Extracción verde de carotenoides de ahuyama (Cucurbita moschata Duch) usando aceite vegetal para su adición como colorante natural en una matriz alimentaria

dc.contributor.advisorFuenmayor Bobadilla, Carlos Alberto
dc.contributor.advisorDíaz Moreno, Amanda Consuelo
dc.contributor.authorBallesta Santana, Sandra Milena
dc.contributor.researchgroupBioalimentosspa
dc.contributor.researchgroupAseguramiento de la Calidad de Alimentos y Desarrollo de Nuevos Productosspa
dc.date.accessioned2022-08-30T18:45:01Z
dc.date.available2022-08-30T18:45:01Z
dc.date.issued2022
dc.descriptionilustraciones, fotografías, graficas, tablasspa
dc.description.abstractLa apariencia en los alimentos es un atributo importante y decisivo en el consumidor, por lo cual la industria emplea los colorantes a fin de otorgar características atractivas, durables y homogéneas. Actualmente en el mercado predomina el uso de colorantes de origen sintético debido a su bajo costo, durabilidad y firmeza en su pigmentación, sin embargo, diversos estudios han mostrado el impacto negativo que tiene el consumo de estos al estar relacionados con efectos tóxicos, alergénicos y hasta cancerígenos. En este sentido, se han estudiado los colorantes naturales buscando las ventajas de los colorantes artificiales y que adicionalmente tengan un aporte a la salud. Los carotenoides son pigmentos liposolubles, naturales, de coloración amarillo-naranja presentes en matrices alimentarias como la ahuyama, reconocidos por su poder antioxidante y porque algunos tienen actividad provitamina A. En este trabajo se estudiaron diferentes tecnologías para extraer los carotenoides de la ahuyama, una hortaliza cultivada en Colombia y de importante aporte nutricional. Se realizó una caracterización fisicoquímica de la ahuyama a fin de evaluar su estado de madurez comercial, teniendo en cuenta que esta tiene un efecto importante sobre el contenido de carotenoides totales (CCT). Posteriormente, se realizó un proceso de adecuación que consistió en una deshidratación por convección forzada y posterior molienda, esto con el fin facilitar el acceso a los carotenoides de la matriz. Con la harina de ahuyama obtenida y empleando aceite de girasol como solvente, se estudiaron técnicas de extracción convencional con agitación continua (CNV) y asistida con ultrasonido (US), en las que se evaluó el CCT, color y estabilidad oxidativa. Se encontró que los mejores resultados en la metodología de extracción tanto para el CCT (1244 mg β-carotenoeq/kg extracto) como para el color medido en el espacio CIELAB se obtuvieron con CNV, en un tiempo de extracción de 24 horas y una relación matriz-mezcla del 60%. Este extracto fue evaluado en almacenamiento durante 28 días, tiempo en el cual se evidenció que la disminución máxima del CCT fue del 18%, que el índice de peróxidos (IP) se mantuvo inferior a 10 mEq de oxígeno activo/kg y que el Índice de p-anisidina (IpA) no mostró variación significativa. Se realizó la inclusión del extracto de carotenoides en un yogurt evaluando su color durante 28 días, evidenciando que se logró una coloración muy similar a la de un yogurt con adición de colorante artificial, con un aporte nutricional añadido. (Texto tomado de la fuente)spa
dc.description.abstractAppearance in food is an important and decisive attribute for the consumer, which is why the industry uses colorants to provide attractive, durable and homogeneous characteristics. Currently, the use of dyes of synthetic origin predominates in the market due to their low cost, durability and firmness in their pigmentation, however, various studies have shown the negative impact of its consumption as these are related to toxic, allergenic and even carcinogenic. In this sense, natural colorants have been studied looking for the faculties of artificial colorants and that these additionally have a contribution to health. Carotenoids are fat-soluble, natural, yellow-orange pigments present in food matrices such as squash, recognized for their antioxidant power and because some have provitamin A activity. In this work, different technologies were studied to extract carotenoids from squash, a vegetable cultivated in Colombia and of important nutritional contribution. A physicochemical characterization of the squash was carried out in order to evaluate its state of commercial maturity, taking into account that this is related to the content of total carotenoids (CCT). Subsequently, an adaptation process was carried out that consisted of dehydration by forced convection and subsequent grinding, in order to facilitate access to the carotenoids of the matrix. With the pumpkin flour obtained and using sunflower oil as solvent, conventional extraction techniques with continuous agitation (CNV) and assisted with ultrasound (US) were studied, in which the content of total carotenoids (CCT), color and oxidative stability were evaluated. It was found that the best results in the extraction methodology for both CCT (1244 mg β-carotenoeq/kg extract) and for the color measured in the CIELAB space were obtained with CNV, in an extraction time of 24 hours and a ratio 60% matrix-mix. This extract was evaluated in storage for 28 days, during which time it was shown that the maximum decrease in CCT was 18%, that the peroxide index (IP) remained below 10 mEq of active oxygen/kg and that the Index of p-anisidine (IpA) did not show significant variation. The inclusion of the carotenoid extract in a yogurt was carried out, evaluating its color for 28 days, showing that a coloration very similar to that of a yogurt with the addition of artificial coloring was achieved, with an added nutritional contribution.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencia y Tecnología de Alimentosspa
dc.description.researchareaProcesamiento de alimentosspa
dc.format.extentxix, 115 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82201
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentInstituto de Ciencia y Tecnología de Alimentos (ICTA)spa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentosspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAgronet. (2018). Reporte: Área, Producción y Rendimiento Nacional por Cultivo: Ahuyama. https://www.agronet.gov.co/estadistica/paginas/home.aspx?cod=1spa
dc.relation.referencesAlbanese, D., Adiletta, G., D′Acunto, M., Cinquanta, L., y di Matteo, M. (2014). Tomato peel drying and carotenoids stability of the extracts. International Journal of Food Science & Technology, 49(11), 2458–2463. https://doi.org/10.1111/ijfs.12602spa
dc.relation.referencesAmerican Oil Chemists’ Society. (2017). Official Methods and Recommended Practices of the AOCS (7th ed.).spa
dc.relation.referencesAnnisa, A., Suryono, S., Suseno, J., y Kurniawati, R. (2018). Ultrasound-assisted extraction optimization of phenolic compounds from Psidium guajava L. using artificial neural network-genetic algorithm Related content The Best Extraction Technique for Kaempferol and Quercetin Isolation from Guava Leaves (Psidium guajava). Journal of Physics: Conference Series, 1025. https://doi.org/10.1088/1742-6596/1025/1/012020spa
dc.relation.referencesAOAC. (2012). Official Method of Analysis: Association of Analytical Chemists (G. Latimer, Ed.; 19th ed.). AOAC International.spa
dc.relation.referencesAssous, M. T. M., Saad, E. M. S., & Dyab, A. S. (2014). Enhancement of quality attributes of canned pumpkin and pineapple. Annals of Agricultural Sciences, 59(1), 9–15. https://doi.org/10.1016/J.AOAS.2014.06.002spa
dc.relation.referencesAzizah, A. H., Wee, K. C., Azizah, O., y Azizah, M. (2009). Effect of boiling and stir frying on total phenolics, carotenoids and radical scavening of pumpkin Cucurbita moschata. International Food Research Journal, 16, 45–51.spa
dc.relation.referencesBaiano, A., y del Nobile, M. A. (2015). Antioxidant Compounds from Vegetable Matrices: Biosynthesis, Occurrence, and Extraction Systems. Critical Reviews in Food Science and Nutrition, 56(12), 2053–2068. https://doi.org/10.1080/10408398.2013.812059spa
dc.relation.referencesBarreiro, J., y Sandoval, A. (2002). Operaciones de conservación de alimentos por bajas temperaturas (Equinoccio, Ed.). https://www.researchgate.net/publication/299461004_Operaciones_de_Conservacion_de_Alimentos_por_Bajas_Temperaturasspa
dc.relation.referencesBechoff, A., Chijioke, U., Tomlins, K. I., Govinden, P., Ilona, P., Westby, A., y Boy, E. (2015). Carotenoid stability during storage of yellow gari made from biofortified cassava or with palm oil. Journal of Food Composition and Analysis, 44, 36–44. https://doi.org/10.1016/j.jfca.2015.06.002spa
dc.relation.referencesBecker, D. (2016). Color Measurement. In Color trends and selection for product design: every color sells a story (1st ed.). Plastics Design Library.spa
dc.relation.referencesBergantin, C., Maietti, A., Tedeschi, P., Font, G., Manyes, L., y Marchetti, N. (2018). HPLC-UV/Vis-APCI-MS/MS determination of major carotenoids and their bioaccessibility from “delica” (Cucurbita máxima) and “violina” (Cucurbita moschata) pumpkins as food traceability markers. Molecules, 23(11). https://doi.org/10.3390/molecules23112791spa
dc.relation.referencesBoon, C. S., McClements, D. J., Weiss, J., y Decker, E. A. (2010). Factors influencing the chemical stability of carotenoids in foods. Critical Reviews in Food Science and Nutrition, 50(6), 515–532. https://doi.org/10.1080/10408390802565889spa
dc.relation.referencesCarocho, M., Morales, P., y Ferreira, I. C. F. R. (2014). Adding Molecules to Food, Pros and Cons: A Review on Synthetic and Natural Food Additives. In Trends in Food Science and Technology (Vol. 45, Issue 2, pp. 284–295). Elsevier Ltd. https://doi.org/10.1016/j.tifs.2015.06.007spa
dc.relation.referencesCásseres, E. (1981). Producción de hortalizas (IICA, Ed.; 3rd ed.).spa
dc.relation.referencesCatalán, L. F. (2016). Extracción y caracterización de β-caroteno obtenido de la cáscara de banano (Musa paradisiaca L.) evaluando el rendimiento de tres diferentes solventes de distinta polaridad para su utilización como colorante natural a escala laboratorio. Universidad de San Carlos de Guatemala.spa
dc.relation.referencesChemat, F., Fabiano-Tixier, A. S., Vian, M. A., Allaf, T., y Vorobiev, E. (2015). Solvent-free extraction of food and natural products. In TrAC - Trends in Analytical Chemistry (Vol. 71, pp. 157–168). Elsevier B.V. https://doi.org/10.1016/j.trac.2015.02.021spa
dc.relation.referencesChemat, F., Rombaut, N., Sicaire, A. G., Meullemiestre, A., Fabiano-Tixier, A. S., y Abert-Vian, M. (2017). Ultrasound assisted extraction of food and natural products. Mechanisms, techniques, combinations, protocols and applications. A review. In Ultrasonics Sonochemistry (Vol. 34, pp. 540–560). Elsevier B.V. https://doi.org/10.1016/j.ultsonch.2016.06.035spa
dc.relation.referencesChemat, F., Vian, M. A., y Cravotto, G. (2012). Green extraction of natural products: Concept and principles. International Journal of Molecular Sciences, 13(7), 8615–8627. https://doi.org/10.3390/ijms13078615spa
dc.relation.referencesChuyen, H. v., Nguyen, M. H., Roach, P. D., Golding, J. B., y Parks, S. E. (2017). Microwave-assisted extraction and ultrasound-assisted extraction for recovering carotenoids from Gac peel and their effects on antioxidant capacity of the extracts. Food Science and Nutrition, 6(1), 189–196. https://doi.org/10.1002/fsn3.546spa
dc.relation.referencesCorbu, A. R., Rotaru, A., y Nour, V. (2019). Edible vegetable oils enriched with carotenoids extracted from by-products of sea buckthorn (Hippophae rhamnoides ssp. sinensis): the investigation of some characteristic properties, oxidative stability and the effect on thermal behaviour. Journal of Thermal Analysis and Calorimetry, 142(2), 735–747. https://doi.org/10.1007/s10973-019-08875-5spa
dc.relation.referencesde Carvalho, L. M. J., Gomes, P. B., Godoy, R. L. de O., Pacheco, S., do Monte, P. H. F., de Carvalho, J. L. V., Nutti, M. R., Neves, A. C. L., Vieira, A. C. R. A., y Ramos, S. R. R. (2012). Total carotenoid content, α-carotene and β-carotene, of landrace pumpkins (Cucurbita moschata Duch): A preliminary study. Food Research International, 47(2), 337–340. https://doi.org/10.1016/j.foodres.2011.07.040spa
dc.relation.referencesDelgado-Vargas, F., Jiménez, A. R., Paredes-López, O., y Francis, F. J. (2012). Natural pigments: Carotenoids, anthocyanins, and betalains - Characteristics, biosynthesis, processing, and stability. Critical Reviews in Food Science and Nutrition, 40(3), 173–289. https://doi.org/10.1080/10408690091189257spa
dc.relation.referencesDemiray, E., Tulek, Y., y Yilmaz, Y. (2013). Degradation kinetics of lycopene, β-carotene and ascorbic acid in tomatoes during hot air drying. LWT - Food Science and Technology, 50(1), 172–176. https://doi.org/10.1016/j.lwt.2012.06.001spa
dc.relation.referencesDepartamento Nacional de Planeación. (2016, April). Pérdida y desperdicio de alimentos en Colombia - Estudio de la Dirección de Seguimiento y Evaluación de Políticas Públicas. https://mrv.dnp.gov.co/Documentos%20de%20Interes/Perdida_y_Desperdicio_de_Alimentos_en_colombia.pdfspa
dc.relation.referencesFDA. (2010). Overview of Food Ingredients, Additives y Colors | FDA. https://www.fda.gov/food/food-ingredients-packaging/overview-food-ingredients-additives-colorsspa
dc.relation.referencesFreedman, B. (2021). Gourd Family (Cucurbitaceae). The Gale Encyclopedia of Science. https://www.encyclopedia.com/science-and-technology/biographies/genetics-and-genetic-engineering-biographies/cucurbitaceaespa
dc.relation.referencesGajic, I. M. S., Savic, I. M., Gajic, D. G., y Dosic, A. (2021). Ultrasound-assisted extraction of carotenoids from orange peel using olive oil and its encapsulation in ca-alginate beads. Biomolecules, 11(2), 1–14. https://doi.org/10.3390/biom11020225spa
dc.relation.referencesGarcía-Pacheco, Y. E., Prieto-Tapias, M. J., y Fuenmayor, C. A. (2016). Cinética, modelación y pérdidas de carotenoides para el secado de ahuyama (Cucurbita moschata) en cubos. Agronomía Colombiana, 32, S57-S576. https://doi.org/10.15446/agron.colomb.v34n1supl.58382spa
dc.relation.referencesGerardi, C., Tommasi, N., Albano, C., Blando, F., Rescio, L., Pinthus, E., y Mita, G. (2015). Prunus mahaleb L. fruit extracts: a novel source for natural food pigments. European Food Research and Technology, 241(5), 683–695.spa
dc.relation.referencesGhosh, S., Sarkar, T., Das, A., Chakraborty, R., (2022). Natural colorants from plant pigments and their encapsulation: An emerging window for the food industry. LWT – Food science and technology. V: 153 (1-12). doi.org/10.1016/j.lwt.2021.112527spa
dc.relation.referencesGonzález Cárdenas, I. A. (2010). Caracterización química del color de diferentes variedades de guayaba (Psidium guajava L.) colombiana. Tesis, 84.spa
dc.relation.referencesGoula, A. M. (2013). Ultrasound-assisted extraction of pomegranate seed oil - Kinetic modeling. Journal of Food Engineering, 117(4), 492–498. https://doi.org/10.1016/j.jfoodeng.2012.10.009spa
dc.relation.referencesGoula, A. M., Ververi, M., Adamopoulou, A., y Kaderides, K. (2017). Green ultrasound-assisted extraction of carotenoids from pomegranate wastes using vegetable oils. Ultrasonics Sonochemistry, 34, 821–830. https://doi.org/10.1016/j.ultsonch.2016.07.022spa
dc.relation.referencesGouveia de Souza, A., Oliveira Santos, J. C., Conceição, M. M., Dantas Silva, M. C., y Prasad, S. (2004). A thermoanalytic and kinetic study of sunflower oil. Brazilian Journal of Chemical Engineering, 21(02), 265–273.spa
dc.relation.referencesGrant, A., y Parveen, S. (2017). All natural and clean-label preservatives and antimicrobial agents used during poultry processing and packaging. In Journal of Food Protection (Vol. 80, Issue 4, pp. 540–544). International Association for Food Protection. https://doi.org/10.4315/0362-028X.JFP-16-146spa
dc.relation.referencesGuiné, R. P. F., Pinho, S., y Barroca, M. J. (2011). Study of the convective drying of pumpkin (Cucurbita máxima). Food and Bioproducts Processing, 89(4), 422–428. https://doi.org/10.1016/j.fbp.2010.09.001spa
dc.relation.referencesHäckl, K., y Kunz, W. (2018). Some aspects of green solvents. Comptes Rendus Chimie, 21(6), 572–580. https://doi.org/10.1016/j.crci.2018.03.010spa
dc.relation.referencesHalim, H. H., y Thoo, Y. Y. (2018). Effect of ultrasound treatment on oxidative stability of sunflower oil and palm oil. In Article in International Food Research Journal. http://www.ifrj.upm.edu.myspa
dc.relation.referencesHandayani, A. D., Sutrisno, Indraswati, N., y Ismadji, S. (2008). Extraction of astaxanthin from giant tiger (Panaeus monodon) shrimp waste using palm oil: Studies of extraction kinetics and thermodynamic. Bioresource Technology, 99(10), 4414–4419. https://doi.org/10.1016/j.biortech.2007.08.028spa
dc.relation.referencesHernández-Santos, B., Rodríguez-Miranda, J., Herman-Lara, E., Torruco-Uco, J. G., Carmona-García, R., Juárez-Barrientos, J. M., Chávez-Zamudio, R., y Martínez-Sánchez, C. E. (2016). Effect of oil extraction assisted by ultrasound on the physicochemical properties and fatty acid profile of pumpkin seed oil (Cucurbita pepo). Ultrasonics Sonochemistry, 31, 429–436. https://doi.org/10.1016/j.ultsonch.2016.01.029spa
dc.relation.referencesHooshmand, H., Shabanpour, B., Moosavi-Nasab, M., y Golmakani, M. T. (2017). Optimization of carotenoids extraction from blue crab (Portunus pelagicus) and shrimp (Penaeus semisulcatus) wastes using organic solvents and vegetable oils. Journal of Food Processing and Preservation, 41(5). https://doi.org/10.1111/jfpp.13171spa
dc.relation.referencesICBF. (2005). Encuesta Nacional de la Situación Nutricional en Colombia.spa
dc.relation.referencesItle, R. A., y Kabelka, E. A. (2009). Correlation Between Lab Color Space Values and Carotenoid Content in Pumpkins and Squash (Cucurbita spp.). HortScience, 44(3), 633–637.spa
dc.relation.referencesJacobo-Valenzuela, N., Maróstica-Junior, M. R., Zazueta-Morales, J. de J., y Gallegos-Infante, J. A. (2011). Physicochemical, technological properties, and health-benefits of Cucurbita moschata Duchense vs. Cehualca. A Review. Food Research International, 44(9), 2587–2593. https://doi.org/10.1016/j.foodres.2011.04.039spa
dc.relation.referencesJones, S. T., Aryana, K. J., y Losso, J. N. (2005). Storage stability of lutein during ripening of cheddar cheese. Journal of Dairy Science, 88(5), 1661–1670. doi.org/10.3168/jds.S0022-0302(05)72838-1spa
dc.relation.referencesKaur, P., Elsayed, A., Subramanin, J., Singh, A. (2021). Encapsulation of carotenoids with sucrose by co-crystallization: Physicochemical properties, characterization and thermal stability of pigments. LWT – Food science and technology. 140, 110810, 1-10 https://doi.org/10.1016/j.lwt.2020.110810spa
dc.relation.referencesKim, D. Y., Vijayan, D., Praveenkumar, R., Han, J. I., Lee, K., Park, J. Y., Chang, W. S., Lee, J. S., y Oh, Y. K. (2016). Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus. In Bioresource Technology (Vol. 199, pp. 300–310). Elsevier Ltd. https://doi.org/10.1016/j.biortech.2015.08.107spa
dc.relation.referencesKim, S., Park, J.-B., y Hwang, I.-K. (2002). Quality Attributes of Various Varieties of Korean Red Pepper Powders (Capsicum annuum L.) and Color Stability During Sunlight Exposure. 67.spa
dc.relation.referencesKonica Minolta. (2014). Entendiendo El Espacio de Color CIE L*A*B* - Konica Minolta Sensing. https://sensing.konicaminolta.us/mx/blog/entendiendo-el-espacio-de-color-cie-lab/spa
dc.relation.referencesKourouma, V., Mu, T.-H., Zhang, M., y Sun, H.-N. (2019). Effects of cooking process on carotenoids and antioxidant activity of orange-fleshed sweet potato. LWT, 104, 134–141. https://doi.org/10.1016/J.LWT.2019.01.011spa
dc.relation.referencesKristianto, Y., Wignyanto, W., Argo, B. D., y Santoso, I. (2021). Antioxidant increase by response surface optimization and bayesian neural network modelling of pumpkin (Cucurbita moschata duch) freezing. Food Research, 5(3), 73–82. https://doi.org/10.26656/fr.2017.5(3).598spa
dc.relation.referencesLeong, H. Y., Show, P. L., Lim, M. H., Ooi, C. W., y Ling, T. C. (2018). Natural red pigments from plants and their health benefits: A review. In Food Reviews International (Vol. 34, Issue 5, pp. 463–482). Taylor and Francis Inc. https://doi.org/10.1080/87559129.2017.1326935spa
dc.relation.referencesLi, J., Liu, J., Sun, X., y Liu, Y. (2018). The mathematical prediction model for the oxidative stability of vegetable oils by the main fatty acids composition and thermogravimetric analysis. LWT, 96, 51–57. https://doi.org/doi.org/10.1016/j.lwt.2018.05.003.spa
dc.relation.referencesLi, Y., Fabiano-Tixier, A. S., Tomao, V., Cravotto, G., y Chemat, F. (2013). Green ultrasound-assisted extraction of carotenoids based on the bio-refinery concept using sunflower oil as an alternative solvent. Ultrasonics Sonochemistry, 20(1), 12–18. https://doi.org/10.1016/j.ultsonch.2012.07.005spa
dc.relation.referencesMarkets and markets. (2020). Natural Food Colors & Flavors Market Trends, Growth, Industry Analysis - Forecasts to 2025 | Covid-19 Impact Analysis. https://www.marketsandmarkets.com/Market-Reports/natural-colors-flavors-market-676.html?utm_medium=Email&utm_source=HSFB-NA-%20Natural-Food-Colors-%26-Flavors-Market-6-Nov-20spa
dc.relation.referencesMartins, N., Roriz, C. L., Morales, P., Barros, L., y Ferreira, I. C. F. R. (2016). Food colorants: Challenges, opportunities and current desires of agro-industries to ensure consumer expectations and regulatory practices. Trends in Food Science & Technology, 52, 1–15. https://doi.org/10.1016/J.TIFS.2016.03.009spa
dc.relation.referencesMendes, L., Petito, N., Gonçalves Costa, V., Falcão, D. Q., y de Lima Araújo, K. G. (2014). Inclusion complexes of red bell pepper pigments with b-cyclodextrin: Preparation, characterisation and application as natural colorant in yogurt. https://doi.org/10.1016/j.foodchem.2012.09.065spa
dc.relation.referencesMezzomo, N., y Ferreira, S. R. S. (2016). Carotenoids Functionality, Sources, and Processing by Supercritical Technology: A Review. Journal of Chemistry, 2016, 1–16. https://doi.org/10.1155/2016/3164312spa
dc.relation.referencesMezzomo, N., Maestri, B., dos Santos, R. L., Maraschin, M., y Ferreira, S. R. S. (2011). Pink shrimp (P. brasiliensis and P. paulensis) residue: Influence of extraction method on carotenoid concentration. Talanta, 85(3), 1383–1391. https://doi.org/10.1016/j.talanta.2011.06.018spa
dc.relation.referencesMínguez, M., Pérez, A., y Hornero, D. (2005). Pigmentos carotenoides en frutas y vegetales; mucho más que simples “colorantes” naturales.spa
dc.relation.referencesMinsalud. (2015). Estrategia nacional para la prevención y control de las deficiencias de micronutrientes en Colombia 2014 – 2021. https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/SNA/Estrategia-nacional-prevencion-control-deficiencia-micronutrientes.pdfspa
dc.relation.referencesMontesano, D., Rocchetti, G., Cossignani, L., Senizza, B., Pollini, L., Lucini, L., y Blasi, F. (2019). Untargeted metabolomics to evaluate the stability of extra-virgin olive oil with added Lycium barbarum carotenoids during storage. Foods, 8(6). https://doi.org/10.3390/foods8060179spa
dc.relation.referencesMutsokoti, L., Panozzo, A., Tongonya, J., Kebede, B. T., van Loey, A., y Hendrickx, M. (2017). Carotenoid stability and lipid oxidation during storage of low-fat carrot and tomato based systems. LWT - Food Science and Technology, 80, 470–478. https://doi.org/10.1016/j.lwt.2017.03.021spa
dc.relation.referencesNagarajan, J., Nagasundara, R., Eshwaraiah, M., Galanakis, C., y Prasad, N. (2017). Carotenoids. In Antioxidants in Higher Plants. Elsevier Inc. https://doi.org/10.1201/9781315149899spa
dc.relation.referencesNorshazila, S., Koy, C., Rashidi, O., Ho, L., Azrina, I., Nurul, Z. R., y Zarinah, Z. (2017). The Effect of Time, Temperature and Solid to Solvent Ratio on Pumpkin Carotenoids Extracted Using Food Grade Solvents. Sains Malaysiana, 46(2), 231–237. https://doi.org/10.17576/jsm-2017-4602-07spa
dc.relation.referencesNour, V., Corbu, A. R., Rotaru, P., Karageorgou, I., y Lalas, S. (2018). Effect of carotenoids, extracted from dry tomato waste, on the stability and characteristics of various vegetable oils. Grasas y Aceites, 69(1). https://doi.org/10.3989/gya.0994171spa
dc.relation.referencesOnwude, D. I., Hashim, N., Janius, R. B., Nawi, N., y Abdan, K. (2016). Modelling effective moisture diffusivity of pumpkin (Cucurbita moschata) slices under convective hot air drying condition. International Journal of Food Engineering, 12(5), 481–489. https://doi.org/10.1515/ijfe-2015-0382spa
dc.relation.referencesOrdoñez-Santos, L. E., Martínez-Girón, J., y Rodríguez-Rodríguez, D. X. (2019). Extraction of total carotenoids from peach palm fruit (Bactris gasipaes) peel by means of ultrasound application and vegetable oil. DYNA (Colombia), 86(209), 91–96. https://doi.org/10.15446/dyna.v85n207.74840spa
dc.relation.referencesOrdóñez-Santos, L. E., Pinzón-Zarate, L. X., y González-Salcedo, L. O. (2015). Optimization of ultrasonic-assisted extraction of total carotenoids from peach palm fruit (Bactris gasipaes) by-products with sunflower oil using response surface methodology. Ultrasonics Sonochemistry, 27, 560–566. https://doi.org/10.1016/j.ultsonch.2015.04.010spa
dc.relation.referencesOrtiz Grisales, S. (2012). Fruto y semilla de Cucurbita moschata fuente de carotenoides y aceite con valor agregado (Vol. 30, Issue 2).spa
dc.relation.referencesPagels, F., Salvaterra, D., Amaro, H. M., Lopes, G., Sousa-Pinto, I., Vasconcelos, V., y Guedes, A. C. (2020). Bioactive potential of Cyanobium sp. pigment-rich extracts. Journal of Applied Phycology, 32(5), 3031–3040. https://doi.org/10.1007/s10811-020-02213-1spa
dc.relation.referencesPandurangaiah, S., y Rao, S. D. (2020). Carotenoid Content in Cherry Tomatoes Correlated to the Color Space Values L*, a*, b*: A Non-destructive Method of Estimation. In J. Hortl. Sci (Vol. 15, Issue 1).spa
dc.relation.referencesPatsilinakos, A., Ragno, R., Carradori, S., Petralito, S., y Cesa, S. (2018). Carotenoid content of Goji berries: CIELAB, HPLC-DAD analyses and quantitative correlation. Food Chemistry, 268(May), 49–56. https://doi.org/10.1016/j.foodchem.2018.06.013spa
dc.relation.referencesPaznocht, L., Kotíková, Z., Orsák, M., Lachman, J., y Martinek, P. (2019). Carotenoid changes of colored-grain wheat flours during bun-making. Food Chemistry, 277, 725–734. https://doi.org/10.1016/j.foodchem.2018.11.019spa
dc.relation.referencesPerrier, A., Delsart, C., Boussetta, N., Grimi, N., Citeau, M., y Vorobiev, E. (2017). Effect of ultrasound and green solvents addition on the oil extraction efficiency from rapeseed flakes. Ultrasonics Sonochemistry, 39, 58–65. https://doi.org/10.1016/j.ultsonch.2017.04.003spa
dc.relation.referencesPignitter, M., & Somoza, V. (2012). Critical Evaluation of Methods for the Measurement of Oxidative Rancidity in Vegetable Oils. Journal of Food and Drug Analysis, 20(3), 772–777. https://doi.org/10.6227/jfda.2012200305spa
dc.relation.referencesPingret, D., Fabiano-Tixier, A. S., & Chemat, F. (2013). Ultrasound-assisted extraction. RSC Green Chemistry, 89–112. https://doi.org/10.1039/9781849737579-00089spa
dc.relation.referencesPortillo‐López, R., Morales‐Contreras, B. E., Lozano‐Guzmán, E., Basilio‐Heredia, J., Muy‐Rangel, M. D., Ochoa‐Martínez, L. A., Rosas‐Flores, W., y Morales‐Castro, J. (2021). Vegetable oils as green solvents for carotenoid extraction from pumpkin (Cucurbita argyrosperma Huber) byproducts: Optimization of extraction parameters. Journal of Food Science, 86(7), 3122–3136. https://doi.org/10.1111/1750-3841.15815spa
dc.relation.referencesPriori, D., Valduga, E., Branco, J., Mistura, C., Vizzotto, M., Valgas, R., y Barbieri, R. (2017). Characterization of bioactive compounds, antioxidant activity and minerals in landraces of pumpkin (Cucurbita moschata) cultivated in Southern Brazil. Food Science and Technology, 37(1), 33–40. https://doi.org/10.1590/1678-457x.05016spa
dc.relation.referencesProvesi, J. G., y Amante, E. R. (2015). Carotenoids in Pumpkin and Impact of Processing Treatments and Storage. In Processing and Impact on Active Components in Food (pp. 71–80). Elsevier Inc. https://doi.org/10.1016/B978-0-12-404699-3.00009-3spa
dc.relation.referencesProvesi, J. G., Dias, C. O., y Amante, E. R. (2011). Changes in carotenoids during processing and storage of pumpkin puree. Food Chemistry, 128(1), 195–202. https://doi.org/10.1016/j.foodchem.2011.03.027spa
dc.relation.referencesQuijano, N. (2020). Evaluación de espectroscopía FTIR-ATR, colorimetría triestímulo y análisis de imagen como herramientas para la determinación de carotenoides en ahuyama. Universidad Nacional de Colombia.spa
dc.relation.referencesQuintana, S. E., Marsiglia, R. M., Machacon, D., Torregroza, E., y Garcia-Zapateiro, L. A. (2018). Chemical composition and physicochemical properties of squash (Cucurbita moschata) cultivated in Bolivar department (Colombia). Contemporary Engineering Sciences, 11(21), 1003–1012. https://doi.org/10.12988/CES.2018.8384spa
dc.relation.referencesRahimi, S., y Mikani, M. (2019). Lycopene green ultrasound-assisted extraction using edible oil accompany with response surface methodology (RSM) optimization performance: Application in tomato processing wastes. Microchemical Journal, 146, 1033–1042. https://doi.org/10.1016/j.microc.2019.02.039spa
dc.relation.referencesRammuni, M. N., Ariyadasa, T. U., Nimarshana, P. H. V., y Attalage, R. A. (2019). Comparative assessment on the extraction of carotenoids from microalgal sources: Astaxanthin from H. pluvialis and β-carotene from D. salina. Food Chemistry, 277, 128–134. https://doi.org/10.1016/j.foodchem.2018.10.066spa
dc.relation.referencesRazi, B., Bahij, R., Fretté, X., y Christensen, K. (2015). Influence of green solvent extraction on carotenoid yield from shrimp (Pandalus borealis) processing waste. Journal of Food Engineering, 155, 22–28. https://doi.org/10.1016/j.jfoodeng.2015.01.009spa
dc.relation.referencesResearch Nester. (2015, August). Natural Food Colors Market Size & Share | Industry Report, 2023. https://www.researchnester.com/reports/natural-food-colors-market/232spa
dc.relation.referencesRodriguez-Amaya, D. (2019). “Natural food pigments and colorants.” In Current Opinion in Food Science (Vol. 7). https://doi.org/10.1016/J.COFS.2015.08.004spa
dc.relation.referencesRodriguez-Amaya, D. B. (2016). Natural food pigments and colorants. In Current Opinion in Food Science (Vol. 7, pp. 20–26). Elsevier Ltd. https://doi.org/10.1016/j.cofs.2015.08.004spa
dc.relation.referencesRodriguez-Amaya, D. B. (2018). Update on natural food pigments - A mini-review on carotenoids, anthocyanins, and betalains. Food Research International, 2017. https://doi.org/10.1016/j.foodres.2018.05.028spa
dc.relation.referencesRodriguez-Amaya, Delia. (1999). Carotenoides y Preparación de Alimentos: La Retención de los Carotenoides Provitamina A en Alimentos Preparados, Procesados y Almacenados. Universidade Estadual de Capinas, 99. https://doi.org/10.3390/su8060570spa
dc.relation.referencesRodriguez, M., Avalos, J., Bonet, M. L., Boronat, A., Gomez-Gomez, L., Hornero-Mendez, D., Limon, M. C., Meléndez-Martínez, A. J., Olmedilla-Alonso, B., Palou, A., Ribot, J., Rodrigo, M. J., Zacarias, L., y Zhu, C. (2018). A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Progress in Lipid Research, 70, 62–93. https://doi.org/10.1016/j.plipres.2018.04.004spa
dc.relation.referencesRoohani, R., Einafshar, S., y Ghavidel, R. (2016). Effect of time and ultrasonic amplitude on extraction carotenoid compounds from saffron stamen 1 Introduction1 . In Agricultural Engineering International: CIGR Journal (Vol. 18, Issue 4). http://www.cigrjournal.orgspa
dc.relation.referencesRutkowska, M., Namieśnik, J., y Konieczka, P. (2017). Ultrasound-Assisted Extraction. In The Application of Green Solvents in Separation Processes (pp. 301–324). Elsevier Inc. https://doi.org/10.1016/B978-0-12-805297-6.00010-3spa
dc.relation.referencesSahar, A., Rahman, U. U., Aadil, R. M., y Ishaq, A. (2018). Stabilization of Carotenoids in Foods. In Encyclopedia of Food Chemistry (Vol. 2). Elsevier. https://doi.org/10.1016/b978-0-08-100596-5.21670-3spa
dc.relation.referencesSaini, R., y Keum, Y.-S. (2018). Carotenoid extraction methods: A review of recent developments. Food Chemistry, 240, 90–103. https://doi.org/dx.doi.org/10.1016/j.foodchem2017.07.099spa
dc.relation.referencesSalazar-González, C., Díaz-Moreno, C., y Fuenmayor, C. A. (2019). Green extraction of carotenoids from bee pollen using sunflower oil: Evaluation of time and matrix-solvent ratio. Chemical Engineering Transactions, 75, 541–546. https://doi.org/10.3303/CET1975091spa
dc.relation.referencesSánchez-Muniz, F. J., Bastida, S., & Benedí, J. (2016). Sunflower Oil. In Encyclopedia of Food and Health (pp. 217–226). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384947-2.00674-7spa
dc.relation.referencesSaxena, A., Maity, T., Raju, P. S., y Bawa, A. S. (2012). Degradation Kinetics of Colour and Total Carotenoids in Jackfruit (Artocarpus heterophyllus) Bulb Slices During Hot Air Drying. Food and Bioprocess Technology, 5(2), 672–679. https://doi.org/10.1007/s11947-010-0409-2spa
dc.relation.referencesSeremet, L., Botez, E., Nistor, O. V., Andronoiu, D. G., y Mocanu, G. D. (2016). Effect of different drying methods on moisture ratio and rehydration of pumpkin slices. Food Chemistry, 195, 104–109. https://doi.org/10.1016/j.foodchem.2015.03.125spa
dc.relation.referencesSharma, M., y Bhat, R. (2021). Extraction of carotenoids from pumpkin peel and pulp: Comparison between innovative green extraction technologies (ultrasonic and microwave-assisted extractions using corn oil). Foods, 10(4). https://doi.org/10.3390/foods10040787spa
dc.relation.referencesSigurdson, G. T., Tang, P., y Giusti, M. M. (2017). Natural Colorants: Food Colorants from Natural Sources. In Annual Review of Food Science and Technology (Vol. 8, pp. 261–280). Annual Reviews Inc. https://doi.org/10.1146/annurev-food-030216-025923spa
dc.relation.referencesSimal, S., A. Femenia, M.C. Garau y C. Rosselló. 2005. Use of exponential, Page’s and diffusional models to simulate the drying kinetics of kiwi fruit. J. Food Eng. 66, 323-328. Doi: 10.1016/j.jfoodeng.2004.03.025spa
dc.relation.referencesSingh, A., Ahmad, S., y Ahmad, A. (2015). Green extraction methods and environmental applications of carotenoids-a review. RSC Advances, 5(77), 62358–62393. https://doi.org/10.1039/c5ra10243jspa
dc.relation.referencesSogi, D., Siddiq, M., Dolan, M., (2015). Total phenolics, carotenoids and antioxidant properties of Tommy Atkin mango cubes as affected by drying techniques. (LWT – Food science and technology. 62(1), 564 – 568.spa
dc.relation.referencesSong, J., Wang, X., Li, D., Liu, C., Yang, Q., y Zhang, M. (2018). Effect of starch osmo-coating on carotenoids, colour and microstructure of dehydrated pumpkin slices. Journal of Food Science and Technology, 55(8), 3249–3256. https://doi.org/10.1007/s13197-018-3258-zspa
dc.relation.referencesSong, J., Yang, Q., Huang, W., Xiao, Y., Li, D., y Liu, C. (2018). Optimization of trans lutein from pumpkin (Cucurbita moschata) peel by ultrasound-assisted extraction. Food and Bioproducts Processing, 107, 104–112. https://doi.org/10.1016/J.FBP.2017.10.008spa
dc.relation.referencesStephenson, R. C., Ross, R. P., y Stanton, C. (2021). Carotenoids in milk and the potential for dairy based functional foods. In Foods (Vol. 10, Issue 6). MDPI AG. https://doi.org/10.3390/foods10061263spa
dc.relation.referencesStinco, C. M., Rodríguez-Pulido, F., Escudero-Gilete, M. L., Gordillo, B., Vicario, I. M., Meléndez-Martínez, A., (2013). Lycopene isomers in fresh and processed tomato products: Correlations with instrumental color measurements by digital image analysis and spectroradiometry. Food Research International. 50, 111-120. https://dx.doi.org/10.1016/j.foodres.2012.10.011spa
dc.relation.referencesStoll, L., Rech, R., Flôres, S. H., Nachtigall, S. M. B., y de Oliveira Rios, A. (2019). Poly(acid lactic) films with carotenoids extracts: Release study and effect on sunflower oil preservation. Food Chemistry, 281, 213–221. https://doi.org/10.1016/j.foodchem.2018.12.100spa
dc.relation.referencesStrati, I. F., y Oreopoulou, V. (2011). Effect of extraction parameters on the carotenoid recovery from tomato waste. International Journal of Food and Science Technology, 46, 23–29. https://doi.org/10.1111/j.1365-2621.2010.02496.xspa
dc.relation.referencesStrati, I. F., y Oreopoulou, V. (2014). Recovery of carotenoids from tomato processing by-products - A review. Food Research International, 65(PC), 311–321. https://doi.org/10.1016/j.foodres.2014.09.032spa
dc.relation.referencesSun, Y., Liu, D., Chen, J., Ye, X., y Yu, D. (2011). Effects of different factors of ultrasound treatment on the extraction yield of the all-trans-β-carotene from citrus peels. Ultrasonics Sonochemistry, 18(1), 243–249. https://doi.org/10.1016/j.ultsonch.2010.05.014spa
dc.relation.referencesTFO Canadá. (2012). Colombia: El Mercado Canadiense de Ingredientes para Cosméticos 2012.spa
dc.relation.referencesTiwari, B. K. (2015). Ultrasound: A clean, green extraction technology. TrAC Trends in Analytical Chemistry, 71, 100–109. https://doi.org/10.1016/j.trac.2015.04.013spa
dc.relation.referencesTrivedi, N., Baghel, R. S., Bothwell, J., Gupta, V., Reddy, C. R. K., Lali, A. M., y Jha, B. (2016). An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass. Scientific Reports, 6. https://doi.org/10.1038/srep30728spa
dc.relation.referencesTuli, H. S., Chaudhary, P., Beniwal, V., y Sharma, A. K. (2015). Microbial pigments as natural color sources: current trends and future perspectives. In Journal of Food Science and Technology (Vol. 52, Issue 8, pp. 4669–4678). Springer India. https://doi.org/10.1007/s13197-014-1601-6spa
dc.relation.referencesUSDA. (2018). Food Composition Databases Show Foods -- Pumpkin, raw. https://ndb.nal.usda.gov/ndb/foods/show/11422spa
dc.relation.referencesU.S.D.A. (2019). Pumpkin, raw. https://fdc.nal.usda.gov/fdc-app.html#/food-details/168448/nutrientsspa
dc.relation.referencesVallejo Cabrera, F., y Estrada Salazar, E. (2004). Producción de hortalizas de clima cálido (Universidad Nacional de Colombia, Ed.).spa
dc.relation.referencesVásquez, M. (2015). Estimación de las coordenadas CIEL*a*b* en concentrados de tomate utilizando imágenes digitales.spa
dc.relation.referencesVelásquez Reyes, G. A., y Carrillo Cetina, J. P. (2016). Evaluación del efecto de las aplicaciones edáficas de diferentes niveles de nitrógeno sobre los componentes de rendimiento e incidencia de algunos problemas fitosanitarios en ahuyama valluna (Cucúrbita máxima).spa
dc.relation.referencesVinatoru, M., Mason, T. J., y Calinescu, I. (2017). Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. In TrAC - Trends in Analytical Chemistry (Vol. 97, pp. 159–178). Elsevier B.V. https://doi.org/10.1016/j.trac.2017.09.002spa
dc.relation.referencesXu, W. J., Zhai, J. W., Cui, Q., Liu, J. Z., Luo, M., Fu, Y. J., y Zu, Y. G. (2016). Ultra-turrax based ultrasound-assisted extraction of five organic acids from honeysuckle (Lonicera japonica Thunb.) and optimization of extraction process. Separation and Purification Technology, 166, 73–82. https://doi.org/10.1016/j.seppur.2016.04.003spa
dc.relation.referencesYara-Varón, E., Li, Y., Balcells, M., Canela-Garayoa, R., Fabiano-Tixier, A. S., y Chemat, F. (2017). Vegetable oils as alternative solvents for green oleo-extraction, purification and formulation of food and natural products. In Molecules (Vol. 22, Issue 9). MDPI AG. https://doi.org/10.3390/molecules22091474spa
dc.relation.referencesZaccari, F., Cabrera, M. C., y Saadoun, A. (2017). Variation in glucose, α- And β-carotene and lutein content during storage time in winter squash type Butternut. Acta Horticulturae, 1151, 273–277. https://doi.org/10.17660/ActaHortic.2017.1151.42spa
dc.relation.referencesZalbidea Muñoz, M. A. (2017). Nociones básicas sobre materiales colorantes. Universidad Politécnica de Valencia, España. Disponible en: https://riunet.upv.es/bitstream/handle /10251/82159/Zalbidea%20- %20Nociones% 20b%C3%A1sicas%20sobre%20mat eriales%20colorantes.pdf?sequen ce=1.spa
dc.relation.referencesBechoff, A. (2010). Investigating carotenoid loss after drying and storage of orange-fleshed sweet potato. University of Greenwich.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc660 - Ingeniería química::664 - Tecnología de alimentosspa
dc.subject.lembCOLORANTESspa
dc.subject.lembColoring mattereng
dc.subject.proposalCarotenoidesspa
dc.subject.proposalAhuyamaspa
dc.subject.proposalExtracción verdespa
dc.subject.proposalUltrasonidospa
dc.subject.proposalEstabilidadspa
dc.subject.proposalCarotenoidseng
dc.subject.proposalPumpkineng
dc.subject.proposalSquasheng
dc.subject.proposalGreen extractioneng
dc.subject.proposalUltrasoundeng
dc.subject.proposalStabilityeng
dc.titleExtracción verde de carotenoides de ahuyama (Cucurbita moschata Duch) usando aceite vegetal para su adición como colorante natural en una matriz alimentariaspa
dc.title.translatedGreen extraction of carotenoids from pumpkin (Cucurbita moschata Duch) using vegetable oil for its addition as a natural colorant in a food matrixeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameMinisterio de Ciencia, tecnología e Innovaciónspa
oaire.fundernameFondo nacional de financiamiento para la ciencia, la tecnología y la innovación Francisco José de Caldasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1014216343.2022.pdf
Tamaño:
1.83 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencia y Tecnología de Alimentos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: