Evaluación del potencial terapéutico de un extracto de raíz de Zanthoxylum caribaeum en un modelo triple transgénico de Enfermedad de Alzheimer

dc.contributor.advisorSandoval-Hernandez, Adrián Gabriel
dc.contributor.authorRuiz González, Juan Carlos
dc.contributor.researchgroupMuerte Celularspa
dc.date.accessioned2021-10-04T21:04:54Z
dc.date.available2021-10-04T21:04:54Z
dc.date.issued2021-06-29
dc.descriptionilustraciones, gráficasspa
dc.description.abstractLa Enfermedad de Alzheimer (EA) es la principal causa de demencia en el mundo, se proyecta como el mayor problema de salud pública en el mundo para el año 2050. Su etiología es desconocida, se caracteriza por la pérdida progresiva de la memoria y patológicamente por la acumulación de péptidos beta-amiloide (Aβ) y la proteína Tau-hiperfosforilada. La hipótesis amiloide es la más aceptada, postula que el origen de la enfermedad comienza con la acumulación de Aβ, conlleva a procesos inflamatorios, desregulación de quinasas, incremento de especies reactivas de oxígeno, reducción de células madre neuronales, perdida de espinas dendríticas y muerte neuronal, explicando la demencia. Se ha evidenciado que la activación farmacológica de los receptores X hepáticos (LXR) en modelos animales de EA ha producido mejoría cognitiva asociada con incremento de expresión de las proteínas APOE y ABCA1, reducción de astrogliosis y microgliosis, protección de la plasticidad sináptica y espinas dendríticas. Los productos naturales vegetales han representado una fuente promisoria de moléculas bioactivas de características multimodales para el tratamiento de la EA, debido a sus altas cantidades de compuestos alcaloidales. Por su parte, Zanthoxylum caribaeum es una especie arbórea perteneciente a la familia Rutaceae que ha sido seleccionada luego de un amplio screening de plantas colombianas por su alto contenido de alcaloides, actividad agonista de LXRs, antiagregante de Aβ, antioxidante e inhibidora de acetilcolinesterasas in vitro. El objetivo de este trabajo fue de evaluar el efecto de un extracto etanolico de Zanthoxylum caribeum en un modelo in vivo de EA. Se realizó la administración oral a ratones triple-transgenicos de EA (3xTg-AD) y controles, encontrando mejoría de la memoria espacial en el laberinto acuático de Morris, incremento en la expresión de ABCA1 y ApoE, reducción del marcaje para marcadores moleculares de progresión de la EA. Adicionalmente, se observó un incremento en la expresión de proteínas asociadas con la función sináptica Sinapsina1, Shank 1/2/3 y PSD-95. En conclusión, se describió el efecto de un extracto etanólico crudo de Zanthoxylum caribaeum sobre los principales marcadores fisiopatológicos de la EA con potencial uso terapéutico en el modelo 3xTg-AD. (Texto tomado de la fuente).spa
dc.description.abstractAlzheimer's disease (AD) is the main cause of dementia worldwide, it is projected as the largest public health problem in the world by the year 2050. Its etiology is unknown, it is characterized by progressive memory loss and pathologically by the accumulation of beta-amyloid peptides (Aβ) and the hyperphosphorylated Tau protein. The amyloid hypothesis is the most accepted, it postulates that the origin of the disease begins with the accumulation of Aβ, which leads to inflammatory processes, dysregulation of kinases, increase in reactive oxygen species, reduction of neuronal stem cells, loss of dendritic spines and death. neuronal, explaining dementia. It has been shown that the pharmacological activation of hepatic X receptors (LXR) in animal models of AD has produced cognitive improvement associated with increased expression of APOE and ABCA1 proteins, reduction of astrogliosis and microgliosis, protection of synaptic plasticity and dendritic spines. Natural products derived from plants have represented a promising source of bioactive molecules with multimodal characteristics for the treatment of AD, due to their high amounts of alkaloidal compounds. Zanthoxylum caribaeum is an arboreal species belonging to the Rutaceae family that has been selected after an extensive screening of Colombian plants for its high alkaloid content, LXRs agonist activity, Aβ antiaggregant, antioxidant and inhibitor of acetylcholinesterase in vitro. The objective of this work is to evaluate the effect of an ethanolic extract of Zanthoxylum caribaeum in the triple transgenic model of Alzheimer´s disease (3xTg-AD). Oral administration to triple-transgenic EA (3xTg-AD) mice and controls was performed, finding improvement in spatial memory in the Morris water maze, increased expression of ABCA1 and ApoE, reduction of expression for molecular markers of progression of the EA. Additionally, an increase in the expression of proteins associated with the synaptic function Synapsin1, Shank 1/2/3 and PSD-95 was observed. In conclusion, the effect of a crude ethanolic extract of Zanthoxylum caribaeum on the main pathophysiological markers of AD with potential therapeutic use in the 3xTg-AD model was described.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Bioquímicaspa
dc.description.researchareaEnfermedades neurodegenerativasspa
dc.description.sponsorshipproyecto: “Búsqueda racional de alcaloides isoquinolínicos del género Zanthoxylum (Rutaceae) como posibles agentes neuroprotectores para el tratamiento de la enfermedad de Alzheimer" Código 110177758004, convocatoria 777-2017" -RC-854 de 2017.spa
dc.format.extentxxii, 104 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80378
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.referencesAdesina, S. . (2005). THE NIGERIAN ZANTHOXYLUM; CHEMICAL AND BIOLOGICAL VALUES. Afr. J. Traditional, 2(3), 282–301.spa
dc.relation.referencesAhmed, T., Gilani, A., Abdollahi, M., Daglia, M., Nabavi, S., & Nabavi, S. (2015). Berberine and neurodegeneration: A review of literature. Pharmacol Rep., 67(5), 970–979.spa
dc.relation.referencesAlzheimer’s Disease International. (2015). World Alzheimer Report 2015 The Global Impact of Dementia. London.spa
dc.relation.referencesAmelio, M. D., Cavallucci, V., Middei, S., Marchetti, C., Pacioni, S., Ferri, A., … Cecconi, F. (2010). Caspase-3 triggers early synaptic dysfunction in a mouse model of Alzheimer ’ s disease. Nat Neurosci., 14(1), 69–76. https://doi.org/10.1038/nn.2709spa
dc.relation.referencesAnand, A., Patience, A. A., Sharma, N., & Khurana, N. (2017). The present and future of pharmacotherapy of Alzheimer ’ s disease : A comprehensive review. European Journal of Pharmacology, 815(October), 364–375. https://doi.org/10.1016/j.ejphar.2017.09.043spa
dc.relation.referencesArboleda G., Cardenas Y., Rodriguez Y., Morales L.C., Matheus L., A. H. (2010). Differential regulation of AKT, MAPK and GSK3β during C2-ceramide-induced neuronal death. NeuroToxicology, 31(6), 687–693.spa
dc.relation.referencesAssociation, A. (2018). 2018 Alzheimer’s disease facts and figures. Alzheimer’s & Dementia, 14(3), 367–429. https://doi.org/10.1016/j.jalz.2018.02.001spa
dc.relation.referencesAssociation, A. P. (1995). DSM-IV Manual diagnóstico y estadístico de las Enfermedades Mentales.spa
dc.relation.referencesBarateiro, A., & Fernandes, A. (2014). Temporal oligodendrocyte lineage progression : In vitro models of proliferation, differentiation and myelination. Biochim Biophys Acta., 1843(9), 1917–1929. https://doi.org/10.1016/j.bbamcr.2014.04.018spa
dc.relation.referencesBartus, R. T., Iii, R. L. D., Beer, B., & Lippa, A. S. (1982). The Cholinergic Hypothesis of Geriatric Memory Dysfunction. 217(4558), 408–417.spa
dc.relation.referencesBartzokis, George; Lu, Po H; Mintzd, J. (2008). Human brain myelination and amyloid beta deposition in Alzheimer’s disease. Alzheimers Dement, 3(2), 122–125.spa
dc.relation.referencesBeez-Becerra, C., Filipello, F., Sandoval, A. ., Arboleda, H., & Arboleda, G. (2018). Liver X Receptor Agonist GW3965 Regulates Synaptic Function upon Amyloid Beta Exposure in Hippocampal Neurons. Neurotox Res., 33(3), 569–579.spa
dc.relation.referencesBehrendt, G., Baer, K., Buffo, A., Curtis, M. A., Faull, R. L., Rees, M. I., … Dimou, L. (2013). Dynamic Changes in Myelin Aberrations and Oligodendrocyte Generation in Chronic Amyloidosis in Mice and Men. Glia, 286, 273–286. https://doi.org/10.1002/glia.22432spa
dc.relation.referencesBejanin, A., Schonhaut, D. R., Joie, R. La, Kramer, J. H., Baker, S. L., Sosa, N., … Rabinovici, G. D. (2017). Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease. Brain, 140, 3286–3300. https://doi.org/10.1093/brain/awx243spa
dc.relation.referencesBelfiore, R., Rodin, A., Ferreira, E., Velazquez, R., Branca, C., Caccamo, A., & Oddo, S. (2019). Temporal and regional progression of Alzheimer’s disease ‐ like pathology in 3xTg ‐ AD mice. Aging Cell, 18(1), 1–13. https://doi.org/10.1111/acel.12873spa
dc.relation.referencesBellucci, A., Westwood, A. J., Ingram, E., Casamenti, F., Goedert, M., & Spillantini, M. G. (2004). Induction of Inflammatory Mediators and Microglial Activation in Mice Transgenic for Mutant Human P301S Tau Protein. The American Journal of Pathology, 165(5), 1643–1652. https://doi.org/10.1016/S0002-9440(10)63421-9spa
dc.relation.referencesBliss, TVP; Lomo, T. (1973). Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J. Physiol., 232, 331–356.spa
dc.relation.referencesBonet-Costa, V. et al. (2016). Clearing Amyloid-β through PPAR γ/ApoE Activation by Genistein Is a Treatment of Experimental Alzheimer’s Disease. J Alzheimers Dis, 51(3), 701–711.spa
dc.relation.referencesBu, G. (2009). Apolipoprotein e and its receptors in Alzheimer’s disease: Pathways, pathogenesis and therapy. Nature Reviews Neuroscience, 10(5), 333–344. https://doi.org/10.1038/nrn2620spa
dc.relation.referencesBustamante, A. (2021). Búsqueda de principios activos con potencial neuroprotector para el tratamiento de la Enfermedad de Alzheimer a partir de la especie Zanthoxylum caribaeum (Rutaceae) TESIS EN CURSO. Universidad Nacional de Colombia Maestría en Neurociencias.spa
dc.relation.referencesBustos, A. (2021). Búsqueda de agonistas LXR en plantas colombianas con potencial terapéutico para la Enfermedad de Alzheimer TESIS EN CURSO. Universidad Nacional de Colombia Departamento de Química. Maestría en Ciencias - Bioquímica.spa
dc.relation.referencesButterfield, D. a, & Pocernich, C. B. (2003). The glutamatergic system and Alzheimer’s disease: therapeutic implications. CNS.Drugs, 17(1172–7047), 641–652. https://doi.org/10.2165/00023210-200317090-00004spa
dc.relation.referencesCai, Z., & Xiao, M. (2016). Oligodendrocytes and Alzheimer ’ s disease. International Journal of Neuroscience, 126(2), 97–104. https://doi.org/10.3109/00207454.2015.1025778spa
dc.relation.referencesCraig, L. A., Hong, N. S., & McDonald, R. J. (2011). Revisiting the cholinergic hypothesis in the development of Alzheimer’s disease. Neuroscience and Biobehavioral Reviews, 35(6), 1397–1409. https://doi.org/10.1016/j.neubiorev.2011.03.001spa
dc.relation.referencesCramer, P. E., Cirrito, J. R., Wesson, D. W., Lee, C. Y. D., Karlo, J. C., Zinn, A. E., … Landreth, G. E. (2012). ApoE-directed therapeutics rapidly clear β-amyloid and reverse deficits in AD mouse models. Science, 335(6075), 1503–1506. https://doi.org/10.1126/science.1217697spa
dc.relation.referencesCuca, L. E., & Taborda, M. E. (2007). METABOLITOS AISLADOS DE Zanthoxylum rhoifolium. Rev Colom Quim, 36(1), 5–12.spa
dc.relation.referencesQuerfurth, LaFerla, F. M. (2010). Mechanisms of Disease: Alzheimer’s Disease. N Engl J Med, 362(4), 329–344.spa
dc.relation.referencesQuintela-lópez, T., Ortiz-sanz, C., Serrano-regal, M. P., Gaminde-blasco, A., Valero, J., Baleriola, J., … Alberdi, E. (2019). Aβ oligomers promote oligodendrocyte differentiation and maturation via integrin β1 and Fyn kinase signaling. Cell Death Dis, 10(445), 1–16. https://doi.org/10.1038/s41419-019-1636-8spa
dc.relation.referencesR. G. M. Morris, P. Garrud, J. N. P. R. & J. O. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297, 681–683.spa
dc.relation.referencesRauk, A. (2008). Why is the amyloid beta peptide of Alzheimer ’ s disease neurotoxic ? Dalton Trans., 14(10), 1273–1282. https://doi.org/10.1039/b718601kspa
dc.relation.referencesRentz, D. M., Mormino, E. C., Papp, K. V, Betensky, R. A., Sperling, R. A., & Johnson, K. A. (2017). Cognitive resilience in clinical and preclinical Alzheimer ’ s disease : the Association of Amyloid and Tau Burden on cognitive performance. Brain Imaging Behav., 11(2), 383–390. https://doi.org/10.1007/s11682-016-9640-4spa
dc.relation.referencesRowe, R., Sheskey, P., & Owen, S. (2006). Handbook of Pharmaceutical excipients (5th ed.; P. Press, Ed.).spa
dc.relation.referencesSaijo, K., Crotti, A., & Glass, C. K. (2013). Regulation of Microglia Activation and Deactivation by Nuclear Receptors. Glia, 111(September 2012), 104–111. https://doi.org/10.1002/glia.22423spa
dc.relation.referencesSandoval-Hernández, Adrián G; Hernandez, H.G; Restrepo, A; Muñoz, J.I; Bayon, GF; Fernandez, AF; Fraga, M.F; Cardona-Gomez, G.P; Arboleda, H. A. G. H. (2016). Liver X Receptor Agonist Modifies the DNA Methylation Profile of Synapse and Neurogenesis-Related Genes in the Triple Transgenic Mouse Model of Alzheimer ’ s Disease. J Mol Neurosci., 58(2), 243–253. https://doi.org/10.1007/s12031-015-0665-8spa
dc.relation.referencesSandoval-Hernández, A. G., Buitrago, L., Moreno, H., Cardona-Gómez, G. P., & Arboleda, G. (2015). Role of Liver X receptor in AD pathophysiology. PLoS ONE, 10(12), 1–24. https://doi.org/10.1371/journal.pone.0145467spa
dc.relation.referencesSandoval-Hernández, A. G. et al. (2016). Nuclear receptors in neural stem cells and oligodendrogenesis. In Glial cells in health and disease of the CNS (pp. 292–302).spa
dc.relation.referencesSantos-Gil, D. F., Arboleda, G., & Sandoval-hernandez, A. G. (2021). Retinoid X receptor activation promotes re-myelination in a very old triple transgenic mouse model of Alzheimer’s disease. Neuroscience Letters, 750(September 2020). https://doi.org/10.1016/j.neulet.2021.135764spa
dc.relation.referencesSelkoe, D. J. (2018). Alzheimer ’ s Disease : Genes , Proteins , and Therapy. 81(2), 741–766.spa
dc.relation.referencesSever, R., & Glass, C. K. (2013). Signaling by nuclear receptors. Cold Spring Harbor Perspectives in Biology, 5(3), 1–4. https://doi.org/10.1101/cshperspect.a016709spa
dc.relation.referencesShackleford, G. G., Grenier, J., Habib, W. A., Massaad, C., & Meffre, D. (2017). Liver X Receptors differentially modulate central myelin gene mRNA levels in a region- , age- and isoform-specific manner. J Steroid Biochem Mol Biol., 169, 61–68. https://doi.org/10.1016/j.jsbmb.2016.02.032spa
dc.relation.referencesShahpasand, K., Uemura, I., Saito, T., Asano, T., Hata, K., Shibata, K., … Hisanaga, S. (2012). Regulation of Mitochondrial Transport and Inter-Microtubule Spacing by Tau Phosphorylation at the Sites Hyperphosphorylated in Alzheimer ’ s Disease. J Neurosci., 32(7), 2430–2441. https://doi.org/10.1523/JNEUROSCI.5927-11.2012spa
dc.relation.referencesSilva, L. L., & Paoli, A. A. S. (2000). Caracterização morfo-anatômica da semente de Zanthoxylum rhoifolium Lam. – Rutaceae. Revista Brasileira de Sementes, 22(2), 250–256. https://doi.org/10.17801/0101-3122/rbs.v22n2p250-256spa
dc.relation.referencesSimons, K., Ehehalt, R., Simons, K., & Ehehalt, R. (2002). Cholesterol , lipid rafts , and disease Find the latest version : Cholesterol , lipid rafts , and disease. 110(5), 597–603. https://doi.org/10.1172/JCI200216390.Lipidspa
dc.relation.referencesSodhi, R. K., & Singh, N. (2013). Liver X receptors: Emerging therapeutic targets for Alzheimer’s disease. Pharmacological Research, 72, 45–51. https://doi.org/10.1016/j.phrs.2013.03.008spa
dc.relation.referencesStelzmann, R. A., Norman Schnitzlein, H., & Reed Murtagh, F. (1995). An english translation of alzheimer’s 1907 paper, “Uber eine eigenartige erkankung der hirnrinde.” Clinical Anatomy, 8(6), 429–431. https://doi.org/10.1002/ca.980080612spa
dc.relation.referencesStricker, N. H., Schweinsburg, B. C., Delano-wood, L., Wierenga, C. E., Bangen, K. J., & Haaland, K. Y. (2009). Decreased white matter integrity in late-myelinating fi ber pathways in Alzheimer ’ s disease supports retrogenesis. NeuroImage, 45(1), 10–16. https://doi.org/10.1016/j.neuroimage.2008.11.027spa
dc.relation.referencesSuzuki, K. et al. Physiological Role of Amyloid Beta in Neural Cells: The Cellular Trophic Activity. , 2 Intech open 64 (2014).spa
dc.relation.referencesTerwel, D., Steffensen, K. R., Verghese, P. B., Kummer, M. P., Gustafsson, J.-åke, Holtzman, D. M., & Heneka, M. T. (2011). Critical Role of Astroglial Apolipoprotein E and Liver X Receptor Expression for Microglial AB Phagocytosis. J Neurosci, 31(January 2014). https://doi.org/10.1523/JNEUROSCI.6546-10.2011spa
dc.relation.referencesThomas, D. ., Doran, A. ., Fotakis, P., Westerterp, M., Antonson, P., Jiang, X. ., … Tall, A. . (2018). LXR Suppresses Inflammatory Gene Expression and Neutrophil Migration through cis-Repression and Cholesterol Efflux. Cell Rep, 25(13), 3774–3785.spa
dc.relation.referencesTosto, G; Zimmerman, M.E; Hamilton, J.L; Carmichel, O.T; Brickman, A. (2016). The effect of white matter hyperintensities on neurodegeneration in mild cognitive impairment. Alzheimer’s & Dementia, 11(12), 1510–1519. https://doi.org/10.1016/j.jalz.2015.05.014.spa
dc.relation.referencesTurner, P. V, Brabb, T., Pekow, C., & Vasbinder, M. A. (2011). Administration of Substances to Laboratory Animals : Routes of Administration and Factors to Consider. J Am Assoc Lab Anim Sci, 50(5), 600–613.spa
dc.relation.referencesValencia, E. (2017). Generación de un modelo in vitro para evaluar la actividad agonista de extractos naturales, obtenidos de plantas de las familias de Lauráceas y Miristicáceas, sobre los receptores X del hígado (LXRs). Universidad Nacional De Colombia.spa
dc.relation.referencesWang, R., & Reddy, P. H. (2017). Role of glutamate and NMDA receptors in Alzheimer’s disease. J Alzheimers Dis., 57(4), 1041–1048. https://doi.org/10.3233/JAD-160763.Rolespa
dc.relation.referencesWang, S., Zhang, Z., Zhu, T., Chu, S., He, W., & Chen, N. (2018). Myelin injury in the central nervous system and Alzheimer ’ s disease. Brain Research Bulletin, 140(May), 162–168. https://doi.org/10.1016/j.brainresbull.2018.05.003spa
dc.relation.referencesWang, Y., & Sheng, M. (2014). Local Pruning of Dendrites and Spines by Caspase-3- Dependent and Proteasome-Limited Mechanisms. J Neurosci., 34(5), 1672–1688. https://doi.org/10.1523/JNEUROSCI.3121-13.2014spa
dc.relation.referencesWilde, M. C. De, Overk, C. R., Sijben, J. W., Masliah, E., Nutrition, A. M., Diego, S., … Jolla, L. (2017). Meta-analysis of synaptic pathology in Alzheimer’s disease reveals selective molecular vesicular machinery vulnerability. Alzheimers Dement., 12(6), 633–644. https://doi.org/10.1016/j.jalz.2015.12.005.spa
dc.relation.referencesWisniewski, T., & Drummond, E. (2020). APOE-amyloid interaction: Therapeutic targets. Neurobiology of Disease, 138(December 2019). https://doi.org/10.1016/j.nbd.2020.104784spa
dc.relation.referencesWolfer, D. P., & Lipp, H. (2014). Dissecting the behaviour of transgenic mice : is it the mutation , the genetic background , or the environment? Exp Physiol, 85(6), 627–634.spa
dc.relation.referencesWood, H. (2020). Retinoid X receptor mediates brain clean-up after stroke. Nat Rev Neur, 16, 128–129.spa
dc.relation.referencesWu, C., Chen, C., Chai-You, L., Tai-Ho, H., Chao-Chang, L., Chao, M., & Chen, S. (2007). Treatment with TO901317, a synthetic liver X receptor agonist, reduces brain damage and attenuates neuroinflammation in experimental intracerebral hemorrhage. J Neuroimmunol, 183(1), 50–59.spa
dc.relation.referencesXu, F., Na, L., Li, Y., & Chen, L. (2020). Roles of the PI3K/AKT/mTOR signalling pathways in neurodegenerative diseases and tumours. Cell & Bioscience, 10(54). Retrieved from https://doi.org/10.1186/s13578-020-00416-0spa
dc.relation.referencesYang, S., Liu, Y., Wang, J., Wang, Y., Pan, W., & Sheng, W. (2014). Isoquinoline alkaloids from Zanthoxylum simulans and their biological evaluation. J Antibiot (Tokyo), 68(4), 289–292. https://doi.org/10.1038/ja.2014.139spa
dc.relation.referencesYuste, R. (2015). The discovery of dendritic spines by Cajal. Front Neuroanat., 9(18), 1–6. https://doi.org/10.3389/fnana.2015.00018spa
dc.relation.referencesZelcer, N., Khanlou, N., Clare, R., Jiang, Q., Reed-Geaghan, E. G., Landreth, G. E., … Tontonoz, P. (2007). Attenuation of neuroinflammation and Alzheimer’s disease pathology by liver x receptors. Proceedings of the National Academy of Sciences of the United States of America, 104(25), 10601–10606. https://doi.org/10.1073/pnas.0701096104spa
dc.relation.referencesZhang-Gandhi, C., & Drew, P. D. (2007). Liver X Receptor and Retinoid X Receptor Agonists Inhibit Inflammatory Responses of Microglia and Astrocytes. J Neuroimmunol, 183(1–2), 50–59.spa
dc.relation.referencesZhao, C., Teng, E. M., Jr, R. G. S., Ming, G., & Gage, F. H. (2006). Distinct Morphological Stages of Dentate Granule Neuron Maturation in the Adult Mouse Hippocampus. J Neurosci., 26(1), 3–11. https://doi.org/10.1523/JNEUROSCI.3648-05.2006spa
dc.relation.referencesZhao, N., Liu, C. C., Qiao, W., & Bu, G. (2018). Apolipoprotein E, Receptors, and Modulation of Alzheimer’s Disease. Biological Psychiatry, 83(4), 347–357. https://doi.org/10.1016/j.biopsych.2017.03.003spa
dc.relation.referencesZhong, N., & Weisgraber, K. H. (2009). Understanding the association of apolipoprotein E4 with Alzheimer disease: Clues from its structure. Journal of Biological Chemistry, 284(10), 6027–6031. https://doi.org/10.1074/jbc.R800009200spa
dc.relation.referencesZhou, B., Xia, Y., Ruo, Z., & Jiang, T. (2019). Astrocyte morphology: Diversity, plasticity, and role in neurological diseases. CNS Neurosci Ther., 25(February), 665–673. https://doi.org/10.1111/cns.13123spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.decsAlzheimer Diseaseeng
dc.subject.decsEnfermedad de Alzheimerspa
dc.subject.decsTerapéuticaspa
dc.subject.decsTherapeuticseng
dc.subject.otherSapindales
dc.subject.otherRutaceae
dc.subject.proposalEnfermedad de Alzheimerspa
dc.subject.proposalLXReng
dc.subject.proposalApoE
dc.subject.proposalZanthoxylum caribaeum
dc.subject.proposalProductos naturales vegetalesspa
dc.subject.proposalAlzheimer's diseaseeng
dc.subject.proposalNatural vegetal productseng
dc.titleEvaluación del potencial terapéutico de un extracto de raíz de Zanthoxylum caribaeum en un modelo triple transgénico de Enfermedad de Alzheimerspa
dc.title.translatedTherapeutic potential of Zanthoxylum caribaeum root extract in the triple-transgenic mice model of Alzheimer´s diseaseeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleBúsqueda racional de alcaloides isoquinolínicos del género Zanthoxylum (Rutaceae) como posibles agentes neuroprotectores para el tratamiento de la enfermedad de Alzheimerspa
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovaciónspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022375276.2021.pdf
Tamaño:
3.7 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: