Álgebras biseriales, álgebras de grafos de Brauer y algunas de sus aplicaciones

dc.contributor.advisorMoreno Cañadas, Agustínspa
dc.contributor.authorFúneme Mateus, Cristian Camilospa
dc.contributor.researchgroupTerenufia-Unalspa
dc.date.accessioned2022-02-24T21:01:57Z
dc.date.available2022-02-24T21:01:57Z
dc.date.issued2021-11
dc.descriptionilustraciones, gráficasspa
dc.description.abstractEl objetivo principal de este trabajo es estudiar las álgebras de configuración de Brauer. Para esto, se inicia por la exposición de aspectos básicos de la Teoría de representación de carcajes, luego se describen las álgebras biseriales y especial biseriales desde ejemplos y propiedades de ellas que las relacionan con el surgimiento de las álgebras de grafo de Brauer, estas últimas se definen y ejemplifican para hacer la posterior presentación de las álgebras de configuración de Brauer y algunas de sus propiedades. A partir de lo anterior, el presente trabajo ofrece como resultado la definición de las Álgebras de configuración de Brauer asociadas a puntos en el plano, estableciendo ecuaciones que permiten calcular la dimensión de estas álgebras y de su centro. Además, se presentan ejemplos relacionados con la construcción de álgebras de configuración de Brauer asociadas a puntos en el plano, regiones de congelamiento y regiones de mutación, determinando propiedades para ellas. Por último, se presentan algunas conclusiones y recomendaciones que servirán de base para futuros trabajos de investigación. (Texto tomado de la fuente).spa
dc.description.abstractThe main objective of this work is to study Brauer configuration algebras. For this, it begins with the exposition of basic aspects of the representation theory of characters, then biserial and special biserial algebras are described from examples and properties of them that relate them to the emergence of Brauer graph algebras, the latter are defined and exemplified to make the subsequent presentation of Brauer configuration algebras and some of its properties. From the above, the present work offers, as a result, the definition of Brauer configuration algebras associated to points in the plane, establishing equations that allow calculating the dimension of these algebras and their center. In addition, examples related to the construction of Brauer configuration algebras associated to points in the plane, freezing regions, and mutation regions are presented, determining properties for them. Finally, some conclusions and recommendations are presented, which will serve as a basis for future research work.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Matemáticasspa
dc.description.researchareaÁlgebra y combinatoriaspa
dc.format.extentviii, 74 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81057
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Matemáticasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Matemáticasspa
dc.relation.referencesT. Aihara, Derived equivalences between symmetric special biserial algebras, https://arxiv.org/pdf/1312.0328.pdf, (2014).spa
dc.relation.referencesM.A. Antipov, Derived equivalence of symmetric special biserial algebras, Journal of Mathematical Sciences 147 (2007), no. 5, 6981-6994.spa
dc.relation.referencesI. Assem, D. Simson, and A. Skowronski, Elements of the representation theory of associative algebras, volume 1, techniques of representation theory, (2006).spa
dc.relation.referencesI. Assem and S. Trepode, Homological methods, representation theory and cluster algebras, (2018).spa
dc.relation.referencesC. Cohecha, Teorema del binomio y aplicaciones, Universidad Nacional de Colombia, Facultad de Ciencias (2014). Mg. Thesis. Bogotá.spa
dc.relation.referencesL. Demonet, Algebras of partial triangulations, arXiv:1602.01592 (2016).spa
dc.relation.referencesP.W. Donovan and M.R Freislich, The indecomposable modular representations of certain groups with dihedral sylow subgroup, Mathematische Annalen 238 (1978), no. 3, 207-216.spa
dc.relation.referencesJ.A. Drozd, Tame and wild matrix problems, in: V.O. Dlab, and P. Gabriel (eds.) Representation Theory II, Springer Lecture Notes in Mathematics 832 (1980), 242- 258.spa
dc.relation.referencesG.K. Eagelson, A characterization theorem for positive definite sequences of the krawtchouk polynomials, Australian J. Stat 11, (1969), 29-38.spa
dc.relation.referencesK. Erdmann, Algebras with non-periodic bounded modules, Journal of Algebra 475 (2017), 308-326.spa
dc.relation.referencesP. Feinsilver and J. Kocik, Krawtchouk matrices from classical and quantum random walks, Contemporary Mathematics 287, (2001), 89-36.spa
dc.relation.referencesP. Feinsilver and R. Schott, Krawtchouk polynomials and finite probability theory, Probability Measures on Groups X, Plenum, (1991), 129-135.spa
dc.relation.referencesP. Fernández, Categorification of some integer sequences and its applications, Universidad Nacional de Colombia, Facultad de Ciencias (2021). PhD Thesis. Bogotá.spa
dc.relation.referencesK. Fuller, Biserial rings, in: Ring theory, proc. conf., univ. waterloo, waterloo, Lecture Notes in Math (1978), 64-90.spa
dc.relation.referencesP. Gabriel, Auslander-reiten sequences and representation-finite algebras, Lecture Notes in Mat. 831 (1980), 1-71.spa
dc.relation.referencesP. Gabriel, Indecomposable representations 2, Symposia Mat. Inst. Naz. Alta Mat. 11 (1973), 81-104.spa
dc.relation.referencesP. Gabriel, Unzerlegbare darstellungen 1, Manuscripta Math 6 (1972), 71-103.spa
dc.relation.referencesJ. Villa; M. Duque; A. Gauthier and N. Rakoto, Modelamiento y control de sistemas híbridos, Revista de ingeniería 6, (2004), 177-182.spa
dc.relation.referencesI.M. Gelfand and V.A. Ponomarev, Indecomposable representations of the Lorentz group, Russian Mathematical Surveys 23 (1968), no. 2, 1-58.spa
dc.relation.referencesE. Green and S. Schroll, Brauer configuration algebras: A generalization of brauer graph algebras, Bulletin des Sciences Math ematiques, 141 (2017), 539-572.spa
dc.relation.referencesE. Green and S. Schroll, Multiserial and special multiserial algebras and their representations, Advances in Mathematics (2015), 1-24.spa
dc.relation.referencesE. Green, S. Schroll, and N. Snashall, Group actions and coverings of brauer graph algebras, Glasgow Mathematical Journal 56 (2011), no. 2, 439-464.spa
dc.relation.referencesE. Green, S. Schroll, N. Snashall, and R. Taillefer, The ext algebra of a brauer graph algebra, Journal of noncommutative geometry 11 (2011), no. 2, 537-579.spa
dc.relation.referencesG.J. Janusz, Indecomposable modules for finite groups, Annals of Mathematics 89 (1969), no. 2, 209-241.spa
dc.relation.referencesM. Krawtchouk, Sur la distribution des racines des polynomes orthogonaux, Comptes Rendus 196, (1933), 739-741.spa
dc.relation.referencesM. Krawtchouk, Sur une generalisation des polynomes d'hermite, Comptes Rendus 189, (1929), 620-622.spa
dc.relation.referencesS. Ladkani, Mutation classes of certain quivers with potentials as derived equivalence classes, arXiv:1102.4108 (2011).spa
dc.relation.referencesA. Rattew; Y. Sun; P. Minssen and M. Pistoia, The efficient preparation of normal distributions in quantum registers, arXiv:2009.06601, (2021), 1-30.spa
dc.relation.referencesT. Nakayama, Note on uniserial and generalized uniserial rings, Proc. Imp. Acad. Tokyo 16 (1940), 285-289.spa
dc.relation.referencesI. Hernández; C. Mateos; J. Núñez and Á. Tenorio, Algunas aplicaciones de la teoría de lie a la economía y a las finanzas, Revista de métodos cuantitativos para la economía y la empresa 6, (2008), 74-94.spa
dc.relation.referencesM. Osorio and A. Moreno, Brauer configuration algebras for multimedia based cryptography and security applications, Multimedia Tools and Applications, (2021), https://doi.org/10.1007/s11042-020-10239-3.spa
dc.relation.referencesZ. Pogorzaly and A. Skowronski, Selfinjective biserial standard algebras, Journal of algebra 138 (1991), 491-504.spa
dc.relation.referencesC. M. Ringel, Indecomposables live in all smaller lengths, Bull. Lond. Math. Soc. 43 (2011), 655-660.spa
dc.relation.referencesC.M. Ringel, The indecomposable representations of the dihedral 2-groups, Mathematische Annalen 214 (1975), no. 1, 19-34.spa
dc.relation.referencesK.W. Roggenkamp, Biserial algebras and graphs, In: I. Reiten, S.O. Smalo, O. Solberg (eds.) Algebras and Modules II (Geiranger, 1996), Conference proceedings – Canadian Mathematical Society, Mathematische Annalen 24 (1998), 481-496.spa
dc.relation.referencesR. Schiffler, Quiver representations, Canadian Mathematical Society- Department of Mathematics University of Connecticut, CMS Books in Mathematics, Springer International Publishing (2014).spa
dc.relation.referencesS. Schroll, Brauer graph algebras, Springer, Cham, 2018. In: Assem I., Trepode S. (eds), Homological Methods, Representation Theory, and Cluster Algebras, CRM Short Courses, 177-223.spa
dc.relation.referencesTrivial extensions of gentle algebras and brauer graph algebras, Journal of Algebra 444 (2015), 183-200.spa
dc.relation.referencesA. Sierra, The dimension of the center of a brauer configuration algebra, J. Algebra 510, (2018), 289-318.spa
dc.relation.referencesA. Skowronski and J. Waschbüsch, Representation-finite biserial algebras, Journal of pure and applied mathematics 345 (1983), 172-181.spa
dc.relation.referencesG. Szegö, Orthogonal polynomials, Colloquium Publications, Vol. 23, New York, AMS, revised eddition, (1959), 35-37.spa
dc.relation.referencesD. Vere-Jones, Finite bivariate distributions and semi-groups of nonnegative matrices, Q. J. Math. Oxford 22, 2, (1971), 247-270.spa
dc.relation.referencesB. Wald and J. Waschbüsch, Tame biserial algebras, Journal of algebra, 95 (1985), no. 2, 480-500.spa
dc.relation.referencesA. Zavadskij, On the kronecker problem and related problems of linear algebra, Linear Algebra and its Applications 425, (2007), 26-62.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc510 - Matemáticas::512 - Álgebraspa
dc.subject.lembÁlgebraspa
dc.subject.lembAlgebraeng
dc.subject.lembMathematicseng
dc.subject.lembMatemáticasspa
dc.subject.lembGraph theoryeng
dc.subject.lembTeoría de grafosspa
dc.subject.proposalÁlgebras de configuración de Brauerspa
dc.subject.proposalCarcajspa
dc.subject.proposalMatriz de mensajesspa
dc.subject.proposalRegión de mutaciónspa
dc.subject.proposalRegión de congelamientospa
dc.subject.proposalBrauer configuration algebraseng
dc.subject.proposalQuivereng
dc.subject.proposalMessage matrixeng
dc.subject.proposalMutation regioneng
dc.subject.proposalFreezing regioneng
dc.titleÁlgebras biseriales, álgebras de grafos de Brauer y algunas de sus aplicacionesspa
dc.title.translatedBiserial algebras, Brauer graph algebras and some of its applicationseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
2949954731.2021.pdf
Tamaño:
650.57 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: