Riesgo de crédito en préstamos de libre inversión: un modelo predictivo multiclase para clasificación de default, prepago y pago total

dc.contributor.advisorGómez Portilla, Karollspa
dc.contributor.authorMedina Wintaco, Peterson Brianspa
dc.date.accessioned2025-09-16T18:46:28Z
dc.date.available2025-09-16T18:46:28Z
dc.date.issued2025
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa gestión del riesgo de crédito es una de las tareas más importantes para las entidades originadoras de créditos, para lo cual la comprensión del nivel de riesgo de cada cliente y de cada cartera es fundamental. Una evaluación exhaustiva del riesgo crédito permite determinar la suficiencia de las reservas que las entidades bancarias deben tener para cubrir posibles pérdidas, para lo cual se requiere una alta precisión en la medición del riesgo. En este sentido, todo lo que genere incertidumbre respecto a la operación de crédito debe ser considerada, incluyendo la probabilidad de default, pero también la probabilidad de prepago del crédito. El prepago o la amortización del capital de un crédito, genera un nuevo cronograma de pagos y reduce el monto de los intereses totales a pagar lo cual afecta el capital de deuda. Para las entidades de crédito es importante estimar la probabilidad de que un cliente prepague un crédito, ya que esto no solo ayuda a evaluar su capacidad de pago mejorando la evaluación del riesgo crédito, sino que también genera incertidumbre sobre la madurez efectiva de los créditos otorgados lo que puede tener diversas repercusiones en su situación financiera. Por lo anterior, no solo el riesgo de default debe ser cuantificado y gestionado, sino que también lo debe ser el riesgo de prepago. Este trabajo usa un modelo predictivo multiclase para clasificación de default, prepago y pago total, el cual se basa en métodos de machine learning. Los resultados muestran que el mejor modelo fue el Gradient Boosting con oversampling incluyendo variables macroeconómicas. Esto muestra que un modelo que logre captar factores de riesgo sistémico mejora su capacidad predicción. (Texto tomado de la fuente).spa
dc.description.abstractCredit risk management is one of the most important tasks for credit-originating institutions, for which understanding the risk level of each client and each portfolio is essential. A thorough evaluation of credit risk allows for determining whether the reserves that banking institutions must hold are sufficient to cover potential losses, which requires high precision in risk measurement. In this regard, any factor that introduces uncertainty in the credit operation must be considered, including not only the probability of default, but also the probability of loan prepayment. The prepayment or amortization of a loan’s principal results in a new payment schedule and reduces the total amount of interest to be paid, which affects the outstanding debt capital. For credit institutions, estimating the probability that a customer will prepay a loan is important, as it not only helps assess the client’s repayment capacity—thereby improving credit risk evaluation—but also introduces uncertainty about the actual maturity of the issued loans, which can have various implications for the institution’s financial position. Therefore, not only default risk must be quantified and managed, but also prepayment risk. This study employs a multiclass predictive model for classifying default, prepayment, and full repayment, based on machine learning methods. The results show that the best-performing model was Gradient Boosting with oversampling, including macroeconomic variables. This demonstrates that a model capable of capturing systemic risk factors enhances its predictive performance.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Económicasspa
dc.description.researchareaTeoría y política económicaspa
dc.format.extentx, 67 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88821
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ciencias Económicasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Económicas - Maestría en Ciencias Económicasspa
dc.relation.referencesAgarwal, S., Ambrose, B. W., & Chomsisengphet, S. (2015). Regulating consumer financial products: Evidence from credit cards. The Quarterly Journal of Economics, 130(1), 111–164. Recuperado de https://doi.org/10.1093/qje/qju037
dc.relation.referencesAgarwal, S., Driscoll, J. C., Gabaix, X., & Laibson, D. (2006). Learning in the credit card market. NBER Working Paper No. 13822. Recuperado de https://doi.org/10.3386/w13822
dc.relation.referencesAggarwal, C. C. (2018). Machine Learning for Text. Springer.
dc.relation.referencesAkerlof, G. A. (1970). The Market for "Lemons": Quality Uncertainty and the Market Mechanism. The Quarterly Journal of Economics, 84(3), 488-500. Recuperado de https://doi.org/10.2307/1879431
dc.relation.referencesAlonso, C., & Berggrun, P. (2015). Introducción al análisis de riesgo financiero. Bogotá: Ecoe Ediciones.
dc.relation.referencesAlvi J., Arif I., Nizam K., (2024). Advancing financial resilience: A systematic review of default prediction models and future directions in credit risk management. Recuperado de https://www.sciencedirect.com/science/article/pii/S240584402415801X
dc.relation.referencesAsobancaria. (2022). Dinámica de la cartera de consumo: riesgos y perspectivas (Boletín Económico No. 1357). Asociación Bancaria y de Entidades Financieras de Colombia. Recuperado de https://www.asobancaria.com/wp-content/uploads/2022/12/1357_BE.pdf
dc.relation.referencesAsobancaria. (2024). Boletín Económico No. 1449: Comportamiento del crédito. Recuperado de https://www.asobancaria.com/wp-content/uploads/2024/11/1449-BE.pdf
dc.relation.referencesBanco de la República. (2024). Reporte de estabilidad financiera – Primer semestre de 2024. Recuperado de https://www.banrep.gov.co/es/reporte-estabilidad-financiera
dc.relation.referencesBank for International Settlement [BIS]. (2000). Principles for the Management of Credit Risk. Recuperado de https://www.bis.org/publ/bcbs75.pdf
dc.relation.referencesBank for International Settlement [BIS]. (2017). Comité de Supervisión Bancaria de Basilea Resumen de las reformas de Basiela III. Recuperado de https://www.bis.org/bcbs/publ/d424_hlsummary_es.pdf
dc.relation.referencesBank for International Settlement [BIS]. (2025). Consultative Document Principles for the management of credit risk. Recuperado de https://www.bis.org/publ/bcbs75.pdf
dc.relation.referencesBayona Rodríguez, H. (2010). Una metodología para la cuantificación del riesgo de crédito de un portafolio de consumo en Colombia. Universidad de los Andes. Recuperado de https://repositorio.uniandes.edu.co/bitstreams/87fb2574-54b8-44fe-b2cd-9e2d72a63e0f/download
dc.relation.referencesBhattacharya, R., Wilson, B., & Soyer, R. (2017). A Bayesian approach to modeling mortgage default and prepayment. Recuperado de https://arxiv.org/pdf/1706.07677
dc.relation.referencesBorrero-Tigreros, D., & Bedoya-Leiva, O. (2020). Predicción de riesgo crediticio en Colombia usando técnicas de inteligencia artificial. Revista Ingenio Magno, 11(1), 50–63. Recuperado de https://dialnet.unirioja.es/servlet/articulo?codigo=9514504
dc.relation.referencesCaicedo, E., Claramunt, M., & Casanovas, M. (2011). Medición del riesgo de crédito mediante modelos estructurales: una aplicación al mercado colombiano. 24(42), 73-100. Bogotá, Colombia: Cuadernos de Administración. Recuperado de https://www.redalyc.org/pdf/205/20520042004.pdf
dc.relation.referencesChan-Lau J., Hu R., Mungo L., Qu R., Xin W., Zhong C., (2024). Monitoring Privately-held Firms' Default Risk in Real Time: A Signal-Knowledge Transfer Learning Model. Recuperado de https://www.imf.org/en/Publications/WP/Issues/2024/06/07/Monitoring-Privately-held-Firms-Default-Risk-in-Real-Time-A-Signal-Knowledge-Transfer-549982
dc.relation.referencesChernov, M., Dunn, B. R., & Longstaff, F. A. (2016). Macroeconomic-driven prepayment risk and the valuation of mortgage-backed securities. The Review of Financial Studies, 31(3), 1132–1173. Recuperado de https://www.nber.org/system/files/working_papers/w22096/w22096.pdf
dc.relation.referencesDinov, I. D. (2023). Data Science and Predictive Analytics: Biomedical and Health Applications Using R. Springer.
dc.relation.referencesDoria, F., Luciano, E., & Semeraro, P. (2022). Machine learning techniques in joint default assessment. arXiv preprint arXiv:2205.01524. Recuperado de https://arxiv.org/pdf/2205.01524
dc.relation.referencesElul, R. (2006). Residential mortgage default. Federal Reserve Bank of Philadelphia Business Review, Q3, 21–30. Recuperado de https://www.philadelphiafed.org/-/media/frbp/assets/economy/articles/business-review/2006/q3/br_q3-2006-3_residential_mortgage.pdf
dc.relation.referencesFondo Monetario Internacional. (s.f). La solidez del sistema financiero. (D. d. FMI, Ed.) Washington. Recuperado de https://www.imf.org/es/About/Factsheets/Financial-System-Soundness
dc.relation.referencesGerardi, K., Willen, P., & Zhang, D. (2020). Mortgage prepayment, race, and monetary policy. Brookings Papers on Economic Activity, Recuperado de https://bcf.princeton.edu/wp-content/uploads/2020/11/mortgageprepayment_race_monetarypolicy.pdf
dc.relation.referencesGéron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (2.ª ed.). O'Reilly Media.
dc.relation.referencesGoldstein, B. A., Navar, A. M., & Carter, R. E. (2017). Moving beyond regression techniques in cardiovascular risk prediction: Applying machine learning to address analytic challenges. European Heart Journal, 38(23), 1805-1814. Recuperado de https://pubmed.ncbi.nlm.nih.gov/27436868/
dc.relation.referencesGuo, H., Yin, H., Dong, C., Yang, G., & Zhou, Z. (2017). Learning from class-imbalanced data: Review of methods and applications. Expert Systems with Applications, 73, 220-239. Recuperado de https://www.researchgate.net/publication/311977198_Learning_from_class-imbalanced_data_Review_of_methods_and_applications
dc.relation.referencesJoseph, V.R. (2022). Optimal ratio for data splitting. Statistical Analysis and Data Mining: The ASA Data Science Journal, 15(4), 531–538. Recuperado de https://arxiv.org/abs/2202.03326
dc.relation.referencesKatcher B., Li G., Mezza A., & Ramos S., (2024). One month longer, one month later? Prepayments in the auto loan market. Journal of Banking & Finance, Recuperado de https://www.federalreserve.gov/econres/feds/files/2024056pap.pdf
dc.relation.referencesKelleher, J. D. (2023). Data Science: An Introduction. MIT Press.
dc.relation.referencesKelleher, J. D., Mac Namee, B., & D'Arcy, A. (2020). Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies. MIT Press.
dc.relation.referencesKoller, T., Goedhart, M., & Wessels, D. (2015). Valuation: Measuring and Managing the Value of Companies. John Wiley & Sons, Incorporated.
dc.relation.referencesLee JW, Sohn SY, (2021). Evaluating borrowers’ default risk with a spatial probit model reflecting the distance in their relational network. Recuperado de https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0261737
dc.relation.referencesLi, Z., Li, K., Yao, X., & Wen, Q. (2019). Predicting Prepayment and Default Risks of Unsecured Consumer Loans in Online Lending. Emerging Markets Finance and Trade. 55(1), 118-132. Recuperado de https://doi.org/10.1080/1540496X.2018.1479251
dc.relation.referencesMedina-Olivares, H., Lindgren, F., Calabrese, R., & Crook, J. (2023). Joint model for longitudinal and spatio-temporal survival data: An application to mortgage loan performance. Recuperado de https://arxiv.org/pdf/2311.04008
dc.relation.referencesNaili M., Lahrichi Y., (2022). Banks’ credit risk, systematic determinants and specific factors: Recent evidence from emerging markets. Recuperado de https://www.sciencedirect.com/science/article/pii/S2405844022002481
dc.relation.referencesPereda, A., (2025) Systemic Risk and Default Cascades in Global Equity Markets: Extending the Gai-Kapadia Framework with Stochastic Simulations and Network Analysis. Recuperado de https://arxiv.org/abs/2504.01969
dc.relation.referencesPerotti, L., Grzelak, L. A., & Oosterlee, C. W. (2022). Modeling and replication of the prepayment option of mortgages including behavioral uncertainty. Recuperado de https://arxiv.org/pdf/2410.21110
dc.relation.referencesPoslavskaya, E., & Korolev, A. (2023). Encoding categorical data: Is there yet anything 'hotter' than one-hot encoding? Recuperado de https://arxiv.org/pdf/2312.16930
dc.relation.referencesProbst, P., Wright, M. N., & Boulesteix, A. L. (2019). Hyperparameters and tuning strategies for random forest. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(3), e1301. Recuperado de https://arxiv.org/pdf/1804.03515
dc.relation.referencesRajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Liu, P. J., ... & Dean, J. (2018). Scalable and accurate deep learning with electronic health records. NPJ Digital Medicine, 1(1), 18. Recuperado de https://www.nature.com/articles/s41746-018-0029-1
dc.relation.referencesRichard, S. F., & Roll, R. (1989). Prepayments on fixed-rate mortgage-backed securities. Journal of Portfolio Management, 15(3), 73–82. Recuperado de https://www.anderson.ucla.edu/documents/areas/fac/finance/1989-1.pdf
dc.relation.referencesRoy, J. K., & Vasa, L. (2025). Transforming credit risk assessment: A systematic review of AI and machine learning applications. Journal of Infrastructure Policy and Development, 9(1), 9652. Recuperado de https://www.researchgate.net/publication/388221989_Transforming_credit_risk_assessment_A_systematic_review_of_AI_and_machine_learning_applications
dc.relation.referencesRussell, S. J., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach (4.ª ed.). Pearson.
dc.relation.referencesSalazar Villano, F. E. (2013). Cuantificación del riesgo de incumplimiento en créditos de libre inversión: un ejercicio econométrico para una entidad bancaria del municipio de Popayán, Colombia. Estudios Gerenciales, 416-427. Recuperado de https://www.icesi.edu.co/revistas/index.php/estudios_gerenciales/article/view/1733/PDF
dc.relation.referencesSarker, I.H. (2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2(3). Recuperado de https://www.researchgate.net/publication/350297716_Machine_Learning_Algorithms_Real-World_Applications_and_Research_Directions
dc.relation.referencesShalev-Shwartz, S., & Ben-David, S. (2014). Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press.
dc.relation.referencesSiddique, A., Khan, M. A., & Khan, Z. (2022). The effect of credit risk management and bank-specific factors on the financial performance of South Asian commercial banks. Asian Journal of Accounting Research, 7(2), 182-194. Recuperado de https://www.emerald.com/insight/content/doi/10.1108/ajar-08-2020-0071/full/html
dc.relation.referencesSivakulasingam, S., Wang, H., Wong, S. T., Ganatra, M. A., & Luo, J. (2024). Credit risk prediction using machine learning and deep learning: A study on credit card customers. Risks, 12(11), 174.
dc.relation.referencesStiglitz, J. E., & Weiss, A. (1981). Credit Rationing in Markets with Imperfect Information. The American Economic Review, 71(3), 393-410. Recuperado de https://www.jstor.org/stable/1802787
dc.relation.referencesSuperintendencia Financiera de Colombia [SFC]. (1995). Circular Básica Contable y Financiera (Circular Externa 100 de 1995). Recuperado de https://www.superfinanciera.gov.co/inicio/normativa/normativa-general/circular-basica-contable-y-financiera-circular-externa--de---15466
dc.relation.referencesSuperintendencia Financiera de Colombia [SFC]. (2019). Información financiera con fines de supervisón Bancos - NIIF. Recuperado de https://www.superfinanciera.gov.co/publicacion/10084375
dc.relation.referencesSuperintendencia Financiera de Colombia [SFC]. (2021). Circular Externa 018 de 2021. Bogotá, Colombia. Recuperado de https://www.superfinanciera.gov.co/publicaciones/10106589/normativanormativa-generalcirculares-externas-cartas-circulares-y-resoluciones-desde-el-ano-circulares-externascirculares-externas-10106589/
dc.relation.referencesSuperintendencia Financiera de Colombia. (2024). Estadísticas de la evolución de la cartera de créditos. Recuperado de https://www.superfinanciera.gov.co/publicaciones/10115251/estadisticas-de-la-evolucion-de-la-cartera-de-creditos
dc.relation.referencesSuperintendencia Financiera de Colombia. (2025). Histórico información financiera con fines de supervisión Bancos - NIIF. Recuperado de https://www.superfinanciera.gov.co/publicaciones/10115077/historico-informacion-financiera-con-fines-de-supervision-bancos-niif/
dc.relation.referencesSuperintendencia Financiera de Colombia. (2025). Sistema financiero colombiano en cifras - diciembre 2024. Recuperado de https://www.superfinanciera.gov.co/publicaciones/10115516/sistema-financiero-colombiano-en-cifras-diciembre-2024
dc.relation.referencesTharwat, A. (2018). Classification assessment methods. Applied Computing and Informatics, 17(1), 168-192. Recuperado de https://www.emerald.com/insight/content/doi/10.1016/j.aci.2018.08.003/full/html
dc.relation.referencesTuysuz, S. (2024). Prepayment and default risk: A review. Journal of Economics, Finance and Accounting (JEFA), 11(6), 43–59. Recuperado de https://doi.org/10.17261/Pressacademia.2024.1896
dc.relation.referencesUrbina P., M. (2017). Determinantes del riesgo de crédito bancario: Evidencia en latinoamérica [Tesis de maestría, Universidad de Chile]. Santiago de Chile, Chile. Recuperado de https://repositorio.uchile.cl/bitstream/handle/2250/149796/Urbina%20Poveda%20Myriam.pdf?sequence=1&isAllowed=y
dc.relation.referencesWasserbarcher, H. & Spindler, M., (2021). Machine learning for financial forecasting, planning and analysis: recent developments and pitfalls. Recuperado de https://arxiv.org/pdf/2107.04851
dc.relation.referencesWorld Bank. (2021). Colombia: Financial Sector Assessment Program – Technical Note: Climate Stress Test of the Banking System. Washington, DC: World Bank. Recuperado de https://documents1.worldbank.org/curated/en/957831635911537578/pdf/Not-So-Magical-Realism-A-Climate-Stress-Test-of-the-Colombian-Banking-System.pdf
dc.relation.referencesYe X., Yu F., & Zhao R., (2022). Credit derivatives and corporate default prediction. Journal of Banking & Finance, Recuperado de https://www.sciencedirect.com/science/article/abs/pii/S0378426622000188
dc.relation.referencesZhang, C., & Ma, Y. (2018). Ensemble Machine Learning: Methods and Applications. Springer.
dc.relation.referencesZhang, Q. (2015). Modeling the probability of mortgage default via logistic regression and survival análisis. Recuperado de https://digitalcommons.uri.edu/theses/541/
dc.relation.referencesZhao, S., & Zou, J. (2021). Predicting loan defaults using logistic regression. Journal of Student Research, 10(1). Recuperado de https://doi.org/10.47611/jsrhs.v10i1.1326
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc330 - Economía::332 - Economía financieraspa
dc.subject.jelG21 Banks • Depository Institutions • Micro Finance Institutions • Mortgageseng
dc.subject.jelG32 Financing Policy • Financial Risk and Risk Management • Capital and Ownership Structure • Value of Firms • Goodwilleng
dc.subject.jelG53 Financial Literacyeng
dc.subject.proposalRiesgo de créditospa
dc.subject.proposalRiesgo de prepagospa
dc.subject.proposalRiesgo de incumplimientospa
dc.subject.proposalAprendizaje automáticospa
dc.subject.proposalCréditos libre inversiónspa
dc.subject.proposalCredit riskeng
dc.subject.proposalPrepayment riskeng
dc.subject.proposalDefault riskeng
dc.subject.proposalMachine learningeng
dc.subject.proposalUnrestricted personal loanseng
dc.subject.unescoGestión de riesgosspa
dc.subject.unescoRisk managementeng
dc.subject.unescoFinanciaciónspa
dc.subject.unescoFinancingeng
dc.subject.unescoModelo de simulaciónspa
dc.subject.unescoSimulation modelseng
dc.titleRiesgo de crédito en préstamos de libre inversión: un modelo predictivo multiclase para clasificación de default, prepago y pago totalspa
dc.title.translatedCredit risk in unrestricted personal loans: a multiclass predictive model for classifying default, prepayment, and full repaymenteng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
PETERSON BRIAN MEDINA WINTACO DNI 1018419539.pdf
Tamaño:
654.16 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Económicas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: