Desarrollo de un dispositivo médico combinado con actividad hemostática tipo tapón nasal a partir del concepto de arquitectura modular

dc.contributor.advisorVallejo Díaz, Bibiana Margarita Rosa
dc.contributor.authorCamargo Trujillo, Fabio Andrés
dc.contributor.researchgroupProcesos de Transformación de Materiales para la Industria Farmacéutica (PTM)spa
dc.coverage.countryColombia
dc.date.accessioned2024-01-22T17:31:05Z
dc.date.available2024-01-22T17:31:05Z
dc.date.issued2023
dc.descriptionilustraciones, diagramas, fotografías, gráficosspa
dc.description.abstractLos tapones nasales son sistemas de uso frecuente en el ámbito clínico, empleados usualmente para el control de sangrados nasales copiosos, o de difícil control. A pesar de su uso frecuente, las alternativas disponibles de este tipo de dispositivos suelen evidenciar inconvenientes asociados con la incomodidad del paciente, la nula contención del sangrado, la inducción de complicaciones como infección, y necrosis por sobrepresiones en el tejido mucoso de la cavidad nasal, entre las más referenciadas. En el presente estudio, se emplearon, el QbD (Quality by Design), y el AD (Diseño Axiomático), como metodologías de diseño para el planteamiento de una nueva alternativa de tipo tapón nasal, que busca resolver los problemas que atañen con mayor frecuencia al uso de estos dispositivos. De esta manera, se abarcó el diseño y desarrollo, desde etapas primarias (identificación de necesidades y atributos de usuario mediante encuestas sobre las características de uso, y problemas recurrentes en el uso de tapones nasales), planteando un desarrollo conceptual que involucró la definición del perfil objetivo de producto, sus especificaciones, atributos funcionales, y requerimientos materiales y de proceso. Consecuentemente se planteó el desarrollo de un prototipo funcional bimodular. Conformado por un módulo interno, el cual consta de un sistema monolítico de forma cilíndrica con terminación en punta cónica, con la virtud de hincharse de manera controlada y reversible, para facilitar el control del sangrado mediante contención mecánica. Sobre este módulo con características de esponja obtenida por liofilización, se evaluó la respuesta al hinchamiento, y contracción por exposición a agua purificada y soluciones saturadas de cloruro de calcio; como respuesta a la proporción de los polímeros presentes en el mismo (polivinil alcohol (PVA), y alginato de sodio (SA)). La concentración de la mezcla de los polímeros en la solución de trabajo a partir del cual se obtuvieron los sistemas (variable entre el 5%w/w y el 15%w/w), y el número de ciclos de congelamiento y descongelamiento mediante el uso de nitrógeno líquido, fueron estudiados como mecanismo para alcanzar un sistema con adecuada integridad estructural. De manera análoga, se propuso el desarrollo de un segundo módulo, con características de película delgada, capaz de entregar de manera controlada un fármaco hemostático (ácido tranexámico), con la facultad de resistir deformaciones evidenciando un comportamiento elástico, y con baja porosidad superficial. Sobre este sistema se determinó la influencia que tenían sobre las propiedades mecánicas del sistema, variables como la proporción de los polímeros componentes (polivinil alcohol, y quitosano), la concentración de agente plastificante (glicerina entre el 2%w/w y el 8%w/w), y el número de ciclos de congelamiento por exposición a nitrógeno líquido, y su posterior descongelamiento; proceso empleado como mecanismo para la obtención de sistemas con adecuadas propiedades mecánicas, caracterizando propiedades que influyen en esta respuesta, desde su perfil calorimétrico, espectro infrarrojo, y morfología. La evaluación de ambos módulos fue ejecutada empleando un diseño experimental compuesto rotable, que permitió identificar superficies de respuesta que, para el caso del módulo interno, la variable de mayor incidencia sobre el hinchamiento fue la concentración de los polímeros en la solución de trabajo, la cual determina el tamaño de poro de los sistemas (sistemas microporosos). Así mismo, se identificó que la recuperación del hinchamiento es conducida principalmente por la inducción de fenómenos de entrecruzamiento físico asociados a la interacción de las cadenas de alginato de sodio, con los cationes divalentes del cloruro de calcio. Para el caso del módulo externo, se determinó que, el aumento en la proporción de PVA, las bajas concentraciones de glicerina en la formulación, y un alto número de ciclos de congelamiento y descongelamiento, son factores que pueden actuar como promotores de la formación de nodos cristalinos favoreciendo la formación de regiones de entrecruzamiento polimérico, que aumentaron la resistencia a la fractura de los productos obtenidos. Congruentemente, se corroboró la ausencia de poros superficiales atribuido a las condiciones de secado, y al uso de nitrógeno líquido como sistema de congelamiento. Esto permitió ampliar el espacio de conocimiento disponible actualmente, concerniente a la expresión de propiedades mecánicas de sistemas compuestos de PVA (89-98 KDa) y quitosano (Bajo peso molecular), fabricados por ciclos de congelamiento y descongelamiento alcanzados por exposición a nitrógeno líquido, posicionándose como una matriz de composición y diseño originales, con respecto a las películas poliméricas publicadas hasta el momento. Finalmente, se evaluó el desempeño global del dispositivo, ensamblando módulos con las variables de estudio optimizadas: módulo interno (proporción PVA:SA - 30:70; número de ciclos de congelamiento y descongelamiento - 4; concentración de la mezcla de polímeros en la solución de trabajo - 10%w/w); módulo externo (proporción PVA:CH - 80:20; número de ciclos de congelamiento y descongelamiento - 3; concentración de glicerina en la formulación - 8%w/w). A partir de estas, se obtuvo un prototipo sobre el que se identificaron, la cinética de liberación de ácido tranexámico, señalando un comportamiento bimodal, que incluye la liberación de cerca del 25% del fármaco cargado en los primeros 15 minutos; así como la liberación sostenida a lo largo de 48 horas del fármaco remanente; las propiedades de hinchamiento en las condiciones de uso previstas, evidenciando una capacidad de hinchamiento dependiente de la cantidad de agua inyectada, alcanzando un hinchamiento volumétrico global del 181,5% con respecto a su volumen inicial al inyectar 10 mL de agua purificada y sus propiedades de rigidez y resistencia a la fatiga, representando un comportamiento idóneo para el cumplimiento de su funciones, a partir de la comparación con los datos existentes en literatura referentes a tapones nasales convencionales. De manera general, se presenta como producto, la obtención de un sistema bimodular capaz de expresar propiedades mecánicas, de hinchamiento, y liberación de fármaco hemostático, con idóneo potencial para ser utilizado en el tratamiento de sangrados nasales de difícil manejo, cuyo diseño plantea una alternativa para la resolución de un grupo de problemas recurrentes en episodios de epistaxis de difícil control. (Texto tomado de la fuente)spa
dc.description.abstractNasal packs are frequently used medical devices in the clinical setting, usually employed to control ample or tough-to-control nosebleeds. Despite its frequent use, the alternatives available for this type of device tend to show drawbacks associated with patient discomfort, lack of efficient containment of bleeding, as well as induction of complications such as infection, necrosis due to overpressure in the mucous tissue of the nasal cavity, among the most commonly reported. By means of this study, QbD (Quality by Design) and AD (Axiomatic Design) were handled as design methodologies to engage a new nasal pack alternative, which seeks to solve the problems that most frequently concern the use of this kind of device. Thus, the design and development were covered, from the primary stages (identification of user needs and attributes through surveys on the regular use, and recurring problems in the use of nasal packs), proposing a conceptual approach that involved the definition of the Target Product Profile, its specifications, functional attributes, and material and process requirements and controls. Consequently, the development of a bimodular functional prototype was proposed. Made up of an internal matrix, which consists of a monolithic cylindrical system with a conical tip ending, which exhibits swelling behavior in a controlled and reversible fashion, to facilitate bleeding control through mechanical containment. In this module, which comprises sponge characteristics obtained by lyophilization, the response to swelling and contraction by exposure to purified water and saturated solutions of calcium chloride was evaluated; as an outcome subjected to the proportion of polymers present in it (Poly (vinyl alcohol) (PVA), and sodium alginate (SA)). The concentration of the mixture of the polymers in the whole formulation, from which the systems were obtained (variable between 5%w/w and 15%w/w), and the number of cycles of freezing and thawing by using liquid nitrogen, were studied as mechanisms to achieve a system with proper structural integrity. Similarly, the development of a second module was proposed, with thin film features, capable of delivering a haemostatic drug (tranexamic acid) in a controlled way, with the ability to resist deformations, evidencing elastic behavior, and with low surface porosity. In this system, the influence the critical variables of process, and composition had on the mechanical properties of the system was determined, those variables were, the proportion of the compositional polymers (polyvinyl alcohol, and chitosan), the concentration of plasticizing agent (glycerin between 2%w/w and 8%w/w), and freezing cycles number due to exposure to liquid nitrogen, and its subsequent thawing. Some mechanical properties (young modulus, and tensile strength), were characterized along with the understanding of this response, achieved by recognizing of the calorimetric profile, infrared spectrum, and morphological appearance. Both module's assessment was carried out using a circumscribed central composite experimental design, which allowed the identification of surface responses, on which, it was determined that in the case of the internal matrix, the variable with the highest incidence on swelling, was the concentration of the polymers in the whole formulation, which determines the systems pore size. Likewise, it was identified that the recovery from swelling is mainly driven by the induction of physical crosslinking phenomena associated with the interaction of the sodium alginate chains with the divalent cations from calcium chloride. In the case of the external matrix, it was determined that increases in the proportion of PVA, low concentrations of glycerin in the formulation, and a high number of freezing and thawing cycles are factors that can serve as promoters on the formation of crystalline nodes auspicing polymeric crosslinking regions, which increased the films breaking strength. Congruently, the absence of surface pores attributed to the drying conditions and the use of liquid nitrogen as a freezing system was corroborated. This allowed the expansion of the currently available knowledge space, concerning the expression of mechanical properties of systems composed of PVA (89-98 KDa) and chitosan (Low molecular weight), manufactured by freezing and thawing cycles achieved by exposure to liquid nitrogen. displaying as a matrix of original composition and design, regarding to the polymeric films published to this date. Finally, the device global performance was assessed, assembling matrices with the optimized study variables: Internal matrix (PVA:SA ratio - 30:70; Number of freeze-thawing cycles - 4; Concentration of the polymer mixture in the whole system - 10%w/w); external matrix (PVA:CH Ratio - 80:20; number of freeze-thaw cycles - 3; glycerin concentration in the formulation - 8%w/w). From these, a prototype was obtained on which the release kinetics of tranexamic acid were identified, indicating a bimodal behavior, which includes the release of about 25% of the loaded drug in the first 15 minutes; as well as the sustained release over 48 hours of the remaining drug; the swelling properties under the expected conditions of use, evidencing a swelling capacity dependent on the amount of water injected, reaching an overall volumetric swelling of 181.5% with respect to its initial volume when injecting 10 mL of purified water, and its properties of stiffness and fatigue, representing ideal behavior for the fulfillment of its functionality. In general, it is presented as a product, obtained from a bimodular system able to express mechanical behavior, swelling, and release of hemostatic drug, with optimal potential to be used in the management of epistaxis, whose design fulfills a set of recurring problems in the treatment of difficult-to-control episodes of epistaxis, positioning itself as a potential alternative for the treatment of this condition.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Farmacéuticasspa
dc.format.extent106 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85394
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias Farmacéuticasspa
dc.relation.referencesKucik, C. J., & Clenney, T. L. (2005). Management of Epistaxis. American Family Physician, 71(2), 305-311. https://www.aafp.org/afp/2005/0115/p305.htmlspa
dc.relation.referencesTunkel, D. E., Anne, S., Payne, S. C., Ishman, S. L., Rosenfeld, R. M., Abramson, P. J., Alikhaani, J. D., Benoit, M. M., Bercovitz, R. S., Brown, M. D., Chernobilsky, B., Feldstein, D. A., Hackell, J. M., Holbrook, E. H., Holdsworth, S. M., Lin, K. W., Lind, M. M., Poetker, D. M., Riley, C. A., … Monjur, T. M. (2020). Clinical practice guideline: Nosebleed(Epistaxis). Otolaryngology–Head and Neck Surgery, 162(1_suppl), S1-S38. https://doi.org/10.1177/0194599819890327spa
dc.relation.referencesTobón, D., Jaramillo, L. A., Mejía, C., Quijano, D. (2016). Guía del manejo de Epistaxis. Asociación Colombiana de Otorrinolaringología. Guías ACORL para el manejo de las patologías más frecuentes en Otorrinolaringología (pp. 135-138). Recuperado de: https://www.acorl.org.co/resources/imagenes/visitante/medico/apoyo-al-ejercicio-profesional/guias-acorl/Epixtasis.pdfspa
dc.relation.referencesEvans, A. S., Young, D., & Adamson, R. (2004). Is the nasal tampon a suitable treatment for epistaxis in Accident & Emergency? A comparison of outcomes for ENT and A&E packed patients. The Journal of Laryngology & Otology, 118(01). doi:10.1258/002221504322731556spa
dc.relation.referencesISO, International Standard. (2016). ISO 1385: Medical devices: Quality management systems. Requirements for regulatory purposes. Recuperado de: http://www.bonnier.net.cn/download/d_20170812100731.pdfspa
dc.relation.referencesGibson, M., Carmody, A., Weaver, R. (2018). Development and Manufacture of Drug Product. En: "Pharmaceutical Quality by Design: A Practical Approach". Editado por: W. S. Schlindwein, M. Gibson. Ed. John Wiley & Sons Ltd, Hoboken, USA. Vol. I. pp. 117-154.spa
dc.relation.referencesSuh, N. P. (2001). Axiomatic design: Advances and applications (pp. 1-51). New York: Oxford University Press.spa
dc.relation.referencesAguwa, C. C., Monplaisir, L., Sylajakumari, P. A., & Muni, R. K. (2010). Integrated Fuzzy-Based Modular Architecture for Medical Device Design and Development. Journal of Medical Devices, 4(3), 031007. doi:10.1115/1.4002323spa
dc.relation.referencesSalhieh, S. M., & Kamrani, A. K. (1999). Macro level product development using design for modularity. Robotics and Computer-Integrated Manufacturing, 15(4), 319–329. doi:10.1016/s0736-5845(99)00008-3spa
dc.relation.referencesHernández V., M., Hernández A., C., & Bergeret V., J. P. (2005). Epistaxis: Consideraciones generales y manejo clínico. Cuadernos de Cirugía, 19(1), 54-59. https://doi.org/10.4206/cuad.cir.2005.v19n1-09spa
dc.relation.referencesBeule, A. G. (2011). Physiology and pathophysiology of respiratory mucosa of the nose and the paranasal sinuses. GMS Current Topics in Otorhinolaryngology, Head and Neck Surgery, 9, Doc07. https://doi.org/10.3205/cto000071spa
dc.relation.referencesFatakia, A., Winters, R., Amedee, R.G. (2010). Epistaxis: A Common Problem. The Ochsner Journal, 10, 176–178.spa
dc.relation.referencesINTEGRATE (The UK ENT Trainee Research Network). (2020). Nasal packs for epistaxis: Predictors of success. Clinical Otolaryngology: Official Journal of ENT-UK ; Official Journal of Netherlands Society for Oto -Rhino-Laryngology & Cervico-Facial Surgery, 45(5), 659-666. https://doi.org/10.1111/coa.13555spa
dc.relation.referencesMoumoulidis, I., Draper, M. R., Patel, H., Jani, P., & Price, T. (2006). A prospective randomised controlled trial comparing Merocel and Rapid Rhino nasal tampons in the treatment of epistaxis. European archives of oto-rhino-laryngology : official journal of the European Federation of Oto-Rhino-Laryngological Societies (EUFOS) : affiliated with the German Society for Oto-Rhino-Laryngology - Head and Neck Surgery, 263(8), 719–722. https://doi.org/10.1007/s00405-006-0047-5spa
dc.relation.referencesMurray, S., Mendez, A., Hopkins, A., El-Hakim, H., Jeffery, C. C., & Côté, D. W. J. (2018). Management of Persistent Epistaxis Using Floseal Hemostatic Matrix vs. traditional nasal packing: A prospective randomized control trial. Journal of Otolaryngology - Head & Neck Surgery = Le Journal D’oto-Rhino-Laryngologie Et De Chirurgie Cervico-Faciale, 47(1), 3. https://doi.org/10.1186/s40463-017-0248-5spa
dc.relation.referencesValtonen, O., Ormiskangas, J., Kivekäs, I., Rantanen, V., Dean, M., Poe, D., Järnstedt, J., Lekkala, J., Saarenrinne, P., & Rautiainen, M. (2020). Three-dimensional printing of the nasal cavities for clinical experiments. Scientific Reports, 10(1), 502. https://doi.org/10.1038/s41598-020-57537-2spa
dc.relation.referencesWeber, R. (2009). Nasentamponaden und Stents. Laryngo-Rhino-Otologie, 88(S 01), S139-S155. https://doi.org/10.1055/s-0028-1119504spa
dc.relation.referencesUpToDate. (2023). Anatomy of the medial nasal wall. Recuperado de: https://www.uptodate.com/contents/image?imageKey=PC%2F54180spa
dc.relation.referencesMedScape. (2022). Anterior nasal packing for epistaxis: Overview, technique, preparation. Recuperado de: https://emedicine.medscape.com/article/80526-overviewspa
dc.relation.referencesWidmer-von-Brugg, G.M., Brugg, A.G., Probst, R. (2007). Patientenkomfort bei postoperativer Nasentamponade: frühe (8h) versus späte (24h) Detamponade. Inaugural-Dissertation zur Erlangung der Doktorwürde der Medizinischen Fakultät der Universität Zürich. Recuperado de: https://www.uzh.ch/orl/publications/dissertations/diss_Widmer_Gian-Marco.pdfspa
dc.relation.referencesBeule, A. G., Weber, R. K., Kaftan, H., & Hosemann, W. (2004). Übersicht: Art und Wirkung geläufiger Nasentamponaden. Laryngo-Rhino-Otologie, 83(8), 534–551.spa
dc.relation.referencesIqbal, I. Z., Jones, G. H., Dawe, N., Mamais, C., Smith, M. E., Williams, R. J., Carrie, S. (2017). Intranasal packs and haemostatic agents for the management of adult epistaxis: systematic review. The Journal of Laryngology & Otology, 131(12), 1065–1092. doi:10.1017/s0022215117002055spa
dc.relation.referencesThomas, I., Thekkethil, J. S., Kapoor, R. C., Thomas, T., & Thomas, P. (2018). A novel technique of using sponge as post-operative nasal packing. Bengal Journal of Otolaryngology and Head Neck Surgery, 26(1), 23-28. Recuperado de: https://bjohns.in/journal/index.php/bjohns/article/view/368spa
dc.relation.referencesWang, Y. P., Wang, M. C., Chen, Y. C., Leu, Y. S., Lin, H. C., & Lee, K.-S. (2011). The effects of Vaseline gauze strip, Merocel, and Nasopore on the formation of synechiae and excessive granulation tissue in the middle meatus and the incidence of major postoperative bleeding after endoscopic sinus surgery. Journal of the Chinese Medical Association, 74(1), 16–21. doi:10.1016/j.jcma.2010.09.001spa
dc.relation.referencesAcıoğlu, E., Edizer, D. T., Yiğit, Ö., Onur, F., & Alkan, Z. (2011). Nasal septal packing: which one? European Archives of Oto-Rhino-Laryngology, 269(7), 1777–1781. doi:10.1007/s00405-011-1842-1spa
dc.relation.referencesAkbari, E., Philpott, C. M., Ostry, A. J., Clark, A., & Javer, A. R. (2012). A double-blind randomised controlled trial of gloved versus ungloved merocel middle meatal spacers for endoscopic sinus surgery. Rhinology Journal, 50(3), 306-310. https://doi.org/10.4193/Rhin11.215spa
dc.relation.referencesMedtronic. (2021). ENT Product Catalog. Recuperado de: https://asiapac.medtronic.com/content/dam/medtronic-com/products/ear-nosethroat/documents/ent-product-catalog.pdfspa
dc.relation.referencesGabay, M. (2006). Absorbable hemostatic agents. American Journal of Health-System Pharmacy, 63(13), 1244–1253. doi:10.2146/ajhp060003spa
dc.relation.referencesWang, J., Cai, C., & Wang, S. (2014). Merocel versus nasopore for nasal packing: A metaanalysis of randomized controlled trials. PLOS ONE, 9(4), e93959. https://doi.org/10.1371/journal.pone.0093959spa
dc.relation.referencesSelvarajah, J., Busra, M. F. M., Saim, A. B., Hj Idrus, R. B., & Lokanathan, Y. (2020). Development and Physicochemical Analysis of Genipin-Crosslinked Gelatine Sponge as a Potential Resorbable Nasal Pack. Journal of Biomaterials Science, Polymer Edition, 1–14. doi:10.1080/09205063.2020.1774841spa
dc.relation.referencesShikani, A., & Chahine, K. (2009). Chitosan-coated nasal packing in recalcitrant epistaxis. Otolaryngology - Head and Neck Surgery, 141(3), P109–P109. doi:10.1016/j.otohns.2009.06.341spa
dc.relation.referencesTaulu, R. (2020). A Comparison of Drug-Eluting Stent and Intranasal Corticosteroid Spray in the Treatment of Chronic Rhinosinusitis. Tampere University Dissertations (331). Recuperado de: https://trepo.tuni.fi/bitstream/handle/10024/123745/978-952-03-1745-4.pdf?sequence=2spa
dc.relation.referencesAdriaensen, G. F. J. P. M., Lim, K.-H., & Fokkens, W. J. (2017). Safety and efficacy of a bioabsorbable fluticasone propionate-eluting sinus dressing in postoperative management of endoscopic sinus surgery: a randomized clinical trial. International Forum of Allergy & Rhinology, 7(8), 813–820. doi:10.1002/alr.21963spa
dc.relation.referencesTamer, T. M., Sabet, M. M., Omer, A. M., Abbas, E., Eid, A. I., Mohy-Eldin, M. S., & Hassan, M. A. (2021). Hemostatic and antibacterial PVA/Kaolin composite sponges loaded with penicillin–streptomycin for wound dressing applications. Scientific Reports, 11(1), 3428. https://doi.org/10.1038/s41598-021-82963-1spa
dc.relation.referencesLandsman, T. L., Touchet, T., Hasan, S. M., Smith, C., Russell, B., Rivera, J., Maitland, D. J., & Cosgriff-Hernandez, E. (2017). A shape memory foam composite with enhanced fluid uptake and bactericidal properties as a hemostatic agent. Acta Biomaterialia, 47, 91-99. https://doi.org/10.1016/j.actbio.2016.10.008spa
dc.relation.referencesCampacci, F., Vicini, C., Ciuti G. & Ricotti, L. (2021). RhinoFit: A Bionic Nasal Device for Mitigating Post-Operative Complications After Rhinosurgery. IEEE Transactions on Medical Robotics and Bionics. 3 (2), 297-305. doi: 10.1109/TMRB.2021.3063852spa
dc.relation.referencesFriedland, Y., Bagot d'Arc, M. B. D., Ha, J., & Delin, C. (2022). The Use of Self-Assembling Peptides (PuraStat™ ) in Functional Endoscopic Sinus Surgery for Haemostasis and Reducing Adhesion Formation. A Case Series of 94 Patients. Surgical technology international, 41,sti41/1594. Advance online publication. https://doi.org/10.52198/22.STI.41.GS1694spa
dc.relation.referencesLee, M. F., Ma, Z., & Ananda, A. (2017). A novel haemostatic agent based on self-assembling peptides in the setting of nasal endoscopic surgery, a case series. International journal of surgery case reports, 41, 461–464. https://doi.org/10.1016/j.ijscr.2017.11.024spa
dc.relation.referencesKar, M., Cetinkaya, E. A., & Konşuk-Ünlü, H. (2022). Comparison of the ankaferd blood stopper tampon and the merocel nasal tampon after septoplasty surgery. Aesthetic Plastic Surgery. https://doi.org/10.1007/s00266-022-03031-1spa
dc.relation.referencesJimenez-Martin, J., Las Heras, K., Etxabide, A., Uranga, J., de la Caba, K., Guerrero, P., Igartua, M., Santos-Vizcaino, E., & Hernandez, R. M. (2022). Green hemostatic sponge-like scaffold composed of soy protein and chitin for the treatment of epistaxis. Materials Today Bio, 15, 100273. https://doi.org/10.1016/j.mtbio.2022.100273spa
dc.relation.referencesLi, M., Pan, G., Yang, Y., & Guo, B. (2023). Smart aligned multi-layered conductive cryogels with hemostasis and breathability for coagulopathy epistaxis, nasal mucosal repair and bleeding monitoring. Nano Today, 48, 101720. https://doi.org/10.1016/j.nantod.2022.101720spa
dc.relation.referencesSasmal, P., & Datta, P. (2019). Tranexamic acid-loaded chitosan electrospun nanofibers as drug delivery system for hemorrhage control applications. Journal of Drug Delivery Science and Technology, 52, 559-567. https://doi.org/10.1016/j.jddst.2019.05.018spa
dc.relation.referencesTran, Q. K., Rehan, M. A., Haase, D. J., Matta, A., & Pourmand, A. (2020). Prophylactic antibiotics for anterior nasal packing in emergency department: A systematic review and meta-analysis of clinically-significant infections. The American Journal of Emergency Medicine, 38(5), 983-989. https://doi.org/10.1016/j.ajem.2019.11.037spa
dc.relation.referencesLange, J. L., Peeden, E. H., & Stringer, S. P. (2017). Are prophylactic systemic antibiotics necessary with nasal packing? A systematic review. American Journal of Rhinology & Allergy, 31(4), 240-247. https://doi.org/10.2500/ajra.2017.31.4454spa
dc.relation.referencesSchouten, E. S., van de Pol, A. C., Schouten, A. N. J., Turner, N. M., Jansen, N. J. G., & Bollen, C. W. (2009). The effect of aprotinin, tranexamic acid, and aminocaproic acid on blood loss and use of blood products in major pediatric surgery: A meta-analysis. Pediatric Critical Care Medicine, 10(2), 182–190.spa
dc.relation.referencesAkkan, S., Çorbacıoğlu, Ş. K., Aytar, H., Emektar, E., Dağar, S., & Çevik, Y. (2019). Evaluating effectiveness of nasal compression with tranexamic acid compared with simple nasal compression and merocel packing: A randomized controlled trial. Annals of Emergency Medicine, 74(1), 72-78. https://doi.org/10.1016/j.annemergmed.2019.03.030spa
dc.relation.referencesU.S. Food and Drug Administration (2018). Overview of regulatory requirements: Medical devices - transcript. FDA. https://www.fda.gov/training-and-continuing-education/cdrh-learn/overview-regulatory-requirements-medical-devices-transcriptspa
dc.relation.referencesMinisterio de Salid y Protección Social. (2013). ABC de Dispositivos Médicos. Recuperado de: https://www.invima.gov.co/documents/20143/442916/abc_dispositivos-medicos.pdf/d32f6922-0c50-bcaa-6b53-066edfb98274spa
dc.relation.referencesU.S. Food and Drug Administration (2022). Principles of Premarket Pathways for Combination Products. Guidance for Industry and FDA Staff. Recuperado de: https://www.fda.gov/media/119958/downloadspa
dc.relation.referencesAntich-Isern, P., Caro-Barri, J., & Aparicio-Blanco, J. (2021). The combination of medical devices and medicinal products revisited from the new European legal framework. International Journal of Pharmaceutics, 607, 120992. doi:10.1016/j.ijpharm.2021.120992spa
dc.relation.referencesBodenberger, N., Kubiczek, D., Abrosimova, I., Scharm, A., Kipper, F., Walther, P., & Rosenau, F. (2016). Evaluation of methods for pore generation and their influence on physio-chemical properties of a protein based hydrogel. Biotechnology Reports, 12, 6–12. doi:10.1016/j.btre.2016.09.001spa
dc.relation.referencesRedaelli, F., Sorbona, M., & Rossi, F. (2017). Synthesis and processing of hydrogels for medical applications. Bioresorbable Polymers for Biomedical Applications, 205–228. doi:10.1016/b978-0-08-100262-9.00010-0spa
dc.relation.referencesUdenni-Gunathilake, T. M. S., Ching, Y. C., Ching, K. Y., Chuah, C. H., & Abdullah, L. C. (2017). Biomedical and Microbiological Applications of Bio-Based Porous Materials: A Review. Polymers, 9(5), 160. https://doi.org/10.3390/polym9050160spa
dc.relation.referencesJoardder, M. U. H., Karim, A., Kumar, C., & Brown, R. J. (2016). Porosity. SpringerBriefs in Food, Health, and Nutrition. doi:10.1007/978-3-319-23045-0spa
dc.relation.referencesGanji, F., Vasheghani-Farahani, S., Vasheghani-Farahani, E. (2010). Theoretical Description of Hydrogel Swelling: A Review. Iranian Polymer Journal 19(5). 375-398.spa
dc.relation.referencesDrozdov, A. D., & deClaville Christiansen, J. (2015). Modeling the effects of pH and ionic strength on swelling of polyelectrolyte gels. The Journal of Chemical Physics, 142(11), 114904. doi:10.1063/1.4914924spa
dc.relation.referencesBorges, F. T. P., Papavasiliou, G., & Teymour, F. (2020). Characterizing the Molecular Architecture of Hydrogels and Crosslinked Polymer Networks beyond Flory–Rehner—I. Theory. Biomacromolecules, 21(12), 5104–5118. doi:10.1021/acs.biomac.0c01256spa
dc.relation.referencesKorsmeyer, R. W., Von Meerwall, E., & Peppas, N. A. (1986). Solute and penetrant diffusion in swellable polymers. II. Verification of theoretical models. Journal of Polymer Science Part B: Polymer Physics, 24(2), 409–434. doi:10.1002/polb.1986.090240215spa
dc.relation.referencesAguilar M. R. & San Román J. (2019). Polymers pH-responsive polymers: properties, synthesis and applications. En: “Smart and their Applications.” Woodhead Publishing Ltd., Cambridge, UK. pp. 45-66,240-254.spa
dc.relation.referencesYoung, R. J ., & Lovell, P. A. (1991). Introduction to Polymers. 2nd Edition. Springer Science+Business Media B.V. Hong Kong. pp. 310-318.spa
dc.relation.referencesBoardman, P. (2020). Modelling the Mechanical Properties of Hydrogel. iGEM 2020, Boston, E.E.U.U.spa
dc.relation.referencesAfghan, N., (2016) Mechanical Properties of Poly (vinyl alcohol) Based Blends and Composites. Electronic Thesis and Dissertation Repository. 3746. The University of Western Ontario, London, Canadá. Recuperado de: https://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=5353&context=etdspa
dc.relation.referencesStauffer, S. R., & Peppas, N. A. (1992). Poly(Vinyl alcohol) hydrogels prepared by freezing thawing cyclic processing. Polymer, 33(18), 3932-3936. https://doi.org/10.1016/0032-3861(92)90385-Aspa
dc.relation.referencesLiu, X., Steiger, C., Lin, S., Parada, G. A., Liu, J., Chan, H. F., Yuk, H., Phan, N. V., Collins, J., Tamang, S., Traverso, G., & Zhao, X. (2019). Ingestible hydrogel device. Nature Communications, 10(1), 493. https://doi.org/10.1038/s41467-019-08355-2spa
dc.relation.referencesOkay, O. (Ed.). (2014). Polymeric cryogels: Macroporous gels with remarkable properties (Vol. 263). Springer International Publishing. https://doi.org/10.1007/978-3-319-05846-7spa
dc.relation.referencesWillcox, P. J., Howie, D. W., Schmidt-Rohr, K., Hoagland, D. A., Gido, S. P., Pudjijanto, S., … Venkatraman, S. (1999). Microstructure of poly(vinyl alcohol) hydrogels produced by freeze/thaw cycling. Journal of Polymer Science Part B: Polymer Physics, 37(24), 3438–3454. doi:10.1002/(sici)1099-0488(19991215)37:24<3438::aid-polb6>3.0.co;2-9spa
dc.relation.referencesRicciardi, R., Auriemma, F., Gaillet, C., De Rosa, C., & Lauprêtre, F. (2004). Investigation of the Crystallinity of Freeze/Thaw Poly(vinyl alcohol) Hydrogels by Different Techniques. Macromolecules, 37(25), 9510–9516. doi:10.1021/ma048418vspa
dc.relation.referencesLozinsky, V.I., Vainerman, E.S., Domotenko, L.V. (1986). Study of cryostructurization of polymer systems VII. Structure formation under freezing of poly(vinyl alcohol) aqueous solutions. Colloid & Polymer Sci 264, 19–24. https://doi.org/10.1007/BF01410304spa
dc.relation.referencesDamshkaln, L. G., Simenel, I. A., & Lozinsky, V. I. (1999). Study of cryostructuration of polymer systems. XV. Freeze-Thaw-induced formation of cryoprecipitate matter from low-concentrated aqueous solutions of poly(vinyl alcohol). Journal of Applied Polymer Science, 74(8), 1978–1986. doi:10.1002/(sici)1097-4628(19991121)74:8<1978::aid-app11>3.0.co;2-lspa
dc.relation.referencesAuriemma, F., De Rosa, C., & Triolo, R. (2006). Slow Crystallization Kinetics of Poly(vinyl alcohol) in Confined Environment during Cryotropic Gelation of Aqueous Solutions. Macromolecules, 39(26), 9429–9434. doi:10.1021/ma061955qspa
dc.relation.referencesHassan, C. M., & Peppas, N. A. (2000). Structure and morphology of freeze/thawed pva hydrogels. Macromolecules, 33(7), 2472-2479. https://doi.org/10.1021/ma9907587spa
dc.relation.referencesHickey, A. S., & Peppas, N. A. (1995). Mesh size and diffusive characteristics of semicrystalline poly(vinyl alcohol) membranes prepared by freezing/thawing techniques. Journal of Membrane Science, 107(3), 229–237. doi:10.1016/0376-7388(95)00119-0spa
dc.relation.referencesQian, L., & Zhang, H. (2010). Controlled freezing and freeze drying: a versatile route for porous and micro-/nano-structured materials. Journal of Chemical Technology & Biotechnology, 86(2), 172–184. doi:10.1002/jctb.2495spa
dc.relation.referencesCoria-Hernández, J., Méndez-Albores, A., Meléndez-Pérez, R., Rosas-Mendoza, M., & Arjona-Román, J. (2018). Thermal, Structural, and Rheological Characterization of Waxy Starch as a Cryogel for Its Application in Food Processing. Polymers, 10(4), 359. doi:10.3390/polym10040359spa
dc.relation.referencesFukumori, T., & Nakaoki, T. (2014). High-tensile-strength polyvinyl alcohol films prepared from freeze/thaw cycled gels. Journal of Applied Polymer Science, 131(15), n/a–n/a. doi:10.1002/app.40578spa
dc.relation.referencesChee, B. S., de Lima, G. G., Devine, D. M., & Nugent, M. J. D. (2018). Investigation of the effects of orientation on freeze/thawed Polyvinyl alcohol hydrogel properties. Materials Today Communications. doi:10.1016/j.mtcomm.2018.08.005spa
dc.relation.referencesKim, T. H., An, D. B., Oh, S. H., Kang, M. K., Song, H. H., & Lee, J. H. (2015). Creating stiffness gradient polyvinyl alcohol hydrogel using a simple gradual freezing–thawing method to investigate stem cell differentiation behaviors. Biomaterials, 40, 51–60. doi:10.1016/j.biomaterials.2014.11.017spa
dc.relation.referencesIsa, I. Classifying physical models and prototypes in the design process (s.f.). Norwegian University of Science and Technology. Recuperado de: https://www.ntnu.no/documents/10401/1264433962/SitiArtikkel.pdf/e39fd03a-de17-4a13-97c6-19fadfda49e0#:~:text=An%20analytical%20prototype%20is%20a,similar%20to%20the%20final%20product.spa
dc.relation.referencesKiemle Trindade, I. E., Oliveira Camargo Gomes, A. de, Martins Sampaio-Teixeira, A. C., & Kiemle Trindade, S. H. (2007). Adult nasal volumes assessed by acoustic rhinometry. Brazilian Journal of Otorhinolaryngology, 73(1), 32-39. https://doi.org/10.1016/S1808-8694(15)31119-8spa
dc.relation.referencesKjærgaard, T., Cvancarova, M., & Steinsvåg, S. K. (2009). Relation of nasal air flow to nasal cavity dimensions. Archives of Otolaryngology–Head & Neck Surgery, 135(6), 565. https://doi.org/10.1001/archoto.2009.50spa
dc.relation.referencesSamoliński, B. K., Grzanka, A., & Gotlib, T. (2007). Changes in nasal cavity dimensions in children and adults by gender and age. The Laryngoscope, 117(8), 1429–1433. https://doi.org/10.1097/MLG.0b013e318064e837spa
dc.relation.referencesAraújo, L. L. de, Silva, A. S. C. da, Araújo, B. M. A. M., Yamashita, R. P., Trindade, I. E. K., & Fukushiro, A. P. (2016). Dimensões nasofaríngeas em indivíduos sem anomalias craniofaciais: Dados normativos. CoDAS, 28(4), 403-408. https://doi.org/10.1590/2317-1782/20162015020spa
dc.relation.referencesR. Stone and K. Wood, Development of a Functional Basis for Design, Journal of Mechanical Design, vol. 122, no. 4, pp. 359-370, (2000).spa
dc.relation.referencesCamargo-Trujillo, F.A., Rincon-Duarte, O.F., Barbosa H., Vallejo, B. (2020). Aplicación del Diseño Axiomático y Quality by Design (QbD) en el Diseño de un Prototipo Analítico, para un Dispositivo Hemostático Intranasal. Trabajo de Grado, pregrado. Universidad Nacional de Colombia, Bogotá, Colombia.spa
dc.relation.referencesNguyen, Q. (2022). Epistaxis: Otolaryngology and Facial Plastic Surgery. Medscape. Recuperado de: https://emedicine.medscape.com/article/863220-overview#a3.spa
dc.relation.referencesLeadon, M., & Hohman, M. H. (2023). Posterior epistaxis nasal pack. StatPearls Publishing. Recuperado de: http://www.ncbi.nlm.nih.gov/books/NBK576436/spa
dc.relation.referencesVallejo Díaz, B. M., Perilla, J. E. (2008). Elementos conceptuales para estudiar el comportamiento bioadhesivo en polímeros, Rev. Colomb. Cienc. Quím. Farm. 37(1)spa
dc.relation.referencesPendolino, A. L., Scarpa, B., & Ottaviano, G. (2019). Relationship Between Nasal Cycle, Nasal Symptoms and Nasal Cytology. American journal of rhinology & allergy, 33(6), 644–649. https://doi.org/10.1177/1945892419858582spa
dc.relation.referencesJoseph, J., Martinez-Devesa, P., Bellorini, J., & Burton, M. J. (2018). Tranexamic acid for patients with nasal haemorrhage (epistaxis). The Cochrane database of systematic reviews, 12(12), CD004328. https://doi.org/10.1002/14651858.CD004328.pub3spa
dc.relation.referencesPicetti, R., Shakur-Still, H., Medcalf, R. L., Standing, J. F., & Roberts, I. (2019). What concentration of tranexamic acid is needed to inhibit fibrinolysis? A systematic review of pharmacodynamics studies. Blood Coagulation & Fibrinolysis, 30(1), 1–10. doi:10.1097/mbc.0000000000000789spa
dc.relation.referencesBeer, H. L., Duvvi, S., Webb, C. J., & Tandon, S. (2005). Blood loss estimation in epistaxis scenarios. The Journal of Laryngology & Otology, 119(01). doi:10.1258/0022215053222752spa
dc.relation.referencesVenturato, A., MacFarlane, G., Geng, J., & Bradley, M. (2016). Understanding Polymer-Cell Attachment. Macromolecular bioscience, 16(12), 1864–1872. https://doi.org/10.1002/mabi.201600253spa
dc.relation.referencesLi, T., Shi, Z., He, X., Jiang, P., Lu, X., Zhang, R., & Wang, X. (2018). Aging-Resistant Functionalized LDH–SAS/Nitrile-Butadiene Rubber Composites: Preparation and Study of Aging Kinetics/Anti-Aging Mechanism. Materials, 11(5), 836. doi:10.3390/ma11050836spa
dc.relation.referencesChen, L., Yan, C., & Zheng, Z. (2018). Functional polymer surfaces for controlling cell behaviors. Materials Today, 21(1), 38–59. doi:10.1016/j.mattod.2017.07.002spa
dc.relation.referencesIno, J. M., Chevallier, P., Letourneur, D., Mantovani, D., & Le Visage, C. (2013). Plasma functionalization of poly(vinyl alcohol) hydrogel for cell adhesion enhancement. Biomatter, 3(4), e25414. https://doi.org/10.4161/biom.25414spa
dc.relation.referencesGupta, S., T, G., Basu, B., Goswami, S., & Sinha, A. (2012). Stiffness- and wettability-dependent myoblast cell compatibility of transparent poly(vinyl alcohol) hydrogels. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 101B(2), 346–354. doi:10.1002/jbm.b.32845spa
dc.relation.referencesPeppas, N., & Stauffer, S. (1991). Reinforced uncrosslinked poly (Vinyl alcohol) gels produced by cyclic freezing-thawing processes: A short review. https://doi.org/10.1016/0168-3659(91)90007-Zspa
dc.relation.referencesKumar, A., Behl, T., & Chadha, S. (2020). Synthesis of physically crosslinked PVA/Chitosan loaded silver nanoparticles hydrogels with tunable mechanical properties and antibacterial effects. International Journal of Biological Macromolecules. doi:10.1016/j.ijbiomac.2020.02.048spa
dc.relation.referencesFigueroa-Pizano, M. D., Vélaz, I., Peñas, F. J., Zavala-Rivera, P., Rosas-Durazo, A. J., Maldonado-Arce, A. D., & Martínez-Barbosa, M. E. (2018). Effect of freeze-thawing conditions for preparation of chitosan-poly (Vinyl alcohol) hydrogels and drug release studies. Carbohydrate Polymers, 195, 476-485. https://doi.org/10.1016/j.carbpol.2018.05.004spa
dc.relation.referencesKrutzer, B., Ros, M., Smit, J., de Jong W. (2011). A review of synthetic latices in surgical glove use. Kraton Innovation Center Amsterdam. Recuperado de: https://www.kraton.com/jp/products/pdf/synthetic_latices.pdfspa
dc.relation.referencesYilmaz-Atay, H. (2020). Antibacterial Activity of Chitosan-Based Systems. Functional Chitosan: Drug Delivery and Biomedical Applications, 457–489. https://doi.org/10.1007/978-981-15-0263-7_15spa
dc.relation.referencesAbdel-Mohsen, A. M., Aly, A. S., Hrdina, R., Montaser, A. S., & Hebeish, A. (2011). Eco-Synthesis of PVA/Chitosan Hydrogels for Biomedical Application. Journal of Polymers and the Environment, 19(4), 1005–1012. doi:10.1007/s10924-011-0334-0spa
dc.relation.referencesLim, L. Y., & Wan, L. S. C. (1994). The effect of plasticizers on the properties of polyvinyl alcohol films. Drug Development and Industrial Pharmacy, 20(6), 1007-1020. https://doi.org/10.3109/03639049409038347spa
dc.relation.referencesXie, L., Jiang, M., Dong, X., Bai, X., Tong, J., & Zhou, J. (2011). Controlled mechanical and swelling properties of poly(vinyl alcohol)/sodium alginate blend hydrogels prepared by freeze-thaw followed by Ca2+ crosslinking. Journal of Applied Polymer Science, 124(1), 823–831. doi:10.1002/app.35083spa
dc.relation.referencesMuangsri, R., Chuysinuan, P., Thanyacharoen, T., Techasakul, S., Sukhavattanakul, P., & Ummartyotin, S. (2022). Utilization of freeze thaw process for polyvinyl alcohol/sodium alginate (Pva/sa) hydrogel composite. Journal of Metals, Materials and Minerals, 32(2), 34-41. https://doi.org/10.55713/jmmm.v32i2.1257spa
dc.relation.referencesMatyash, M., Despang, F., Ikonomidou, C., Gelinsky M. (2014). Swelling and mechanical properties of alginate hydrogels with respect to promotion of neural growth. Repository of the Max Delbrück Center for Molecular Medicine (MDC) Berlin (Germany). Recuperado de: https://core.ac.uk/download/pdf/300323656.pdfspa
dc.relation.referencesKamoun, E. A., Kenawy, E.-R. S., Tamer, T. M., El-Meligy, M. A., & Mohy Eldin, M. S. (2015). Poly (vinyl alcohol)-alginate physically crosslinked hydrogel membranes for wound dressing applications: Characterization and bio-evaluation. Arabian Journal of Chemistry, 8(1), 38–47. doi:10.1016/j.arabjc.2013.12.003spa
dc.relation.referencesZhang, S., Han, D., Ding, Z., Wang, X., Zhao, D., Hu, Y., & Xiao, X. (2019). Fabrication and Characterization of One Interpenetrating Network Hydrogel Based on Sodium Alginate and Polyvinyl Alcohol. Journal of Wuhan University of Technology-Mater. Sci. Ed., 34(3), 744–751. doi:10.1007/s11595-019-2112-0spa
dc.relation.referencesJiang, X., Xiang, N., Zhang, H., Sun, Y., Lin, Z., & Hou, L. (2018). Preparation and characterization of poly(vinyl alcohol)/sodium alginate hydrogel with high toughness and electric conductivity. Carbohydrate Polymers, 186, 377–383. doi:10.1016/j.carbpol.2018.01.061spa
dc.relation.referencesOstroha, J., Pong, M., Lowman, A., & Dan, N. (2004). Controlling the collapse/swelling transition in charged hydrogels. Biomaterials, 25(18), 4345–4353. doi:10.1016/j.biomaterials.2003.11.019spa
dc.relation.referencesDaza Agudelo, J. I., Badano, J. M., & Rintoul, I. (2018). Kinetics and thermodynamics of swelling and dissolution of PVA gels obtained by freeze-thaw technique. Materials Chemistry and Physics, 216, 14–21. doi:10.1016/j.matchemphys.2018.05.038spa
dc.relation.referencesAranaz, I., Alcántara, A. R., Civera, M. C., Arias, C., Elorza, B., Heras Caballero, A., & Acosta, N. (2021). Chitosan: An Overview of Its Properties and Applications. Polymers, 13(19), 3256. https://doi.org/10.3390/polym13193256spa
dc.relation.referencesLee, K. Y., & Mooney, D. J. (2012). Alginate: properties and biomedical applications. Progress in polymer science, 37(1), 106–126. https://doi.org/10.1016/j.progpolymsci.2011.06.003spa
dc.relation.referencesBen-Halima, N. (2016). Poly(vinyl alcohol): review of its promising applications and insights into biodegradation. RSC Advances, 6(46), 39823–39832. doi:10.1039/c6ra05742jspa
dc.relation.referencesMinagawa, T., Okamura, Y., Shigemasa, Y., Minami, S., & Okamoto, Y. (2007). Effects of molecular weight and deacetylation degree of chitin/chitosan on wound healing. Carbohydrate Polymers, 4(67), 640-644. https://doi.org/10.1016/j.carbpol.2006.07.007spa
dc.relation.referencesPillai, C. K. S., Paul, W., & Sharma, C. P. (2009). Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science, 34(7), 641-678. https://doi.org/10.1016/j.progpolymsci.2009.04.001spa
dc.relation.referencesGoy, R. C., Britto, D. de, & Assis, O. B. G. (2009). A review of the antimicrobial activity of chitosan. Polímeros, 19, 241-247. https://doi.org/10.1590/S0104-14282009000300013spa
dc.relation.referencesWu, J., Gong, X., Fan, Y., & Xia, H. (2011). Physically crosslinked poly(vinyl alcohol) hydrogels with magnetic field controlled modulus. Soft Matter, 7(13), 6205. doi:10.1039/c1sm05386hspa
dc.relation.referencesZhou, Q., Kang, H., Bielec, M., Wu, X., Cheng, Q., Wei, W., & Dai, H. (2018). Influence of different divalent ions cross-linking sodium alginate-polyacrylamide hydrogels on antibacterial properties and wound healing. Carbohydrate Polymers, 197, 292–304. doi:10.1016/j.carbpol.2018.05.078spa
dc.relation.referencesFDA (Center for Drug Evaluation and Research). (2009). Environmental Assessment, 22-430. Recuperado de: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2009/022430s000ea.pdfspa
dc.relation.referencesHolloway, J. L., Lowman, A. M., & Palmese, G. R. (2013). The role of crystallization and phase separation in the formation of physically cross-linked PVA hydrogels. Soft Matter, 9(3), 826–833. doi:10.1039/c2sm26763bspa
dc.relation.referencesLozinsky, V. I. (2008). Polymeric cryogels as a new family of macroporous and supermacroporous materials for biotechnological purposes. Russian Chemical Bulletin, 57(5), 1015–1032. doi:10.1007/s11172-008-0131-7spa
dc.relation.referencesHetzner, H., Schmid, C., Tremmel, S., Durst, K., & Wartzack, S. (2014). Empirical-statistical study on the relationship between deposition parameters, process variables, deposition rate and mechanical properties of a-c:h:w coatings. Coatings, 4(4), 772-795. https://doi.org/10.3390/coatings4040772spa
dc.relation.referencesZurovac, J. & Brown, R. (2012). Orthogonal Design: A Powerful Method for Comparative Effectiveness Research with Multiple Interventions. Issue Brief, Mathematica Policy Research. Recuperado de: https://mathematica.org/~/media/publications/PDFs/health/orthogonaldesign_ib.pdfspa
dc.relation.referencesASTM, D20 Committee. (2018). Test method for tensile properties of thin plastic sheeting. ASTM International. https://doi.org/10.1520/D0882-18spa
dc.relation.referencesSher, N., Fatima, N., Perveen, S., Siddiqui, F. A., & Wafa Sial, A. (2015). Pregabalin and tranexamic Acid evaluation by two simple and sensitive spectrophotometric methods. International journal of analytical chemistry, 2015, 241412. https://doi.org/10.1155/2015/241412spa
dc.relation.referencesICH, International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use. (2022). Validation of Analytical Procedures Q2(R2). ICH Harmonised Guideline. https://www.ema.europa.eu/en/documents/scientific-guideline/ich-guideline-q2r2-validation-analytical-procedures-step-2b_en.pdfspa
dc.relation.referencesFong, R., Robertson, A., Mallon, P., & Thompson, R. (2018). The Impact of Plasticizer and Degree of Hydrolysis on Free Volume of Poly(vinyl alcohol) Films. Polymers, 10(9), 1036. https://doi.org/10.3390/polym10091036spa
dc.relation.referencesKoosha, M., Aalipour, H., Sarraf Shirazi, M. J., Jebali, A., Chi, H., Hamedi, S., Wang, N., Li, T., & Moravvej, H. (2021). Physically Crosslinked Chitosan/PVA Hydrogels Containing Honey and Allantoin with Long-Term Biocompatibility for Skin Wound Repair: An In Vitro and In Vivo Study. Journal of functional biomaterials, 12(4), 61. https://doi.org/10.3390/jfb12040061spa
dc.relation.referencesPodorozhko, E. A., Ul’yabaeva, G. R., Kil’deeva, N. R., Tikhonov, V. E., Antonov, Y. A., Zhuravleva, I. L., & Lozinsky, V. I. (2016). A Study of cryostructuring of polymer systems. 41. Complex and composite poly(vinyl alcohol) cryogels containing soluble and insoluble forms of chitosan, respectively. Colloid Journal, 78(1), 90–101. doi:10.1134/s1061933x16010130spa
dc.relation.referencesGupta, S., Goswami, S., & Sinha, A. (2012). A combined effect of freeze—Thaw cycles and polymer concentration on the structure and mechanical properties of transparent PVA gels. Biomedical Materials, 7(1), 015006. https://doi.org/10.1088/1748-6041/7/1/015006spa
dc.relation.referencesLotfipour, F., Alami-Milani, M., Salatin, S., Hadavi, A., & Jelvehgari, M. (2019). Freeze-thaw-induced cross-linked PVA/chitosan for oxytetracycline-loaded wound dressing: the experimental design and optimization. Research in pharmaceutical sciences, 14(2), 175–189. https://doi.org/10.4103/1735-5362.253365spa
dc.relation.referencesÖdeen, S. (1993). Determination of Viscoelastic Material Properties and Impact Force from Measurements on Impacted Bodies. Luleå University of Technology. Luleå, Suecia.spa
dc.relation.referencesSchick, C., & Androsch, R. (2018). Nucleation‐controlled semicrystalline morphology of bulk polymers. Polymer crystallization, 1(4). https://doi.org/10.1002/pcr2.10036spa
dc.relation.referencesSu, Y., Wu, Y., Liu, M., Qing, Y., Zhou, J., & Wu, Y. (2020). Ferric Ions Modified Polyvinyl Alcohol for Enhanced Molecular Structure and Mechanical Performance. Materials, 13(6), 1412. https://doi.org/10.3390/ma13061412spa
dc.relation.referencesMuthu, S., & Prabhakaran, A. (2014). Vibrational spectroscopic study and NBO analysis on tranexamic acid using DFT method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 129, 184–192. doi:10.1016/j.saa.2014.03.050spa
dc.relation.referencesShaikh, T., Nafady, A., Talpur, F. N., Sirajuddin, Agheem, M. H., Shah, M. R., … Siddiqui, S. (2015). Tranexamic acid derived gold nanoparticles modified glassy carbon electrode as sensitive sensor for determination of nalbuphine. Sensors and Actuators B: Chemical, 211, 359–369. doi:10.1016/j.snb.2015.01.096spa
dc.relation.referencesTretinnikov, O. N., & Zagorskaya, S. A. (2012). Determination of the degree of crystallinity of poly(vinyl alcohol) by FTIR spectroscopy. Journal of Applied Spectroscopy, 79(4), 521–526. doi:10.1007/s10812-012-9634-yspa
dc.relation.referencesWaresindo, W. X., Luthfianti, H. R., Edikresnha, D., Suciati, T., Noor, F. A., & Khairurrijal, K. (2021). A freeze–thaw PVA hydrogel loaded with guava leaf extract: Physical and antibacterial properties. RSC Advances, 11(48), 30156-30171. https://doi.org/10.1039/D1RA04092Hspa
dc.relation.referencesLotfipour, F., Alami-Milani, M., Salatin, S., Hadavi, A., & Jelvehgari, M. (2019). Freeze-thaw-induced cross-linked PVA/chitosan for oxytetracycline-loaded wound dressing: the experimental design and optimization. Research in pharmaceutical sciences, 14(2), 175–189. https://doi.org/10.4103/1735-5362.253365spa
dc.relation.referencesSethi, A., Ahmad, M., Huma, T., Khalid, I., & Ahmad, I. (2021). Evaluation of Low Molecular Weight Cross Linked Chitosan Nanoparticles, to Enhance the Bioavailability of 5-Flourouracil. Dose-Response, 19(2). doi:10.1177/15593258211025353spa
dc.relation.referencesArafa, M. G., Mousa, H. A., & Afifi, N. N. (2020). Preparation of PLGA-chitosan based nanocarriers for enhancing antibacterial effect of ciprofloxacin in root canal infection. Drug delivery, 27(1), 26–39. https://doi.org/10.1080/10717544.2019.1701140spa
dc.relation.referencesChemSpider. (2023). Tranexamic acid | C8H15NO2 | chemspider. Recuperado de: http://www.chemspider.com/Chemical-Structure.10482000.htmlspa
dc.relation.referencesPubChem. (2023). Tranexamic acid. Recuperado de: https://pubchem.ncbi.nlm.nih.gov/compound/5526spa
dc.relation.referencesSu, Y., Wu, Y., Liu, M., Qing, Y., Zhou, J., & Wu, Y. (2020). Ferric Ions Modified Polyvinyl Alcohol for Enhanced Molecular Structure and Mechanical Performance. Materials, 13(6), 1412. https://doi.org/10.3390/ma13061412spa
dc.relation.referencesAndrade, J., González-Martínez, C., & Chiralt, A. (2020). The Incorporation of Carvacrol into Poly (vinyl alcohol) Films Encapsulated in Lecithin Liposomes. Polymers, 12(2), 497. doi:10.3390/polym12020497spa
dc.relation.referencesLozinsky, V. I., Damshkaln, L. G., Shaskol’skii, B. L., Babushkina, T. A., Kurochkin, I. N., & Kurochkin, I. I. (2007). Study of cryostructuring of polymer systems: 27. Physicochemical properties of poly(Vinyl alcohol) cryogels and specific features of their macroporous morphology. Colloid Journal, 69(6), 747-764. https://doi.org/10.1134/S1061933X07060117spa
dc.relation.referencesNakano, T., & Nakaoki, T. (2011). Coagulation size of freezable water in poly(Vinyl alcohol) hydrogels formed by different freeze/thaw cycle periods. Polymer Journal, 43(11), 875-880. https://doi.org/10.1038/pj.2011.92spa
dc.relation.referencesWahab, A. H. A., Kadir, M. R. A., Harun, M. N., Ramlee, M. H., Syahrom, A., Sulong, M. A., & Saad, A. P. M. (2018). Developing Functionally Graded PVA Hydrogel using Simple Freeze-Thaw Method for Artificial Glenoid Labrum. Journal of the Mechanical Behavior of Biomedical Materials. doi:10.1016/j.jmbbm.2018.12.033spa
dc.relation.referencesGherman, S. P., Biliuță, G., Bele, A., Ipate, A. M., Baron, R. I., Ochiuz, L., Șpac, A. F., et al. (2023). Biomaterials Based on Chitosan and Polyvinyl Alcohol as a Drug Delivery System with Wound-Healing Effects. Gels, 9(2), 122. MDPI AG. Retrieved from http://dx.doi.org/10.3390/gels9020122spa
dc.relation.referencesSimões, M. M. de S. G., & de Oliveira, M. G. (2010). Poly(vinyl alcohol) films for topical delivery of S-nitrosoglutathione: Effect of freezing-thawing on the diffusion properties. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 93B(2), 416–424. doi:10.1002/jbm.b.31598spa
dc.relation.referencesTakamura, A., Ishii, F., & Hidaka, H. (1992). Drug release from poly(vinyl alcohol) gel prepared by freeze-thaw procedure. Journal of Controlled Release, 20(1), 21–27. doi:10.1016/0168-3659(92)90135-espa
dc.relation.referencesChang, C., Lue, A., & Zhang, L. (2008). Effects of Crosslinking Methods on Structure and Properties of Cellulose/PVA Hydrogels. Macromolecular Chemistry and Physics, 209(12), 1266–1273. doi:10.1002/macp.200800161spa
dc.relation.referencesLi, H., & Xiao, R. (2021). Glass Transition Behavior of Wet Polymers. Materials (Basel, Switzerland), 14(4), 730. https://doi.org/10.3390/ma14040730spa
dc.relation.referencesLi, L., Xu, X., Liu, L., Song, P., Cao, Q., Xu, Z., … Wang, H. (2021). Water governs the mechanical properties of poly(vinyl alcohol). Polymer, 213, 123330. doi:10.1016/j.polymer.2020.123330spa
dc.relation.referencesQiao, C., Ma, X., Zhang, J., & Yao, J. (2018). Effect of hydration on water state, glass transition dynamics and crystalline structure in chitosan films. Carbohydrate Polymers. doi:10.1016/j.carbpol.2018.11.045spa
dc.relation.referencesBunn, C. W. (1948). Crystal Structure of Polyvinyl Alcohol. Nature, 161(4102), 929–930. doi:10.1038/161929a0spa
dc.relation.referencesRicciardi, R., Auriemma, F., De Rosa, C., & Lauprêtre, F. (2004). X-ray Diffraction Analysis of Poly(vinyl alcohol) Hydrogels, Obtained by Freezing and Thawing Techniques. Macromolecules, 37(5), 1921–1927. doi:10.1021/ma035663qspa
dc.relation.referencesDrambei, P., Nakano, Y., Bin, Y., Okuno, T., & Matsuo, M. (2006). Characterization of PVA and Chitosan/PVA Blends Prepared from Aqueous Solutions of Various Na2SO4 Concentrations. Macromolecular Symposia, 242(1), 146–156. doi:10.1002/masy.200651022spa
dc.relation.referencesChung, F. H., & Scott, R. W. (1973). A new approach to the determination of crystallinity of polymers by X-ray diffraction. Journal of Applied Crystallography, 6(3), 225–230. doi:10.1107/s0021889873008514spa
dc.relation.referencesKawano, Y., Tanaka, Y., Hata, N., Yoshiike, Y., Nakajima, M., Yonemochi, E., & Ishihara, N. (2022). Swelling and Salt Formation in Ibuprofen and Tranexamic Acid-Containing Tablets during High-Temperature Storage. Crystals, 12(10), 1420. MDPI AG. Retrieved from http://dx.doi.org/10.3390/cryst12101420spa
dc.relation.referencesEl-Habeeb, A. A., & Refat, M. S. (2019). Synthesis, structure interpretation, antimicrobial and anticancer studies of tranexamic acid complexes towards Ga(III), W(VI), Y(III) and Si(IV) metal ions. Journal of Molecular Structure, 1175, 65–72. doi:10.1016/j.molstruc.2018.07.099spa
dc.relation.referencesYang, X., Dargaville, B., & Hutmacher, D. (2021). Elucidating the molecular mechanisms for the interaction of water with polyethylene glycol-based hydrogels: Influence of ionic strength and gel network structure. Polymers, 13(6), 845. https://doi.org/10.3390/polym13060845spa
dc.relation.referencesRitger, P. L., & Peppas, N. A. (1987). A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. Journal of Controlled Release, 5(1), 37–42. doi:10.1016/0168-3659(87)90035-6spa
dc.relation.referencesZhao, S. (2014). Osmotic pressure versus swelling pressure: Comment on “bifunctional polymer hydrogel layers as forward osmosis draw agents for continuous production of fresh water using solar energy”. Environmental Science & Technology, 48(7), 4212-4213. https://doi.org/10.1021/es5006994spa
dc.relation.referencesWang, H., Wei, J., & Simon, G. P. (2014). Response to osmotic pressure versus swelling pressure: Comment on “bifunctional polymer hydrogel layers as forward osmosis draw agents for continuous production of fresh water using solar energy”. Environmental Science & Technology, 48(7), 4214-4215. https://doi.org/10.1021/es5011016spa
dc.relation.referencesFlory, P. J. (1953). Principles of polymer chemistry (19. print). Cornell Univ. Press. Ithaca, New York. pp. 434 - 451.spa
dc.relation.referencesZmora, S., Glicklis, R., & Cohen, S. (2002). Tailoring the pore architecture in 3-D alginate scaffolds by controlling the freezing regime during fabrication. Biomaterials, 23(20), 4087–4094. doi:10.1016/s0142-9612(02)00146-1spa
dc.relation.referencesChhatri, A., Bajpai, J., Bajpai, A. K., Sandhu, S. S., Jain, N., & Biswas, J. (2011). Cryogenic fabrication of savlon loaded macroporous blends of alginate and polyvinyl alcohol (PVA). Swelling, deswelling and antibacterial behaviors. Carbohydrate Polymers, 83(2), 876–882. doi:10.1016/j.carbpol.2010.08.077spa
dc.relation.referencesGurikov, P., & Smirnova, I. (2018). Non-Conventional Methods for Gelation of Alginate. Gels (Basel, Switzerland), 4(1), 14. https://doi.org/10.3390/gels4010014spa
dc.relation.referencesKumar, A., & Gupta, R. K. (2018). Theory of rubber elasticity. En A. Kumar & R. K. Gupta, Fundamentals of Polymer Engineering (3.a ed., pp. 357-379). CRC Press. https://doi.org/10.1201/9780429398506-10spa
dc.relation.referencesSchoof, H., Apel, J., Heschel, I., & Rau, G. (2001). Control of pore structure and size in freeze-dried collagen sponges. Journal of Biomedical Materials Research, 58(4), 352–357. doi:10.1002/jbm.1028spa
dc.relation.referencesSchoof, H., Bruns, L., Fischer, A., Heschel, I., & Rau, G. (2000). Dendritic ice morphology in unidirectionally solidified collagen suspensions. Journal of Crystal Growth, 209(1), 122–129. doi:10.1016/s0022-0248(99)00519-9spa
dc.relation.referencesShapiro, L., & Cohen, S. (1997). Novel alginate sponges for cell culture and transplantation. Biomaterials, 18(8), 583–590. doi:10.1016/s0142-9612(96)00181-0spa
dc.relation.referencesLammens, J., Goudarzi, N. M., Leys, L., Nuytten, G., Van Bockstal, P. J., Vervaet, C., Boone, M. N., & De Beer, T. (2021). Spin Freezing and Its Impact on Pore Size, Tortuosity and Solid State. Pharmaceutics, 13(12), 2126. https://doi.org/10.3390/pharmaceutics13122126spa
dc.relation.referencesY. Sánchez-Cardona, C. E. Echeverri-Cuartas, M. E. Londoño López and N. Moreno-Castellanos, "Preparation and characterization of chitosan/gelatin /PVA scaffolds for tissue engineering application," 2021 IEEE 2nd International Congress of Biomedical Engineering and Bioengineering (CI-IB&BI), Bogota D.C., Colombia, 2021, pp. 1-4, doi: 10.1109/CI-IBBI54220.2021.9626060spa
dc.relation.referencesHong, K. H. (2016). Polyvinyl alcohol/tannic acid hydrogel prepared by a freeze-thawing process for wound dressing applications. Polymer Bulletin, 74(7), 2861–2872. doi:10.1007/s00289-016-1868-zspa
dc.relation.referencesCascone, M. G., Lazzeri, L., Sparvoli, E., Scatena, M., Serino, L. P., & Danti, S. (2004). Morphological evaluation of bioartificial hydrogels as potential tissue engineering scaffolds. Journal of Materials Science: Materials in Medicine, 15(12), 1309–1313. doi:10.1007/s10856-004-5739-zspa
dc.relation.referencesKenawy, E.-R., El-Newehy, M. H., & Al-Deyab, S. S. (2010). Controlled release of atenolol from freeze/thawed poly(vinyl alcohol) hydrogel. Journal of Saudi Chemical Society, 14(2), 237–240. doi:10.1016/j.jscs.2010.02.014spa
dc.relation.referencesBruschi, M. L. (2015). Mathematical models of drug release. En Strategies to Modify the Drug Release from Pharmaceutical Systems, 63–86. doi:10.1016/b978-0-08-100092-2.00005-9spa
dc.relation.referencesLane, L. B. (1925). Freezing Points of Glycerol and Its Aqueous Solutions. Industrial & Engineering Chemistry, 17(9), 924–924. doi:10.1021/ie50189a017spa
dc.relation.referencesBretz, K. J., Jobbágy, Á., & Bretz, K. (2010). Force measurement of hand and fingers. Biomechanica Hungarica. https://doi.org/10.17489/biohun/2010/1/07spa
dc.relation.referencesNkhwa, S., Kemal, E., Gurav, N., & Deb, S. (2019). Dual polymer networks: a new strategy in expanding the repertoire of hydrogels for biomedical applications. Journal of Materials Science: Materials in Medicine, 30(10). doi:10.1007/s10856-019-6316-9spa
dc.relation.referencesZhang, R., Zhao, W., Ning, F., Zhen, J., Qiang, H., Zhang, Y., Liu, F., & Jia, Z. (2022). Alginate Fiber-Enhanced Poly(vinyl alcohol) Hydrogels with Superior Lubricating Property and Biocompatibility. Polymers, 14(19), 4063. https://doi.org/10.3390/polym14194063spa
dc.relation.referencesSzekalska, M., Sosnowska, K., Wróblewska, M., Basa, A., & Winnicka, K. (2022). Does the Freeze–Thaw Technique Affect the Properties of the Alginate/Chitosan Glutamate Gels with Posaconazole as a Model Antifungal Drug? International Journal of Molecular Sciences, 23(12), 6775. https://doi.org/10.3390/ijms23126775spa
dc.relation.referencesLi, X., Shu, M., Li, H., Gao, X., Long, S., Hu, T., & Wu, C. (2018). Strong, tough and mechanically self-recoverable poly(Vinyl alcohol)/alginate dual-physical double-network hydrogels with large cross-link density contrast. RSC Advances, 8(30), 16674-16689. https://doi.org/10.1039/C8RA01302Kspa
dc.relation.referencesSingh, R., Sood, N., Kerai, S., & Puri, A. (2017). Use of Merocel® aids in prevention of nasal pressure ulcers following nasal intubation: Case series of 33 patients. Indian journal of anaesthesia, 61(6), 513–515. https://doi.org/10.4103/ija.IJA_26_17spa
dc.relation.referencesU.S. Food and Drug Administration (FDA). (2020). The device development process. FDA. https://www.fda.gov/patients/learn-about-drug-and-device-approvals/device-development-processspa
dc.relation.referencesXu, Jian, et al. «Preparation and Characterization of Chitosan/Polyvinyl Porous Alcohol Aerogel Microspheres with Stable Physicochemical Properties». International Journal of Biological Macromolecules, vol. 187, septiembre de 2021, pp. 614-23. DOI.org (Crossref), https://doi.org/10.1016/j.ijbiomac.2021.07.127.spa
dc.relation.referencesJipa, I., Stoica, A., Stroescu, M., Dobre, L.-M., Dobre, T., Jinga, S., & Tardei, C. (2012). Potassium sorbate release from poly(vinyl alcohol)-bacterial cellulose films. Chemical Papers, 66(2).spa
dc.relation.referencesFernandes Queiroz, M., Melo, K., Sabry, D., Sassaki, G., & Rocha, H. (2014). Does the Use of Chitosan Contribute to Oxalate Kidney Stone Formation? Marine Drugs, 13(1), 141–158. doi:10.3390/md13010141spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc615 - Farmacología y terapéuticaspa
dc.subject.decsPolímerosspa
dc.subject.decsPolymerseng
dc.subject.decsQuitosanospa
dc.subject.decsChitosaneng
dc.subject.decsAntifibrinolíticosspa
dc.subject.decsAntifibrinolytic Agentseng
dc.subject.decsÁcido tranexámicospa
dc.subject.decsHemostáticosspa
dc.subject.decsHemostaticseng
dc.subject.decsDiseño de Dispositivos Médicosspa
dc.subject.decsAlginatosspa
dc.subject.decsAlginateseng
dc.subject.decsRecursos Materiales en Saludspa
dc.subject.decsMaterial Resources in Healtheng
dc.subject.decsMateriales Biocompatibles-químicaspa
dc.subject.decsBiocompatible Materials-chemistryeng
dc.subject.proposalTapón nasalspa
dc.subject.proposalPoli (vinil alcohol)spa
dc.subject.proposalQuitosanospa
dc.subject.proposalAlginato de sodiospa
dc.subject.proposalCongelamiento-descongelamientospa
dc.subject.proposalÁcido tranexámicospa
dc.subject.proposalQuality by Designeng
dc.subject.proposalNasal packeng
dc.subject.proposalPoly (vinyl alcohol)eng
dc.subject.proposalChitosaneng
dc.subject.proposalSodium Alginateeng
dc.subject.proposalFreeze-Thawingeng
dc.subject.proposalTranexamic Acideng
dc.titleDesarrollo de un dispositivo médico combinado con actividad hemostática tipo tapón nasal a partir del concepto de arquitectura modularspa
dc.title.translatedDevelopment of a nasal pack combined medical device with hemostatic activity based on the concept of modular architectureeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032496108.2023.pdf
Tamaño:
7.57 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Farmacéuticas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: