Front Tracking para sistemas hiperbólicos de leyes de conservación

dc.contributor.advisorRendón Arbeláez, Leonardo
dc.contributor.authorCastillo Barajas, Jonhatan
dc.date.accessioned2024-01-24T22:21:17Z
dc.date.available2024-01-24T22:21:17Z
dc.date.issued2023
dc.descriptionilustraciones, diagramas, figurasspa
dc.description.abstractEn este documento se estudia el método de aproximación de soluciones de leyes de conservación conocido como \textit{front tracking}, considerando el caso escalar y el caso de sistemas hiperbólicos. En ambos casos, se estudian las soluciones del problema de Riemann \begin{equation*} u_t+f(u)_x=0,\quad u(x,0)=\begin{cases} u_l, &x<0,\\ u_r, &x\geq 0, \end{cases} \end{equation*} con $(x,t)\in \R\times [0,\infty)$, considerando algunas condiciones de entropía. Este problema es crucial para introducir el método de front tracking, el cual consiste en analizar las discontinuidades del problema de Cauchy con una condición inicial aproximada por funciones constantes a trozos, resolver las interacciones entre las discontinuidades y funciona como método numérico para aproximar las soluciones de este problema. Además, se estudian las propiedades de las soluciones del problema de Cauchy que se obtienen como límite de soluciones construidas mediante front tracking. (Texto tomado de la fuente)spa
dc.description.abstractIn this paper we study the approximation method of solutions of conservation laws known as \textit{front tracking}, considering the scalar case and the case of hyperbolic systems. In both cases, we study the solutions of the Riemann problem \begin{equation*} u_t+f(u)_x=0,\quad u(x,0)=\begin{cases} u_l, &x<0,\\ u_r, &x \geq 0, \end{cases} \end{equation*} with $(x,t)\in \mathbb{R} \times [0,\infty)$, considering some entropy conditions. This problem is crucial to introduce the front tracking method, which consists of analyzing the discontinuities of the Cauchy problem with an initial condition approximated by piecewise constant functions, solving the interactions between the discontinuities and works as a numerical method to approximate the solutions of this problem. In addition, the properties of the solutions of the Cauchy problem obtained as limits of solutions constructed by front tracking are studied.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Matemáticasspa
dc.format.extentxi, 128 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85436
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Matemáticasspa
dc.relation.referencesBAITI,P; JENSSEN, H. K. On the front-tracking algorithm. Journal of mathematical analysis and applications 217 (1998), Nr 2, p. 295-404.spa
dc.relation.referencesBateman, H.: Some recent researches on the motion of fluids. En: Monthly Weather Review 43 (1915), Nr. 4, p. 163–170spa
dc.relation.referencesBressan, A.: Global solutions of systems of conservation laws by wave-front tracking. En: Journal of mathematical analysis and applications 170 (1992), Nr. 2, p. 414–432spa
dc.relation.referencesBressan, A.: The unique limit of the Glimm scheme. En: Archive for rational mechanics and analysis 130 (1995), p. 205–230spa
dc.relation.referencesBressan, A. ; Goatin, P.: Oleinik type estimates and uniqueness for n× n conservation laws. En: Journal of differential equations 156 (1999), Nr. 1, p. 26–49spa
dc.relation.referencesBressan, A. ; LeFloch, P.: Uniqueness of weak solutions to systems of conservation laws. En: Archive for Rational Mechanics and Analysis 140 (1997), Nr. 4, p. 301–317spa
dc.relation.referencesBressan, A. ; Lewicka, M.: A uniqueness condition for hyperbolic systems of conservation laws. En: Discrete and Continuous Dynamical Systems 6 (2000), Nr. 3, p. 673–682spa
dc.relation.referencesBressan, A. ; Liu, T. ; Yang, T.: L1 stability estimates for n× n conservation laws. En: Archive for rational mechanics and analysis 149 (1999), Nr. 1, p. 1–22spa
dc.relation.referencesBuckley, S. E. ; Leverett, M. C.: Mechanism of fluid displacement in sands. En: Transactions of the AIME 146 (1942), Nr. 01, p. 107–116spa
dc.relation.referencesBunt, L. N. H.: Bijdrage tot de theorie der convexe puntverzamelingen. Rijksuniversiteitte Groningen, 1934spa
dc.relation.referencesBurgers, J. M.: A mathematical model illustrating the theory of turbulence. En: Advances in applied mechanics 1 (1948), p. 171–199spa
dc.relation.referencesChorin, A. J. ; Marsden, J. E.: A mathematical introduction to fluid mechanics. Vol. 3. Springer Science & Business Media, 1990spa
dc.relation.referencesCrandall, M. G. ; Tartar, L.: Some relations between nonexpansive and order preserving mappings. En: Proceedings of the American Mathematical Society 78 (1980), Nr. 3, p. 385–390spa
dc.relation.referencesDafermos, C. M.: Polygonal approximations of solutions of the initial value problem for a conservation law. En: Journal of mathematical analysis and applications 38 (1972), Nr. 1, p. 33–41spa
dc.relation.referencesDiPerna, R. J.: Global existence of solutions to nonlinear hyperbolic systems of conservation laws. (1976)spa
dc.relation.referencesEvans, L. C. ; Gariepy, R. F.: Measure Theory and Fine Properties of Functions. Vol. 5. CRC Press, 1991spa
dc.relation.referencesFenchel, W.: Über krümmung und windung geschlossener raumkurven. En: Mathematische Annalen 101 (1929), Nr. 1, p. 238–252spa
dc.relation.referencesGel’fand, I.: Some questions in the theory of quasilinear equations. En: Uspehi Mat. Nuuk 14 (1959), p. 87–158spa
dc.relation.referencesGlimm, J.: Solutions in the large for nonlinear hyperbolic systems of equations. En: Communications on pure and applied mathematics 18 (1965), Nr. 4, p. 697–715spa
dc.relation.referencesHanche-Olsen, H. ; Holden, H.: The Kolmogorov–Riesz compactness theorem. En: Expositiones Mathematicae (2010), Nr. 4, p. 385–394spa
dc.relation.referencesHanner, O. ; Rådström, H.: A generalization of a theorem of Fenchel. En: Proceedings of the American Mathematical Society 2 (1951), Nr. 4, p. 589–593spa
dc.relation.referencesHolden, H. ; Holden, L. ; Høegh-Krohn, R.: A numerical method for first order nonlinear scalar conservation laws in one-dimension. En: Computers & Mathematics with Applications 15 (1988), Nr. 6-8, p. 595–602spa
dc.relation.referencesHolden, H. ; Risebro, N. H.: Front Tracking for Hyperbolic Conservation Laws. Vol. 152. Springer Science & Business Media, 2007spa
dc.relation.referencesHopf, E.: The partial differential equation ut + uux = μuxx. En: Communications on Pure and Applied Mathematics (1950), Nr. 3, p. 201–230spa
dc.relation.referencesHugoniot, H.: Sur un théorème général relatif à la propagation du mouvement dans les corps. En: Comptes Rendus des Séances de lÁcadémie des Sciences (1886), p. 858–860spa
dc.relation.referencesKesavan, S.: Topics in Functional Analysis and Applications. New Age International, 2008spa
dc.relation.referencesKružkov, S. N.: First order quasilinear equations in several independent variables. En: Mathematics of the USSR-Sbornik (1970), Nr. 2, p. 217spa
dc.relation.referencesLangseth, J. O.: On an implementation of a front tracking method for hyperbolic conservation laws. En: Advances in engineering software 26 (1996), Nr. 1, p. 45–63spa
dc.relation.referencesLangseth, J. O. ; Risebro, N. H. ; Tveito, A.: A conservative front tracking scheme for 1D hyperbolic conservation laws. En: Nonlinear Hyperbolic Problems: Theoretical, Applied, and Computational Aspects: Proceedings of the Fourth International Conference on Hyperbolic Problems, Taormina, Italy, April 3 to 8, 1992 Springer, 1993, p. 385–392spa
dc.relation.referencesLax, P. D.: Hyperbolic systems of conservation laws II. En: Communications on Pure and Applied Mathematics (1957), Nr. 4, p. 537–566spa
dc.relation.referencesLax, P. D.: Hyperbolic systems of conservation laws in several space variables / New York Univ., NY (USA). Courant Mathematics and Computing Lab. 1985. – Informe de Investigaciónspa
dc.relation.referencesLeVeque, R.: Numerical methods for conservation laws. Vol. 214. Springer, 1992spa
dc.relation.referencesLimaye, B.: Functional Analysis. New Age International (P) Limited, Publishers, 1997spa
dc.relation.referencesLucier, B. J.: A moving mesh numerical method for hyperbolic conservation laws. En: Mathematics of computation 46 (1986), Nr. 173, p. 59–69spa
dc.relation.referencesMeise, R. ; Vogt, D.: Introduction to functional analysis. Clarendon Press, 1997spa
dc.relation.referencesMunkres, J. R.: Topology. Pearson Education, 2019spa
dc.relation.referencesOleînik, O. A.: Discontinuous solutions of non-linear differential equations. En: Uspekhi Matematicheskikh Nauk (1957), Nr. 3, p. 3–73spa
dc.relation.referencesRankine, W. J. M.: On the Thermodynamic Theory of Waves of Finite Longitudinal Disturbances. En: Philosophical Transactions of the Royal Society (1870), p. 277–288spa
dc.relation.referencesRiemann, B.: Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite. En: Göttinger Nachrichten (1860), p. 192–197spa
dc.relation.referencesRisebro, N. H.: A front-tracking alternative to the random choice method. En: Proceedings of the American Mathematical Society 117 (1993), Nr. 4, p. 1125–1139spa
dc.relation.referencesRudin, W.: Functional Analysis. MacGraw-Hill Science, 1991spa
dc.relation.referencesSchatzman, M.: Continuous Glimm functionals and uniqueness of solutions of the Riemann problem. En: Indiana University Mathematics Journal 34 (1985), Nr. 3, p. 533–589spa
dc.relation.referencesSherwood, T. K. ; Pigford, R. L. ; Wilke, C. R.: Mass Transfer. Mac Graw-Hill, Chemical Engineering Series, 1975spa
dc.relation.referencesSmoller, J.: Shock waves and reaction-diffusion equations. Vol. 258. Springer Science & Business Media, 2012spa
dc.relation.referencesWebster, R.: Convexity. Oxford University Press, 1994spa
dc.relation.referencesWhittaker, E. T. ; Watson, G. N.: A Course of Modern Analysis: an Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions. Cambridge University Press, 1928spa
dc.relation.referencesYartsev, A.: Diffusion of gases through the alveolar membrane. Deranged Physiology, https://derangedphysiology.com/main/cicm-primary-exam/required-reading/respiratory-system, 2020spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc510 - Matemáticasspa
dc.subject.ddc510 - Matemáticas::515 - Análisisspa
dc.subject.lccLeyes de la conservación (Física)spa
dc.subject.lccConservation laws (Physics)eng
dc.subject.lccCauchy-Riemann, Ecuaciones despa
dc.subject.lccCauchy-Riemann equationseng
dc.subject.lccEntropíaspa
dc.subject.lccEntropyeng
dc.subject.proposalLeyes de conservaciónspa
dc.subject.proposalProblema de Riemannspa
dc.subject.proposalCondición de entropíaspa
dc.subject.proposalVariación acotadaspa
dc.subject.proposalFront trackingeng
dc.subject.proposalConservation lawseng
dc.subject.proposalRiemann problemeng
dc.subject.proposalEntropy conditioneng
dc.subject.proposalBounded variationeng
dc.subject.wikidataFunción de variación acotadaspa
dc.subject.wikidataFunction of bounded variationeng
dc.titleFront Tracking para sistemas hiperbólicos de leyes de conservaciónspa
dc.title.translatedFront Tracking for hyperbolic conservation laws systemseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1052916991.2023.pdf
Tamaño:
7.67 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: