, S. C. Nakanishi, V. M. Nascimento, and V. F. N. Silva, “Pilot scale steam explosion and diluted sulfuric acid pretreatments: Comparative study aiming the sugarcane bagasse saccharification,” Ind Crops Prod, vol. 74, pp. 810–816, Nov. 2015, doi: 10.1016/j.indcrop.2015.05.074.spa
dc.relation.referencesS. Yao, S. Nie, Y. Yuan, S. Wang, and C. Qin, “Efficient extraction of bagasse hemicelluloses and characterization of solid remainder.,” Bioresour Technol, vol. 185, pp. 21–7, Jun. 2015, doi: 10.1016/j.biortech.2015.02.052.spa
dc.relation.referencesA. O. Ayeni, O. A. Adeeyo, O. M. Oresegun, and T. E. Oladimeji, “Compositional analysis of lignocellulosic materials: Evaluation of an economically viable method suitable for woody and non-woody biomass,” 2015. Accessed: Jan. 14, 2024. [Online]. Available: www.ajer.orgspa
dc.relation.referencesD. A. Iryani, S. Kumagai, M. Nonaka, K. Sasaki, and T. Hirajima, “Characterization and Production of Solid Biofuel from Sugarcane Bagasse by Hydrothermal Carbonization,” Waste Biomass Valorization, vol. 8, no. 6, pp. 1941–1951, Sep. 2017, doi: 10.1007/S12649-017-9898-9/METRICS.spa
dc.relation.referencesR. Zhu and V. Yadama, “Effects of hot water extraction pretreatment on physicochemical changes of Douglas fir,” Biomass Bioenergy, vol. 90, pp. 78–89, Jul. 2016, doi: 10.1016/J.BIOMBIOE.2016.03.028.spa
dc.relation.referencesW. Liang et al., “Conversion mechanism and gasification kinetics of biomass char during hydrothermal carbonization,” Renew Energy, vol. 173, pp. 318–328, Aug. 2021, doi: 10.1016/j.renene.2021.03.123.spa
dc.relation.referencesK. Krysanova, A. Krylova, M. Kulikova, A. Kulikov, and O. Rusakova, “Biochar characteristics produced via hydrothermal carbonization and torrefaction of peat and sawdust,” Fuel, vol. 328, p. 125220, Nov. 2022, doi: 10.1016/j.fuel.2022.125220.spa
dc.relation.referencesR. Zhu and V. Yadama, “Effects of hot water extraction pretreatment on physicochemical changes of Douglas fir,” Biomass Bioenergy, vol. 90, pp. 78–89, Jul. 2016, doi: 10.1016/j.biombioe.2016.03.028.spa
dc.relation.referencesY. Kataoka and T. Kondo, “FT-IR Microscopic Analysis of Changing Cellulose Crystalline Structure during Wood Cell Wall Formation,” Macromolecules, vol. 31, no. 3, pp. 760–764, Feb. 1998, doi: 10.1021/ma970768c.spa
dc.relation.referencesT. M. Sabry, S. A. E.-H. El-Korashy, H. E. S. Jahin, G. M. Khairy, and N. F. A. Aal, “Hydrothermal carbonization of Calotropis procera leaves as a biomass: Preparation and characterization,” J Mol Struct, vol. 1302, p. 137397, Apr. 2024, doi: 10.1016/j.molstruc.2023.137397.spa
dc.relation.referencesM. Sevilla and A. B. Fuertes, “The production of carbon materials by hydrothermal carbonization of cellulose,” Carbon N Y, vol. 47, no. 9, pp. 2281–2289, Aug. 2009, doi: 10.1016/j.carbon.2009.04.026.spa
dc.relation.referencesT. A. H. Nguyen, T. H. Bui, W. S. Guo, and H. H. Ngo, “Valorization of the aqueous phase from hydrothermal carbonization of different feedstocks: Challenges and perspectives,” Chemical Engineering Journal, vol. 472, p. 144802, Sep. 2023, doi: 10.1016/j.cej.2023.144802.spa
dc.relation.referencesY. Zhou, J. Remón, X. Pang, Z. Jiang, H. Liu, and W. Ding, “Hydrothermal conversion of biomass to fuels, chemicals and materials: A review holistically connecting product properties and marketable applications,” Science of The Total Environment, vol. 886, p. 163920, Aug. 2023, doi: 10.1016/j.scitotenv.2023.163920.spa
dc.relation.referencesM. Usman et al., “Characterization and utilization of aqueous products from hydrothermal conversion of biomass for bio-oil and hydro-char production: a review,” Green Chemistry, vol. 21, no. 7, pp. 1553–1572, Apr. 2019, doi: 10.1039/C8GC03957G.spa
dc.relation.referencesY. Zhou, M. Li, Y. Chen, and C. Hu, “Conversion of polysaccharides in Ulva prolifera to valuable chemicals in the presence of formic acid,” J Appl Phycol, vol. 33, no. 1, pp. 101–110, Feb. 2021, doi: 10.1007/S10811-020-02146-9/METRICS.spa
dc.relation.referencesC. L. Mendoza Martinez et al., “Hydrothermal carbonization of lignocellulosic agro-forest based biomass residues,” Biomass Bioenergy, vol. 147, p. 106004, Apr. 2021, doi: 10.1016/j.biombioe.2021.106004.spa
dc.relation.referencesM. Sevilla and A. B. Fuertes, “The production of carbon materials by hydrothermal carbonization of cellulose,” Carbon N Y, vol. 47, no. 9, pp. 2281–2289, Aug. 2009, doi: 10.1016/j.carbon.2009.04.026.spa
dc.relation.referencesA. Rehman et al., “A focused review on lignocellulosic biomass-derived porous carbons for effective pharmaceuticals removal: Current trends, challenges and future prospects,” Sep Purif Technol, vol. 330, p. 125356, Feb. 2024, doi: 10.1016/j.seppur.2023.125356.spa
dc.relation.referencesJ. Fang, L. Zhan, Y. S. Ok, and B. Gao, “Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass,” Journal of Industrial and Engineering Chemistry, vol. 57, pp. 15–21, Jan. 2018, doi: 10.1016/j.jiec.2017.08.026.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.proposalBagazo de caña paneleraspa
dc.subject.proposalTamaño de partículaspa
dc.subject.proposalCarbonización hidrotermalspa
dc.subject.proposalRelación biomasa: aguaspa
dc.subject.proposalHidrocarbonesspa
dc.subject.proposalQuímicos plataformaspa
dc.subject.proposalSugarcane bagasseeng
dc.subject.proposalHydrothermal carbonizationeng
dc.subject.proposalParticle sizeeng
dc.subject.proposalBiomass water ratioeng
dc.subject.proposalHydrocarbonseng
dc.subject.proposalPlatform chemicalseng
dc.subject.unescoUtilización de residuos agrícolasspa
dc.subject.unescocrop residue managementeng
dc.subject.wikidataBagazospa
dc.subject.wikidatabagasseeng
dc.subject.wikidatahidrocarburospa
dc.subject.wikidatahydrocarboneng
dc.titleAprovechamiento del bagazo de la caña procedente de la industria panelera, a través del tratamiento hidrotermalspa
dc.title.translatedExploiting sugarcane bagasse generated in the production of panela through the application of a hydrothermal processeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032456306.2024.pdf
Tamaño:
5.57 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: