Riesgo de crédito en préstamos de libre inversión: un modelo predictivo multiclase para clasificación de default, prepago y pago total
dc.contributor.advisor | Gómez Portilla, Karoll | spa |
dc.contributor.author | Medina Wintaco, Peterson Brian | spa |
dc.date.accessioned | 2025-09-16T18:46:28Z | |
dc.date.available | 2025-09-16T18:46:28Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | La gestión del riesgo de crédito es una de las tareas más importantes para las entidades originadoras de créditos, para lo cual la comprensión del nivel de riesgo de cada cliente y de cada cartera es fundamental. Una evaluación exhaustiva del riesgo crédito permite determinar la suficiencia de las reservas que las entidades bancarias deben tener para cubrir posibles pérdidas, para lo cual se requiere una alta precisión en la medición del riesgo. En este sentido, todo lo que genere incertidumbre respecto a la operación de crédito debe ser considerada, incluyendo la probabilidad de default, pero también la probabilidad de prepago del crédito. El prepago o la amortización del capital de un crédito, genera un nuevo cronograma de pagos y reduce el monto de los intereses totales a pagar lo cual afecta el capital de deuda. Para las entidades de crédito es importante estimar la probabilidad de que un cliente prepague un crédito, ya que esto no solo ayuda a evaluar su capacidad de pago mejorando la evaluación del riesgo crédito, sino que también genera incertidumbre sobre la madurez efectiva de los créditos otorgados lo que puede tener diversas repercusiones en su situación financiera. Por lo anterior, no solo el riesgo de default debe ser cuantificado y gestionado, sino que también lo debe ser el riesgo de prepago. Este trabajo usa un modelo predictivo multiclase para clasificación de default, prepago y pago total, el cual se basa en métodos de machine learning. Los resultados muestran que el mejor modelo fue el Gradient Boosting con oversampling incluyendo variables macroeconómicas. Esto muestra que un modelo que logre captar factores de riesgo sistémico mejora su capacidad predicción. (Texto tomado de la fuente). | spa |
dc.description.abstract | Credit risk management is one of the most important tasks for credit-originating institutions, for which understanding the risk level of each client and each portfolio is essential. A thorough evaluation of credit risk allows for determining whether the reserves that banking institutions must hold are sufficient to cover potential losses, which requires high precision in risk measurement. In this regard, any factor that introduces uncertainty in the credit operation must be considered, including not only the probability of default, but also the probability of loan prepayment. The prepayment or amortization of a loan’s principal results in a new payment schedule and reduces the total amount of interest to be paid, which affects the outstanding debt capital. For credit institutions, estimating the probability that a customer will prepay a loan is important, as it not only helps assess the client’s repayment capacity—thereby improving credit risk evaluation—but also introduces uncertainty about the actual maturity of the issued loans, which can have various implications for the institution’s financial position. Therefore, not only default risk must be quantified and managed, but also prepayment risk. This study employs a multiclass predictive model for classifying default, prepayment, and full repayment, based on machine learning methods. The results show that the best-performing model was Gradient Boosting with oversampling, including macroeconomic variables. This demonstrates that a model capable of capturing systemic risk factors enhances its predictive performance. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Económicas | spa |
dc.description.researcharea | Teoría y política económica | spa |
dc.format.extent | x, 67 páginas | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88821 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias Económicas | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias Económicas - Maestría en Ciencias Económicas | spa |
dc.relation.references | Agarwal, S., Ambrose, B. W., & Chomsisengphet, S. (2015). Regulating consumer financial products: Evidence from credit cards. The Quarterly Journal of Economics, 130(1), 111–164. Recuperado de https://doi.org/10.1093/qje/qju037 | |
dc.relation.references | Agarwal, S., Driscoll, J. C., Gabaix, X., & Laibson, D. (2006). Learning in the credit card market. NBER Working Paper No. 13822. Recuperado de https://doi.org/10.3386/w13822 | |
dc.relation.references | Aggarwal, C. C. (2018). Machine Learning for Text. Springer. | |
dc.relation.references | Akerlof, G. A. (1970). The Market for "Lemons": Quality Uncertainty and the Market Mechanism. The Quarterly Journal of Economics, 84(3), 488-500. Recuperado de https://doi.org/10.2307/1879431 | |
dc.relation.references | Alonso, C., & Berggrun, P. (2015). Introducción al análisis de riesgo financiero. Bogotá: Ecoe Ediciones. | |
dc.relation.references | Alvi J., Arif I., Nizam K., (2024). Advancing financial resilience: A systematic review of default prediction models and future directions in credit risk management. Recuperado de https://www.sciencedirect.com/science/article/pii/S240584402415801X | |
dc.relation.references | Asobancaria. (2022). Dinámica de la cartera de consumo: riesgos y perspectivas (Boletín Económico No. 1357). Asociación Bancaria y de Entidades Financieras de Colombia. Recuperado de https://www.asobancaria.com/wp-content/uploads/2022/12/1357_BE.pdf | |
dc.relation.references | Asobancaria. (2024). Boletín Económico No. 1449: Comportamiento del crédito. Recuperado de https://www.asobancaria.com/wp-content/uploads/2024/11/1449-BE.pdf | |
dc.relation.references | Banco de la República. (2024). Reporte de estabilidad financiera – Primer semestre de 2024. Recuperado de https://www.banrep.gov.co/es/reporte-estabilidad-financiera | |
dc.relation.references | Bank for International Settlement [BIS]. (2000). Principles for the Management of Credit Risk. Recuperado de https://www.bis.org/publ/bcbs75.pdf | |
dc.relation.references | Bank for International Settlement [BIS]. (2017). Comité de Supervisión Bancaria de Basilea Resumen de las reformas de Basiela III. Recuperado de https://www.bis.org/bcbs/publ/d424_hlsummary_es.pdf | |
dc.relation.references | Bank for International Settlement [BIS]. (2025). Consultative Document Principles for the management of credit risk. Recuperado de https://www.bis.org/publ/bcbs75.pdf | |
dc.relation.references | Bayona Rodríguez, H. (2010). Una metodología para la cuantificación del riesgo de crédito de un portafolio de consumo en Colombia. Universidad de los Andes. Recuperado de https://repositorio.uniandes.edu.co/bitstreams/87fb2574-54b8-44fe-b2cd-9e2d72a63e0f/download | |
dc.relation.references | Bhattacharya, R., Wilson, B., & Soyer, R. (2017). A Bayesian approach to modeling mortgage default and prepayment. Recuperado de https://arxiv.org/pdf/1706.07677 | |
dc.relation.references | Borrero-Tigreros, D., & Bedoya-Leiva, O. (2020). Predicción de riesgo crediticio en Colombia usando técnicas de inteligencia artificial. Revista Ingenio Magno, 11(1), 50–63. Recuperado de https://dialnet.unirioja.es/servlet/articulo?codigo=9514504 | |
dc.relation.references | Caicedo, E., Claramunt, M., & Casanovas, M. (2011). Medición del riesgo de crédito mediante modelos estructurales: una aplicación al mercado colombiano. 24(42), 73-100. Bogotá, Colombia: Cuadernos de Administración. Recuperado de https://www.redalyc.org/pdf/205/20520042004.pdf | |
dc.relation.references | Chan-Lau J., Hu R., Mungo L., Qu R., Xin W., Zhong C., (2024). Monitoring Privately-held Firms' Default Risk in Real Time: A Signal-Knowledge Transfer Learning Model. Recuperado de https://www.imf.org/en/Publications/WP/Issues/2024/06/07/Monitoring-Privately-held-Firms-Default-Risk-in-Real-Time-A-Signal-Knowledge-Transfer-549982 | |
dc.relation.references | Chernov, M., Dunn, B. R., & Longstaff, F. A. (2016). Macroeconomic-driven prepayment risk and the valuation of mortgage-backed securities. The Review of Financial Studies, 31(3), 1132–1173. Recuperado de https://www.nber.org/system/files/working_papers/w22096/w22096.pdf | |
dc.relation.references | Dinov, I. D. (2023). Data Science and Predictive Analytics: Biomedical and Health Applications Using R. Springer. | |
dc.relation.references | Doria, F., Luciano, E., & Semeraro, P. (2022). Machine learning techniques in joint default assessment. arXiv preprint arXiv:2205.01524. Recuperado de https://arxiv.org/pdf/2205.01524 | |
dc.relation.references | Elul, R. (2006). Residential mortgage default. Federal Reserve Bank of Philadelphia Business Review, Q3, 21–30. Recuperado de https://www.philadelphiafed.org/-/media/frbp/assets/economy/articles/business-review/2006/q3/br_q3-2006-3_residential_mortgage.pdf | |
dc.relation.references | Fondo Monetario Internacional. (s.f). La solidez del sistema financiero. (D. d. FMI, Ed.) Washington. Recuperado de https://www.imf.org/es/About/Factsheets/Financial-System-Soundness | |
dc.relation.references | Gerardi, K., Willen, P., & Zhang, D. (2020). Mortgage prepayment, race, and monetary policy. Brookings Papers on Economic Activity, Recuperado de https://bcf.princeton.edu/wp-content/uploads/2020/11/mortgageprepayment_race_monetarypolicy.pdf | |
dc.relation.references | Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow (2.ª ed.). O'Reilly Media. | |
dc.relation.references | Goldstein, B. A., Navar, A. M., & Carter, R. E. (2017). Moving beyond regression techniques in cardiovascular risk prediction: Applying machine learning to address analytic challenges. European Heart Journal, 38(23), 1805-1814. Recuperado de https://pubmed.ncbi.nlm.nih.gov/27436868/ | |
dc.relation.references | Guo, H., Yin, H., Dong, C., Yang, G., & Zhou, Z. (2017). Learning from class-imbalanced data: Review of methods and applications. Expert Systems with Applications, 73, 220-239. Recuperado de https://www.researchgate.net/publication/311977198_Learning_from_class-imbalanced_data_Review_of_methods_and_applications | |
dc.relation.references | Joseph, V.R. (2022). Optimal ratio for data splitting. Statistical Analysis and Data Mining: The ASA Data Science Journal, 15(4), 531–538. Recuperado de https://arxiv.org/abs/2202.03326 | |
dc.relation.references | Katcher B., Li G., Mezza A., & Ramos S., (2024). One month longer, one month later? Prepayments in the auto loan market. Journal of Banking & Finance, Recuperado de https://www.federalreserve.gov/econres/feds/files/2024056pap.pdf | |
dc.relation.references | Kelleher, J. D. (2023). Data Science: An Introduction. MIT Press. | |
dc.relation.references | Kelleher, J. D., Mac Namee, B., & D'Arcy, A. (2020). Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies. MIT Press. | |
dc.relation.references | Koller, T., Goedhart, M., & Wessels, D. (2015). Valuation: Measuring and Managing the Value of Companies. John Wiley & Sons, Incorporated. | |
dc.relation.references | Lee JW, Sohn SY, (2021). Evaluating borrowers’ default risk with a spatial probit model reflecting the distance in their relational network. Recuperado de https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0261737 | |
dc.relation.references | Li, Z., Li, K., Yao, X., & Wen, Q. (2019). Predicting Prepayment and Default Risks of Unsecured Consumer Loans in Online Lending. Emerging Markets Finance and Trade. 55(1), 118-132. Recuperado de https://doi.org/10.1080/1540496X.2018.1479251 | |
dc.relation.references | Medina-Olivares, H., Lindgren, F., Calabrese, R., & Crook, J. (2023). Joint model for longitudinal and spatio-temporal survival data: An application to mortgage loan performance. Recuperado de https://arxiv.org/pdf/2311.04008 | |
dc.relation.references | Naili M., Lahrichi Y., (2022). Banks’ credit risk, systematic determinants and specific factors: Recent evidence from emerging markets. Recuperado de https://www.sciencedirect.com/science/article/pii/S2405844022002481 | |
dc.relation.references | Pereda, A., (2025) Systemic Risk and Default Cascades in Global Equity Markets: Extending the Gai-Kapadia Framework with Stochastic Simulations and Network Analysis. Recuperado de https://arxiv.org/abs/2504.01969 | |
dc.relation.references | Perotti, L., Grzelak, L. A., & Oosterlee, C. W. (2022). Modeling and replication of the prepayment option of mortgages including behavioral uncertainty. Recuperado de https://arxiv.org/pdf/2410.21110 | |
dc.relation.references | Poslavskaya, E., & Korolev, A. (2023). Encoding categorical data: Is there yet anything 'hotter' than one-hot encoding? Recuperado de https://arxiv.org/pdf/2312.16930 | |
dc.relation.references | Probst, P., Wright, M. N., & Boulesteix, A. L. (2019). Hyperparameters and tuning strategies for random forest. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(3), e1301. Recuperado de https://arxiv.org/pdf/1804.03515 | |
dc.relation.references | Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Liu, P. J., ... & Dean, J. (2018). Scalable and accurate deep learning with electronic health records. NPJ Digital Medicine, 1(1), 18. Recuperado de https://www.nature.com/articles/s41746-018-0029-1 | |
dc.relation.references | Richard, S. F., & Roll, R. (1989). Prepayments on fixed-rate mortgage-backed securities. Journal of Portfolio Management, 15(3), 73–82. Recuperado de https://www.anderson.ucla.edu/documents/areas/fac/finance/1989-1.pdf | |
dc.relation.references | Roy, J. K., & Vasa, L. (2025). Transforming credit risk assessment: A systematic review of AI and machine learning applications. Journal of Infrastructure Policy and Development, 9(1), 9652. Recuperado de https://www.researchgate.net/publication/388221989_Transforming_credit_risk_assessment_A_systematic_review_of_AI_and_machine_learning_applications | |
dc.relation.references | Russell, S. J., & Norvig, P. (2020). Artificial Intelligence: A Modern Approach (4.ª ed.). Pearson. | |
dc.relation.references | Salazar Villano, F. E. (2013). Cuantificación del riesgo de incumplimiento en créditos de libre inversión: un ejercicio econométrico para una entidad bancaria del municipio de Popayán, Colombia. Estudios Gerenciales, 416-427. Recuperado de https://www.icesi.edu.co/revistas/index.php/estudios_gerenciales/article/view/1733/PDF | |
dc.relation.references | Sarker, I.H. (2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2(3). Recuperado de https://www.researchgate.net/publication/350297716_Machine_Learning_Algorithms_Real-World_Applications_and_Research_Directions | |
dc.relation.references | Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding Machine Learning: From Theory to Algorithms. Cambridge University Press. | |
dc.relation.references | Siddique, A., Khan, M. A., & Khan, Z. (2022). The effect of credit risk management and bank-specific factors on the financial performance of South Asian commercial banks. Asian Journal of Accounting Research, 7(2), 182-194. Recuperado de https://www.emerald.com/insight/content/doi/10.1108/ajar-08-2020-0071/full/html | |
dc.relation.references | Sivakulasingam, S., Wang, H., Wong, S. T., Ganatra, M. A., & Luo, J. (2024). Credit risk prediction using machine learning and deep learning: A study on credit card customers. Risks, 12(11), 174. | |
dc.relation.references | Stiglitz, J. E., & Weiss, A. (1981). Credit Rationing in Markets with Imperfect Information. The American Economic Review, 71(3), 393-410. Recuperado de https://www.jstor.org/stable/1802787 | |
dc.relation.references | Superintendencia Financiera de Colombia [SFC]. (1995). Circular Básica Contable y Financiera (Circular Externa 100 de 1995). Recuperado de https://www.superfinanciera.gov.co/inicio/normativa/normativa-general/circular-basica-contable-y-financiera-circular-externa--de---15466 | |
dc.relation.references | Superintendencia Financiera de Colombia [SFC]. (2019). Información financiera con fines de supervisón Bancos - NIIF. Recuperado de https://www.superfinanciera.gov.co/publicacion/10084375 | |
dc.relation.references | Superintendencia Financiera de Colombia [SFC]. (2021). Circular Externa 018 de 2021. Bogotá, Colombia. Recuperado de https://www.superfinanciera.gov.co/publicaciones/10106589/normativanormativa-generalcirculares-externas-cartas-circulares-y-resoluciones-desde-el-ano-circulares-externascirculares-externas-10106589/ | |
dc.relation.references | Superintendencia Financiera de Colombia. (2024). Estadísticas de la evolución de la cartera de créditos. Recuperado de https://www.superfinanciera.gov.co/publicaciones/10115251/estadisticas-de-la-evolucion-de-la-cartera-de-creditos | |
dc.relation.references | Superintendencia Financiera de Colombia. (2025). Histórico información financiera con fines de supervisión Bancos - NIIF. Recuperado de https://www.superfinanciera.gov.co/publicaciones/10115077/historico-informacion-financiera-con-fines-de-supervision-bancos-niif/ | |
dc.relation.references | Superintendencia Financiera de Colombia. (2025). Sistema financiero colombiano en cifras - diciembre 2024. Recuperado de https://www.superfinanciera.gov.co/publicaciones/10115516/sistema-financiero-colombiano-en-cifras-diciembre-2024 | |
dc.relation.references | Tharwat, A. (2018). Classification assessment methods. Applied Computing and Informatics, 17(1), 168-192. Recuperado de https://www.emerald.com/insight/content/doi/10.1016/j.aci.2018.08.003/full/html | |
dc.relation.references | Tuysuz, S. (2024). Prepayment and default risk: A review. Journal of Economics, Finance and Accounting (JEFA), 11(6), 43–59. Recuperado de https://doi.org/10.17261/Pressacademia.2024.1896 | |
dc.relation.references | Urbina P., M. (2017). Determinantes del riesgo de crédito bancario: Evidencia en latinoamérica [Tesis de maestría, Universidad de Chile]. Santiago de Chile, Chile. Recuperado de https://repositorio.uchile.cl/bitstream/handle/2250/149796/Urbina%20Poveda%20Myriam.pdf?sequence=1&isAllowed=y | |
dc.relation.references | Wasserbarcher, H. & Spindler, M., (2021). Machine learning for financial forecasting, planning and analysis: recent developments and pitfalls. Recuperado de https://arxiv.org/pdf/2107.04851 | |
dc.relation.references | World Bank. (2021). Colombia: Financial Sector Assessment Program – Technical Note: Climate Stress Test of the Banking System. Washington, DC: World Bank. Recuperado de https://documents1.worldbank.org/curated/en/957831635911537578/pdf/Not-So-Magical-Realism-A-Climate-Stress-Test-of-the-Colombian-Banking-System.pdf | |
dc.relation.references | Ye X., Yu F., & Zhao R., (2022). Credit derivatives and corporate default prediction. Journal of Banking & Finance, Recuperado de https://www.sciencedirect.com/science/article/abs/pii/S0378426622000188 | |
dc.relation.references | Zhang, C., & Ma, Y. (2018). Ensemble Machine Learning: Methods and Applications. Springer. | |
dc.relation.references | Zhang, Q. (2015). Modeling the probability of mortgage default via logistic regression and survival análisis. Recuperado de https://digitalcommons.uri.edu/theses/541/ | |
dc.relation.references | Zhao, S., & Zou, J. (2021). Predicting loan defaults using logistic regression. Journal of Student Research, 10(1). Recuperado de https://doi.org/10.47611/jsrhs.v10i1.1326 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.ddc | 330 - Economía::332 - Economía financiera | spa |
dc.subject.jel | G21 Banks • Depository Institutions • Micro Finance Institutions • Mortgages | eng |
dc.subject.jel | G32 Financing Policy • Financial Risk and Risk Management • Capital and Ownership Structure • Value of Firms • Goodwill | eng |
dc.subject.jel | G53 Financial Literacy | eng |
dc.subject.proposal | Riesgo de crédito | spa |
dc.subject.proposal | Riesgo de prepago | spa |
dc.subject.proposal | Riesgo de incumplimiento | spa |
dc.subject.proposal | Aprendizaje automático | spa |
dc.subject.proposal | Créditos libre inversión | spa |
dc.subject.proposal | Credit risk | eng |
dc.subject.proposal | Prepayment risk | eng |
dc.subject.proposal | Default risk | eng |
dc.subject.proposal | Machine learning | eng |
dc.subject.proposal | Unrestricted personal loans | eng |
dc.subject.unesco | Gestión de riesgos | spa |
dc.subject.unesco | Risk management | eng |
dc.subject.unesco | Financiación | spa |
dc.subject.unesco | Financing | eng |
dc.subject.unesco | Modelo de simulación | spa |
dc.subject.unesco | Simulation models | eng |
dc.title | Riesgo de crédito en préstamos de libre inversión: un modelo predictivo multiclase para clasificación de default, prepago y pago total | spa |
dc.title.translated | Credit risk in unrestricted personal loans: a multiclass predictive model for classifying default, prepayment, and full repayment | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- PETERSON BRIAN MEDINA WINTACO DNI 1018419539.pdf
- Tamaño:
- 654.16 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias Económicas
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: