Contribución a la identificación de potenciales antagonistas asociados al quorum sensing en Pseudomonas aeruginosa a través de métodos quimioinformáticos

dc.contributor.advisorLópez Vallejo, Fabián
dc.contributor.authorVictoria Muñoz, Daniel Felipe
dc.contributor.researchgroupProductos Naturales Vegetales Bioactivos y Quimica EcoIogicaspa
dc.contributor.supervisorMedina-Franco Jose Luis
dc.contributor.supervisorSánchez-Cruz Norberto
dc.date.accessioned2021-10-04T17:36:16Z
dc.date.available2021-10-04T17:36:16Z
dc.date.issued2021-09-28
dc.descriptionilustraciones, tablas, gráficasspa
dc.description.abstractDe acuerdo con el centro de control de enfermedades de los Estados Unidos (CDC’s) en su reporte de resistencia a antibióticos, las infecciones causadas por P. aeruginosa multi-fármaco resistente comprometieron alrededor de 32,600 pacientes y generaron 2,700 muertes durante el 2017. En Colombia el Sistema Nacional de Vigilancia de Resistencia Antimicrobiana (IAAS) en su informe del 2018 mostró que la P. aeruginosa es el patógeno con mayor recurrencia de la métalo β-lactamasa VIM en el territorio colombiano, alcanzando 840 casos contabilizados y dificultando el tratamiento de las infecciones de este patógeno. Como parte de la búsqueda de nuevas soluciones contra este patógeno, el mecanismo de comunicación intercelular denominado quorum sensing y los factores de transcripción que intervienen en él resultan ser blancos promisorios como adyuvantes en el tratamiento de infecciones por este patógeno. Por esta razón, en la presente investigación se seleccionaron los factores de transcripción LasR, PqsR y RhlR como blancos de estudio en el control de esta vía de comunicación. A través de la construcción de bases de datos con moléculas a las que se les ha demostrado su actividad biológica y su análisis mediante diversas herramientas del diseño de fármacos basado en el ligando, se encontraron múltiples características estructurales involucradas con la actividad contra estos factores de transcripción. Para LasR, anillos de 5 y 6 miembros (lactónicos y fenílicos), cadenas carbonadas de 10 o más carbonos, dos aceptores y un donador de puente de hidrogeno y el tamaño molecular superior a los 15 átomos fueron las características estructurales mínimas asociadas a moléculas con actividad sobre este factor. Adicionalmente se identificaron las interacciones con los residuos Tyr 47, ala 105, Thr 80, Leu 36, Ile 36, Ile 52 y Tyr 56 como posibles responsables de la actividad antagonista utilizando herramientas como fingerprints de interacción proteína-ligando y simulación de dinámicas molecular; siendo estos asociados al diseño de fármacos basado en la estructura. Los compuestos con actividad sobre PqsR exhibieron las siguientes características estructurales: biciclos nitrogenados de 6 miembros (quinoleína y quinazolina), cadenas alifáticas de un tamaño mínimo de 10 carbonos, mínimo un aceptor y donador de puente de hidrogeno y se debe igualar o superar a los 15 átomos; las interacciones con los aminoácidos que podrían estar involucrados en la actividad antagonista sobre este factor son: Tyr 258, Phe 221, Ala 102, Leu 207, Ile 149, siendo estas caracterizadas con los instrumentos del diseño e fármacos basado en la estructura. A partir de la base de datos construida para RhlR y los análisis quimioinformáticos se detectó que las moléculas con un anillo de 5 o 6 miembros (lactonas y fenilos), cadenas carbonadas de 3 a 6 carbonos; al menos 2 aceptores de puente de hidrogeno, 1 donador de puente de hidrogeno y que el conteo de átomos oscile entre 8 y 12. Como en las bases de datos públicas al momento no se encuentra elucidada la estructura terciaria de este factor de transcripción, en este trabajo se planteó y validó un modelo de estructura: con la anterior se procedió a hacer los análisis de fingerprints interacción proteína-ligando y la simulación de dinámica molecular para encontrar los residuos involucrados con la actividad antagonista, encontrado a las interacciones con la Val 60, Leu 69, Tyr 64, Tyr 72 y Ala 83 como las posibles responsables. Con el fin de complementar las características estructurales encontradas anteriormente, se crearon los farmacóforos a través del alineamiento estructural de las conformaciones obtenidas con los acoplamientos de las 10 moléculas con mejor actividad antagonista sobre cada uno de los factores de transcripción. Adicionalmente, se construyeron modelos de aprendizaje de maquina supervisados, donde los compuestos de la base de datos fueron clasificados como activos e inactivos y con el molecular fingerprint ECFP4 se caracterizó cada una de las moléculas para el entrenamiento posterior de 14 modelos; los cuales fueron clasificados según 6 métricas diferentes. De lo anterior se encontró que los mejores clasificadores fueron extreme gradient boosting y k-nearest neighbors classifier para todos los factores de transcripción y se propone el uso conjunto para la clasificación de los compuestos con posible actividad. Para integrar la información anterior, se realizó un cribado virtual sobre una base de datos molecular de productos naturales; encontrando a los compuestos: litseanolido C2, 1-hidroxi-3-metoxi-N-metil acridona y hematomato de metilo como los mejores clasificados para ser antagonistas contra LasR, PqsR y RhlR; además se identificó a las familias Rutaceae, Lauraceae y Piperaceae como una fuente potencial de compuestos con actividad contra estos factores de transcripción. (Texto tomado de la fuente).spa
dc.description.abstractAccording to the United States Center for Disease Control (CDC's) in its report of antibiotic resistance, infections caused by multi-drug resistant P. aeruginosa affected around 32,600 patients and generated 2,700 deaths during 2017. In Colombia the National Antimicrobial Resistance Surveillance System (IAAS) in its 2018 report showed that P. aeruginosa is the pathogen with the highest recurrence of Metallo β-lactamase VIM in the Colombian territory, reaching 840 counted cases and making it difficult to treat the infections of this pathogen. As part of the search for new solutions against this pathogen, the intercellular communication mechanism called quorum sensing and the transcription factors involved in it turn out to be promising targets as adjuvants in the treatment of infections caused by this pathogen. For this reason, in this research, the transcription factors LasR, PqsR, and RhlR were selected as study targets in the control of this communication pathway. Through the construction of databases with active molecules. In this thesis using various tools of drug design based on the ligand, multiple structural characteristics involved with the activity against these transcription factors were found. For LasR, 5 and 6-membered rings (lactonic and phenyl), carbon chains of 10 or more carbons, two acceptors and a hydrogen bridge donor, and molecular size greater than 15 atoms were the minimum structural characteristics associated with molecules with activity on this factor. Additionally, interactions with residues Tyr 47, ala 105, Thr 80, Leu 36, Ile 36, Ile 52, and Tyr 56 were identified as possibly responsible for the antagonist activity using tools such as protein-ligand interaction fingerprints and molecular dynamics simulation; these being associated with structure-based drug design. Compounds with activity on PqsR exhibited the following structural characteristics: 6-membered nitrogenous bicycles (quinoline and quinazoline), aliphatic chains of a minimum size of 10 carbons, at least one hydrogen bridge acceptor and donor, and should equal or exceed those 15 atoms; the interactions with the amino acids that could be involved in the antagonist activity on this factor are: Tyr 258, Phe 221, Ala 102, Leu 207, Ile 149, being these characterized with the instruments of design and drugs based on the structure. From the database built for RhlR and the chemoinformatics analyzes, it was detected that molecules with a 5 or 6-membered ring (lactones and phenyl), carbon chains of 3 to 6 carbons; at least 2 hydrogen bridge acceptors, 1 hydrogen bridge donor, and that the atom count ranges between 8 and 12. As in the public databases at the moment the tertiary structure of this transcription factor is not elucidated. This work proposed and validated a structure model: with the previous one, we proceeded to do the analysis of protein-ligand interaction fingerprints and the simulation of molecular dynamics to find the residues involved with the antagonist activity, found in the interactions with Val 60, Leu 69, Tyr 64, Tyr 72 and Ala 83 as the possible culprits. In order to complement the structural characteristics, found previously, the pharmacophores were created through the structural alignment of the conformations obtained with the couplings of the 10 molecules with the best antagonist activity on each of the transcription factors. Additionally, supervised machine learning models were built, where the compounds in the database were classified as active and inactive, and with the molecular fingerprint ECFP4, each of the molecules was characterized for the subsequent training of 14 models; which were classified according to 6 different metrics. From the above, it was found that the best classifiers were extreme gradient boosting and k-nearest neighbor’s classifier for all transcription factors, and joint use is proposed for the classification of compounds with possible activity. To integrate the above information, virtual screening was performed on a molecular database of natural products; finding the compounds: C2 litseanolide, 1-hydroxy-3-methoxy-N-methyl acridone, and methyl hematomate as the best classified to be antagonists against LasR, PqsR, and RhlR; Furthermore, the Rutaceae, Lauraceae, and Piperaceae families were identified as a potential source of compounds with activity against these transcription factors.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Farmacéuticasspa
dc.description.researchareaQuímica medicinal y modelamiento molecularspa
dc.description.sponsorshipMinCienciasspa
dc.description.sponsorshipFPIT - Fundación para la promoción de la investigación y la tecnologíaspa
dc.format.extentxxii, 147 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80376
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Farmaciaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias Farmacéuticasspa
dc.relation.referencesSchopf, J. W. Fossil evidence of Archaean life. Philos. Trans. R. Soc. B Biol. Sci. 361, 869–885 (2006).spa
dc.relation.referencesAltermann, W. & Kazmierczak, J. Archean microfossils: A reappraisal of early life on Earth. Res. Microbiol. 154, 611–617 (2003).spa
dc.relation.referencesKoch, R. Die Ätiologie der Milzbrand-Krankheit, begründet auf die Entwicklungsgeschichte des Bacillus Anthracis. Dtsch. Medizinische Wochenschrift 8, 283 (1882).spa
dc.relation.referencesFredricks, D. N. & Relman, D. A. Sequence-based identification of microbial pathogens: A reconsideration of Koch’s postulates. Clin. Microbiol. Rev. 9, 18–33 (1996).spa
dc.relation.referencesAndrei, S., Valeanu, L., Chirvasuta, R. & Stefan, M.-G. New FDA approved antibacterial drugs: 2015-2017. FDA Approv. Antibact. Drugs 2015–2017.spa
dc.relation.referencesAminov, R. I. A brief history of the antibiotic era: Lessons learned and challenges for the future. Front. Microbiol. 1, (2010).spa
dc.relation.referencesVentola, C. L. [Review] The antibiotic resistance crisis: part 1: causes and threats. Pharm. Ther. 40, 277–83 (2015).spa
dc.relation.referencesPeña, C. et al. Carbapenem-resistant Pseudomonas aeruginosa: Factors influencing multidrug-resistant acquisition in non-critically ill patients. Eur. J. Clin. Microbiol. Infect. Dis. 28, 519–522 (2009).spa
dc.relation.referencesEl Zowalaty, M. E. et al. Pseudomonas aeruginosa: Arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Fut. Microbiol. vol. 10 1683–1706 (2015).spa
dc.relation.referencesTacconelli, E. et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18, 318–327 (2018).spa
dc.relation.referencesDrugs Development & Approval Process. Novel Drug Approvals for 2017. U.S. Food Drug Adm. 1–36 (2017).spa
dc.relation.referencesDrugs Development & Approval Process. Novel Drug Approvals for 2018. U.S. Food Drug Adm. 1–36 (2018).spa
dc.relation.referencesDrugs Development & Approval Process. Through Innovation New Drug Therapy Approvals 2019. U.S. Food Drug Adm. 1–44 (2020).spa
dc.relation.referencesMullard, A. 2019 FDA drug approvals. Nat. Rev. Drug Discov. 19, 79–84 (2020).spa
dc.relation.referencesNealson, K. H., Platt, T. & Hastings, J. W. Cellular control of the synthesis and activity of the bacterial luminescent system. J. Bacteriol. 104, 313–22 (1970).spa
dc.relation.referencesKalia, V. C. Quorum Sensing vs Quorum Quenching: A Battle with No End in Sight. (Springer India, 2015).spa
dc.relation.referencesPérez-Pérez, M., Jorge, P., Pérez Rodríguez, G., Pereira, M. O. & Lourenço, A. Quorum sensing inhibition in Pseudomonas aeruginosa biofilms: new insights through network mining. Biofouling 33, 128–142 (2017).spa
dc.relation.referencesPesci, E. C., Pearson, J. P., Seed, P. C. & Iglewski, B. H. Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J. Bacteriol. 179, 3127–32 (1997).spa
dc.relation.referencesDubern, J. F. & Diggle, S. P. Quorum sensing by 2-alkyl-4-quinolones in Pseudomonas aeruginosa and other bacterial species. Mol. Biosyst. 4, 882–888 (2008).spa
dc.relation.referencesLee, J. et al. A cell-cell communication signal integrates quorum sensing and stress response. Nat. Chem. Biol. 9, 339–343 (2013).spa
dc.relation.referencesSchuster, M. & Peter Greenberg, E. A network of networks: Quorum-sensing gene regulation in Pseudomonas aeruginosa. Int. J. Med. Microbiol. 296, 73–81 (2006).spa
dc.relation.referencesLagarde, N., Zagury, J. F. & Montes, M. Benchmarking Data Sets for the Evaluation of Virtual Ligand Screening Methods: Review and Perspectives. Journal of Chemical Information and Modeling vol. 55 1297–1307 (2015).spa
dc.relation.referencesSliwoski, G. R., Meiler, J. & Lowe, E. W. Computational Methods in Drug Discovery Prediction of protein structure and ensembles from limited experimental data View project Antibody modeling, Antibody design and Antigen-Antibody interactions View project. Comput. Methods Drug Discov. 66, 334–95 (2014).spa
dc.relation.referencesMacalino, S. J. Y., Gosu, V., Hong, S. & Choi, S. Role of computer-aided drug design in modern drug discovery. Arc. of Pharmacal. Res. vol. 38 1686–1701 (2015).spa
dc.relation.referencesBajorath, J. Computer-aided drug discovery [ version 1 ; referees : 3 approved ] Referee Status : 4, 1–8 (2016).spa
dc.relation.referencesJorgensen, W. L. The Many Roles of Computation in Drug Discovery. Science vol. 303 1813–1818 (2004).spa
dc.relation.referencesAguayo-Ortiz, R. & Fernández-de Gortari, E. Overview of Computer-Aided Drug Design for Epigenetic Targets. in Epi-Informatics 21–52 (Academic Press, 2016).spa
dc.relation.referencesBrown, N. et al. Big Data in Drug Discovery. in Progress in Medicinal Chemistry vol. 57 277–356 (Elsevier B.V., 2018).spa
dc.relation.referencesPolanski, J. Big Data in Structure-Property Studies—From Definitions to Models. in 529–552 (2017).spa
dc.relation.referencesMendez, D. et al. ChEMBL: Towards direct deposition of bioassay data. Nucleic Acids Res. 47, D930–D940 (2019).spa
dc.relation.referencesKim, S. et al. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res. 47, D1102–D1109 (2019).spa
dc.relation.referencesWishart, D. S. et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 46, D1074–D1082 (2018).spa
dc.relation.referencesGutmanas, A. et al. PDBe: Protein data bank in Europe. Nucleic Acids Res. 42, (2014).spa
dc.relation.referencesTreepong, P. et al. Global emergence of the widespread Pseudomonas aeruginosa ST235 clone. Clin. Microbiol. Infect. 24, 258–266 (2018).spa
dc.relation.referencesGellatly, S. L. & Hancock, R. E. W. Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathog. Dis. 67, 159–173 (2013).spa
dc.relation.referencesMoradali, M. F., Ghods, S. & Rehm, B. H. A. Pseudomonas aeruginosa lifestyle: A paradigm for adaptation, survival, and persistence. Front. Cell. Infect. Microbiol. 7, (2017).spa
dc.relation.referencesFrimmersdorf, E., Horatzek, S., Pelnikevich, A., Wiehlmann, L. & Schomburg, D. How Pseudomonas aeruginosa adapts to various environments: A metabolomic approach. Environ. Microbiol. 12, 1734–1747 (2010).spa
dc.relation.referencesMigiyama, Y. et al. Pseudomonas aeruginosa bacteremia among immunocompetent and immunocompromised patients: Relation to initialantibiotic therapy and survival. Jpn. J. Infect. Dis. 69, 91–96 (2016).spa
dc.relation.referencesHauser, A. R. So Many Virulence Factors, So Little Time. Crit Care Med. 39, 2193–2194 (2012).spa
dc.relation.referencesOlusegun, A. et al. We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1 %. Intech i, 38 (2012).spa
dc.relation.referencesTacconelli, E., Carrara, E., Savoldi, A., Kattula, D. & Burkert, F. GLOBAL PRIORITY LIST OF ANTIBIOTIC-RESISTANT BACTERIA TO GUIDE RESEARCH, DISCOVERY, AND DEVELOPMENT OF NEW ANTIBIOTICS. http://www.cdc.gov/drugresistance/threat-report-2013/.spa
dc.relation.referencesCenters for Disease Control and Prevention. Multi-drug resistant Pseudomonas aeruginosa infection. (2017).spa
dc.relation.referencesSuetens, C. et al. Prevalence of healthcare-associated infections, estimated incidence and composite antimicrobial resistance index in acute care hospitals and long-term care facilities: Results from two european point prevalence surveys, 2016 to 2017. Eurosurveillance 23, 1–18 (2018).spa
dc.relation.referencesRestrepo, M. I. et al. Burden and risk factors for Pseudomonas aeruginosa community-acquired pneumonia: A multinational point prevalence study of hospitalised patients. Eur. Respir. J. 52, (2018).spa
dc.relation.referencesInstituto Nacional de Salud. Boletín epidemiológico semanal 07 de 2020. Boletín epidemiológico semanal (2020).spa
dc.relation.referencesTamber, S. & Hancock, R. E. W. Frontiers in Bioscience 8, s472-483, May 1, 2003] ON THE MECHANISM OF SOLUTE UPTAKE IN PSEUDOMONAS. 472–483 (2003).spa
dc.relation.referencesBaumgart, A. M. K., Molinari, M. A. & de Silveira, A. C. O. Prevalence of carbapenem resistant pseudomonas aeruginosa and acinetobacter baumannii in high complexity hospital. Brazilian J. Infect. Dis. 14, 433–436 (2010).spa
dc.relation.referencesColclough, A. L. et al. RND efflux pumps in Gram-negative bacteria; Regulation, structure and role in antibiotic resistance. Future Microbiol. 15, 143–157 (2020).spa
dc.relation.referencesOliver, A., Mulet, X., López-Causapé, C. & Juan, C. The increasing threat of Pseudomonas aeruginosa high-risk clones. Drug Resist. Updat. 21–22, 41–59 (2015).spa
dc.relation.referencesPoole, K. Stress responses as determinants of antimicrobial resistance in Gram-negative bacteria. Trends Microbiol. 20, 227–234 (2012).spa
dc.relation.referencesFernández, L., Breidenstein, E. B. M. & Hancock, R. E. W. Creeping baselines and adaptive resistance to antibiotics. Drug Resist. Updat. 14, 1–21 (2011).spa
dc.relation.referencesFraud, S., Campigotto, A. J., Chen, Z. & Poole, K. MexCD-OprJ multidrug efflux system of Pseudomonas aeruginosa: Involvement in chlorhexidine resistance and induction by membrane-damaging agents dependent upon the AlgU stress response sigma factor. Antimicrob. Agents Chemother. 52, 4478–4482 (2008).spa
dc.relation.referencesLee, J. Y., Park, Y. K., Chung, E. S., Na, I. Y. & Ko, K. S. Evolved resistance to colistin and its loss due to genetic reversion in Pseudomonas aeruginosa. Sci. Rep. 6, 1–13 (2016).spa
dc.relation.referencesFujitani, S., Moffett, K. & Yu, V. Pseudomonas aeruginosa. Infect. Dis. Antimicrob. agents (2018).spa
dc.relation.referencesInstituto Nacional de Vigilancia de Medicamentos y Alimentos INVIMA. NORMAS FARMACOLÓGICAS. (2020).spa
dc.relation.referencesBassetti, M., Vena, A., Croxatto, A., Righi, E. & Guery, B. How to manage Pseudomonas aeruginosa infections. Drugs Context 7, 1–18 (2018).spa
dc.relation.referencesPublic Health England. Antibiotic Awareness: Key Messages 2017 World Antibiotic Awareness Week European Antibiotic Awareness Day Antibiotic Guardian. www.facebook.com/PublicHealthEngland (2017).spa
dc.relation.referencesTheuretzbacher, U. Antibiotic innovation for future public health needs. Clin. Microbiol. Infect. 23, 713–717 (2017).spa
dc.relation.referencesHolden, M. T., Diggle, S. P. & Williams, P. Quorum Sensing. in Encyclopedia of Life Sciences (John Wiley & Sons, Ltd, 2007).spa
dc.relation.referencesMiller, M. B. & Bassler, B. L. Quorum Sensing in Bacteria. Annu. Rev. Microbiol. 55, 165–199 (2001).spa
dc.relation.referencesBai Aswathanarayan, J. & Ravishankar Rai, V. Quorum-Sensing Systems in Pseudomonas. (2015).spa
dc.relation.referencesO’Reilly, M. C. & Blackwell, H. E. Structure-Based Design and Biological Evaluation of Triphenyl Scaffold-Based Hybrid Compounds as Hydrolytically Stable Modulators of a LuxR-Type Quorum Sensing Receptor. ACS Infect. Dis. 2, 32–38 (2016).spa
dc.relation.referencesHuang, H. et al. An integrated genomic regulatory network of virulence-related transcriptional factors in Pseudomonas aeruginosa. Nat. Commun. 10, (2019).spa
dc.relation.referencesLee, J. & Zhang, L. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell 6, 26–41 (2015).spa
dc.relation.referencesGarcïa-Contreras, R. Is quorum sensing interference a viable alternative to treat Pseudomonas aeruginosa infections? Front. Microbiol. 7, 1–7 (2016).spa
dc.relation.referencesBarr, H. L. et al. Pseudomonas aeruginosa quorum sensing molecules correlate with clinical status in cystic fibrosis. Eur. Respir. J. 46, 1046–1054 (2015).spa
dc.relation.referencesTaha, M. N., Saafan, A. E., Ahmedy, A., El Gebaly, E. & Khairalla, A. S. Two novel synthetic peptides inhibit quorum sensing-dependent biofilm formation and some virulence factors in Pseudomonas aeruginosa PAO1. J. Microbiol. 57, 618–625 (2019).spa
dc.relation.referencesAbinaya, M. & Gayathri, M. Inhibition of biofilm formation, quorum sensing activity and molecular docking study of isolated 3, 5, 7-Trihydroxyflavone from Alstonia scholaris leaf against P.aeruginosa. Bioorg. Chem. 87, 291–301 (2019).spa
dc.relation.referencesĆirić, A. D. et al. Natural products as biofilm formation antagonists and regulators of quorum sensing functions: A comprehensive review update and future trends. South African Journal of Botany vol. 120 65–80 (2019).spa
dc.relation.referencesSoukarieh, F. et al. In silico and in vitro-guided identification of inhibitors of alkylquinolone-dependent quorum sensing in pseudomonas aeruginosa. Molecules 23, (2018).spa
dc.relation.referencesSchütz, C. & Empting, M. Targeting the Pseudomonas quinolone signal quorum sensing system for the discovery of novel anti-infective pathoblockers. Beilstein Journal of Organic Chemistry vol. 14 2627–2645 (2018).spa
dc.relation.referencesSampathkumar, S. J., Srivastava, P., Ramachandran, S., Sivashanmugam, K. & Gothandam, K. M. Lutein: A potential antibiofilm and antiquorum sensing molecule from green microalga Chlorella pyrenoidosa. Microb. Pathog. 135, 103658 (2019).spa
dc.relation.referencesReina, J. C., Pérez-Victoria, I., Martín, J. & Llamas, I. A Quorum-Sensing Inhibitor Strain of Vibrio alginolyticus Blocks Qs-Controlled Phenotypes in Chromobacterium violaceum and Pseudomonas aeruginosa. Mar. Drugs 17, 494 (2019).spa
dc.relation.referencesTeerapo, K., Roytrakul, S., Sistayanarain, A. & Kunthalert, D. A scorpion venom peptide derivative BmKn-22 with potent antibiofilm activity against Pseudomonas aeruginosa. PLoS One 14, (2019).spa
dc.relation.referencesGómez-Gómez, B. et al. Selenium and tellurium-based nanoparticles as interfering factors in quorum sensing-regulated processes: Violacein production and bacterial biofilm formation. Metallomics 11, 1104–1114 (2019).spa
dc.relation.referencesRutherford, S. T. & Bassler, B. L. Bacterial quorum sensing: Its role in virulence and possibilities for its control. Cold Spring Harb. Perspect. Med. 2, 1–25 (2012).spa
dc.relation.referencesSoheili, V., Tajani, A. S., Ghodsi, R. & Bazzaz, B. S. F. Anti-PqsR compounds as next-generation antibacterial agents against Pseudomonas aeruginosa: A review. Eur. J. Med. Chem. 172, 26–35 (2019).spa
dc.relation.referencesMaura, D., Hazan, R., Kitao, T., Ballok, A. E. & Rahme, L. G. Evidence for direct control of virulence and defense gene circuits by the pseudomonas aeruginosa quorum sensing regulator, MvfR. Sci. Rep. 6, 1–14 (2016).spa
dc.relation.referencesStarkey, M. et al. Identification of Anti-virulence Compounds That Disrupt Quorum-Sensing Regulated Acute and Persistent Pathogenicity. PLoS Pathog. 10, (2014).spa
dc.relation.referencesWang, J. et al. Bacterial quorum-sensing signal IQS induces host cell apoptosis by targeting POT1-p53 signalling pathway. Cell. Microbiol. 21, e13076 (2019).spa
dc.relation.referencesLópez Vallejo, F., Medina Franco, J. L. & Castillo, R. Diseño de fármacos asistido por computadora. Educ. Química 17, 452 (2006).spa
dc.relation.referencesSaldívar-González, F., Prieto-Martínez, F. D. & Medina-Franco, J. L. Descubrimiento y desarrollo de fármacos: un enfoque computacional. Educ. Quim. 28, 51–58 (2017).spa
dc.relation.referencesPROTEIN DATA BANK. PDB Statistics: PDB Data Distribution by Residue Count. https://www.rcsb.org/stats/distribution-residue-count (2020).spa
dc.relation.referencesMeza Menchaca, T., Juárez-Portilla, C. & C. Zepeda, R. Past, Present, and Future of Molecular Docking. in Drug Discovery and Development - New Advances (IntechOpen, 2020).spa
dc.relation.referencesBerry, M., Fielding, B. & Gamieldien, J. Practical Considerations in Virtual Screening and Molecular Docking. Emerging Trends in Computational Biology, Bioinformatics, and Systems Biology: Algorithms and Software Tools (Elsevier Inc., 2015).spa
dc.relation.referencesPrieto-Martínez, F. D., Arciniega, M. & Medina-Franco, J. L. Acoplamiento Molecular: Avances Recientes y Retos. TIP Rev. Espec. en Ciencias Químico-Biológicas 21, 65–87 (2018).spa
dc.relation.referencesHollingsworth, S. A. & Dror, R. O. Molecular Dynamics Simulation for All. Neuron 99, 1129–1143 (2018).spa
dc.relation.referencesAzhagiya Singam, E. R., Tachachartvanich, P., La Merrill, M. A., Smith, M. T. & Durkin, K. A. Structural Dynamics of Agonist and Antagonist Binding to the Androgen Receptor. J. Phys. Chem. B 123, 7657–7666 (2019).spa
dc.relation.referencesAn, X. et al. How Does Agonist and Antagonist Binding Lead to Different Conformational Ensemble Equilibria of the κ-Opioid Receptor: Insight from Long-Time Gaussian Accelerated Molecular Dynamics Simulation. ACS Chem. Neurosci. 10, 1575–1584 (2019).spa
dc.relation.referencesWang, Y. T. & Chan, Y. H. Understanding the molecular basis of agonist/antagonist mechanism of human mu opioid receptor through gaussian accelerated molecular dynamics method. Sci. Rep. 7, 1–11 (2017).spa
dc.relation.referencesKolinski, M. & Filipek, S. Molecular Dynamics of μ Opioid Receptor Complexes with Agonists and Antagonists. Open Struct. Biol. J. 2, 8–20 (2008).spa
dc.relation.referencesWiltgen, M. & Tilz, G. P. Homology modelling: Eine übersicht über die methode am beispiel der strukturbestimmung vom diabetes antigen GAD 65. Wiener Medizinische Wochenschrift 159, 112–125 (2009).spa
dc.relation.referencesMuhammed, M. T. & Aki-Yalcin, E. Homology modeling in drug discovery: Overview, current applications, and future perspectives. Chem. Biol. Drug Des. 93, 12–20 (2019).spa
dc.relation.referencesRodriguez, R., Chinea, G., Lopez, N., Pons, T. & Vriend, G. Homology modeling, model and software evaluation: Three related resources. Bioinformatics 14, 523–528 (1998).spa
dc.relation.referencesCroll, T. I., Sammito, M. D., Kryshtafovych, A. & Read, R. J. Evaluation of template-based modeling in CASP13. Proteins Struct. Funct. Bioinforma. 87, 1113–1127 (2019).spa
dc.relation.referencesSenior, A. W. et al. Protein structure prediction using multiple deep neural networks in the 13th Critical Assessment of Protein Structure Prediction (CASP13). Proteins Struct. Funct. Bioinforma. 87, 1141–1148 (2019).spa
dc.relation.referencesLiu, T., Lin, Y., Wen, X., Jorissen, R. N. & Gilson, M. K. BindingDB: A web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res. 35, 198–201 (2007).spa
dc.relation.referencesTodeschini, R. & Consonni, V. Handbook of Molecular Descriptors. (John Wiley & Sons, 2008).spa
dc.relation.referencesSastry, M., Lowrie, J. F., Dixon, S. L. & Sherman, W. Large-scale systematic analysis of 2D fingerprint methods and parameters to improve virtual screening enrichments. J. Chem. Inf. Model. 50, 771–784 (2010).spa
dc.relation.referencesBajusz, D., Rácz, A. & Héberger, K. Chemical Data Formats, Fingerprints, and Other Molecular Descriptions for Database Analysis and Searching. in Comprehensive Medicinal Chemistry III (2017).spa
dc.relation.referencesRuddigkeit, L., Van Deursen, R., Blum, L. C. & Reymond, J. L. Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17. J. Chem. Inf. Model. 52, 2864–2875 (2012).spa
dc.relation.referencesChoudhury, C. & Narahari Sastry, G. Pharmacophore Modelling and Screening: Concepts, Recent Developments and Applications in Rational Drug Design. Challenges Adv. Comput. Chem. Phys. 27, 25–53 (2019).spa
dc.relation.referencesQing, X. et al. Pharmacophore modeling: Advances, Limitations, And current utility in drug discovery. Journal of Receptor, Ligand and Channel Research vol. 7 81–92 (2014).spa
dc.relation.referencesLiu, C. et al. Pharmacophore-Based Virtual Screening Toward the Discovery of Novel Anti-echinococcal Compounds. Front. Cell. Infect. Microbiol. 10, 1–12 (2020).spa
dc.relation.referencesAlpaydin, E. Machine Learning: The New AI. (The MIT Press, 2016).spa
dc.relation.referencesMayr, A. et al. Large-scale comparison of machine learning methods for drug target prediction on ChEMBL. Chem. Sci. 9, 5441–5451 (2018).spa
dc.relation.referencesNaveja, J. J. & Medina-Franco, J. L. Finding Constellations in Chemical Space Through Core Analysis. Front. Chem. 7, 1–10 (2019).spa
dc.relation.referencesRDKit: Open-source cheminformatics. http://www.rdkit.org (2013).spa
dc.relation.referencesMolVS: Molecule Validation and Standardization. https://molvs.readthedocs.io/en/latest/index.html (2016).spa
dc.relation.referencesLovering, F., Bikker, J. & Humblet, C. Escape from flatland: Increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).spa
dc.relation.referencesLovering, F. Escape from Flatland 2: Complexity and promiscuity. Medchemcomm 4, 515–519 (2013).spa
dc.relation.referencesClemons, P. A. et al. Small molecules of different origins have distinct distributions of structural complexity that correlate with protein-binding profiles. Proc. Natl. Acad. Sci. U. S. A. 107, 18787–18792 (2010).spa
dc.relation.referencesMéndez-Lucio, O. & Medina-Franco, J. L. The many roles of molecular complexity in drug discovery. Drug Discovery Today (2017).spa
dc.relation.referencesBertz H., S. The First General Index of Molecular Complexity. J. Am. Chem. Soc. 103, 3599–3601 (1981).spa
dc.relation.referencesSander, T., Freyss, J., Von Korff, M. & Rufener, C. DataWarrior: An open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model. 55, 460–473 (2015).spa
dc.relation.referencesMcKinney, W. Data Structures for Statistical Computing in Python. PROC. 9th PYTHON Sci. CONF. (SCIPY 2010) 51–56 (2010).spa
dc.relation.referencesHu, Y., Stumpfe, D. & Bajorath, J. Computational Exploration of Molecular Scaffolds in Medicinal Chemistry. Journal of Medicinal Chemistry (2016).spa
dc.relation.referencesStumpfe, D., Dimova, D. & Bajorath, J. Computational method for the systematic identification of analog series and key compounds representing series and their biological activity profiles. J. Med. Chem. 59, 7667–7676 (2016).spa
dc.relation.referencesZdrazil, B. & Guha, R. The Rise and Fall of a Scaffold: A Trend Analysis of Scaffolds in the Medicinal Chemistry Literature. J. Med. Chem. 61, 4688–4703 (2018).spa
dc.relation.referencesSaldívar-González, F. I., Naveja, J. J., Palomino-Hernández, O. & Medina-Franco, J. L. Getting SMARt in drug discovery: Chemoinformatics approaches for mining structure-multiple activity relationships. RSC Advances vol. 7 632–641 (2017).spa
dc.relation.referencesBemis, G. W. & Murcko, M. A. The properties of known drugs. 1. Molecular frameworks. J. Med. Chem. 39, 2887–2893 (1996).spa
dc.relation.referencesGolbamaki, A., Franchi, A. M. & Gini, G. The Maximum Common Substructure (MCS) Search as a New Tool for SAR and QSAR. in Advances in QSAR Modeling. Challenges and Advances in Computational Chemistry and Physics 149–165 (2017).spa
dc.relation.referencesXu, Y. J. & Johnson, M. Using molecular equivalence numbers to visually explore structural features that distinguish chemical libraries. J. Chem. Inf. Comput. Sci. 42, 912–926 (2002).spa
dc.relation.referencesMaggiora, G. M. On outliers and activity cliffs - Why QSAR often disappoints. Journal of Chemical Information and Modeling vol. 46 1535 (2006).spa
dc.relation.referencesCruz-Monteagudo, M. et al. Activity cliffs in drug discovery: Dr Jekyll or Mr Hyde? Drug Discov. Today 19, 1069–1080 (2014).spa
dc.relation.referencesHu, Y. & Bajorath, J. Activity profile relationships between structurally similar promiscuous compounds. Eur. J. Med. Chem. 69, 393–398 (2013).spa
dc.relation.referencesMedina-Franco, J. L. Activity cliffs: Facts or artifacts? Chem. Biol. Drug Des. 81, 553–556 (2013).spa
dc.relation.referencesMedina-Franco, J. L. et al. Characterization of activity landscapes using 2D and 3D similarity methods: Consensus activity cliffs. J. Chem. Inf. Model. (2009).spa
dc.relation.referencesSud, M. MayaChemTools: An Open Source Package for Computational Drug Discovery. J. Chem. Inf. Model. 56, 2292–2297 (2016).spa
dc.relation.referencesSaldívar-González, F. I., Lenci, E., Trabocchi, A. & Medina-Franco, J. L. Exploring the chemical space and the bioactivity profile of lactams: a chemoinformatic study. RSC Adv. 9, 27105–27116 (2019).spa
dc.relation.referencesFirdaus Begam, B., Begam, B. F. & Kumar, J. S. Visualization of Chemical Space Using Principal Component Analysis. World Appl. Sci. J. 29, 53–59 (2014).spa
dc.relation.referencesKarlov, D. S., Sosnin, S., Tetko, I. V. & Fedorov, M. V. Chemical space exploration guided by deep neural networks. RSC Adv. 9, 5151–5157 (2019).spa
dc.relation.referencesDe La Vega De León, A. & Bajorath, J. Chemical space visualization: Transforming multidimensional chemical spaces into similarity-based molecular networks. Future Med. Chem. 8, (2016).spa
dc.relation.referencesPettersen, E. F. et al. UCSF Chimera?A visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).spa
dc.relation.referencesAltschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).spa
dc.relation.referencesWu, S., Skolnick, J. & Zhang, Y. Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biol. 5, 1–10 (2007).spa
dc.relation.referencesOvchinnikov, S., Park, H., Kim, D. E., DiMaio, F. & Baker, D. Protein structure prediction using Rosetta in CASP12. Proteins Struct. Funct. Bioinforma. 86, 113–121 (2018).spa
dc.relation.referencesMeier, A. & Söding, J. Automatic Prediction of Protein 3D Structures by Probabilistic Multi-template Homology Modeling. PLoS Comput. Biol. 11, (2015).spa
dc.relation.referencesKelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 web portal for protein modeling, prediction and analysis Lawrence. Nat. Protoc. 10, 845–858 (2016).spa
dc.relation.referencesWaterhouse, A. et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 46, W296–W303 (2018).spa
dc.relation.referencesShapovalov, M. V. & Dunbrack Jr., R. L. A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions Maxim. 19, 844–858 (2012).spa
dc.relation.referencesGasteiger, J. & Marsili, M. A new model for calculating atomic charges in molecules. Tetrahedron Lett. 19, 3181–3184 (1978).spa
dc.relation.referencesHalgren, T. a. Merck Molecular Force Field. J. Comput. Chem. 17, 490–519 (1996).spa
dc.relation.referencesTrott, O. & Olson, A. J. Software news and update AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).spa
dc.relation.referencesSalentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F. & Schroeder, M. PLIP: Fully automated protein-ligand interaction profiler. Nucleic Acids Res. 43, W443–W447 (2015).spa
dc.relation.referencesHunter, J. D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 9, 90–95 (2007).spa
dc.relation.referencesBergdorf, M. et al. Desmond / GPU Performance as of November 2016. 2015, 1–11 (2016).spa
dc.relation.referencesHumphrey, W., Dalke, A. & Schulten, K. VMD -- Visual Molecular Dynamics. J. Mol. Graph. 14, 33–38 (1996).spa
dc.relation.referencesGowers, R. et al. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. Proc. 15th Python Sci. Conf. 98–105 (2016).spa
dc.relation.referencesSeyler, S. L., Kumar, A., Thorpe, M. F. & Beckstein, O. Path Similarity Analysis: A Method for Quantifying Macromolecular Pathways. PLoS Comput. Biol. 11, 1–36 (2015).spa
dc.relation.referencesChemical Computing Group ULC. Molecular Operating Environment (MOE). (2020).spa
dc.relation.referencesAli, M. PyCaret: An open source, low-code machine learning library in Python. (2020).spa
dc.relation.referencesO’Reilly, M. C. et al. Structural and Biochemical Studies of Non-native Agonists of the LasR Quorum-Sensing Receptor Reveal an L3 Loop “Out” Conformation for LasR. Cell Chem. Biol. 25, 1128-1139.e3 (2018).spa
dc.relation.referencesWermuth, C. G. The Practice of Medicinal Chemistry, 3rd Ed. 982 (2011).spa
dc.relation.referencesHao, M., Bryant, S. H. & Wang, Y. Cheminformatics analysis of the AR agonist and antagonist datasets in PubChem. J. Cheminform. 8, 37 (2016).spa
dc.relation.referencesBoursier, M. E., Combs, J. B. & Blackwell, H. E. N -Acyl l -Homocysteine Thiolactones Are Potent and Stable Synthetic Modulators of the RhlR Quorum Sensing Receptor in Pseudomonas aeruginosa. ACS Chem. Biol. 14, 186–191 (2019).spa
dc.relation.referencesEibergen, N. R., Moore, J. D., Mattmann, M. E. & Blackwell, H. E. Potent and Selective Modulation of the RhlR Quorum Sensing Receptor by Using Non-native Ligands: An Emerging Target for Virulence Control in Pseudomonas aeruginosa. Chembiochem 16, 2348–56 (2015).spa
dc.relation.referencesAhumedo Monterrosa, M., Galindo, J. F., Vergara Lorduy, J., Alí-Torres, J. & Vivas-Reyes, R. The role of LasR active site amino acids in the interaction with the Acyl Homoserine Lactones (AHLs) analogues: A computational study. J. Mol. Graph. Model. 86, 113–124 (2019).spa
dc.relation.referencesBateman, A. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2019).spa
dc.relation.referencesCavasotto, C. N. & Phatak, S. S. Homology modeling in drug discovery: current trends and applications. Drug Discovery Today vol. 14 676–683 (2009).spa
dc.relation.referencesKim, T. et al. Structural insights into the molecular mechanism of Escherichia coli SdiA, a quorum-sensing receptor. Acta Crystallogr. Sect. D Biol. Crystallogr. 70, 694–707 (2014).spa
dc.relation.referencesNguyen, Y. et al. Structural and mechanistic roles of novel chemical ligands on the SdiA quorum-sensing transcription regulator. MBio 6, 1–10 (2015).spa
dc.relation.referencesLintz, M. J., Oinuma, K. I., Wysoczynski, C. L., Greenberg, E. P. & Churchill, M. E. A. Crystal structure of QscR, a Pseudomonas aeruginosa quorum sensing signal receptor. Proc. Natl. Acad. Sci. U. S. A. 108, 15763–15768 (2011).spa
dc.relation.referencesPaczkowski, J. E. et al. An Autoinducer Analogue Reveals an Alternative Mode of Ligand Binding for the LasR Quorum-Sensing Receptor. ACS Chem. Biol. 14, 378–389 (2019).spa
dc.relation.referencesRamachandran, G. N., Ramakrishnan, C. & Sasisekharan, V. Stereochemistry of polypeptide chain configurations. J. Mol. Biol. 7, 95–99 (1963).spa
dc.relation.referencesStuder, G. et al. QMEANDisCo—distance constraints applied on model quality estimation. Bioinformatics 36, 1765–1771 (2020).spa
dc.relation.referencesWallner, B. & Elofsson, A. Can correct protein models be identified? Protein Sci. 12, 1073–1086 (2003).spa
dc.relation.referencesChowdhury, N. & Bagchi, A. Identification of ligand binding activity and DNA recognition by RhlR protein from opportunistic pathogen Pseudomonas aeruginosa—a molecular dynamic simulation approach. J. Mol. Recognit. 31, 1–7 (2018).spa
dc.relation.referencesKim, H. et al. Artificial Intelligence in Drug Discovery: A Comprehensive Review of Data-driven and Machine Learning Approaches. Biotechnol. Bioprocess Eng. 25, 895–930 (2020).spa
dc.relation.referencesYang, M. et al. Machine Learning Models Based on Molecular Fingerprints and an Extreme Gradient Boosting Method Lead to the Discovery of JAK2 Inhibitors. J. Chem. Inf. Model. 59, 5002–5012 (2019).spa
dc.relation.referencesFernández, A. et al. Learning from Imbalanced Data Sets. Learning from Imbalanced Data Sets (Springer International Publishing, 2018).spa
dc.relation.referencesChawla, N. V. Data Mining for Imbalanced Datasets: An Overview. in Data Mining and Knowledge Discovery Handbook 853–867 (Springer-Verlag, 2006).spa
dc.relation.referencesChawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002).spa
dc.relation.referencesJi, X., Tong, W., Liu, Z. & Shi, T. Five-Feature Model for Developing the Classifier for Synergistic vs. Antagonistic Drug Combinations Built by XGBoost. Front. Genet. 10, 600 (2019).spa
dc.relation.referencesChen, T. & Guestrin, C. XGBoost: A scalable tree boosting system. in Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining vols 13-17-August-2016 785–794 (Association for Computing Machinery, 2016).spa
dc.relation.referencesVass, M. et al. Molecular interaction fingerprint approaches for GPCR drug discovery. Curr. Opin. Pharmacol. 30, 59–68 (2016).spa
dc.relation.referencesVelázquez-Libera, J. L., Rossino, G., Navarro-Retamal, C., Collina, S. & Caballero, J. Docking, Interaction Fingerprint, and Three-Dimensional Quantitative Structure–Activity Relationship (3D-QSAR) of Sigma1 Receptor Ligands, Analogs of the Neuroprotective Agent RC-33. Front. Chem. 7, (2019).spa
dc.relation.referencesKhan, M. F., Tang, H., Lyles, J. T. & Pineau, R. Antibacterial Properties of Medicinal Plants From Pakistan Against Multidrug-Resistant ESKAPE. 9, 1–17 (2018).spa
dc.relation.referencesAtef, N. M., Shanab, S. M., Negm, S. I. & Abbas, Y. A. Evaluation of antimicrobial activity of some plant extracts against antibiotic susceptible and resistant bacterial strains causing wound infection. 9, (2019).spa
dc.relation.referencesAparicio, R. & Velasco, J. Composición química y actividad antibacteriana del aceite esencial de los frutos de una nueva especie del género. 158–174 (2017).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.decsPseudomonas aeruginosaspa
dc.subject.decsFarmacologíaspa
dc.subject.decsPreparaciones Farmacéuticasspa
dc.subject.decsPharmaceutical Preparationseng
dc.subject.lembPharmacologyeng
dc.subject.lembTecnología farmacéuticaspa
dc.subject.lembPharmaceutical technologyeng
dc.subject.proposalQuorum sensingeng
dc.subject.proposalP. aeruginosaeng
dc.subject.proposalLasR / PqsR / RhlReng
dc.subject.proposalComputer-aided drug designeng
dc.subject.proposalFactores de transcripciónspa
dc.subject.proposalQuimioinformaticaspa
dc.subject.proposalProtein-ligand interaction fingerprintseng
dc.subject.proposalSimulaciones de dinámica molecularspa
dc.subject.proposalDiseño de fármacos asistido por computadoraspa
dc.subject.proposalAprendizaje de maquinaspa
dc.subject.proposalTranscriptional factorseng
dc.subject.proposalCheminformaticseng
dc.subject.proposalMolecular dynamics simulationeng
dc.subject.proposalMachine learningeng
dc.titleContribución a la identificación de potenciales antagonistas asociados al quorum sensing en Pseudomonas aeruginosa a través de métodos quimioinformáticosspa
dc.title.translatedContribution to the identification of potential antagonists associated with quorum sensing in Pseudomonas aeruginosa through chemoinformatic methodseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleIdentificación de moléculas lideres de origen natural con acción multidiana como inhibidores de quorum sensing en Pseudomonas aeruginosa multirresistentespa
oaire.awardtitleAnálisis quimioinformático de moléculas activas contra los factores de transcripción asociados al quorum sensing en Pseudomonas aeruginosaspa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022389620.2021.pdf
Tamaño:
6.83 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Farmacéuticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: