Estudio de oligomerización y mecanismos de regulación génica de la enzima nicotinamida/nicotinato mononucleótido adenililtransferasa de Leishmania braziliensis

dc.contributor.advisorcontreras, luis
dc.contributor.authorRojas Ramos, Bryan Steven
dc.contributor.cvlacRojas Ramos, Bryan Stevenspa
dc.contributor.orcidhttps://orcid.org/0000-0002-7196-2288spa
dc.contributor.researchgateRojas Ramos, Bryan Stevenspa
dc.contributor.researchgroupLibbiq Unspa
dc.date.accessioned2023-07-07T19:57:09Z
dc.date.available2023-07-07T19:57:09Z
dc.date.issued2023
dc.descriptionilustracionesspa
dc.description.abstractLa Leishmaniasis es una enfermedad que puede manifestarse en tres formas clínicas: cutánea, mucocutánea y visceral, siendo causada por parásitos protozoarios del género Leishmania, del cual se conocen 22 especies patogénicas para el hombre. Según la Organización Mundial de la Salud, anualmente se registran 1,3 millones de casos, siendo Colombia uno de los países afectados, donde circulan varias especies, incluyendo Leishmania braziliensis. Actualmente, no se dispone de vacunas aprobadas para la prevención de la Leishmaniasis y el tratamiento de primera línea, como son los antimoniatos pentavalentes, generan diversos y graves efectos adversos destacándose nefrotoxicidad, hepatotoxicidad y mialgias. Adicionalmente, se ha reportado la aparición de cepas farmacorresistentes. Por lo tanto, se requiere la exploración de nuevas dianas terapéuticas, como, por ejemplo, la síntesis del dinucleótido de nicotinamida y adenina (NAD), que se destaca como una ruta metabólica promisoria, dada la importancia de este transportador electrónico. En los últimos años, nuestro grupo de investigación se ha enfocado en la obtención y caracterización de las proteínas del metabolismo del NAD de protozoarios como Giardia lamblia, Plasmodium falciparum, Trypanosoma cruzi y L. braziliensis. Específicamente en Leishmania, se han realizado trabajos para la caracterización de proteínas como la NAD quinasa y la nicotinamida/nicotinato mononucleótido adenilil transferasa (LbNMNAT); sin embargo, estos estudios se han enfocado principalmente en su actividad enzimática y estructura cuaternaria en ausencia de sustratos. En este trabajo se analizó el efecto que ejercen los sustratos de la enzima LbNMNAT sobre su oligomerización, encontrándose que sus organizaciones en forma de dímeros, trímeros y tetrámeros, no es modificada por la presencia de los sustratos analizados. Esta evidencia estructural es concordante con la cinética de tipo Michaelis-Menten reportada para la enzima, puesto que los sustratos no ejercen regulación homo-trópica sobre la LbNMNAT. Por otro lado, considerando que uno de los principales niveles de regulación de expresión génica en los tripanosomátidos es post-transcripcional, entonces se efectuó una aproximación bioinformática basada en la identificación de sitios aceptores de splicing, para delimitar las regiones no codificantes (UTRs) del gen lbnmnat. En este sentido, se encontraron numerosos sitios aceptores que podrían generar UTRs de diferentes longitudes, como se ha reportado para otras especies del parásito. Adicionalmente, se identificaron 29 proteínas de unión a ARN (RBPs) con probabilidad de reconocer dichas UTRs, las cuales participan en procesos diversos como splicing, poli-adenilación y represión post-transcripcional. De este modo, se indican proteínas que posiblemente explican las diferencias reportadas por otros autores para la abundancia del transcrito del gen lbnmnat a través del ciclo biológico de L. braziliensis. Con el propósito de comprobar experimentalmente algunos de los hallazgos bioinformáticos de este trabajo, se implementó la técnica de Retro-Transcripción acoplada a PCR (RT-PCR), partiendo del ARN obtenido de promastigotes de L. braziliensis, para identificar los UTRs asociados al gen lbnmnat en este estadio del parásito. Dicha técnica permitió la síntesis de ADN complementario apropiado para el estudio de UTRs y la amplificación de un producto de menor tamaño al esperado para el UTR 5’. Este resultado indica la necesidad de determinar la secuencia exacta del amplicón mediante eventuales técnicas de aislamiento y secuenciamiento de ADN. En conclusión, el presente trabajo aporta evidencia experimental y bioinformática acerca del efecto estructural que ejercen los sustratos de la enzima LbNMNAT sobre su oligomerización y acerca de sus UTRs y proteínas de unión, que podrían explicar mecanismos de regulación de la expresión del gen lbnmnat en el parásito L. braziliensis. (Texto tomado de la fuente)spa
dc.description.abstractLeishmaniasis is a disease that can manifest in three clinical forms: cutaneous, mucocutaneous, and visceral. This illness is caused by protozoan parasites of the genus Leishmania. There are 22 human pathogenic species. According to the World Health Organization, 1.3 million cases are recorded annually. Colombia is one of the affected countries, where several species circulate, including Leishmania braziliensis. Currently, there are no approved vaccines available for the prevention of Leishmaniasis, and first-line treatment, such as pentavalent antimonates, generate various and serious adverse effects, including nephrotoxicity, hepatotoxicity, and myalgia. Additionally, drug-resistant strains have been reported. Therefore, the exploration of new therapeutic targets is required, such as the synthesis of nicotinamide adenine dinucleotide (NAD), which stands out as a promising metabolic pathway, since the importance of this electronic transporter. In recent years, our research group has focused on obtaining and characterizing NAD metabolism proteins from protozoa such as Giardia lamblia, Plasmodium falciparum, Trypanosoma cruzi and L. braziliensis. Specifically, in Leishmania research has been carried out to characterize these kinds of proteins: NAD kinase and nicotinamide/nicotinate mononucleotide adenylyl transferase (LbNMNAT); however, these studies have mainly focused on their enzymatic activity and quaternary structure in the absence of substrates. In this Thesis, the effect of the substrates of the LbNMNAT enzyme on its oligomerization was analyzed, finding that its organizations in the form of dimers, trimers, and tetramers, is not modified by the presence of the analyzed substrates. This structural evidence is consistent with the Michaelis-Menten kinetics reported for the enzyme since the substrates do not exert homotropic regulation on LbNMNAT. On the other hand, considering that one of the main levels of regulation of gene expression in trypanosomatids is post-transcriptional, a bioinformatics approach based on the identification of splicing acceptor sites was carried out to delimit the non-coding regions (UTRs) of the lbnmnat gene. In this sense, numerous acceptor sites were found that could generate UTRs of different lengths, as has been reported for other species of the parasite. Additionally, 29 RNA-binding proteins (RBPs) were identified with a probability of recognizing these UTRs, which participate in various processes, for instance, splicing, polyadenylation, and post-transcriptional repression. In this way, this study indicates proteins that possibly explain the differences reported by other authors for the abundance of the lbnmnat gene transcript throughout the life cycle of L. braziliensis. In order to experimentally verify some of the bioinformatic findings of this work, the Retro-Transcription coupled to PCR (RT-PCR) technique was implemented, starting from the RNA obtained from L. braziliensis promastigotes, to identify the UTRs associated with the lbnmnat gene in this stage of the parasite. This technique allowed the synthesis of complementary DNA appropriate for studying UTRs and amplifying a product smaller than expected for the 5' UTR. This result indicates the need to determine the exact sequence of the amplicon by possible DNA isolation and sequencing techniques. In conclusion, the present work provides experimental and bioinformatic evidence about the structural effect of the LbNMNAT enzyme's substrates on its oligomerization and its UTRs and binding proteins, which could explain mechanisms of regulation of the expression of the lbnmnat gene in the parasite L. braziliensis.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Bioquímicaspa
dc.description.researchareabioquímica básicaspa
dc.format.extentxix, 116 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84167
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.referencesWorld Health Organization, “leishmanisis,” Leishmanisis. https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed Oct. 10, 2022).spa
dc.relation.referencesManual de procedimientos para la vigilancia y control de las leishmaniasis. Washington, D.C: Organización Panamericana de la Salud, 2019.spa
dc.relation.referencesR. Tandon et al., “Parasitology International Identification of protein biomarkers of attenuation and immunogenicity of centrin or p27 gene deleted live vaccine candidates of Leishmania against visceral leishmaniasis,” Parasitol. Int., vol. 92, no. December 2021, p. 102661, 2023, doi: 10.1016/j.parint.2022.102661.spa
dc.relation.referencesA. Ponte-Sucre and M. Padrón-Nieves, Drug resistance in Leishmania parasites: Consequences, molecular mechanisms and possible treatments. 2018.spa
dc.relation.referencesJ. Medina, L. C. Saavedra, L. H. Patiño, M. Muñoz, and J. D. Ramírez, “Comparative analysis of the transcriptional responses of five Leishmania species to trivalent antimony,” Parasit. Vectors, 2021, doi: 10.1186/s13071-021-04915-y.spa
dc.relation.referencesDirectrices para el tratamiento de las leishmaniasis en la Región de las Américas., Segunda ed. Organización Panamericana de la Salud, 2022.spa
dc.relation.referencesD. Álvarez, P. Zambrano, M. Ayala, E. Parra, J. Padilla, and J. Escobar, “guía para la atención clínica integral del paciente con leishmaniasis,” Inst. Nac. salud. Bogotá, 2010.spa
dc.relation.referencesJ. S. de Toledo, E. J. R. Vasconcelos, T. R. Ferreira, and A. K. Cruz, “Using genomic information to understand Leishmania biology,” Open Parasitol. J., vol. 4, no. SPEC. ISS.1, pp. 156–166, 2010, doi: 10.2174/1874421401004010156.spa
dc.relation.referencesR. Lin and J. Yu, “The role of NAD + metabolism in macrophages in age-related macular degeneration,” Mech. Ageing Dev., vol. 209, no. November 2022, p. 111755, 2023, doi: 10.1016/j.mad.2022.111755.spa
dc.relation.referencesE. Katsyuba, M. Romani, D. Hofer, and J. Auwerx, “NAD+ homeostasis in health and disease,” Nat. Metab., vol. 2, no. 1, pp. 9–31, 2020, doi: 10.1038/s42255-019-0161-5.spa
dc.relation.referencesC. Fortunato, “The key role of the NAD biosynthetic enzyme nicotinamide mononucleotide adenylyltransferase in regulating cell functions,” no. October 2021, pp. 562–572, 2022, doi: 10.1002/iub.2584.spa
dc.relation.referencesL. Sorci et al., “Targeting NAD Biosynthesis in Bacterial Pathogens: Structure-Based Development of Inhibitors of Nicotinate Mononucleotide Adenylyltransferase NadD,” Chem. Biol., vol. 16, no. 8, pp. 849–861, 2009, doi: 10.1016/j.chembiol.2009.07.006.spa
dc.relation.referencesH. Zhang, T. Zhou, O. Kurnasov, S. Cheek, N. V. Grishin, and A. Osterman, “Crystal structures of E. coli nicotinate mononucleotide adenylyltransferase and its complex with deamido-NAD,” Structure, vol. 10, no. 1, pp. 69–79, 2002, doi: 10.1016/S0969-2126(01)00693-1.spa
dc.relation.referencesX. Zhang, O. V. Kurnasov, S. Karthikeyan, N. V. Grishin, A. L. Osterman, and H. Zhang, “Structural characterization of a human cytosolic NMN/NaMN adenylyltransferase and implication in human NAD biosynthesis,” J. Biol. Chem., vol. 278, no. 15, pp. 13503–13511, 2003, doi: 10.1074/jbc.M300073200.spa
dc.relation.referencesWHO, “Leishmanisis: status of endemicity of cutaneus leishmaniasis,” 2021. https://apps.who.int/neglected_diseases/ntddata/leishmaniasis/leishmaniasis.html (accessed Jan. 05, 2023).spa
dc.relation.referencesOrganización Panamericana de la Salud, “Informe epidemiológico de las Américas. Núm. 11,” 2022.spa
dc.relation.referencesInstituto Nacional de Salud, “Boletín epidemilógico semana 51,” 2022. [Online]. Available: https://www.ins.gov.co/buscador-eventos/BoletinEpidemiologico/2022_Boletín_epidemiologico_semana_51.pdf.spa
dc.relation.referencesMinisterio de Salud y Protección social Colombia, “Ejecución presupuestal,” Ejecución mensual, 2022.spa
dc.relation.referencesJ. M. Bezemer, B. P. Freire-Paspuel, H. D. F. H. Schallig, H. J. C. de Vries, and M. Calvopiña, “Leishmania species and clinical characteristics of Pacific and Amazon cutaneous leishmaniasis in Ecuador and determinants of health-seeking delay: a cross-sectional study,” BMC Infect. Dis., vol. 23, no. 1, p. 395, 2023, doi: 10.1186/s12879-023-08377-8.spa
dc.relation.referencesL. A. Delgado-Noguera et al., “Diversity and geographical distribution of Leishmania species and the emergence of Leishmania (Leishmania) infantum and L. (Viannia) panamensis in Central-Western Venezuela,” Acta Trop., vol. 242, p. 106901, 2023, doi: https://doi.org/10.1016/j.actatropica.2023.106901.spa
dc.relation.referencesA. Sandoval-Juárez, G. Minaya-Gómez, N. Rojas-Palomino, and O. Cáceres, “Identificación de especies de Leishmania en pacientes derivados al Instituto Nacional de Salud del Perú,” Rev. Peru. Med. Exp. Salud Publica, vol. 37, no. 1, pp. 87–92, 2020, doi: 10.17843/rpmesp.2020.371.4514.spa
dc.relation.referencesR. Oddone et al., “Development of a multilocus microsatellite typing approach for discriminating strains of Leishmania (Viannia) species,” J. Clin. Microbiol., vol. 47, no. 9, pp. 2818–2825, 2009, doi: 10.1128/JCM.00645-09.spa
dc.relation.referencesS. Jagadesh et al., “Spatial variations in Leishmaniasis: A biogeographic approach to mapping the distribution of Leishmania species,” One Heal., vol. 13, 2021, doi: 10.1016/j.onehlt.2021.100307.spa
dc.relation.referencesJ. D. Marco et al., “Multilocus sequence typing approach for a broader range of species of Leishmania genus: Describing parasite diversity in Argentina,” Infect. Genet. Evol., vol. 30, pp. 308–317, 2015, doi: 10.1016/j.meegid.2014.12.031.spa
dc.relation.referencesJ. Salgado-Almario, C. A. Hernández, and C. Ovalle-Bracho, “Geographical distribution of Leishmania species in Colombia, 1985-2017,” Biomedica, vol. 39, no. 2, pp. 278–290, 2019, doi: 10.7705/biomedica.v39i3.4312.spa
dc.relation.referencesC. A. Correa-Cárdenas et al., “Distribution, treatment outcome and genetic diversity of Leishmania species in military personnel from Colombia with cutaneous leishmaniasis,” BMC Infect. Dis., vol. 20, no. 1, pp. 1–11, 2020, doi: 10.1186/s12879-020-05529-y.spa
dc.relation.referencesH. J. Venial et al., “Investigation of Leishmania (Viannia) braziliensis Infection in Wild Mammals in Brazil,” Acta Parasitol., vol. 67, no. 2, pp. 648–657, 2022, doi: 10.1007/s11686-021-00498-x.spa
dc.relation.referencesJ. F. Marinho-Júnior et al., “High levels of infectiousness of asymptomatic Leishmania (Viannia) braziliensis infections in wild rodents highlights their importance in the epidemiology of American Tegumentary Leishmaniasis in Brazil,” PLoS Negl. Trop. Dis., vol. 17, no. 1, pp. 1–23, 2023, doi: 10.1371/journal.pntd.0010996.spa
dc.relation.referencesJ. Lago et al., “Efficacy of intralesional meglumine antimoniate in the treatment of canine tegumentary leishmaniasis: A Randomized controlled trial,” PLoS Negl.Trop. Dis., vol. 17, no. 2, pp. 1–10, 2023, doi: 10.1371/journal.pntd.0011064.spa
dc.relation.referencesM. J. McConville and T. Naderer, “Metabolic pathways required for the intracellular survival of Leishmania,” Annu. Rev. Microbiol., vol. 65, pp. 543–561, 2011, doi: 10.1146/annurev-micro-090110-102913.spa
dc.relation.referencesJ. M. Andrade and S. M. F. Murta, “Functional analysis of cytosolic tryparedoxin peroxidase in antimony-resistant and -susceptible Leishmania braziliensis and Leishmania infantum lines,” Parasites and Vectors, vol. 7, no. 1, pp. 1–9, 2014, doi: 10.1186/1756-3305-7-406.spa
dc.relation.referencesL. Rivas and C. Gil, Eds., Drug Discovery for Leishmaniasis. The Royal Society of Chemistry, 2018.spa
dc.relation.referencesM. F. Laranjeira-Silva, I. Hamza, and J. M. Pérez-Victoria, “Iron and Heme Metabolism at the Leishmania–Host Interface,” Trends Parasitol., vol. 36, no. 3, pp. 279–289, 2020, doi: 10.1016/j.pt.2019.12.010.spa
dc.relation.references“DNDi,” Visceral leishmaniasis DNDI-0690, 2021. https://dndi.org/research-development/portfolio/dndi-0690/ (accessed Dec. 27, 2021).spa
dc.relation.referencesL. Sellés Vidal, C. L. Kelly, P. M. Mordaka, and J. T. Heap, “Review of NAD(P)H-dependent oxidoreductases: Properties, engineering and application,” Biochim. Biophys. Acta - Proteins Proteomics, vol. 1866, no. 2, pp. 327–347, 2018, doi: 10.1016/j.bbapap.2017.11.005.spa
dc.relation.referencesF. J. Martínez-Morcillo et al., “Non-canonical roles of NAMPT and PARP in inflammation,” Dev. Comp. Immunol., vol. 115, no. October 2020, 2021, doi: 10.1016/j.dci.2020.103881.spa
dc.relation.referencesC. Nelson, Lehninger’s principles of biochemistry, vol. 53, no. 9. 2013.spa
dc.relation.referencesS. Amjad et al., “Role of NAD+ in regulating cellular and metabolic signaling pathways,” Mol. Metab., vol. 49, no. February, p. 101195, 2021, doi: 10.1016/j.molmet.2021.101195.spa
dc.relation.referencesL. E. Contreras, “Obtención y caracterización bioquímica y funcional de la enzima recombinante nicotinamida/nicotinato mononucleótido adenilil transferasa de Leishmania braziliensis (LbNMNAT),” Bogotá, Colombia: Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Química, 2016.spa
dc.relation.referencesR. Petrelli, K. Felczak, and L. Cappellacci, “NMN / NaMN Adenylyltransferase ( NMNAT ) and NAD Kinase ( NADK ) Inhibitors : Chemistry and Potential Therapeutic Applications,” Curr. Med. Chem., vol. 18, no. 13, pp. 1973–1992,2011.spa
dc.relation.referencesC. Dölle, R. Skoge, M. VanLinden, and M. Ziegler, “NAD Biosynthesis in Humans - Enzymes, Metabolites and Therapeutic Aspects,” Curr. Top. Med. Chem., vol. 13, no. 23, pp. 2907–2917, 2015, doi: 10.2174/15680266113136660206.spa
dc.relation.referencesC. Lau, M. Niere, and M. Ziegler, “The NMN/NaMN adenylyltransferase (NMNAT) protein family,” Front. Biosci., vol. 14, no. 2, pp. 410–431, 2009, doi: 10.2741/3252.spa
dc.relation.referencesI. D’Angelo, N. Raffaelli, V. Dabusti, T. Lorenzi, G. Magni, and M. Rizzi, “Structure of nicotinamide mononucleotide adenylyltransferase: a key enzyme in NAD(+) biosynthesis.,” Structure, vol. 8, no. 9, pp. 993–1004, Sep. 2000, doi: 10.1016/s0969-2126(00)00190-8.spa
dc.relation.referencesM. Di Stefano, L. Galassi, and G. Magni, “Unique expression pattern of human nicotinamide mononucleotide adenylyltransferase isozymes in red blood cells,” Blood Cells, Mol. Dis., vol. 45, no. 1, pp. 33–39, 2010, doi: 10.1016/j.bcmd.2010.04.003.spa
dc.relation.referencesL. E. Contreras, M. Ziegler, and M. H. Ramírez Hernández, “Kinetic and oligomeric study of Leishmania braziliensis nicotinate/nicotinamide mononucleotide adenylyltransferase,” Heliyon, vol. 6, no. 4, 2020, doi: 10.1016/j.heliyon.2020.e03733.spa
dc.relation.referencesL. Sorci et al., “Initial-rate kinetics of human NMN-adenylyltransferases: Substrate and metal ion specificity, inhibition by products and multisubstrate analogues, and isozyme contributions to NAD+ biosynthesis,” Biochemistry, vol. 46, no. 16, pp. 4912–4922, 2007, doi: 10.1021/bi6023379.spa
dc.relation.referencesL. E. Contreras, R. Neme, and M. H. Ramírez, “Identification and functional evaluation of Leishmania braziliensis Nicotinamide Mononucleotide Adenylyltransferase,” Protein Expr. Purif., vol. 115, pp. 26–33, 2015, doi: 10.1016/j.pep.2015.08.022.spa
dc.relation.referencesW. Dahmen, B. Webb, and J. Preiss, “The deamido-diphosphopyridine nucleotide and diphosphopyridine nucleotide pyrophosphorylases of Escherichia coli and yeast,” Arch. Biochem. Biophys., vol. 120, no. 2, pp. 440–450, 1967, doi: 10.1016/0003-9861(67)90262-7.spa
dc.relation.referencesG. Magni, N. Raffaelli, M. Emanuelli, A. Amici, P. Natalini, and S. Ruggieri, “Nicotinamide-mononucleotide adenylyltransferases from yeast and other microorganisms,” Methods Enzymol., vol. 280, no. 1995, pp. 248–255, 1997, doi:10.1016/S0076-6879(97)80116-4.spa
dc.relation.referencesL. J. Ortiz Joya, “Caracterización de la nicotinamida/nicotinato mononucleótido adenilil transferasa de Leishmania braziliensis (LbNMNAT) mediante análisis estructural y de interacción proteína-proteína,” Repos. Inst. Bibl. Digit., vol. 1, pp. 1–101, 2018, [Online]. Available: https://repositorio.unal.edu.co/handle/unal/64043.spa
dc.relation.referencesR. G. Zhai, M. Rizzi, and S. Garavaglia, “Nicotinamide/nicotinic acid mononucleotide adenylyltransferase, new insights into an ancient enzyme,” Cell. Mol. Life Sci., vol. 66, no. 17, pp. 2805–2818, 2009, doi: 10.1007/s00018-009-0047-x.spa
dc.relation.referencesF. Berger, C. Lau, M. Dahlmann, and M. Ziegler, “Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms,” J. Biol. Chem., vol. 280, no. 43, pp. 36334–36341, 2005, doi: 10.1074/jbc.M508660200.spa
dc.relation.referencesF. J. Olivas-aguirre, A. Wall-medrano, G. A. González-aguilar, J. A. López-díaz, E. Álvarez-parrilla, and L. A. De, “Taninos hidrolizables ; bioquímica , aspectos nutricionales y analíticos y efectos en la salud,” vol. 31, no. 1, pp. 55–66, 2015, doi: 10.3305/nh.2015.31.1.7699.spa
dc.relation.referencesE. Werner, M. Ziegler, F. Lerner, M. Schweiger, and U. Heinemann, “Crystal structure of human nicotinamide mononucleotide adenylyltransferase in complex with NMN,” FEBS Letters, vol. 516, no. 1–3. pp. 239–244, 2002, doi: 10.1016/S0014-5793(02)02556-5.spa
dc.relation.referencesD. S. Goodsell and A. J. Olson, “Structural symmetry and protein function,” vol. 29, no. 1, pp. 105–153, 2000.spa
dc.relation.referencesR. H. Garrett and C. M. Grisham, Biochemistry, 4th ed. Belmont: Cengage Learning, 2010.spa
dc.relation.referencesB. Zarzycka, M. A. Kuenemann, M. A. Miteva, G. A. F. Nicolaes, G. Vriend, and O. Sperandio, “Stabilization of protein-protein interaction complexes through small molecules,” Drug Discov. Today, vol. 21, no. 1, pp. 48–57, 2016, doi: 10.1016/j.drudis.2015.09.011.spa
dc.relation.referencesA. D. Cirilo, C. M. Llombart, and J. J. Tamargo, Introducción a la química terapéutica, Segunda ed. Ediciones Díaz de Santos, 2003.spa
dc.relation.referencesV. C. Sershon, B. D. Santarsiero, and A. D. Mesecar, “Kinetic and X-Ray Structural Evidence for Negative Cooperativity in Substrate Binding to Nicotinate Mononucleotide Adenylyltransferase (NMAT) from Bacillus anthracis,” J. Mol. Biol., vol. 385, no. 3, pp. 867–888, 2009, doi: 10.1016/j.jmb.2008.10.037.spa
dc.relation.referencesB. Alberts et al., Molecular biology of the cell, Sixth Edit. New York: Garland Science, 2015.spa
dc.relation.referencesS. Martínez-Calvillo, J. C. Vizuet-De-Rueda, L. E. Florencio-Martínez, R. G. Manning-Cela, and E. E. Figueroa-Angulo, “Gene expression in trypanosomatid parasites,” J. Biomed. Biotechnol., vol. 2010, 2010, doi: 10.1155/2010/525241.spa
dc.relation.referencesE. R. Marvez, C. A. Ramírez, J. C. Casas, M. I. Ospina, J. M. Requena, and C. J. Puerta, “Characterization of the mRNA untranslated regions [UTR] of the Trypanosoma cruzi LYT1 isoforms derived by alternative trans-splicing,” Univ. Sci., vol. 23, no. 2, pp. 267–290, 2018, doi: 10.11144/Javeriana.SC23-2.cotm.spa
dc.relation.referencesK. Benabdellah, E. González-Rey, and A. González, “Alternative trans-splicing of the Trypanosoma cruzi LYT1 gene transcript results in compartmental and functional switch for the encoded protein,” Mol. Microbiol., vol. 65, no. 6, pp. 1559–1567, 2007, doi: 10.1111/j.1365-2958.2007.05892.x.spa
dc.relation.referencesJ. N. Agudelo Chivatá, “Leishmaniasis Cutánea, Mucosa Y Visceral, Colombia 2019,” Colombia, 2019. [Online]. Available: https://www.ins.gov.co/buscador-eventos/Informesdeevento/LEISHMANIASIS_2019.pdf.spa
dc.relation.referencesN. Bodhale et al., “Cytokines and metabolic regulation: A framework of bidirectional influences affecting Leishmania infection,” Cytokine, no. August, p. 155267, 2020, doi: 10.1016/j.cyto.2020.155267.spa
dc.relation.referencesC. Villalobos-González, “El NAD+ en parásitos extracelulares: Procesos biosintéticos y de transporte.,” 2021.spa
dc.relation.referencesY. Tomioka et al., “Ladder observation of bovine serum albumin by high resolution agarose native gel electrophoresis,” Int. J. Biol. Macromol., vol. 215, no. March, pp. 512–520, 2022, doi: 10.1016/j.ijbiomac.2022.06.118.spa
dc.relation.referencesM. Aslett et al., “TriTrypDB : a functional genomic resource for the Trypanosomatidae,” vol. 38, no. October 2009, pp. 457–462, 2010, doi: 10.1093/nar/gkp851.spa
dc.relation.referencesJ. Zuallaert, F. Godin, M. Kim, A. Soete, Y. Saeys, and W. De Neve, “SpliceRover: interpretable convolutional neural networks for improved splice site prediction,” Bioinformatics, vol. 34, no. 24, pp. 4180–4188, 2018.spa
dc.relation.referencesM. G. Reese, F. H. Eeckman, D. Kulp, and D. Haussler, “Improved splice site detection in Genie,” J. Comput. Biol., vol. 4, no. 3, pp. 311–323, 1997.spa
dc.relation.referencesS. Brunak, J. Engelbrecht, and S. Knudsen, “Prediction of human mRNA donor and acceptor sites from the DNA sequence,” J. Mol. Biol., vol. 220, no. 1, pp. 49–65, 1991.spa
dc.relation.referencesI. Paz, I. Kosti, M. Ares, M. Cline, and Y. Mandel-Gutfreund, “RBPmap: A web server for mapping binding sites of RNA-binding proteins,” Nucleic Acids Res., vol. 42, no. W1, pp. 361–367, 2014, doi: 10.1093/nar/gku406.spa
dc.relation.referencesB. Amos et al., “VEuPathDB : the eukaryotic pathogen , vector and host bioinformatics resource center,” vol. 50, no. October 2021, pp. 898–911, 2022.spa
dc.relation.referencesThermo Scientific, “DyNAmo cDNA Synthesis Kit #F-470L,” DyNAmo cDNA Synthesis Kit #F-470L, 2014. https://www.thermofisher.com/document-connect/document-connect.html?url=https%3A%2F%2Fassets.thermofisher.com%2FTFS-Assets%2FLSG%2Fmanuals%2FMAN0013405_DyNAmo_cDNA_Syn_UG.pdf&title=VXNlciBHdWlkZTogRHlOQW1vIGNETkEgU3ludGhlc2lzIEtpdA==.spa
dc.relation.referencesPromega, “RQ1 RNase-Free DNase (Cat.# M6101),” pp. 9–10, 2018, [Online]. Available: https://worldwide.promega.com/products/cloning-and-dna-markers/molecular-biology-enzymes-and-reagents/rq1-rnase_free-dnase/?catNum=M6101.spa
dc.relation.referencesE. Gasteiger, C. Hoogland, A. Gattiker, M. R. Wilkins, R. D. Appel, and A. Bairoch, “Protein identification and analysis tools on the ExPASy server,” proteomics Protoc. Handb., pp. 571–607, 2005.spa
dc.relation.referencesamersham pharmacia biotech, Gel filtration principle and methods, 8th ed. .spa
dc.relation.referencesP. D. C. Ruy et al., “Comparative transcriptomics in Leishmania braziliensis : disclosing differential gene expression of coding and putative noncoding RNAs across developmental stages,” RNA Biol., vol. 16, no. 5, pp. 639–660, 2019, doi: 10.1080/15476286.2019.1574161.spa
dc.relation.referencesB. Alberts et al., Molecular biology of the cell, 8th editio. New York: Garland Science, 2015spa
dc.relation.referencesC. Clayton, “Regulation of gene expression in trypanosomatids : living with polycistronic transcription,” 2019.spa
dc.relation.referencesQ. Liu et al., “DeepGenGrep: a general deep learning-based predictor for multiple genomic signals and regions,” Bioinformatics, vol. 38, no. July, pp. 4053–4061,2022, doi: 10.1093/bioinformatics/btac454.spa
dc.relation.referencesA. Waithaka, O. Maiakovska, D. Grimm, L. Melo, and C. C. Id, Sequences and proteins that influence mRNA processing in Trypanosoma brucei : Evolutionary conservation of SR-domain and PTB protein functions. 2022.spa
dc.relation.referencesG. Elena, G. Claudia, G. Ceballos-p, S. M. Fern, and A. M. Est, “The RNA-binding protein RBP33 dampens non-productive transcription in trypanosomes,” vol. 50, no. 21, pp. 12251–12265, 2022.spa
dc.relation.referencesM. H. Licon, F. Goodstein, D. Ortiz, S. M. Landfear, and P. A. Yates, “Distinct cis -acting elements govern purine-responsive regulation of the Leishmania donovani nucleoside transporters , LdNT1 and LdNT2,” 2020.spa
dc.relation.referencesA. Rastrojo, L. Corvo, R. Lombraña, J. C. Solana, B. Aguado, and J. M. Requena, “Analysis by RNA-seq of transcriptomic changes elicited by heat shock in Leishmania major,” no. July 2018, pp. 1–18, 2019, doi: 10.1038/s41598-019-43354-9.spa
dc.relation.referencesT. U. Consortium, “UniProt: the Universal Protein Knowledgebase in 2023,” Nucleic Acids Res., vol. 51, no. D1, pp. D523–D531, 2023, doi: 10.1093/nar/gkac1052.spa
dc.relation.referencesD. Of, N. Acids, and U. Absorption, “Quantitation of DNA and RNA with Absorption and Fluorescence Spectroscopy,” no. 1994, pp. 1–8, 2000.spa
dc.relation.referencesJ. M. Kelly, “Isolation of DNA and RNA from Leishmania BT - Protocols in Molecular Parasitology,” J. E. Hyde, Ed. Totowa, NJ: Humana Press, 1993, pp. 123–131.spa
dc.relation.referencesC. A. Ramírez, J. M. Requena, and C. J. Puerta, “Alpha tubulin genes from Leishmania braziliensis:genomic organization, gene structure and insights on their expression,” BMC Genomics, vol. 14, no. 1, p. 454, 2013, doi: 10.1186/1471-2164-14-454.spa
dc.relation.referencesM. Mohebali et al., “Gene expression analysis of antimony resistance in Leishmania tropica using quantitative real-time PCR focused on genes involved in trypanothione metabolism and drug transport,” Arch. Dermatol. Res., vol. 311, no. 1, pp. 9–17, 2019, doi: 10.1007/s00403-018-1872-2.spa
dc.relation.referencesL. Pérez-díaz, T. Caroline, and S. M. R. Teixeira, “Molecular & Biochemical Parasitology Involvement of an RNA binding protein containing Alba domain in the stage-specific regulation of beta-amastin expression in Trypanosoma cruzi,” Mol. Biochem. Parasitol., vol. 211, pp. 1–8, 2017, doi:10.1016/j.molbiopara.2016.12.005.spa
dc.relation.referencesY. Wei, H. Xiang, and W. Zhang, “Review of various NAMPT inhibitors for the treatment of cancer,” Front. Pharmacol., vol. 13, no. September, pp. 1–23, 2022, doi: 10.3389/fphar.2022.970553.spa
dc.relation.referencesA. Poniewierska-Baran, P. Warias, and K. Zgutka, “Sirtuins (SIRTs) As a Novel Target in Gastric Cancer,” Int. J. Mol. Sci., vol. 23, no. 23, 2022, doi: 10.3390/ijms232315119.spa
dc.relation.referencesS. Chubanava and J. T. Treebak, “Regular exercise effectively protects against the aging-associated decline in skeletal muscle NAD content,” Exp. Gerontol., p. 112109, 2023, doi: https://doi.org/10.1016/j.exger.2023.112109.spa
dc.relation.referencesM. Abdellatif et al., “Nicotinamide for the treatment of heart failure with preserved ejection fraction,” Sci. Transl. Med., vol. 13, no. 580, p. eabd7064, Feb. 2021, doi: 10.1126/scitranslmed.abd7064.spa
dc.relation.referencesT. Helman and N. Braidy, “Importance of NAD+ Anabolism in Metabolic, Cardiovascular and Neurodegenerative Disorders,” Drugs and Aging, vol. 40, no. 1, pp. 33–48, 2022, doi: 10.1007/s40266-022-00989-0.spa
dc.relation.referencesT. G. A. Mack et al., “Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene,” Nat. Neurosci., vol. 4, no. 12, pp. 1199–1206, 2001, doi: 10.1038/nn770.spa
dc.relation.referencesH. N. Jayaram, P. Kusumanchi, and J. A. Yalowitz, “Nmnat expression and its relation to nad metabolism,” Curr. Med. Chem., vol. 18, no. 13, pp. 1962–1972, May 2011, doi: 10.2174/092986711795590138.spa
dc.relation.referencesC. Fortunato, F. Mazzola, and N. Raffaelli, “The key role of the NAD biosynthetic enzyme nicotinamide mononucleotide adenylyltransferase in regulating cell functions,” IUBMB Life, vol. 74, no. 7, pp. 562–572, 2022, doi: 10.1002/iub.2584.spa
dc.relation.referencesD. A. Korasick, T. A. White, S. Chakravarthy, and J. J. Tanner, “NAD+ promotes assembly of the active tetramer of aldehyde dehydrogenase 7A1,” FEBS Lett., vol. 592, no. 19, pp. 3229–3238, 2018, doi: 10.1002/1873-3468.13238.spa
dc.relation.referencesS. Fekete, A. Beck, J. L. Veuthey, and D. Guillarme, “Theory and practice of size exclusion chromatography for the analysis of protein aggregates,” J. Pharm. Biomed. Anal., vol. 101, pp. 161–173, 2014, doi: 10.1016/j.jpba.2014.04.011.spa
dc.relation.referencesA. Goyon, S. Fekete, A. Beck, J. L. Veuthey, and D. Guillarme, “Unraveling the mysteries of modern size exclusion chromatography - the way to achieve confident characterization of therapeutic proteins,” J. Chromatogr. B Anal. Technol. Biomed. Life Sci., vol. 1092, no. June, pp. 368–378, 2018, doi: 10.1016/j.jchromb.2018.06.029.spa
dc.relation.referencesH. J. Yoon, L. K. Hye, B. Mikami, and W. S. Se, “Crystal structure of nicotinic acid mononucleotide adenylyltransferase from Pseudomonas aeruginosa in its apo and substrate-complexed forms reveals a fully open conformation,” J. Mol. Biol., vol. 351, no. 2, pp. 258–265, 2005, doi: 10.1016/j.jmb.2005.06.001.spa
dc.relation.referencesA. Waterhouse et al., “SWISS-MODEL: homology modelling of protein structures and complexes,” Nucleic Acids Res., vol. 46, no. W1, pp. W296–W303, Jul. 2018, doi: 10.1093/NAR/GKY427.spa
dc.relation.referencesP. Natalini, I. Biochimica, F. Medicinae, B. Mca, U. Ancona, and C. Mc, “NAD Biosynthesis in Human Placenta : Purification and Characterization of Homogeneous NMN Adenylyltransferase ’,” vol. 298, no. 1, pp. 29–34, 1992.spa
dc.relation.referencesM. Haley Licon and P. A. Yates, “Purine-responsive expression of the leishmania donovani nt3 purine nucleobase transporter is mediated by a conserved RNA stem-loop,” J. Biol. Chem., vol. 295, no. 25, pp. 8449–8459, 2020, doi: 10.1074/jbc.ra120.012696.spa
dc.relation.referencesH. H. Wippel et al., “Unveiling the partners of the DRBD2-mRNP complex , an RBP in Trypanosoma cruzi and ortholog to the yeast SR-protein Gbp2,” pp. 1–12, 2019.spa
dc.relation.referencesS. M. Ferna and A. M. Este, “Alterations in DRBD3 Ribonucleoprotein Complexes in Response to Stress in Trypanosoma brucei,” vol. 7, no. 11, pp. 1–10, 2012, doi: 10.1371/journal.pone.0048870.spa
dc.relation.referencesS. Go, T. T. Kramer, A. J. Verhoeven, R. P. J. O. Elferink, and J. C. Chang, “The extracellular lactate ‑ to ‑ pyruvate ratio modulates the sensitivity to oxidative stress ‑ induced apoptosis via the cytosolic NADH / NAD + redox state,” Apoptosis, vol. 26, no. 1, pp. 38–51, 2021, doi: 10.1007/s10495-020-01648-8.spa
dc.relation.referencesC. J. Jeffery, “An introduction to protein moonlighting.,” Biochem. Soc. Trans., vol. 42, no. 6, pp. 1679–1683, Dec. 2014, doi: 10.1042/BST20140226.spa
dc.relation.referencesB. Sharmistha, N. A. Kumar, R. Podili, A. Niyaz, and H. S. E., “Iron-Dependent RNA-Binding Activity of Mycobacterium tuberculosis Aconitase,” J. Bacteriol., vol. 189, no. 11, pp. 4046–4052, Jun. 2007, doi: 10.1128/JB.00026-07.spa
dc.relation.referencesJ. Ziveri et al., “The metabolic enzyme fructose-1,6-bisphosphate aldolase acts as a transcriptional regulator in pathogenic Francisella,” Nat. Commun., vol. 8, no. 1, p. 853, 2017, doi: 10.1038/s41467-017-00889-7.spa
dc.relation.referencesP. Das, A. Mukherjee, and S. Adak, “Glyceraldehyde-3-phosphate dehydrogenase present in extracellular vesicles from Leishmania major suppresses host TNF-alpha expression,” J. Biol. Chem., vol. 297, no. 4, p. 101198, 2021, doi: 10.1016/j.jbc.2021.101198.spa
dc.relation.referencesC. Griffoni et al., “The Rossmann fold of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a nuclear docking site for antisense oligonucleotides containing a TAAAT motif,” Biochim. Biophys. Acta - Mol. Cell Biol. Lipids, vol. 1530, no. 1, pp. 32–46, 2001, doi: https://doi.org/10.1016/S1388-1981(00)00166-9.spa
dc.relation.referencesE. Sei and N. K. Conrad, “Chapter Four - UV Cross-Linking of Interacting RNA and Protein in Cultured Cells,” in Laboratory Methods in Enzymology: Protein Part B, vol. 539, J. B. T.-M. in E. Lorsch, Ed. Academic Press, 2014, pp. 53–66.spa
dc.relation.referencesC. A. Ramírez, J. M. Requena, and C. J. Puerta, “Identification of the HSP70-II gene in Leishmania braziliensis HSP70 locus : genomic organization and UTRs characterization,” pp. 1–11, 2011.spa
dc.relation.referencesD. Clark, N. Pazdernik, and M. McGehee, Molecular biology, 3th ed. Elsevier, 2019.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.lembParasitosspa
dc.subject.lembParasiteseng
dc.subject.proposalLeishmaniasisspa
dc.subject.proposalLeishmania braziliensisspa
dc.subject.proposalNADspa
dc.subject.proposalLbNMNATspa
dc.subject.proposalOligomerizaciónspa
dc.subject.proposalRegulación post-transcripcionalspa
dc.subject.proposalUTReng
dc.subject.proposalRBPeng
dc.subject.proposalOligomerizationeng
dc.subject.proposalPost-transcriptional regulationeng
dc.titleEstudio de oligomerización y mecanismos de regulación génica de la enzima nicotinamida/nicotinato mononucleótido adenililtransferasa de Leishmania braziliensisspa
dc.title.translatedStudy of oligomerization and gene regulation mechanisms of the enzyme nicotinamide/nicotinate mononucleotide adenylyltransferase from Leishmania braziliensiseng
dc.title.translatedUntersuchung der Oligomerisierungs- und Genregulationsmechanismen des Enzyms Nicotinamid/Nicotinat-Mononukleotid-Adenylyltransferase aus Leishmania braziliensisdeu
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleINNOVANDO METODOLOGÍAS: DESARROLLO DE UN SISTEMA DE INFECCIÓN IN VITRO DE MACRÓFAGOS MURINOS CON PARÁSITOS FLUORESCENTES DE LEISHMANIA BRAZILIENSISspa
oaire.fundernameUniversidad Nacional de Colombia - Sede de Bogotá - Facultad de cienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1069752050_2023.pdf
Tamaño:
4.21 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: