Factores que inciden en la intención de uso de criptomonedas desde la perspectiva del comportamiento del consumidor

dc.contributor.advisorRojas Berrio, Sandra Patriciaspa
dc.contributor.advisorMontoya Restrepo, Luz Alexandraspa
dc.contributor.authorFajardo Gartner, Camilo Arturospa
dc.date.accessioned2021-02-15T15:43:56Zspa
dc.date.available2021-02-15T15:43:56Zspa
dc.date.issued2020-06-15spa
dc.description.abstractEn los últimos las criptomonedas han captado la atención de diferentes sectores privados y públicos a nivel global, y se espera que en los próximos años esta tecnología continúe teniendo un impacto dramático en la forma como se intercambia valor generando nuevas aplicaciones para su uso en la economía mundial. La intención de usar de nuevas tecnologías por parte de los consumidores depende de múltiples factores que han sido analizados en diferentes modelos que estudian de adopción de tecnologías, en el presente estudio a partir de la Teoría Unificada de Aceptación y Uso de Tecnología (UTAUT) (Venkatesh et al., 2003) se busca identificar los principales factores que puedan incidir en la intención de uso y adopción de esta tecnología, las criptomonedas, en el mercado colombiano. Para el caso de Latinoamérica actualmente las criptomonedas están abriendo la puerta a múltiples posibilidades a través de su intercambio y producción, sin embargo, esta tecnología presenta retos importantes para los usuarios ya sea por su riesgo inherente, las dificultades tecnológicas para su apropiación y la incierta percepción social sobre su uso. Todos estos factores y las consecuencias de la revolución de las criptomonedas hacen imperativo analizar sus impactos y desafíos desde una perspectiva interdisciplinaria, en ese sentido hasta el momento la literatura en sobre criptomonedas en general es escasa, principalmente debido a su novedad, por lo que el presente estudio busca aportar el análisis desde la perspectiva de la gestión de mercados a través de la aplicación de un modelo que permita evaluar factores como la intención de uso, las expectativa de desempeño, y esfuerzo, la influencia social, las condiciones facilitadoras y el riesgo percibido identificando cuales tienen mayor poder de incidencia en la intención de uso de las criptomonedas en un país Latinoamericano como Colombia.spa
dc.description.abstractIn recent years, cryptocurrencies have captured the attention of different private and public sectors globally, and it is expected that in the coming years this technology will continue to have a dramatic impact on the way value is exchanged, generating new applications for use in the world economy. The intention of using new technologies by consumers depends on multiple factors that have been analyzed in different models of adoption of technologies, this study based on the Unified Theory of Acceptance and Use of Technology (UTAUT) ( Venkatesh et al., 2003) seeks to identify the main factors that may affect the intention of use and adoption of cryptocurrencies in the Colombian market. In Latin America cryptocurrencies are currently opening the door to multiple possibilities through their exchange and production, however, this technology presents important challenges for users, due to their inherent risk, technological difficulties for their appropriation and uncertain social perception of its use. All these factors and the consequences of the cryptocurrency revolution make it imperative to analyze its impacts and challenges from an interdisciplinary perspective, in that sense so far the literature on cryptocurrencies in general is scarce, mainly due to its novelty, so the research presented in this document seeks to provide analysis from the perspective of market management through the application of a model that allows evaluating factors such as the intention of use, performance and effort expectations, social influence, facilitating conditions and perceived risk, by identifying which have greater power of incidence in the intention of using cryptocurrencies in a Latin American country like Colombia.spa
dc.description.additionalLínea de investigación: Gestión de Mercados.spa
dc.description.degreelevelMaestríaspa
dc.format.extent1 recurso en línea (113 páginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationFajardo Gartner, C. A. (2020). Factores que inciden en la intención de uso de criptomonedas desde la perspectiva del comportamiento del consumidor [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio Institucional.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79242
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentEscuela de Administración y Contaduría Públicaspa
dc.publisher.programBogotá - Ciencias Económicas - Maestría en Administraciónspa
dc.relation.referencesAbraham, J., Sutiksno, D. U., Kurniasih, N., & Warokka, A. (2019). Acceptance and Penetration of Bitcoin: The Role of Psychological Distance and National Culture. SAGE Open. https://doi.org/10.1177/2158244019865813spa
dc.relation.referencesAbramova, S., & Böhme, R. (2016). Perceived Benefit and Risk as Multidimensional Determinants of Bitcoin Use: A Quantitative Exploratory Study. ICIS.spa
dc.relation.referencesAbramova, S., and Böhme, R. (2016). Perceived Benefit and Risk as Multidimensional Determinants of Bitcoin Use: A Quantitative Exploratory Study”, in Proceedings of Thirty Seventh International Conference on Information Systems, Dublin, Ireland, pp 1-20.spa
dc.relation.referencesAgarwal, R., and Prasad, J., (1998), A Conceptual and Operational Definition of Personal Innovativeness in the Domain of Information Technology, Information Systems Research (9:2), pp. 204-215.spa
dc.relation.referencesAjzen, I. (1991). The Theory of Planned Behavior. Organization Behavior and Human Decision Processes, Academic Press, Inc. 179-211.spa
dc.relation.referencesAlaeddin O., Altounjy R., (2018) Trust, Technology Awareness and Satisfaction Effect into the Intention to Use Cryptocurrency among Generation Z in Malaysia. International Journal of Engineering & Technology, 7 (4.29) (2018) 8-10.spa
dc.relation.referencesAngel-Velazquez, J. A. (2001). Cuatro Paradigmas Básicos Sobre La Naturaleza De La Ciencia. Argumentos de razón técnica.spa
dc.relation.referencesArias-Oliva M, Pelegrín-Borondo J. and Matías-Clavero G. (2019). Variables Influencing Cryptocurrency Use: A Technology Acceptance Model in Spain. Frontiers in Psychology. 10:475. doi: 10.3389/fpsyg.2019.00475.spa
dc.relation.referencesAsociación Libra. (2019). Welcome to the official Libra. White Paper v2.0 | From the Libra Association Members Disponible en: https://libra.org/en-US/white-paper/.spa
dc.relation.referencesBarclay, D. W., Higgins, C. A., & Thompson, R. (1995). The partial least squares approach to causal modeling: Personal computer adoption and use as illustration. Technology Studies, 2, 285–309.spa
dc.relation.referencesBest, R. J. (2013). Market-Based Management. En R. J. Best, Market-Based Management (págs. 95-97). Pearson.spa
dc.relation.referencesBratspies, Rebecca M. (2018) Cryptocurrency and the Myth of the Trustless Transaction. Disponible en SSRN: https://ssrn.com/abstract=3141605 or http://dx.doi.org/10.2139/ssrn.3141605.spa
dc.relation.referencesBurns, Alvin; Burns, Ronald (2008). Basic Marketing Research (Second ed.). New Jersey: Pearson Education. pp. 245. ISBN 978-0-13-205958-9.spa
dc.relation.referencesBusiness Wire (2017). $16.3 Billion Global Blockchain Technology Market Analysis & Trends - Industry Forecast to 2025 - Research and Markets | Business Wire. Disponible en: https://www.businesswire.com/news/home/20170130005684/en/ 16.3- Billion- Global- Blockchain- Technology- Market- Analysis.spa
dc.relation.referencesChan, S. C., & Lu T. M. (2004). Understanding Internet Banking Adoption and Use behavior: A Hong Kong perspective. Journal of Global Information Management, 12, 3 12-43.spa
dc.relation.referencesChin, W. W., & Newsted, P. R. (1999). Structural equation modeling analysis with small samples using partial least squares. In R. H. Hoyle (Ed.), Statistical strategies for small sample research (pp. 307–341). Thousand Oaks, CA: Sage.spa
dc.relation.referencesCohen, J. (1988). Statistical power analysis for the behavioral sciences. Mahwah, NJ: Lawrence Erlbaum.spa
dc.relation.referencesCoin Market Cap. (2019). All Cryptocurrencies | CoinMarketCap. Obtenido de Coin Market Cap: https://coinmarketcap.com/all/views/all/.spa
dc.relation.referencesCompeau, D. R., and Higgins, C. A., (1995) Computer Self-Efficacy: Development of a Measure and Initial Test, MIS Quarterly (19:2), pp. 189-211.spa
dc.relation.referencesCompeau, D. R., and Higgins, C. A., (1995), Computer Self-Efficacy: Development of a Measure and Initial Test, MIS Quarterly (19:2), pp. 189-211.spa
dc.relation.referencesDANE. (2018a). Censo Nacional de Población y Vivienda 2018. Disponible en https://www.dane.gov.co/files/censo2018/informacion-tecnica/cnpv-2018-presentacion-3ra-entrega.pdfspa
dc.relation.referencesDANE. (2018b). Indicadores básicos de tenencia y uso de Tecnologías de la Información y Comunicación – TIC en hogares y personas de 5 y más años de edad Departamental Año 2018 Disponible en https://www.dane.gov.co/files/investigaciones/boletines/tic/bol_tic_hogares_departamental_2018.pdfspa
dc.relation.referencesDávila-Newman, Gladys (2006). El razonamiento inductivo y deductivo dentro del proceso investigativo en ciencias experimentales y sociales. Laurus, 12(Ext),180-205. ISSN: 1315-883X. Disponible en: https://www.redalyc.org/articulo.oa?id=761/76109911.spa
dc.relation.referencesDavis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340.spa
dc.relation.referencesDavis, F. D., Bagozzi, R. P., and Warshaw, P. R., (1992), Extrinsic and Intrinsic Motivation to Use Computers in the Workplace, Journal of Applied Social Psychology (22:14), pp. 1111- 1132.spa
dc.relation.referencesDavis, F. D., Bogozzi, R., P., & Warshaw, P., R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35, 982-1003.spa
dc.relation.referencesDavis, F.D. (1986). A technology acceptance model for empirically testing new end-user information systems: Theory and results. Massachusetts, United States: Sloan School of Management, Massachusetts Institute of Technology.spa
dc.relation.referencesDiamantopoulos, A., & Riefler, P. (2011). Using formative measures in international marketing models: A cautionary tale using consumer animosity as an example. Advances in International Marketing, 10, 11–30.spa
dc.relation.referencesEsmaeilzadeh, P., Subramanian, H., & Cousins, K. (2019). Individuals' Cryptocurrency Adoption: A Proposed Moderated-Mediation Model. AMCIS.spa
dc.relation.referencesEuropean Central Bank, (2012), Virtual Currency Schemes. Disponible en: https://www.ecb.europa.eu/pub/pdf/other/virtualcurrencyschemes201210en.pdf.spa
dc.relation.referencesEuropean Central Bank, (2015), Virtual Currency Schemes – a further analysis. Disponible en: https://www.ecb.europa.eu/pub/pdf/other/virtualcurrencyschemesen.pdf.spa
dc.relation.referencesFaqih, K. M. S. (2016). An empirical analysis of factors predicting the behavioral intention to adopt Internet shopping technology among non-shoppers in a developing country context: does gender matter? J. Retailing Consum. Serv. 30, 140–164. doi: 10.1016/j.jretconser.2016.01.016.spa
dc.relation.referencesFaulkner J. (2016), Getting started with Cryptography in .NET, München BookRix, 6.spa
dc.relation.referencesFeatherman, M. S., and Pavlou, P. A. (2003). Predicting e-services adoption: a perceived risk facets perspective, International. J. Hum. Comput. Stud. 59, 451–474. doi: 10.1016/S1071-5819(03)00111-3.spa
dc.relation.referencesFerber, R. (1977). Rearch by Convenience. Journal of Consumer Research, 4(1), pp. 57-58.spa
dc.relation.referencesFinancial Action Task Force, (2014), Virtual Currencies – Key Definitions and Potential AML/CFT Risks, Disponible en: http://www.fatf- gafi.org/media/fatf/documents/reports/Virtual-currency-key-definitions-and-potential-aml-cft-risks.pdfspa
dc.relation.referencesFishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research. Addision-Wesley.spa
dc.relation.referencesFrancisco K, Swanson D. (2018) The Supply Chain Has No Clothes: Technology Adoption of Blockchain for Supply Chain Transparency. Logistics. 2(1):2.spa
dc.relation.referencesGeisser, S. (1974). A predictive approach to the random effects model. Biometrika, 61, 101–107.spa
dc.relation.referencesGoodhue, D. L., & Thompson, R. L. (1995). Task technology fit and individual performance. MIS Quarterly, 19, 213-236.spa
dc.relation.referencesGoogle Inc. (2019). https://www.google.com/forms/about/. año de utilizaciónspa
dc.relation.referencesHair, Joe F., Sarstedt, M., Ringle, C. M., & Mena, J. A. (2012). An assessment of the use of partial least squares structural equation modeling in marketing research. Journal of the Academy of Marketing Science, 40(3), 414–433. https://doi.org/10.1007/s11747-011-0261-6.spa
dc.relation.referencesHair, Joseph F., Hult, T. M., Ringle, C. M., & Sarstedt, M. (2017). A primer on partial least squares structural equation modeling (PLS- SEM) (Second Edi). https://doi.org/10.1007/s10995-012-1023-x [doi].spa
dc.relation.referencesHenseler, J., & Dijkstra, T. K. (2015). ADANCO 1.1 [Computer software]. Retrieved from http://www.compositemodeling.com.spa
dc.relation.referencesHenseler, J., Dijkstra, T. K., Sarstedt, M., Ringle, C. M., Diamantopoulos, A., Straub, D. W., et al. (2014). Common beliefs and reality about partial least squares: Comments on Rönkkö & Evermann (2013). Organizational Research Methods, 17, 182–209.spa
dc.relation.referencesHileman G. y Rauchs M. (2017), Global Cryptocurrency Benchmarking Study, Cambridge Centre for Alternative Finance, p. 15.spa
dc.relation.referencesHolub, M., and Johnson, J. (2018). Bitcoin research across disciplines. Inf. Soc. 34, 114–126. doi: 10.1080/01972243.2017.1414094.spa
dc.relation.referencesHorst, M., Kuttschreuter, M., & Gutteling, J. M. (2007). Perceived usefulness, personal experiences, risk perception and trust as determinants of adoption of e-government services in The Netherlands. Computers in Human Behavior, 23(4), 1838-1852. https://doi.org/10.1016/j.chb.2005.11.003.spa
dc.relation.referencesHouben R. (2015), Bitcoin: there two sides to every coin, ICCLR, Vol. 26, Issue 5, 195.spa
dc.relation.referencesHouben, R., and Snyers A. (2018). European Parliament: Cryptocurrencies and blockchain Legal context and implications for financial crime, money laundering and tax evasion. Disponible en: http://www.europarl.europa.eu/supporting-analyses .spa
dc.relation.referencesHui, B. S., & Wold, H. O. A. (1982). Consistency and consistency at large of partial least squares estimates. In K. G. Jöreskog & H. O. A. Wold (Eds.), Systems under indirect observation, Part II (pp. 119–130). Amsterdam: North-Holland.spa
dc.relation.referencesInternational Monetary Fund, (2016), Virtual Currencies and Beyond: Initial Considerations Disponible en: https://www.imf.org/external/pubs/ft/sdn/2016/sdn1603.pdf.spa
dc.relation.referencesJaoude, J., & Saade, R. (2019). Blockchain Factors for Consumer Acceptance. The International Journal of Business Management and Technology, Vol. 3.1 ISSN: 2581-3889.spa
dc.relation.referencesKannungo, S., and Jain, V. (2004). “Relationship between risk and intention to purchase in an online context: role of gender and product category,” in Proceedings of the 13th European Conference on Information Systems, The European IS Profession in the Global Networking Environment, ECIS 2004, (Turku).spa
dc.relation.referencesKim, H.‐W., Chan, H. C., & Gupta, S. (2007). Value‐based adoption of mobile internet: an empirical investigation. Decision Support Systems, 43(1), 111–126.spa
dc.relation.referencesKim, S. S., and Malhotra, N. K. (2005). A Longitudinal Model of Continued IS Use: An Integrative View of Four Mechanisms Underlying Post-Adoption Phenomena, Management Science (51:5), pp. 741-755.spa
dc.relation.referencesKim, S. S., Malhotra, N. K., and Narasimhan, S. (2005). Two Competing Perspectives on Automatic Use: A Theoretical and Empirical Comparison, Information Systems Research (16:4), pp. 418-432.spa
dc.relation.referencesKwabena G. Boakye & Thomas McGinnis & Victor R. Prybutok, (2014). Q-TAM: A quality technology acceptance model for technology operations managers. Springer Science Business Media New York.spa
dc.relation.referencesLai P. C. & Zainal A.A, (2015). Perceived Risk as an Extension to TAM Model: Consumers’ Intention to Use A Single Platform E-Payment. Australia Journal Basic and Applied Science, 9(2): 323-330.spa
dc.relation.referencesLai, P. C. (2016) Design and Security impact on consumers’ intention to use single platform E- payment, Interdisciplinary Information Sciences, 22 (1), 111-12.spa
dc.relation.referencesLai, P. C. (2017) THE LITERATURE REVIEW OF TECHNOLOGY ADOPTION MODELS AND THEORIES FOR THE NOVELTY TECHNOLOGY JISTEM, Brazil Vol. 14, No. 1, Jan/Apr. 2017 pp. 21-38.spa
dc.relation.referencesLee, M.-C. (2009). Factors influencing the adoption of internet banking: An integration of TAM and TPB with perceived risk and perceived benefit. Electronic Commerce Research and Applications, 8(3), 130-141. https://doi.org/10.1016/j.elerap.2008.11.006.spa
dc.relation.referencesLikert, Rensis (1932). "A Technique for the Measurement of Attitudes". Archives of Psychology. 140: 1–55.spa
dc.relation.referencesLimayem, M., Hirt, S. G., and Cheung, С. M. К. (2007). How Habit Limits the Predictive Power of Intentions: The Case of IS Continuance, MIS Quarterly (31:4), pp. 70.spa
dc.relation.referencesMakanyeza, C., and Mutambayashata, S. (2018). Consumers’ acceptance and use of plastic money in Harare, Zimbabwe: application of the unified theory of acceptance and use of technology 2. Int. J. Bank Mark. 36, 379–392. doi: 10. 1108/IJBM- 03- 2017- 0044.spa
dc.relation.referencesMarcoulides, G. A., & Chin, W. W. (2013). You write but others read: Common methodological misunderstandings in PLS and related methods. In H. Abdi, W. W. Chin, V. Esposito Vinzi, G. Russolillo, & L. Trinchera (Eds.), New perspectives in partial least squares and related methods (pp. 31–64). New York: Springer.spa
dc.relation.referencesMoon, Y., and Hwang, J. (2018). Crowdfunding as an alternative means for funding sustainable appropriate technology: acceptance determinants of backers. Sustainability 10:1456. doi: 10.3390/su10051456.spa
dc.relation.referencesMoore, G. C., and Benbasat, I., (1991), Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation, Information Systems Research (2:3), pp. 192-222.spa
dc.relation.referencesNatarajan H., Krause S., and Gradstein H. (2017), “Distributed Ledger Technology (DLT) and blockchain”, FinTech note, no. 1. Washington, D.C., Disponible en: http://documents.worldbank.org/curated/en/177911513714062215/pdf/122140-WP-PUBLIC-Distributed- Ledger-Technology-and-Blockchain-Fintech-Notes.pdfspa
dc.relation.referencesNeufeld, D. J., Dong, L., and Higgins, C. (2007). "Charismatic Leadership and User Acceptance of Information Technology," European Journal of Information Systems (16:4), pp. 494-510.spa
dc.relation.referencesNovendra, Rizki & Gunawan, Fergyanto. (2017). Analysis of Technology Acceptance and Customer Trust in Bitcoin in Indonesia Using UTAUT Framework. KSII Transactions on Internet and Information Systems.spa
dc.relation.referencesO. Sohaib, W. Hussain, M. Asif, M. Ahmad, and M. Mazzara,, (2020). A PLS-SEM Neural Network Approach for Understanding Cryptocurrency Adoption. in IEEE Access, vol. 8, pp. 13138-13150, doi: 10.1109/ACCESS.2019.2960083.spa
dc.relation.referencesParasuraman, A., & Colby L. C. (2001). Techno-Ready Marketing, The Free Press.spa
dc.relation.referencesPlouffe, C. R., Hulland, J. S., and Vandenbosch, M, (2001) Research Report: Richness Versus Parsimony in Modeling Technology Adoption Decisions - Understanding Merchant Adoption of a Smart Card-Based Payment System, Information Systems Research (12:2), pp. 208-222.spa
dc.relation.referencesReinartz, W., Haenlein, M., & Henseler, J. (2009). An empirical comparison of the efficacy of covariance-based and variance-based SEM. International Journal of Research in Marketing, 26, 332–344.spa
dc.relation.referencesRingle, C. M., Wende, S. y Becker, J. M. (2015) SmartPLS 3. Boenningstedt: SmartPLS GmbH, http://www.smartpls.com.spa
dc.relation.referencesRogers, E. M. (1983). Diffusion of innovation. New York: The Free Press.spa
dc.relation.referencesRogers, E.M. (1995). Diffusion of Innovations. 4th ed., New York: The Free Press.spa
dc.relation.referencesS. Jarvenpaa, N. Tractinsky and M. Vitale, (2000). Information Technology and Management, vol. 1, no. 12, pp. 45-71. Available: 10.1023/a:1019104520776.spa
dc.relation.referencesSalisbury, W. D., Pearson, R. A., Pearson, A. W., and Miller, D. W. (2001). Perceived security and world wide web purchase intention. Ind. Manag. Data Syst. 101, 165–176. doi: 10.1108/02635570110390071.spa
dc.relation.referencesSaunders, M., Lewis, P., & Thornhill, A. (2016). Research methods for business students. Pearson.spa
dc.relation.referencesShim, S. I., and Lee, Y. (2011). Consumer’s perceived risk reduction by 3D virtual model. Int. J. Retail Distrib. Manag. 39, 945–959. doi: 10.1108/ 09590551111183326.spa
dc.relation.referencesShobhit S., (2018), Public, Private, Permissioned Blockchains Compared. Disponible en: https://www.investopedia.com/news/public-private-permissioned-blockchains- compared/.spa
dc.relation.referencesSlozko, O. &, Pelo A., (2015). Problems and risks of digital technologies introduction into e- payments. Transformations in Business and Economics, 14(1), 225-235.spa
dc.relation.referencesStofega, W., and Llamas, R. T. (2009). Worldwide Mobile Phone 2009-2013 Forecast Update. IDC Document Number 217209, IDC, Framingham, MA.spa
dc.relation.referencesStone, M. (1974). Cross-validatory choice and assessment of statistical predictions. Journal of the Royal Statistical Society, 36, 111–147.spa
dc.relation.referencesTaylor, S. and Todd, P. A. (1995). Understanding Information Technology Usage: A Test of Competing Models. Information Systems Research, 6, 144-176.spa
dc.relation.referencesTaylor, S., and Todd, P. A., (1995), Assessing IT Usage: The Role of Prior Experience, MIS Quarterly, (19:2), pp. 561-570.spa
dc.relation.referencesThe Law Library of Congress, Global Legal Research Center (2018). United States Legislative Information: Regulation of Cryptocurrency Around the World. Disponible en: http://www.loc.gov/law/help/cryptocurrency/cryptocurrency-world-survey.pdfspa
dc.relation.referencesThompson, R. L., Higgins, C. A., and Howell, J. M., (1991), Personal Computing: Toward a Conceptual Model of Utilization, MIS Quarterly (15:1), pp. 124-143.spa
dc.relation.referencesVenkatesh, V. and Bala, H. (2008). Technology Acceptance Model 3 and a Research Agenda on Interventions. Decision Science, 39 (2), 273-312.spa
dc.relation.referencesVenkatesh, V., & Davis, F. D. (1996). A model of the antecendents of percieved ease of use: development and test. Decision Science, 27 (3), pp. 451-481.spa
dc.relation.referencesVenkatesh, V., & Davis, F. D. (2000). A theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science, 46(2), pp. 186-204.spa
dc.relation.referencesVenkatesh, V., Morris, M.G., Davis, F.D., & Davis, G.B. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27, 425-478.spa
dc.relation.referencesVenkatesh, V., Thong, J., and Xu, X. (2012). Consumer Acceptance and User of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology," MIS Quarterly (36), pp. 157-178.spa
dc.relation.referencesVenkatesh, V. (2000). Determinants of perceived ease of use: integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342-365.spa
dc.relation.referencesWalton, A., & Johnston, K. (2018). Exploring perceptions of bitcoin adoption: The South African vir- tual community perspective. Interdisciplinary Journal of Information, Knowledge, and Management, 13, 165-182. https://doi.org/10.28945/4080.spa
dc.relation.referencesWe Are Social y Hootsuite (2019). Data Reportal Colombia 2019. Disponible en: https://datareportal.com/?utm_source=Reports&utm_medium=PDF&utm_campaign=Digital_2019&utm_content=Contact_Details_Slidespa
dc.relation.referencesWitzig P. and Salomon V., (2018) Cutting out the middleman: a case study of blockchain-induced reconfigurations in the Swiss Financial Services Industry, Université de Neuchâtel, Disponible en: http://www.unine.ch/files/live/sites/maps/files/shared/documents/wp/WP-1_2018_Witzig%20and%20Salomon.pdf .spa
dc.relation.referencesWorld Economic Forum (2015). WEF: Technology Tipping Points and Societal Impact. Disponible en: http://www3.weforum.org/docs/WEF_GAC15_ Technological_Tipping_Points_report_2015.pdf .spa
dc.relation.referencesWu, J., and Du, H. (2012). Toward a better understanding of behavioral intention and system usage constructs. European Journal of Information Systems (21), pp. 680-698.spa
dc.relation.referencesYang, S., Lu, Y., Gupta, S., & Cao, Y. (2012). Does context matter? The impact of use context on mobile internet adoption. International Journal of Human-Computer Interaction, 28(8), 530–541.spa
dc.relation.referencesYoun, S., Lee, K. (2019) Proposing value-based technology acceptance model: testing on paid mobile media service. Fash Text 6, 13. https://doi.org/10.1186/s40691-018-0163-z.spa
dc.relation.referencesYousafzai, S. Y., Foxall, G. R., & Pallister, J. G. (2007). Technology acceptance: a meta-analysis of the TAM: Part 1. Journal of Modelling in Management 2 (3), pp. 251-280.spa
dc.relation.referencesZtehitehami, V. A. (1988). Consumer Perceptions of Price, Quality, and Value: A Means-End Model and Synthesis of Evidence, Journal of Marketing (52:3), pp. 2-22.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc658 - Gerencia generalspa
dc.subject.proposalCriptomonedasspa
dc.subject.proposalCryptocurrencieseng
dc.subject.proposalIntención de usospa
dc.subject.proposalIntention to useeng
dc.subject.proposalExpectativa de desempeñospa
dc.subject.proposalExpectation of performanceeng
dc.subject.proposalExpectation of efforteng
dc.subject.proposalExpectativa de esfuerzospa
dc.subject.proposalInfluencia socialspa
dc.subject.proposalSocial influenceeng
dc.subject.proposalCondiciones facilitadorasspa
dc.subject.proposalFacilitating conditionseng
dc.subject.proposalRiesgo percibidospa
dc.subject.proposalPerceived riskeng
dc.subject.proposalConsumer behavioreng
dc.subject.proposalComportamiento del consumidorspa
dc.titleFactores que inciden en la intención de uso de criptomonedas desde la perspectiva del comportamiento del consumidorspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
CamiloFajardoGartner-DocumentoFinal-MA.pdf
Tamaño:
3.1 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: