Adaptación de un modelo físico en el estudio de redes de coautoría dinámicas formadas a partir de artículos científicos

dc.contributor.advisorRestrepo-Parra, Elisabethspa
dc.contributor.advisorAgudelo Giraldo, Jose Dariospa
dc.contributor.authorHurtado Marín, Viviana Andreaspa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Manizalesspa
dc.contributor.researchgroupPCM Computational Applicationsspa
dc.date.accessioned2021-02-08T22:26:11Zspa
dc.date.available2021-02-08T22:26:11Zspa
dc.date.issued2020spa
dc.description.abstractEn el presente trabajo se adaptó un modelo tipo Ising vía método Monte Carlo dentro del estudio de las redes de coautoría dinámicas. Previamente, se realizó un análisis en el tiempo de las redes reales a partir del cual se seleccionaron parámetros iniciales para el modelo físico, principalmente la forma de la distribución de nuevos nodos. Se determinó como comportamiento emergente en las redes, la formación de comunidades a través del tiempo; para su identificación se aplicó el modelo de Ising ferromagnético en un campo magnético aleatorio (FRFIM). Esto conllevó la realización de un desarrollo matemático para sustentar la analogía existente entre una red de flujo no dirigida y un FRFIM. Además, con el objetivo de disminuir el tiempo de cómputo se propuso una nueva metodología para la identificación de los nodos influyentes dentro de la red que generan una estructura de comunidad. Los resultados permitieron establecer que observables tales como la energía, el grado de frustración y el número y tamaño de comunidades de coautorías, con su correspondiente variable en el sistema magnético, tienen una alta correlación. Además, se encontró que, el punto de inflexión en las curvas de energía bajo cierta densidad se presenta cuando el sistema alcanza un límite de estabilidad en el grado de frustración aproximadamente. A nivel de coautorías, ésto puede ser visto como una transición hacia un estado de estabilidad topológica a nivel de comunidades. El proceso de generación de dominios se dio por efecto de frustración de espines en las fronteras, hasta encontrar una estabilidad de tamaño de dominio. Finalmente, se hizo un análisis variando el promedio de vecinos por espín bajo un criterio de densidad. Los resultados evidenciaron estados de densidad del sistema donde se generan máximos tanto en el número de dominios como en la cantidad de espines aislados. Mediante las tendencias temporales de los tiempos pico pertenecientes a estos máximos se pueden predecir futuros comportamientos de las redes. (Texto tomado de la fuente)spa
dc.description.abstractIn the present work, it was adapted a Ising model through Monte Carlo method, within the study of the dynamic coauthorship networks. Previously, it was done a analysis in the time of the real networks from which it was selected initial parameters to the physical model, principally the form of the distribution of new nodes. It was determined as emergent behavior in the networks, the formation of communities through the time; for its identification it was applied the ferromagnetic random field Ising model (FRFIM). This led to the realization of a mathematical development to support the existent analogy between an undirected flow network and a FRFIM. Additionally, with the objective of reduce the computing time, it was proposed a new methodology for the identification of the influential nodes within the net that generate a community structure. The results allowed establish that observables like energy, frustration degree and the number and size of the coauthorships communities, with its corresponding variable in the magnetic system, they have a high correlation. Additionally, it was found that, the inflection point in the energy curves under a specific density is presented when the system reaches a stability limit in the frustration degree approximately. At the coauthorship level, this can be seen like a transition towards a state of topological stability to communities level. The domain generation process was originated by frustration effect of spins in the boundaries, until it finds a domain size stability. Finally, a analysis was done varying the mean of neighbors by spin under a criteria density. The results evidenced system density states where maximums are generated both in the number of domains as in the amount of isolated spins. Through the temporary tendencies of the peak times belonging to this maximums it can be predicted future behaviors of the networks.ENG
dc.description.degreelevelMaestríaspa
dc.format.extent112spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationV. A. Hurtado Marín, "Adaptación de un modelo físico en el estudio de redes de coautoría dinámicas formadas a partir de artículos científicos", M.S. thesis, Universidad Nacional de Colombia, 2020.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79144
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Física y Químicaspa
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Físicaspa
dc.relation.referencesC. Castellano, S. Fortunato, and V. Loreto, “Statistical physics of social dynamics,” Reviews of Modern Physics, vol. 81, no. 2, pp. 591–646, 2009.spa
dc.relation.referencesG. G. Iggers, “Further Remarks about Early Uses of the Term Social Science,” Journal of the History of Ideas, vol. 20, no. 3, pp. 433–436, 1959.spa
dc.relation.referencesL. A. J. Quetelet, Sur l’homme et le développement de ses facultés, ou Essai de physique sociale, 1st ed. Paris: Bachelier, imprimeur-libraire, quai des Augustins, no 55, 1835.spa
dc.relation.referencesS. Galam, Y. Gefen, and Y. Shapir, “Sociophysics: A new approach of sociological collective behaviour. I. mean-behaviour description of a strike,” The Journal of Mathematical Sociology, vol. 9, no. 1, pp. 1–13, 1982.spa
dc.relation.referencesS. Galam, “Sociophysics: a personal testimony,” Physica A: Statistical Mechanics and its Applications, vol. 336, no. 1-2, pp. 49–55, 2004.spa
dc.relation.referencesF. D. S. Steta, “La aplicación de la física estadística en algunos fenómenos sociales: La importancia de las interacciones de tres cuerpos,” Degree thesis, Universidad Nacional Autónoma de México, 2007.spa
dc.relation.referencesM. A. Fernandez, E. Korutcheva, and J. de la Rubia, “A 3-states magnetic model of binary decisions in sociophysics,” Physica A: Statistical Mechanics and its Applications, vol. 462, pp. 603–618, 2016.spa
dc.relation.referencesN. Shadbolt and T. Berners-Lee, “La ciencia en la Red,” Investigación y Ciencia, vol. 387, pp. 48–54, 2008.spa
dc.relation.referencesA. L. Barabási, Bursts: The Hidden Patterns Behind Everything We Do, from Your E-mail to Bloody Crusades, 1st ed. New York: Dutton, 2010.spa
dc.relation.referencesS. Galam, “Sociophysics: A review of Galam models,” International Journal of Modern Physics C, vol. 19, no. 3, pp. 409–440, 2008.spa
dc.relation.referencesM. E. J. Newman and J. Park, “Why social networks are different from other types of networks,” Physical Review E, vol. 68, no. 3, 2003.spa
dc.relation.referencesR. Toivonen, J.-P. Onnela, J. Saramäki, J. Hyvönen, and K. Kaski, “A model for social networks,” Physica A: Statistical Mechanics and its Applications, vol. 371, no. 2, pp. 851–860, 2006.spa
dc.relation.referencesM. E. J. Newman, “Coauthorship networks and patterns of scientific collaboration,” Proceedings of the National Academy of Sciences of the United States of America, vol. 101, pp. 5200–5205, 2004.spa
dc.relation.referencesM. E. J. Newman, “Scientific collaboration networks. I. Network construction and fundamental results,” Physical Review E, vol. 64, no. 1, p. 016131, 2001.spa
dc.relation.referencesM. E. J. Newman, “Scientific collaboration networks. II. Shortest paths, weighted networks, and centrality,” Physical Review E, vol. 64, no. 1, p. 016132, 2001.spa
dc.relation.referencesM. E. J. Newman, “The structure of scientific collaboration networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 98, no. 2, pp. 404–409, 2001.spa
dc.relation.referencesA. L. Barabási, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, and T. Vicsek, “Evolution of the social network of scientific collaborations,” Physica A: Statistical Mechanics and its Applications, vol. 311, no. 3-4, pp. 590–614, 2002.spa
dc.relation.referencesM. Tomassini and L. Luthi, “Empirical analysis of the evolution of a scientific collaboration network,” Physica A: Statistical Mechanics and its Applications, vol. 385, no. 2, pp. 750–764, 2007.spa
dc.relation.referencesA. Roohi, A. Shirazi, A. Kargaran, and G. Jafari, “Local model of a scientific collaboration in physics network compared with the global model,” Physica A: Statistical Mechanics and its Applications, vol. 389, no. 23, pp. 5530–5537, 2010.spa
dc.relation.referencesA. Abbasi, L. Hossain, S. Uddin, and K. J. Rasmussen, “Evolutionary dynamics of scientific collaboration networks: multi-levels and cross-time analysis,” Scientometrics, vol. 89, no. 2, pp. 687–710, 2011.spa
dc.relation.referencesA. Cardillo, S. Scellato, and V. Latora, “A topological analysis of scientific coauthorship networks,” Physica A: Statistical Mechanics and its Applications, vol. 372, no. 2, pp. 333–339, 2006.spa
dc.relation.referencesS. W. Son, H. Jeong, and J. D. Noh, “Random field Ising model and community structure in complex networks,” European Physical Journal B, vol. 50, pp. 431– 437, 2006.spa
dc.relation.referencesS. Kumar, “Co-authorship networks: A review of the literature,” Aslib Journal of Information Management, vol. 67, no. 1, pp. 55–73, 2015.spa
dc.relation.referencesP. Fronczak, A. Fronczak, and J. Holyst, “Phase transitions in social networks,” The European Physical Journal B: Condensed Matter and Complex Systems, vol. 59, no. 1, pp. 133–139, 2007.spa
dc.relation.referencesR. Chakraborty and J. Chandra, “Link Dynamics in Scientific Collaboration Networks,” in 8th International Conference on Communication Systems and Networks (COMSNETS), Bangalore, 2016, pp. 1–2.spa
dc.relation.referencesP. Erdös and A. Rényi, “On random graphs I.” Publicationes Mathematicae, vol. 6, pp. 290–297, 1959.spa
dc.relation.referencesR. Cardona Rivera, “Pinning control of discrete time complex networks using state feedback and FPIC technique,” M.S. thesis, Universidad Nacional de Colombia, 2017.spa
dc.relation.referencesD. Jungnickel, Graphs, Networks and Algorithms, 4th ed. Berlin: Springer- Verlag, 2013.spa
dc.relation.referencesR. Diestel, Graph Theory, 3rd ed. Heidelberg: Springer-Verlag, 2005.spa
dc.relation.referencesE. D. Kolaczyk and G. Csárdi, Statistical Analysis Of Network Data with R, 1st ed. New York: Springer Science+Business Media, 2014.spa
dc.relation.referencesR. Albert and A. L. Barabási, “Statistical mechanics of complex networks,” Reviews of Modern Physics, vol. 74, no. 1, pp. 47–97, 2002.spa
dc.relation.referencesM. Tsvetovat and A. Kouznetsov, Social Network Analysis for Startups, 1st ed. Sebastopol: O’Reilly Media, Inc., 2011.spa
dc.relation.referencesS. Saha Ray, Graph Theory with Algorithms and its Applications. In Applied Science and Technology, 1st ed. India: Springer Science+Business Media, 2013.spa
dc.relation.referencesM. E. J. Newman, Networks. An Introduction, 1st ed. New York: Oxford University Press, 2010.spa
dc.relation.referencesM. E. J. Newman, “The structure and function of complex networks,” SIAM Review, vol. 45, no. 2, pp. 167–256, 2003.spa
dc.relation.referencesA. L. Barabási and M. Pósfai, Network Science, 1st ed. United Kingdom: Cambridge University Press, 2016.spa
dc.relation.referencesR. Aldecoa, “Detección de comunidades en redes complejas,” M.S. thesis, Universidad Politécnica de Valencia - Instituto de Biomedina de Valencia, 2013.spa
dc.relation.referencesS. Fortunato, “Community detection in graphs,” Physics Reports, vol. 486, no. 3-5, pp. 75–174, 2010.spa
dc.relation.referencesA. K. Hartmann and H. Rieger, Optimization Algorithms in Physics, 1st ed. Berlin: Wiley-VCH, 2002.spa
dc.relation.referencesD. Barth, P. Berthomé, M. Diallo, and A. Ferreira, “Revisiting parametric multi-terminal problems: Maximum flows, minimum cuts and cut-tree computations,” Discrete Optimization, vol. 3, no. 3, pp. 195–205, 2006.spa
dc.relation.referencesW. D. Wallis, A Beginner’s Guide to Graph Theory, 2nd ed. Boston: Birkhäuser, 2007.spa
dc.relation.referencesJ. Schroeder, A. Pires Guedes, and E. P. Duarte Jr., “Computing the Minimum Cut and Maximum Flow of Undirected Graphs,” Universidade Federal do Paraná, Curitiba, Tech. Rep., 2004. [Online]. Available: http://www.inf.ufpr.br/pos/techreport/RT_DINF003_2004.pdfspa
dc.relation.referencesJ. C. Picard and H. D. Ratliff, “Minimum Cuts and Related Problems,” Networks, vol. 5, no. 4, pp. 357–370, 1975.spa
dc.relation.referencesH. Barco Ríos, E. Rojas Calderón, and E. Restrepo Parra, Física. Principios de Electricidad y Magnetismo, 1st ed. Bogotá: Universidad Nacional de Colombia, 2012.spa
dc.relation.referencesM. Getzlaff, Fundamentals of Magnetism, 1st ed. New York: Springer Science+Business Media, 2008.spa
dc.relation.referencesB. H. Bransden and C. J. Joachain, Physics of atoms and molecules, 1st ed. New York: John Wiley & Sons Inc., 1983.spa
dc.relation.referencesG. E. Uhlenbeck and S. Goudsmit, “Ersetzung der Hypothese vom unmechanischen Zwang durch eine Forderung bezüglich des inneren Verhaltens jedes einzelnen Elektrons,” Naturwissenschaften, vol. 13, no. 47, pp. 953–954, 1925.spa
dc.relation.referencesI. V. Savéliev, Curso de Física General Volumen 3, 1st ed. Moscú: Mir, 1984.spa
dc.relation.referencesJ. D. Agudelo Giraldo, S. Morales Rojas, V. A. Hurtado Marín, and E. Restrepo Parra, “Influence of radial and tangential anisotropy components in single wall magnetic nanotubes. A Monte Carlo approach,” Physica A: Statistical Mechanics and its Applications, vol. 466, pp. 440–449, 2017.spa
dc.relation.referencesI. V. Savéliev, Curso de Física General Volumen 2, 1st ed. Moscú: Mir, 1984.spa
dc.relation.referencesJ. M. D. Coey, Magnetism and Magnetic Materials, 1st ed. New York: Cambridge University Press, 2009.spa
dc.relation.referencesJ. H. Van Vleck, “A Survey of the Theory of Ferromagnetism,” Reviews of Modern Physics, vol. 17, no. 1, pp. 27–47, 1945.spa
dc.relation.referencesD. J. Griffiths, Introduction to Quantum Mechanics, 2nd ed. Pearson Education, Inc., 2005.spa
dc.relation.referencesS. G. Brush, “History of the Lenz-Ising Model,” Reviews of Modern Physics, vol. 39, no. 4, pp. 883–893, 1967.spa
dc.relation.referencesM. E. J. Newman and G. T. Barkema, Monte Carlo Methods in Statistical Physics, 1st ed. New York: Oxford University Press, 1999.spa
dc.relation.referencesA. Hubert and R. Schäfer, Magnetic Domains. The Analysis of Magnetic Microstructures, 1st ed. Berlin: Springer-Verlag, 1998.spa
dc.relation.referencesA. Aharoni, Introduction to the Theory of Ferromagnetism, 2nd ed. New York: Oxford University Press, 2000.spa
dc.relation.referencesS. H. Simon, The Oxford Solid State Basics, 1st ed. New York: Oxford University Press, 2013.spa
dc.relation.referencesA. C. Stein-Barana, M. Yoshida, and V. L. Líbero, “A aproximação de campo médio de Bethe-Peierls,” Revista Brasileira de Ensino de Física, vol. 26, no. 4, pp. 385–393, 2004.spa
dc.relation.referencesM. Plischke and B. Bergersen, Equilibrium Statistical Physics, 2nd ed. Singapore: World Scientific Publishing Co. Pte. Ltd., 1994.spa
dc.relation.referencesD. V. Schroeder, An Introduction to Thermal Physics, 1st ed. Massachusetts: Addison Wesley Longman, 2000.spa
dc.relation.referencesN. G. Fytas, P. E. Theodorakis, I. Georgiou, and I. Lelidis, “Critical aspects of the random-field Ising model,” European Physical Journal B, vol. 86, pp. 268–277, 2013.spa
dc.relation.referencesT. Nattermann, “Theory of the Random Field Ising Model,” Spin Glasses and Random Fields, pp. 277–298, 1997.spa
dc.relation.referencesJ. H. Meinke and A. A. Middleton, “Linking physics and algorithms in the random-field Ising model,” arXiv preprint cond-mat/0502471, 2005.spa
dc.relation.referencesD. P. Landau and K. Binder, A Guide to Monte-Carlo Simulations in Statistical Physics, 3rd ed. New York: Cambridge University Press, 2009.spa
dc.relation.referencesC. D. Salazar Enríquez, “Estudio Monte Carlo de propiedades magnéticas y de magneto-transporte de nanotubos ferromagnéticos,” M.S. thesis, Universidad Nacional de Colombia, 2010.spa
dc.relation.referencesJ. D. Alzate Cardona, “Efecto de la región interfacial en el comportamiento magnético de nanoestructuras core / shell,” M.S. thesis, Universidad Nacional de Colombia, 2018.spa
dc.relation.referencesG. Bianconi and A. L. Barabási, “Bose-Einstein condensation in complex networks,” Physical review letters, vol. 86, no. 24, pp. 5632–5635, 2001.spa
dc.relation.referencesV. A. Hurtado Marín, “Software to find communities within a dynamic coauthorship network,” jul 2020. [Online]. Available: https://doi.org/10.5281/zenodo.3951554#.XxR6ZM51IIQ.mendeleyspa
dc.relation.referencesL. R. Ford and D. R. Fulkerson, Flows in Networks, 1st ed. New Jersey: Princeton University Press, 1962.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.proposalDynamic coauthorship networkseng
dc.subject.proposalRedes de coautoría dinámicasspa
dc.subject.proposalScientific communitieseng
dc.subject.proposalComunidades científicasspa
dc.subject.proposalIsing modeleng
dc.subject.proposalModelo de Isingspa
dc.subject.proposalMétodo Monte Carlospa
dc.subject.proposalMonte Carlo methodeng
dc.subject.proposalFrustrated systemseng
dc.subject.proposalSistemas frustradosspa
dc.titleAdaptación de un modelo físico en el estudio de redes de coautoría dinámicas formadas a partir de artículos científicosspa
dc.title.alternativeAdaptation of a physical model in the study of dynamic coauthorship networks formed from scientific articlesspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1060652665.2020.pdf
Tamaño:
10.34 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: