Determinación in vitro de la biocompatibilidad de un péptido marcador acoplado a nanopartículas USPIO en un modelo de neuroinflamación inducida
dc.contributor.advisor | Guerrero Fonseca, Carlos Arturo | |
dc.contributor.author | Rojas Hernández, Laura Camila | |
dc.contributor.researchgroup | Biología celular y funcional e ingeniería de biomoléculas | spa |
dc.date.accessioned | 2024-04-30T16:53:18Z | |
dc.date.available | 2024-04-30T16:53:18Z | |
dc.date.issued | 2023 | |
dc.description | ilustraciones, diagramas, fotografías | spa |
dc.description.abstract | Los trastornos neurológicos son enfermedades degenerativas del sistema nervioso central (SNC) y constituyen una causa frecuente de morbilidad y mortalidad en el mundo, y han incrementado en los últimos años. Las nanopartículas USPIO (Ultrasmall Superparamagnetic Iron Oxide) son una categoría novedosa de agentes de contraste en resonancia magnética de imagen (RMI) que pueden acoplarse a diversas moléculas y dirigirse de manera específica hacia marcadores moleculares que reflejen alteraciones específicas. Por lo anterior, el objetivo del presente estudio fue caracterizar el efecto de las nanopartículas de USPIO conjugadas con el péptido marcador P88 en un modelo de neuroinflamación inducida in vitro con potencial aplicabilidad en RMI. Para lograr este objetivo, las líneas celulares HCMEC/D3 (células endoteliales de microvasculatura de cerebro) y T98G (astrocitos) se incubaron USPIO conjugadas con el péptido marcador y se determinó su efecto sobre la viabilidad celular por el método de LDH. Posteriormente, se identificó el perfil inflamatorio por medio de citometría de flujo y ensayos de PCR en tiempo real. Finalmente, se determinó el perfil de estrés oxidativo mediante la medición de los niveles de superóxido producidos. En general, los resultados de este estudio sugieren que NP88 es biocompatible con las líneas celulares HCMEC/D3 y T98G; y se podría utilizar potencialmente como biomarcador en modelos de neuroinflamación (Texto tomado de la fuente) | spa |
dc.description.abstract | Neurological disorders are degenerative diseases of the central nervous system (CNS) and constitute a frequent cause of morbidity and mortality in the world, and have increased in recent years. USPIO (Ultrasmall Superparamagnetic Iron Oxide) nanoparticles are a novel category of magnetic resonance imaging (MRI) contrast agents that can couple to various molecules and specifically target molecular markers that reflect specific abnormalities. Therefore, the objective of this study was to characterize the effect of USPIO nanoparticles conjugated with the marker peptide P88 in an in vitro induced neuroinflammation model with potential applicability in MRI. To achieve this goal, the cell lines HCMEC/D3 (brain microvasculature endothelial cells) and T98G (astrocytes) were incubated USPIO conjugated with the marker peptide and their effect on cell capacity was amplified by the LDH method. Subsequently, the inflammatory profile was identified by means of flow cytometry and real-time PCR assays. Finally, the oxidative stress profile was reduced by measuring the levels of superoxides produced. Overall, the results of this study suggest that NP88 is biocompatible with the HCMEC/D3 and T98G cell lines; and could potentially be used as a biomarker in models of neuroinflammation | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Bioquímica | spa |
dc.format.extent | 83 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86003 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Medicina - Maestría en Bioquímica | spa |
dc.relation.references | Afonina, I. S., Müller, C., Martin, S. J., & Beyaert, R. (2015). Proteolytic Processing of InterleukiAnnavarapu, S., & Nanda, V. (2009). Mirrors in the PDB: Left-handed -turns guide design with D-amino acids. BMC Structural Biology, 9. https://doi.org/10.1186/1472-6807-9-61 | spa |
dc.relation.references | Ben Haim, L., & Rowitch, D. H. (2016). Functional diversity of astrocytes in neural circuit regulation. Nature Reviews Neuroscience 2016 18:1, 18(1), 31–41. https://doi.org/10.1038/NRN.2016.159 | spa |
dc.relation.references | Biswas, S., Bachay, G., Chu, J., Hunter, D. D., & Brunken, W. J. (2017). Laminin-Dependent Interaction between Astrocytes and Microglia: A Role in Retinal Angiogenesis. The American Journal of Pathology, 187(9), 2112. https://doi.org/10.1016/J.AJPATH.2017.05.016 | spa |
dc.relation.references | Chiu, A. Y., Espinosa De Los Monteros, A., Cole, R. A., Loera, S., & De Vellis, J. (1991). Laminin and slaminin are produced and released by astrocytes, schwann cells, and schwannomas in culture. Glia, 4(1), 11–24. https://doi.org/10.1002/GLIA.440040103 | spa |
dc.relation.references | Choublier, N., Taghi, M., Menet, M. C., Le Gall, M., Bruce, J., Chafey, P., Guillonneau, F., Moreau, A., Denizot, C., Parmentier, Y., Nakib, S., Borderie, D., Bouzinba-Segard, H., Couraud, P. O., Bourdoulous, S., & Declèves, X. (2022). Exposure of human cerebral microvascular endothelial cells hCMEC/D3 to laminar shear stress induces vascular protective responses. Fluids and Barriers of the CNS, 19(1). https://doi.org/10.1186/S12987-022-00344-W | spa |
dc.relation.references | Coccini, T., Caloni, F., Ramírez Cando, L. J., & De Simone, U. (2017). Cytotoxicity and proliferative capacity impairment induced on human brain cell cultures after short- and long-term exposure to magnetite nanoparticles. Journal of Applied Toxicology, 37(3), 361–373. https://doi.org/10.1002/JAT.3367 | spa |
dc.relation.references | Costa, C., Brandão, F., Bessa, M. J., Costa, S., Valdiglesias, V., Kiliç, G., Fernández-Bertólez, N., Quaresma, P., Pereira, E., Pásaro, E., Laffon, B., & Teixeira, J. P. (2016). In vitro cytotoxicity of superparamagnetic iron oxide nanoparticles on neuronal and glial cells. Evaluation of nanoparticle interference with viability tests. Journal of Applied Toxicology : JAT, 36(3), 361–372. https://doi.org/10.1002/JAT.3213 | spa |
dc.relation.references | Dan, M., Cochran, D. B., Yokel, R. A., & Dziubla, T. D. (2013). Binding, Transcytosis and Biodistribution of Anti-PECAM-1 Iron Oxide Nanoparticles for Brain-Targeted Delivery. PLoS ONE, 8(11), 81051. https://doi.org/10.1371/JOURNAL.PONE.0081051 | spa |
dc.relation.references | Duan, L., Li, X., Ji, R., Hao, Z., Kong, M., Wen, X., Guan, F., & Ma, S. (2023). Nanoparticle-Based Drug Delivery Systems: An Inspiring Therapeutic Strategy for Neurodegenerative Diseases. Polymers 2023, Vol. 15, Page 2196, 15(9), 2196. https://doi.org/10.3390/POLYM15092196 | spa |
dc.relation.references | Fujiwara, K., Toda, H., & Ikeguchi, M. (2012). Dependence of α-helical and β-sheet amino acid propensities on the overall protein fold type. BMC Structural Biology, 12. https://doi.org/10.1186/1472-6807-12-18 | spa |
dc.relation.references | Fuster, E., Candela, H., Estévez, J., Arias, A. J., Vilanova, E., & Sogorb, M. A. (2020). E ff ects of silver nanoparticles on T98G human glioblastoma cells. Toxicology and Applied Pharmacology, 404(July), 115178. https://doi.org/10.1016/j.taap.2020.115178 | spa |
dc.relation.references | Gaona, I. M. S., Castillo, Y. M., Losada-Barragán, M., Sanchez, K. V., Rincón, J., Vargas, C. A. P., & Pérez, D. L. (2021a). Characterization of Zero-Valent Iron Nanoparticles Functionalized with a Biomarker Peptide. Materials Research, 24(5), e20200599. https://doi.org/10.1590/1980-5373-MR-2020-0599 | spa |
dc.relation.references | Gaona, I. M. S., Castillo, Y. M., Losada-Barragán, M., Sanchez, K. V., Rincón, J., Vargas, C. A. P., & Pérez, D. L. (2021b). Characterization of Zero-Valent Iron Nanoparticles Functionalized with a Biomarker Peptide. Materials Research, 24(5), 20200599. https://doi.org/10.1590/1980-5373-MR2020-0599 | spa |
dc.relation.references | Ge, D., Du, Q., Ran, B., Liu, X., Wang, X., Ma, X., Cheng, F., & Sun, B. (2019). The neurotoxicity induced by engineered nanomaterials. International Journal of Nanomedicine, 14, 4167. https://doi.org/10.2147/IJN.S203352 | spa |
dc.relation.references | Ghasempour, S., Shokrgozar, M. A., Ghasempour, R., & Alipour, M. (2015). Investigating the cytotoxicity of iron oxide nanoparticles in in vivo and in vitro studies. Experimental and Toxicologic Pathology : Official Journal of the Gesellschaft Fur Toxikologische Pathologie, 67(10), 509–515. https://doi.org/10.1016/J.ETP.2015.07.005 | spa |
dc.relation.references | Gojova, A., Guo, B., Kota, R. S., Rutledge, J. C., Kennedy, I. M., & Barakat, A. I. (2007). Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environmental Health Perspectives, 115(3), 403–409. https://doi.org/10.1289/EHP.8497 | spa |
dc.relation.references | González-Reyes, R. E., Nava-Mesa, M. O., Vargas-Sánchez, K., Ariza-Salamanca, D., & Mora-Muñoz, L. (2017). Involvement of Astrocytes in Alzheimer’s Disease from a Neuroinflammatory and Oxidative Stress Perspective. Frontiers in Molecular Neuroscience, 10. https://doi.org/10.3389/FNMOL.2017.00427 | spa |
dc.relation.references | Gu, Q., Cuevas, E., Ali, S. F., Paule, M. G., Krauthamer, V., Jones, Y., & Zhang, Y. (2019). An Alternative In Vitro Method for Examining Nanoparticle-Induced Cytotoxicity. International Journal of Toxicology, 38(5), 385–394. https://doi.org/10.1177/1091581819859267/ASSET/IMAGES/LARGE/10.1177_1091581819859267 -FIG6.JPEG | spa |
dc.relation.references | Guigou, C., Lalande, A., Millot, N., Belharet, K., & Grayeli, A. B. (2021). Use of Super Paramagnetic Iron Oxide Nanoparticles as Drug Carriers in Brain and Ear: State of the Art and Challenges. Brain Sciences 2021, Vol. 11, Page 358, 11(3), 358. https://doi.org/10.3390/BRAINSCI11030358 | spa |
dc.relation.references | Gunay, G., Hamsici, S., Lang, G. A., Lang, M. L., Kovats, S., & Acar, H. (2022). Peptide Aggregation Induced Immunogenic Rupture (PAIIR). Advanced Science, 9(21), 2105868. https://doi.org/10.1002/ADVS.202105868 | spa |
dc.relation.references | Halasi, M., Wang, M., Chavan, T. S., Gaponenko, V., Hay, N., & Gartel, A. L. (2013). ROS inhibitor Nacetyl-l-cysteine antagonizes the activity of proteasome inhibitors. The Biochemical Journal, 454(2), 201. https://doi.org/10.1042/BJ20130282 | spa |
dc.relation.references | Hall, S., McDermott, C., Anoopkumar-Dukie, S., McFarland, A. J., Forbes, A., Perkins, A. V., Davey, A. K., Chess-Williams, R., Kiefel, M. J., Arora, D., & Grant, G. D. (2016). Cellular Effects of Pyocyanin, a Secreted Virulence Factor of Pseudomonas aeruginosa. Toxins 2016, Vol. 8, Page 236, 8(8), 236. https://doi.org/10.3390/TOXINS8080236 | spa |
dc.relation.references | Hermann, P., & Zerr, I. (2022). Rapidly progressive dementias — aetiologies, diagnosis and management. Nature Reviews Neurology 2022 18:6, 18(6), 363–376. https://doi.org/10.1038/s41582-022-00659-0 | spa |
dc.relation.references | Huang, C. L., Hsiao, I. L., Lin, H. C., Wang, C. F., Huang, Y. J., & Chuang, C. Y. (2015). Silver nanoparticles affect on gene expression of inflammatory and neurodegenerative responses in mouse brain neural cells. Environmental Research, 136, 253–263. https://doi.org/10.1016/J.ENVRES.2014.11.006 | spa |
dc.relation.references | Islam, Y., Leach, A. G., Smith, J., Pluchino, S., Coxon, C. R., Sivakumaran, M., Downing, J., Fatokun, A. A., Teixidò, M., & Ehtezazi, T. (2021). Physiological and Pathological Factors Affecting Drug Delivery to the Brain by Nanoparticles. Advanced Science, 8(11). https://doi.org/10.1002/advs.202002085 | spa |
dc.relation.references | Israel, L. L., Galstyan, A., Holler, E., & Ljubimova, J. Y. (2020). Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain. Journal of Controlled Release, 320, 45–62. https://doi.org/10.1016/J.JCONREL.2020.01.009 | spa |
dc.relation.references | Ivask, A., Pilkington, E. H., Blin, T., Käkinen, A., Vija, H., Visnapuu, M., Quinn, J. F., Whittaker, M. R., Qiao, R., Davis, T. P., Ke, C., & Voelcker, N. H. (2017). Supporting Information for Uptake and transcytosis of functionalized superparamagnetic iron oxide nanoparticles in an in vitro blood brain barrier model. | spa |
dc.relation.references | Janik-Olchawa, N., Drozdz, A., Ryszawy, D., Pudelek, M., Planeta, K., Setkowicz, Z., Sniegocki, M., Wytrwal-Sarna, M., Gajewska, M., & Chwiej, J. (123 C.E.). The influence of IONPs core size on their biocompatibility and activity in in vitro cellular models. Scientific Reports |, 11, 21808. https://doi.org/10.1038/s41598-021-01237-y | spa |
dc.relation.references | Ji, K., & Tsirka, S. E. (2012). Inflammation modulates expression of laminin in the central nervous system following ischemic injury. Journal of Neuroinflammation, 9(1), 1–12. https://doi.org/10.1186/1742-2094-9-159/FIGURES/6 | spa |
dc.relation.references | Kang, Y. J., Cutler, E. G., & Cho, H. (2018). Therapeutic nanoplatforms and delivery strategies for neurological disorders. Nano Convergence 2018 5:1, 5(1), 1–15. https://doi.org/10.1186/S40580- 018-0168-8 | spa |
dc.relation.references | Keenan, C. R., Goth-Goldstein, R., Lucas, D., & Sedlak, D. L. (2009). Oxidative stress induced by zerovalent iron nanoparticles and Fe(II) in human bronchial epithelial cells. Environmental Science & Technology, 43(12), 4555–4560. https://doi.org/10.1021/ES9006383 | spa |
dc.relation.references | Kenzaoui, B. H., Bernasconi, C. C., Hofmann, H., & Juillerat-Jeanneret, L. (2012). Evaluation of uptake and transport of ultrasmall superparamagnetic iron oxide nanoparticles by human brain-derived endothelial cells. Nanomedicine, 7(1), 39–53. https://doi.org/10.2217/NNM.11.85 | spa |
dc.relation.references | Kim, J. A., Lee, N., Kim, B. H., Rhee, W. J., Yoon, S., Hyeon, T., & Park, T. H. (2011). Enhancement of neurite outgrowth in PC12 cells by iron oxide nanoparticles. Biomaterials, 32(11), 2871–2877. https://doi.org/10.1016/J.BIOMATERIALS.2011.01.019 | spa |
dc.relation.references | Lhor, M., Bernier, S. C., Horchani, H., Bussières, S., Cantin, L., Desbat, B., & Salesse, C. (2014). Comparison between the behavior of different hydrophobic peptides allowing membrane anchoring of proteins. Advances in Colloid and Interface Science, 207(1), 223. https://doi.org/10.1016/J.CIS.2014.01.015 | spa |
dc.relation.references | Liu, J., Liu, Z., Pang, Y., & Zhou, H. (2022). The interaction between nanoparticles and immune system: application in the treatment of inflammatory diseases. Journal of Nanobiotechnology, 20(1), 1–25. https://doi.org/10.1186/S12951-022-01343-7/FIGURES/8 | spa |
dc.relation.references | Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402–408. https://doi.org/10.1006/METH.2001.1262 | spa |
dc.relation.references | Lopez-Castejon, G., & Brough, D. (2011). Understanding the mechanism of IL-1β secretion. Cytokine & Growth Factor Reviews, 22(4), 189. https://doi.org/10.1016/J.CYTOGFR.2011.10.001 | spa |
dc.relation.references | Oestreich, L. K. L., & O’Sullivan, M. J. (2022). Transdiagnostic In Vivo Magnetic Resonance Imaging Markers of Neuroinflammation. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 7(7), 638–658. https://doi.org/10.1016/J.BPSC.2022.01.003 | spa |
dc.relation.references | Patil, R. M., Thorat, N. D., Shete, P. B., Bedge, P. A., Gavde, S., Joshi, M. G., Tofail, S. A. M., & Bohara, R. A. (2018). Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles. Biochemistry and Biophysics Reports, 13, 63–72. https://doi.org/10.1016/J.BBREP.2017.12.002 | spa |
dc.relation.references | Peng, Y., Chu, S., Yang, Y., Zhang, Z., Pang, Z., & Chen, N. (2021). Neuroinflammatory In Vitro Cell Culture Models and the Potential Applications for Neurological Disorders. Frontiers in Pharmacology, 12, 671734. https://doi.org/10.3389/FPHAR.2021.671734/BIBTEX | spa |
dc.relation.references | Saafane, A., & Girard, D. (2022). Interaction between iron oxide nanoparticles (Fe3O4 NPs) and human neutrophils: Evidence that Fe3O4 NPs possess some pro-inflammatory activities. ChemicoBiological Interactions, 365, 110053. https://doi.org/10.1016/J.CBI.2022.110053 | spa |
dc.relation.references | Sawyer, A. J., Tian, W., Saucier-Sawyer, J. K., Rizk, P. J., Saltzman, W. M., Bellamkonda, R. V., & Kyriakides, T. R. (2014). The effect of inflammatory cell-derived MCP-1 loss on neuronal survival during chronic neuroinflammation. Biomaterials, 35(25), 6698–6706. https://doi.org/10.1016/J.BIOMATERIALS.2014.05.008 | spa |
dc.relation.references | Shi, H., Gu, Y., Xie, Z., Zhou, Q., Mao, G., Lin, X., Liu, K., Liu, Y., Zou, B., & Zhao, J. (2017). Mechanism of N-acetyl-cysteine inhibition on the cytotoxicity induced by titanium dioxide nanoparticles in JB6 cells transfected with activator protein-1. Experimental and Therapeutic Medicine, 13(6), 3549. https://doi.org/10.3892/ETM.2017.4415 | spa |
dc.relation.references | Stephan, D., Sbai, O., Wen, J., Couraud, P. O., Putterman, C., Khrestchatisky, M., & Desplat-Jégo, S. (2013). TWEAK/Fn14 pathway modulates properties of a human microvascular endothelial cell model of blood brain barrier. Journal of Neuroinflammation, 10(1), 1–14. https://doi.org/10.1186/1742-2094-10-9/FIGURES/6 T98G [T98-G]-CRL-1690 | ATCC. (n.d.). Retrieved July 5 | spa |
dc.relation.references | T98G [T98-G]-CRL-1690 | ATCC. (n.d.). Retrieved July 5, 2023, from https://www.atcc.org/products/crl1690 | spa |
dc.relation.references | Tunca Koyun, M., Sirin, S., Erdem, S. A., Aslim, B., & Farago, P. V. (2022). Pyocyanin Isolated from Pseudomonas aeruginosa: Characterization, Biological Activity and Its Role in Cancer and Neurodegenerative Diseases Editor-in-Chief. Brazilian Archives of Biology and Technology, 65, 2022. https://doi.org/10.1590/1678-4324-2022210651 | spa |
dc.relation.references | Vargas-Sanchez, K., Losada-Barragán, M., Mogilevskaya, M., Novoa-Herrán, S., Medina, Y., BuendíaAtencio, C., Lorett-Velásquez, V., Martínez-Bernal, J., Gonzalez-Reyes, R. E., Ramírez, D., & Petry, K. G. (2021a). Screening for interacting proteins with peptide biomarker of blood–brain barrier alteration under inflammatory conditions. International Journal of Molecular Sciences, 22(9). https://doi.org/10.3390/IJMS22094725/S1 | spa |
dc.relation.references | Vargas-Sanchez, K., Losada-Barragán, M., Mogilevskaya, M., Novoa-Herrán, S., Medina, Y., BuendíaAtencio, C., Lorett-Velásquez, V., Martínez-Bernal, J., Gonzalez-Reyes, R. E., Ramírez, D., & Petry, K. G. (2021b). Screening for interacting proteins with peptide biomarker of blood–brain barrier alteration under inflammatory conditions. International Journal of Molecular Sciences, 22(9). https://doi.org/10.3390/IJMS22094725/S1 | spa |
dc.relation.references | Vargas-Sanchez, K., Vekris, A., & Petry, K. G. (2016). DNA Subtraction of In Vivo Selected Phage Repertoires for Efficient Peptide Pathology Biomarker Identification in Neuroinflammation Multiple Sclerosis Model. Biomarker Insights, 11, 19. https://doi.org/10.4137/BMI.S32188 | spa |
dc.relation.references | Wei, H., Hu, Y., Wang, J., Gao, X., Qian, X., & Tang, M. (2021). <p>Superparamagnetic Iron Oxide Nanoparticles: Cytotoxicity, Metabolism, and Cellular Behavior in Biomedicine Applications</p>. International Journal of Nanomedicine, 16, 6097–6113. https://doi.org/10.2147/IJN.S321984 | spa |
dc.relation.references | Weksler, B., Romero, I. A., & Couraud, P. O. (2013). The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids and Barriers of the CNS, 10(1), 1–10. https://doi.org/10.1186/2045-8118- 10-16/TABLES/1 | spa |
dc.relation.references | Wolf-Grosse, S., Rokstad, A. M., Ali, S., Lambris, J. D., Mollnes, T. E., Nilsen, A. M., & Stenvik, J. (2017). Iron oxide nanoparticles induce cytokine secretion in a complement-dependent manner in a human whole blood model. International Journal of Nanomedicine, 12, 3927. https://doi.org/10.2147/IJN.S136453 | spa |
dc.relation.references | Wu, H. Y., Chung, M. C., Wang, C. C., Huang, C. H., Liang, H. J., & Jan, T. R. (2013). Iron oxide nanoparticles suppress the production of IL-1beta via the secretory lysosomal pathway in murine microglial cells. Particle and Fibre Toxicology, 10(1), 1–11. https://doi.org/10.1186/1743-8977-10- 46/FIGURES/5 | spa |
dc.relation.references | Xie, J., Shen, Z., Anraku, Y., Kataoka, K., & Chen, X. (2019). Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials, 224, 119491. https://doi.org/10.1016/J.BIOMATERIALS.2019.119491 | spa |
dc.relation.references | Yang, Y. M., Feng, X. Y., Yin, L. K., Li, C. C., Li, A. N., Jia, J., Wang, X. Lou, Du, Z. G., & Jin, L. X. (2013). In vivo USPIO-enhanced MR signal characteristics of secondary degeneration in the ipsilateral substantia nigra after middle cerebral artery occlusion at 3T. Journal of Neuroradiology, 40(3), 198–203. https://doi.org/10.1016/J.NEURAD.2012.11.002 | spa |
dc.relation.references | Zanganeh, S., Hutter, G., Spitler, R., Lenkov, O., Mahmoudi, M., Shaw, A., Pajarinen, J. S., Nejadnik, H., Goodman, S., Moseley, M., Coussens, L. M., & Daldrup-Link, H. E. (2016). Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nature Nanotechnology, 11(11), 986. https://doi.org/10.1038/NNANO.2016.168 | spa |
dc.relation.references | Zhu, C., Gao, Y., Li, H., Meng, S., Li, L., Francisco, J. S., & Zeng, X. C. (2016). Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planarpeptide network. Proceedings of the National Academy of Sciences of the United States of America, 113(46), 12946–12951. https://doi.org/10.1073/PNAS.1616138113/- /DCSUPPLEMENTAL | spa |
dc.relation.references | Zhu, F. D., Hu, Y. J., Yu, L., Zhou, X. G., Wu, J. M., Tang, Y., Qin, D. L., Fan, Q. Z., & Wu, A. G. (2021). Nanoparticles: A Hope for the Treatment of Inflammation in CNS. Frontiers in Pharmacology, 12. https://doi.org/10.3389/FPHAR.2021.683935 | spa |
dc.relation.references | Zhu, M. T., Wang, B., Wang, Y., Yuan, L., Wang, H. J., Wang, M., Ouyang, H., Chai, Z. F., Feng, W. Y., & Zhao, Y. L. (2011). Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: Risk factors for early atherosclerosis. Toxicology Letters, 203(2), 162–171. https://doi.org/10.1016/J.TOXLET.2011.03.021 | spa |
dc.relation.references | Annavarapu, S., & Nanda, V. (2009). Mirrors in the PDB: Left-handed -turns guide design with D-amino acids. BMC Structural Biology, 9. https://doi.org/10.1186/1472-6807-9-61 | spa |
dc.relation.references | Ben Haim, L., & Rowitch, D. H. (2016). Functional diversity of astrocytes in neural circuit regulation. Nature Reviews Neuroscience 2016 18:1, 18(1), 31–41. https://doi.org/10.1038/NRN.2016.159 | spa |
dc.relation.references | Biswas, S., Bachay, G., Chu, J., Hunter, D. D., & Brunken, W. J. (2017). Laminin-Dependent Interaction between Astrocytes and Microglia: A Role in Retinal Angiogenesis. The American Journal of Pathology, 187(9), 2112. https://doi.org/10.1016/J.AJPATH.2017.05.016 | spa |
dc.relation.references | Chiu, A. Y., Espinosa De Los Monteros, A., Cole, R. A., Loera, S., & De Vellis, J. (1991). Laminin and slaminin are produced and released by astrocytes, schwann cells, and schwannomas in culture. Glia, 4(1), 11–24. https://doi.org/10.1002/GLIA.440040103 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 570 - Biología::572 - Bioquímica | spa |
dc.subject.decs | Enfermedades Neurodegenerativas | spa |
dc.subject.decs | Neurodegenerative Diseases | eng |
dc.subject.proposal | Imágenes de resonancia magnética | spa |
dc.subject.proposal | Nanopartículas de USPIO | spa |
dc.subject.proposal | Biomarcador | spa |
dc.subject.proposal | Magnetic resonance imaging | eng |
dc.subject.proposal | USPIO nanoparticles | eng |
dc.title | Determinación in vitro de la biocompatibilidad de un péptido marcador acoplado a nanopartículas USPIO en un modelo de neuroinflamación inducida | spa |
dc.title.translated | In vitro determination of the biocompatibility of a marker peptide coupled to USPIO nanoparticles in an induced neuroinflammation model. | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1019132780.2023.pdf
- Tamaño:
- 1.22 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Bioquímica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: