Determinación in vitro de la biocompatibilidad de un péptido marcador acoplado a nanopartículas USPIO en un modelo de neuroinflamación inducida

dc.contributor.advisorGuerrero Fonseca, Carlos Arturo
dc.contributor.authorRojas Hernández, Laura Camila
dc.contributor.researchgroupBiología celular y funcional e ingeniería de biomoléculasspa
dc.date.accessioned2024-04-30T16:53:18Z
dc.date.available2024-04-30T16:53:18Z
dc.date.issued2023
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractLos trastornos neurológicos son enfermedades degenerativas del sistema nervioso central (SNC) y constituyen una causa frecuente de morbilidad y mortalidad en el mundo, y han incrementado en los últimos años. Las nanopartículas USPIO (Ultrasmall Superparamagnetic Iron Oxide) son una categoría novedosa de agentes de contraste en resonancia magnética de imagen (RMI) que pueden acoplarse a diversas moléculas y dirigirse de manera específica hacia marcadores moleculares que reflejen alteraciones específicas. Por lo anterior, el objetivo del presente estudio fue caracterizar el efecto de las nanopartículas de USPIO conjugadas con el péptido marcador P88 en un modelo de neuroinflamación inducida in vitro con potencial aplicabilidad en RMI. Para lograr este objetivo, las líneas celulares HCMEC/D3 (células endoteliales de microvasculatura de cerebro) y T98G (astrocitos) se incubaron USPIO conjugadas con el péptido marcador y se determinó su efecto sobre la viabilidad celular por el método de LDH. Posteriormente, se identificó el perfil inflamatorio por medio de citometría de flujo y ensayos de PCR en tiempo real. Finalmente, se determinó el perfil de estrés oxidativo mediante la medición de los niveles de superóxido producidos. En general, los resultados de este estudio sugieren que NP88 es biocompatible con las líneas celulares HCMEC/D3 y T98G; y se podría utilizar potencialmente como biomarcador en modelos de neuroinflamación (Texto tomado de la fuente)spa
dc.description.abstractNeurological disorders are degenerative diseases of the central nervous system (CNS) and constitute a frequent cause of morbidity and mortality in the world, and have increased in recent years. USPIO (Ultrasmall Superparamagnetic Iron Oxide) nanoparticles are a novel category of magnetic resonance imaging (MRI) contrast agents that can couple to various molecules and specifically target molecular markers that reflect specific abnormalities. Therefore, the objective of this study was to characterize the effect of USPIO nanoparticles conjugated with the marker peptide P88 in an in vitro induced neuroinflammation model with potential applicability in MRI. To achieve this goal, the cell lines HCMEC/D3 (brain microvasculature endothelial cells) and T98G (astrocytes) were incubated USPIO conjugated with the marker peptide and their effect on cell capacity was amplified by the LDH method. Subsequently, the inflammatory profile was identified by means of flow cytometry and real-time PCR assays. Finally, the oxidative stress profile was reduced by measuring the levels of superoxides produced. Overall, the results of this study suggest that NP88 is biocompatible with the HCMEC/D3 and T98G cell lines; and could potentially be used as a biomarker in models of neuroinflammationeng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Bioquímicaspa
dc.format.extent83 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86003
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Bioquímicaspa
dc.relation.referencesAfonina, I. S., Müller, C., Martin, S. J., & Beyaert, R. (2015). Proteolytic Processing of InterleukiAnnavarapu, S., & Nanda, V. (2009). Mirrors in the PDB: Left-handed -turns guide design with D-amino acids. BMC Structural Biology, 9. https://doi.org/10.1186/1472-6807-9-61spa
dc.relation.referencesBen Haim, L., & Rowitch, D. H. (2016). Functional diversity of astrocytes in neural circuit regulation. Nature Reviews Neuroscience 2016 18:1, 18(1), 31–41. https://doi.org/10.1038/NRN.2016.159spa
dc.relation.referencesBiswas, S., Bachay, G., Chu, J., Hunter, D. D., & Brunken, W. J. (2017). Laminin-Dependent Interaction between Astrocytes and Microglia: A Role in Retinal Angiogenesis. The American Journal of Pathology, 187(9), 2112. https://doi.org/10.1016/J.AJPATH.2017.05.016spa
dc.relation.referencesChiu, A. Y., Espinosa De Los Monteros, A., Cole, R. A., Loera, S., & De Vellis, J. (1991). Laminin and slaminin are produced and released by astrocytes, schwann cells, and schwannomas in culture. Glia, 4(1), 11–24. https://doi.org/10.1002/GLIA.440040103spa
dc.relation.referencesChoublier, N., Taghi, M., Menet, M. C., Le Gall, M., Bruce, J., Chafey, P., Guillonneau, F., Moreau, A., Denizot, C., Parmentier, Y., Nakib, S., Borderie, D., Bouzinba-Segard, H., Couraud, P. O., Bourdoulous, S., & Declèves, X. (2022). Exposure of human cerebral microvascular endothelial cells hCMEC/D3 to laminar shear stress induces vascular protective responses. Fluids and Barriers of the CNS, 19(1). https://doi.org/10.1186/S12987-022-00344-Wspa
dc.relation.referencesCoccini, T., Caloni, F., Ramírez Cando, L. J., & De Simone, U. (2017). Cytotoxicity and proliferative capacity impairment induced on human brain cell cultures after short- and long-term exposure to magnetite nanoparticles. Journal of Applied Toxicology, 37(3), 361–373. https://doi.org/10.1002/JAT.3367spa
dc.relation.referencesCosta, C., Brandão, F., Bessa, M. J., Costa, S., Valdiglesias, V., Kiliç, G., Fernández-Bertólez, N., Quaresma, P., Pereira, E., Pásaro, E., Laffon, B., & Teixeira, J. P. (2016). In vitro cytotoxicity of superparamagnetic iron oxide nanoparticles on neuronal and glial cells. Evaluation of nanoparticle interference with viability tests. Journal of Applied Toxicology : JAT, 36(3), 361–372. https://doi.org/10.1002/JAT.3213spa
dc.relation.referencesDan, M., Cochran, D. B., Yokel, R. A., & Dziubla, T. D. (2013). Binding, Transcytosis and Biodistribution of Anti-PECAM-1 Iron Oxide Nanoparticles for Brain-Targeted Delivery. PLoS ONE, 8(11), 81051. https://doi.org/10.1371/JOURNAL.PONE.0081051spa
dc.relation.referencesDuan, L., Li, X., Ji, R., Hao, Z., Kong, M., Wen, X., Guan, F., & Ma, S. (2023). Nanoparticle-Based Drug Delivery Systems: An Inspiring Therapeutic Strategy for Neurodegenerative Diseases. Polymers 2023, Vol. 15, Page 2196, 15(9), 2196. https://doi.org/10.3390/POLYM15092196spa
dc.relation.referencesFujiwara, K., Toda, H., & Ikeguchi, M. (2012). Dependence of α-helical and β-sheet amino acid propensities on the overall protein fold type. BMC Structural Biology, 12. https://doi.org/10.1186/1472-6807-12-18spa
dc.relation.referencesFuster, E., Candela, H., Estévez, J., Arias, A. J., Vilanova, E., & Sogorb, M. A. (2020). E ff ects of silver nanoparticles on T98G human glioblastoma cells. Toxicology and Applied Pharmacology, 404(July), 115178. https://doi.org/10.1016/j.taap.2020.115178spa
dc.relation.referencesGaona, I. M. S., Castillo, Y. M., Losada-Barragán, M., Sanchez, K. V., Rincón, J., Vargas, C. A. P., & Pérez, D. L. (2021a). Characterization of Zero-Valent Iron Nanoparticles Functionalized with a Biomarker Peptide. Materials Research, 24(5), e20200599. https://doi.org/10.1590/1980-5373-MR-2020-0599spa
dc.relation.referencesGaona, I. M. S., Castillo, Y. M., Losada-Barragán, M., Sanchez, K. V., Rincón, J., Vargas, C. A. P., & Pérez, D. L. (2021b). Characterization of Zero-Valent Iron Nanoparticles Functionalized with a Biomarker Peptide. Materials Research, 24(5), 20200599. https://doi.org/10.1590/1980-5373-MR2020-0599spa
dc.relation.referencesGe, D., Du, Q., Ran, B., Liu, X., Wang, X., Ma, X., Cheng, F., & Sun, B. (2019). The neurotoxicity induced by engineered nanomaterials. International Journal of Nanomedicine, 14, 4167. https://doi.org/10.2147/IJN.S203352spa
dc.relation.referencesGhasempour, S., Shokrgozar, M. A., Ghasempour, R., & Alipour, M. (2015). Investigating the cytotoxicity of iron oxide nanoparticles in in vivo and in vitro studies. Experimental and Toxicologic Pathology : Official Journal of the Gesellschaft Fur Toxikologische Pathologie, 67(10), 509–515. https://doi.org/10.1016/J.ETP.2015.07.005spa
dc.relation.referencesGojova, A., Guo, B., Kota, R. S., Rutledge, J. C., Kennedy, I. M., & Barakat, A. I. (2007). Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environmental Health Perspectives, 115(3), 403–409. https://doi.org/10.1289/EHP.8497spa
dc.relation.referencesGonzález-Reyes, R. E., Nava-Mesa, M. O., Vargas-Sánchez, K., Ariza-Salamanca, D., & Mora-Muñoz, L. (2017). Involvement of Astrocytes in Alzheimer’s Disease from a Neuroinflammatory and Oxidative Stress Perspective. Frontiers in Molecular Neuroscience, 10. https://doi.org/10.3389/FNMOL.2017.00427spa
dc.relation.referencesGu, Q., Cuevas, E., Ali, S. F., Paule, M. G., Krauthamer, V., Jones, Y., & Zhang, Y. (2019). An Alternative In Vitro Method for Examining Nanoparticle-Induced Cytotoxicity. International Journal of Toxicology, 38(5), 385–394. https://doi.org/10.1177/1091581819859267/ASSET/IMAGES/LARGE/10.1177_1091581819859267 -FIG6.JPEGspa
dc.relation.referencesGuigou, C., Lalande, A., Millot, N., Belharet, K., & Grayeli, A. B. (2021). Use of Super Paramagnetic Iron Oxide Nanoparticles as Drug Carriers in Brain and Ear: State of the Art and Challenges. Brain Sciences 2021, Vol. 11, Page 358, 11(3), 358. https://doi.org/10.3390/BRAINSCI11030358spa
dc.relation.referencesGunay, G., Hamsici, S., Lang, G. A., Lang, M. L., Kovats, S., & Acar, H. (2022). Peptide Aggregation Induced Immunogenic Rupture (PAIIR). Advanced Science, 9(21), 2105868. https://doi.org/10.1002/ADVS.202105868spa
dc.relation.referencesHalasi, M., Wang, M., Chavan, T. S., Gaponenko, V., Hay, N., & Gartel, A. L. (2013). ROS inhibitor Nacetyl-l-cysteine antagonizes the activity of proteasome inhibitors. The Biochemical Journal, 454(2), 201. https://doi.org/10.1042/BJ20130282spa
dc.relation.referencesHall, S., McDermott, C., Anoopkumar-Dukie, S., McFarland, A. J., Forbes, A., Perkins, A. V., Davey, A. K., Chess-Williams, R., Kiefel, M. J., Arora, D., & Grant, G. D. (2016). Cellular Effects of Pyocyanin, a Secreted Virulence Factor of Pseudomonas aeruginosa. Toxins 2016, Vol. 8, Page 236, 8(8), 236. https://doi.org/10.3390/TOXINS8080236spa
dc.relation.referencesHermann, P., & Zerr, I. (2022). Rapidly progressive dementias — aetiologies, diagnosis and management. Nature Reviews Neurology 2022 18:6, 18(6), 363–376. https://doi.org/10.1038/s41582-022-00659-0spa
dc.relation.referencesHuang, C. L., Hsiao, I. L., Lin, H. C., Wang, C. F., Huang, Y. J., & Chuang, C. Y. (2015). Silver nanoparticles affect on gene expression of inflammatory and neurodegenerative responses in mouse brain neural cells. Environmental Research, 136, 253–263. https://doi.org/10.1016/J.ENVRES.2014.11.006spa
dc.relation.referencesIslam, Y., Leach, A. G., Smith, J., Pluchino, S., Coxon, C. R., Sivakumaran, M., Downing, J., Fatokun, A. A., Teixidò, M., & Ehtezazi, T. (2021). Physiological and Pathological Factors Affecting Drug Delivery to the Brain by Nanoparticles. Advanced Science, 8(11). https://doi.org/10.1002/advs.202002085spa
dc.relation.referencesIsrael, L. L., Galstyan, A., Holler, E., & Ljubimova, J. Y. (2020). Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain. Journal of Controlled Release, 320, 45–62. https://doi.org/10.1016/J.JCONREL.2020.01.009spa
dc.relation.referencesIvask, A., Pilkington, E. H., Blin, T., Käkinen, A., Vija, H., Visnapuu, M., Quinn, J. F., Whittaker, M. R., Qiao, R., Davis, T. P., Ke, C., & Voelcker, N. H. (2017). Supporting Information for Uptake and transcytosis of functionalized superparamagnetic iron oxide nanoparticles in an in vitro blood brain barrier model.spa
dc.relation.referencesJanik-Olchawa, N., Drozdz, A., Ryszawy, D., Pudelek, M., Planeta, K., Setkowicz, Z., Sniegocki, M., Wytrwal-Sarna, M., Gajewska, M., & Chwiej, J. (123 C.E.). The influence of IONPs core size on their biocompatibility and activity in in vitro cellular models. Scientific Reports |, 11, 21808. https://doi.org/10.1038/s41598-021-01237-yspa
dc.relation.referencesJi, K., & Tsirka, S. E. (2012). Inflammation modulates expression of laminin in the central nervous system following ischemic injury. Journal of Neuroinflammation, 9(1), 1–12. https://doi.org/10.1186/1742-2094-9-159/FIGURES/6spa
dc.relation.referencesKang, Y. J., Cutler, E. G., & Cho, H. (2018). Therapeutic nanoplatforms and delivery strategies for neurological disorders. Nano Convergence 2018 5:1, 5(1), 1–15. https://doi.org/10.1186/S40580- 018-0168-8spa
dc.relation.referencesKeenan, C. R., Goth-Goldstein, R., Lucas, D., & Sedlak, D. L. (2009). Oxidative stress induced by zerovalent iron nanoparticles and Fe(II) in human bronchial epithelial cells. Environmental Science & Technology, 43(12), 4555–4560. https://doi.org/10.1021/ES9006383spa
dc.relation.referencesKenzaoui, B. H., Bernasconi, C. C., Hofmann, H., & Juillerat-Jeanneret, L. (2012). Evaluation of uptake and transport of ultrasmall superparamagnetic iron oxide nanoparticles by human brain-derived endothelial cells. Nanomedicine, 7(1), 39–53. https://doi.org/10.2217/NNM.11.85spa
dc.relation.referencesKim, J. A., Lee, N., Kim, B. H., Rhee, W. J., Yoon, S., Hyeon, T., & Park, T. H. (2011). Enhancement of neurite outgrowth in PC12 cells by iron oxide nanoparticles. Biomaterials, 32(11), 2871–2877. https://doi.org/10.1016/J.BIOMATERIALS.2011.01.019spa
dc.relation.referencesLhor, M., Bernier, S. C., Horchani, H., Bussières, S., Cantin, L., Desbat, B., & Salesse, C. (2014). Comparison between the behavior of different hydrophobic peptides allowing membrane anchoring of proteins. Advances in Colloid and Interface Science, 207(1), 223. https://doi.org/10.1016/J.CIS.2014.01.015spa
dc.relation.referencesLiu, J., Liu, Z., Pang, Y., & Zhou, H. (2022). The interaction between nanoparticles and immune system: application in the treatment of inflammatory diseases. Journal of Nanobiotechnology, 20(1), 1–25. https://doi.org/10.1186/S12951-022-01343-7/FIGURES/8spa
dc.relation.referencesLivak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402–408. https://doi.org/10.1006/METH.2001.1262spa
dc.relation.referencesLopez-Castejon, G., & Brough, D. (2011). Understanding the mechanism of IL-1β secretion. Cytokine & Growth Factor Reviews, 22(4), 189. https://doi.org/10.1016/J.CYTOGFR.2011.10.001spa
dc.relation.referencesOestreich, L. K. L., & O’Sullivan, M. J. (2022). Transdiagnostic In Vivo Magnetic Resonance Imaging Markers of Neuroinflammation. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 7(7), 638–658. https://doi.org/10.1016/J.BPSC.2022.01.003spa
dc.relation.referencesPatil, R. M., Thorat, N. D., Shete, P. B., Bedge, P. A., Gavde, S., Joshi, M. G., Tofail, S. A. M., & Bohara, R. A. (2018). Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles. Biochemistry and Biophysics Reports, 13, 63–72. https://doi.org/10.1016/J.BBREP.2017.12.002spa
dc.relation.referencesPeng, Y., Chu, S., Yang, Y., Zhang, Z., Pang, Z., & Chen, N. (2021). Neuroinflammatory In Vitro Cell Culture Models and the Potential Applications for Neurological Disorders. Frontiers in Pharmacology, 12, 671734. https://doi.org/10.3389/FPHAR.2021.671734/BIBTEXspa
dc.relation.referencesSaafane, A., & Girard, D. (2022). Interaction between iron oxide nanoparticles (Fe3O4 NPs) and human neutrophils: Evidence that Fe3O4 NPs possess some pro-inflammatory activities. ChemicoBiological Interactions, 365, 110053. https://doi.org/10.1016/J.CBI.2022.110053spa
dc.relation.referencesSawyer, A. J., Tian, W., Saucier-Sawyer, J. K., Rizk, P. J., Saltzman, W. M., Bellamkonda, R. V., & Kyriakides, T. R. (2014). The effect of inflammatory cell-derived MCP-1 loss on neuronal survival during chronic neuroinflammation. Biomaterials, 35(25), 6698–6706. https://doi.org/10.1016/J.BIOMATERIALS.2014.05.008spa
dc.relation.referencesShi, H., Gu, Y., Xie, Z., Zhou, Q., Mao, G., Lin, X., Liu, K., Liu, Y., Zou, B., & Zhao, J. (2017). Mechanism of N-acetyl-cysteine inhibition on the cytotoxicity induced by titanium dioxide nanoparticles in JB6 cells transfected with activator protein-1. Experimental and Therapeutic Medicine, 13(6), 3549. https://doi.org/10.3892/ETM.2017.4415spa
dc.relation.referencesStephan, D., Sbai, O., Wen, J., Couraud, P. O., Putterman, C., Khrestchatisky, M., & Desplat-Jégo, S. (2013). TWEAK/Fn14 pathway modulates properties of a human microvascular endothelial cell model of blood brain barrier. Journal of Neuroinflammation, 10(1), 1–14. https://doi.org/10.1186/1742-2094-10-9/FIGURES/6 T98G [T98-G]-CRL-1690 | ATCC. (n.d.). Retrieved July 5spa
dc.relation.referencesT98G [T98-G]-CRL-1690 | ATCC. (n.d.). Retrieved July 5, 2023, from https://www.atcc.org/products/crl1690spa
dc.relation.referencesTunca Koyun, M., Sirin, S., Erdem, S. A., Aslim, B., & Farago, P. V. (2022). Pyocyanin Isolated from Pseudomonas aeruginosa: Characterization, Biological Activity and Its Role in Cancer and Neurodegenerative Diseases Editor-in-Chief. Brazilian Archives of Biology and Technology, 65, 2022. https://doi.org/10.1590/1678-4324-2022210651spa
dc.relation.referencesVargas-Sanchez, K., Losada-Barragán, M., Mogilevskaya, M., Novoa-Herrán, S., Medina, Y., BuendíaAtencio, C., Lorett-Velásquez, V., Martínez-Bernal, J., Gonzalez-Reyes, R. E., Ramírez, D., & Petry, K. G. (2021a). Screening for interacting proteins with peptide biomarker of blood–brain barrier alteration under inflammatory conditions. International Journal of Molecular Sciences, 22(9). https://doi.org/10.3390/IJMS22094725/S1spa
dc.relation.referencesVargas-Sanchez, K., Losada-Barragán, M., Mogilevskaya, M., Novoa-Herrán, S., Medina, Y., BuendíaAtencio, C., Lorett-Velásquez, V., Martínez-Bernal, J., Gonzalez-Reyes, R. E., Ramírez, D., & Petry, K. G. (2021b). Screening for interacting proteins with peptide biomarker of blood–brain barrier alteration under inflammatory conditions. International Journal of Molecular Sciences, 22(9). https://doi.org/10.3390/IJMS22094725/S1spa
dc.relation.referencesVargas-Sanchez, K., Vekris, A., & Petry, K. G. (2016). DNA Subtraction of In Vivo Selected Phage Repertoires for Efficient Peptide Pathology Biomarker Identification in Neuroinflammation Multiple Sclerosis Model. Biomarker Insights, 11, 19. https://doi.org/10.4137/BMI.S32188spa
dc.relation.referencesWei, H., Hu, Y., Wang, J., Gao, X., Qian, X., & Tang, M. (2021). <p>Superparamagnetic Iron Oxide Nanoparticles: Cytotoxicity, Metabolism, and Cellular Behavior in Biomedicine Applications</p>. International Journal of Nanomedicine, 16, 6097–6113. https://doi.org/10.2147/IJN.S321984spa
dc.relation.referencesWeksler, B., Romero, I. A., & Couraud, P. O. (2013). The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids and Barriers of the CNS, 10(1), 1–10. https://doi.org/10.1186/2045-8118- 10-16/TABLES/1spa
dc.relation.referencesWolf-Grosse, S., Rokstad, A. M., Ali, S., Lambris, J. D., Mollnes, T. E., Nilsen, A. M., & Stenvik, J. (2017). Iron oxide nanoparticles induce cytokine secretion in a complement-dependent manner in a human whole blood model. International Journal of Nanomedicine, 12, 3927. https://doi.org/10.2147/IJN.S136453spa
dc.relation.referencesWu, H. Y., Chung, M. C., Wang, C. C., Huang, C. H., Liang, H. J., & Jan, T. R. (2013). Iron oxide nanoparticles suppress the production of IL-1beta via the secretory lysosomal pathway in murine microglial cells. Particle and Fibre Toxicology, 10(1), 1–11. https://doi.org/10.1186/1743-8977-10- 46/FIGURES/5spa
dc.relation.referencesXie, J., Shen, Z., Anraku, Y., Kataoka, K., & Chen, X. (2019). Nanomaterial-based blood-brain-barrier (BBB) crossing strategies. Biomaterials, 224, 119491. https://doi.org/10.1016/J.BIOMATERIALS.2019.119491spa
dc.relation.referencesYang, Y. M., Feng, X. Y., Yin, L. K., Li, C. C., Li, A. N., Jia, J., Wang, X. Lou, Du, Z. G., & Jin, L. X. (2013). In vivo USPIO-enhanced MR signal characteristics of secondary degeneration in the ipsilateral substantia nigra after middle cerebral artery occlusion at 3T. Journal of Neuroradiology, 40(3), 198–203. https://doi.org/10.1016/J.NEURAD.2012.11.002spa
dc.relation.referencesZanganeh, S., Hutter, G., Spitler, R., Lenkov, O., Mahmoudi, M., Shaw, A., Pajarinen, J. S., Nejadnik, H., Goodman, S., Moseley, M., Coussens, L. M., & Daldrup-Link, H. E. (2016). Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nature Nanotechnology, 11(11), 986. https://doi.org/10.1038/NNANO.2016.168spa
dc.relation.referencesZhu, C., Gao, Y., Li, H., Meng, S., Li, L., Francisco, J. S., & Zeng, X. C. (2016). Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planarpeptide network. Proceedings of the National Academy of Sciences of the United States of America, 113(46), 12946–12951. https://doi.org/10.1073/PNAS.1616138113/- /DCSUPPLEMENTALspa
dc.relation.referencesZhu, F. D., Hu, Y. J., Yu, L., Zhou, X. G., Wu, J. M., Tang, Y., Qin, D. L., Fan, Q. Z., & Wu, A. G. (2021). Nanoparticles: A Hope for the Treatment of Inflammation in CNS. Frontiers in Pharmacology, 12. https://doi.org/10.3389/FPHAR.2021.683935spa
dc.relation.referencesZhu, M. T., Wang, B., Wang, Y., Yuan, L., Wang, H. J., Wang, M., Ouyang, H., Chai, Z. F., Feng, W. Y., & Zhao, Y. L. (2011). Endothelial dysfunction and inflammation induced by iron oxide nanoparticle exposure: Risk factors for early atherosclerosis. Toxicology Letters, 203(2), 162–171. https://doi.org/10.1016/J.TOXLET.2011.03.021spa
dc.relation.referencesAnnavarapu, S., & Nanda, V. (2009). Mirrors in the PDB: Left-handed -turns guide design with D-amino acids. BMC Structural Biology, 9. https://doi.org/10.1186/1472-6807-9-61spa
dc.relation.referencesBen Haim, L., & Rowitch, D. H. (2016). Functional diversity of astrocytes in neural circuit regulation. Nature Reviews Neuroscience 2016 18:1, 18(1), 31–41. https://doi.org/10.1038/NRN.2016.159spa
dc.relation.referencesBiswas, S., Bachay, G., Chu, J., Hunter, D. D., & Brunken, W. J. (2017). Laminin-Dependent Interaction between Astrocytes and Microglia: A Role in Retinal Angiogenesis. The American Journal of Pathology, 187(9), 2112. https://doi.org/10.1016/J.AJPATH.2017.05.016spa
dc.relation.referencesChiu, A. Y., Espinosa De Los Monteros, A., Cole, R. A., Loera, S., & De Vellis, J. (1991). Laminin and slaminin are produced and released by astrocytes, schwann cells, and schwannomas in culture. Glia, 4(1), 11–24. https://doi.org/10.1002/GLIA.440040103spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.decsEnfermedades Neurodegenerativasspa
dc.subject.decsNeurodegenerative Diseaseseng
dc.subject.proposalImágenes de resonancia magnéticaspa
dc.subject.proposalNanopartículas de USPIOspa
dc.subject.proposalBiomarcadorspa
dc.subject.proposalMagnetic resonance imagingeng
dc.subject.proposalUSPIO nanoparticleseng
dc.titleDeterminación in vitro de la biocompatibilidad de un péptido marcador acoplado a nanopartículas USPIO en un modelo de neuroinflamación inducidaspa
dc.title.translatedIn vitro determination of the biocompatibility of a marker peptide coupled to USPIO nanoparticles in an induced neuroinflammation model.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1019132780.2023.pdf
Tamaño:
1.22 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: