Propuesta metodológica para la representación cuantitativa de la regulación hídrica en las distintas escalas de cuenca hidrográfica

dc.contributor.advisorVélez Upegui, Jaime Ignaciospa
dc.contributor.authorCuevas Moreno, Juanitaspa
dc.date.accessioned2020-09-16T21:17:06Zspa
dc.date.available2020-09-16T21:17:06Zspa
dc.date.issued2020-04-28spa
dc.descriptionilustraciones, mapas, tablasspa
dc.description.abstractSe propone una metodología para representar cuantitativamente la regulación hídrica aplicable a las distintas escalas de cuenca hidrográfica. La metodología incluye la implementación de un modelo hidrológico agregado que permita completar y obtener series diarias climatológicas de las láminas de entrada y salida de la cuenca con base en el balance hídrico a largo plazo. A partir de dichas series, se evalúa la capacidad de regulación de las distintas componentes de entrada y salida del balance hídrico generando nuevas formas de representar la regulación a partir de métodos ya existentes como la curva de duración y la curva de regulación. Se proponen indicadores para estimar la lámina promedio (en mm/año) que es capaz de almacenar la cuenca en unas épocas del año y liberarla en otras; y un estimador de la capacidad intrínseca de almacenamiento que tiene la cuenca por sus características del suelo y coberturas presentes en la misma. Se aplicó la metodología para las sub-cuencas Chicamocha y Suarez de la cuenca Sogamoso y se encontró que la subcuenca Chicamocha almacena en promedio el 22.98 % de la precipitación media anual y la subcuenca Suarez el 17.97 %. Los resultados en general indican que la capacidad de regulación que tienen ambas cuencas no difiere mucho entre sí a pesar de su diferencia en el régimen de lluvias y en las coberturas predominantes en cada una de ellas. (Texto tomado de la fuente)spa
dc.description.abstractA methodology is proposed to represent flow regulation quantitatively, which can be apply on basins of different scales. The methodology includes the implementation of an aggregated hydrological model to complete and obtain daily climatological series of the water inputs and outputs of the basin based on the long-term water balance. The regulation capacity of the different input and output components of the water balance is evaluated, generating new ways to represent flow regulation based on existing methods such as the duration curve and the regulation curve. Indica- tors are proposed to estimate the average sheet (in mm / year) that the basin can store at certain times of the year and release at others; and an estimator of the intrinsic storage capacity of the basin due to its soil characteristics and the covers present in it. The methodology was applied to the Chicamocha and Suarez sub-basins of the Sogamoso basin and it was found that the Chicamocha sub-basin stores on average 22.98 % of the average annual precipitation and the Suarez sub-basin 17.97 %. The results in general, indicate that the regulation capacity of both basins do not differ much from each other, despite their difference in rainfall patterns and in the predominant vegetation cover.eng
dc.description.curricularareaÁrea Curricular de Medio Ambientespa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Recursos Hidráulicosspa
dc.format.extentxii, 74 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationCuevas, J., & Vélez, J.I. (2020). Propuesta metodológica para la representación cuantitativa de la regulación hídrica en las distintas escalas de cuenca hidrográfica (Tesis de maestría). Universidad Nacional de Colombia, Sede Medellín.spa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78472
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Geociencias y Medo Ambientespa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicosspa
dc.relation.referencesAbril, M., Muñoz, I., Casas-Ruiz, J. P., Gómez-Gener, L., Barceló, M., Oliva, F., & Menéndez, M. (2015). Effects of water flow regulation on ecosystem functioning in a mediterranean river network assessed by wood decomposition. Science of the Total Environment, 517, 57–65. AFS (2011). Dataset: JAXA/METI ALOS PALSAR L1.1. url: https://asf.alaska.edu/. Accedido 03/05/2019.spa
dc.relation.referencesAlexandre, C., Ferreira, T., & Almeida, P. R. (2013). Fish assemblages in non-regulated and regulated rivers from permanent and temporary iberian systems. River Research and Applications, 29 (8), 1042–1058.spa
dc.relation.referencesAmaya, G., TAMAYO, C. R., Vélez, M. V., Vélez, J. I., & Álvarez, O. D. (2009). Modelación del comportamiento hidrológico de tres cuencas en el urabá antioqueño-colombia. Avances en Recursos Hidráulicos, (19).spa
dc.relation.referencesAparicio, F. (1992). Fundamentos de hidrología de superficie. 1era reimpresión. Balderas. México. Editorial Limusa, SA.spa
dc.relation.referencesBaker, D. B., Richards, R. P., Loftus, T. T., & Kramer, J. W. (2004). a New Flashiness Index: Characteristics and Applications To Midwestern Rivers and Streams. Journal of the American Water Resources Association, 40 (2), 503–522.spa
dc.relation.referencesBenejam, L., Angermeier, P. L., Munne, A., & GARCÍA-BERTHOU, E. (2010). Assessing effects of water abstraction on fish assemblages in mediterranean streams. Freshwater Biology, 55 (3), 628–642.spa
dc.relation.referencesBievre, B. d. & Acosta, L. (2012). Ecosistemas altoandinos , cuencas y regulación hídrica. Dialogue, 21–22.spa
dc.relation.referencesBishop, K. A. & Bell, J. D. (1978). Observations on the fish fauna below tallowa dam (shoalhaven river, new south wales) during river flow stoppages. Marine and Freshwater Research, 29 (4), 543–549.spa
dc.relation.referencesBlöschl, G. & Sivapalan, M. (1997). Process controls on regional flood frequency: Coefficient of variation and basin scale. Water Resources Research, 33 (12), 2967–2980.spa
dc.relation.referencesBogoslovski, B., Samojin, A., Ivanov, K., & Sokolov, D. (1984). , (Hidrología General). Guidrometeoizdat, Leningrado.spa
dc.relation.referencesBonvechio, T. F. & Allen, M. S. (2005). Relations between hydrological variables and year-class strength of sportfish in eight florida waterbodies. Hydrobiologia, 532 (1-3), 193–207.spa
dc.relation.referencesBoulton, A. J. (2003). Parallels and contrasts in the effects of drought on stream macroinvertebrate assemblages. Freshwater Biology, 48 (7), 1173–1185.spa
dc.relation.referencesBruijnzeel, L. & Proctor, J. (1995). Hydrology and biogeochemistry of tropical montane cloud forests: what do we really know? In Tropical montane cloud forests (pp. 38–78). Springer.spa
dc.relation.referencesBruijnzeel, L. & Veneklaas, E. J. (1998). Climatic conditions and tropical montane forest productivity: the fog has not lifted yet. Ecology, 79 (1), 3–9.spa
dc.relation.referencesBuendia, C., Batalla, R. J., Sabater, S., Palau, A., & Marcé, R. (2016). Runoff Trends Driven by Climate and Afforestation in a Pyrenean Basin. Land Degradation and Development, 27 (3), 823–838.spa
dc.relation.referencesBunn, S. E. & Arthington, A. H. (2002). Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environmental management, 30 (4), 492–507.spa
dc.relation.referencesBuytaert, W. (2004). The properties of the soils of the south Ecuadorian páramo and the impact of land use changes on their hydrology. PhD thesis, Katholieke Universiteit Leuven.spa
dc.relation.referencesBuytaert, W., Célleri, R., De Bièvre, B., Cisneros, F., Wyseure, G., Deckers, J., & Hofstede, R. (2006). Human impact on the hydrology of the andean páramos. Earth-Science Reviews, 79 (1-2), 53–72.spa
dc.relation.referencesCamargo, E. S. C., Carreño, J. A. F., & Barón, E. M. P. (2012). Los servicios ecosistémicos de regulación: tendencias e impacto en el bienestar humano. RIAA, 3 (1), 77–84.spa
dc.relation.referencesCasas-Mulet, R., Saltveit, S. J., & Alfredsen, K. (2015). The survival of atlantic salmon (salmo salar) eggs during dewatering in a river subjected to hydropeaking. River Research and Applications, 31 (4), 433–446.spa
dc.relation.referencesCatford, J. A., Downes, B. J., Gippel, C. J., & Vesk, P. A. (2011). Flow regulation reduces native plant cover and facilitates exotic invasion in riparian wetlands. Journal of Applied Ecology, 48 (2), 432–442.spa
dc.relation.referencesChaves, B. & Jaramillo, l. (1998). Regionalización de la temperatura del aire en Colombia.spa
dc.relation.referencesChen, Feng-Wen and Liu, Chen-Wuing (2012). Estimation of the spatial rainfall distribution using inverse distance weighting (IDW) in the middle of Taiwan. Paddy and Water Environment, 10 (3), 209–222.spa
dc.relation.referencesChessman, B. C., Jones, H. A., Searle, N. K., Growns, I. O., & Pearson, M. R. (2010). Assessing effects of flow alteration on macroinvertebrate assemblages in australian dryland rivers. Freshwater Biology, 55 (8), 1780–1800.spa
dc.relation.referencesChiquito, L. (2012). Optimum point in a river regulation curve. In Proceedings of the Institution of Civil Engineers-Water Management, volume 165, (pp. 393–402). Thomas Telford Ltd.spa
dc.relation.referencesChow, V. T., Maidment, D. R., Mays, L. W., Saldarriaga, J. G., et al. (1994). Hidrología aplicada. Number 551.48 C4H5.spa
dc.relation.referencesDolores Bejarano, M., Nilsson, C., Gonzalez Del Tanago, M., & Marchamalo, M. (2011). Responses of riparian trees and shrubs to flow regulation along a boreal stream in northern sweden. Freshwater Biology, 56 (5), 853–866.spa
dc.relation.referencesEslamian, S. (2014). Handbook of engineering hydrology: modeling, climate change, and variability. CRC Press.spa
dc.relation.referencesFongers, D., Day, R., & Rathbun, J. (2012). Application of the richards-baker flashiness index to gaged michigan rivers and streams. DEQ Michigan’s Nonpoint Source Program.spa
dc.relation.referencesFreeman, M. C., Bowen, Z. H., Bovee, K. D., & Irwin, E. R. (2001). Flow and habitat effects on juvenile fish abundance in natural and altered flow regimes. Ecological Applications, 11 (1), 179–190.spa
dc.relation.referencesGalat, D. L. & Lipkin, R. (2000). Restoring ecological integrity of great rivers: historical hydrographs aid in defining reference conditions for the missouri river. In Assessing the ecological integrity of running waters (pp. 29–48). Springer.spa
dc.relation.referencesGillson, J., Scandol, J., & Suthers, I. (2009). Estuarine gillnet fishery catch rates decline during drought in eastern australia. Fisheries Research, 99 (1), 26–37.spa
dc.relation.referencesGISGeography (2016). Inverse distance weighting (idw) interpolation. urlhttps://gisgeography.com/inverse-distance-weighting-idw-interpolation/. Accedido 20-03-2020.spa
dc.relation.referencesGreet, J., Webb, J. A., & Downes, B. J. (2011). Flow variability maintains the structure and composition of in-channel riparian vegetation. Freshwater Biology, 56 (12), 2514–2528.spa
dc.relation.referencesGrowns, I. O. & Growns, J. E. (2001). Ecological effects of flow regulation on macroinvertebrate and periphytic diatom assemblages in the hawkesbury–nepean river, australia. Regulated Rivers: Research & Management: An International Journal Devoted to River Research and Management, 17 (3), 275–293.spa
dc.relation.referencesGustafson, D. I., Carr, K. H., Green, T. R., Gustin, C., Jones, R. L., & Richards, R. P. (2004).spa
dc.relation.referencesFractal-based scaling and scale-invariant dispersion of peak concentrations of crop protection chemicals in rivers. Environmental science & technology, 38 (11), 2995–3003.spa
dc.relation.referencesHaines-Young, R. & Potschin, M. (2013). Common international classification of ecosystem services cices): Consultation on version 4, august-december 2012 (report to the european environment agency, revised january 2013).spa
dc.relation.referencesHayes, D. S., Brändle, J. M., Seliger, C., Zeiringer, B., Ferreira, T., & Schmutz, S. (2018). Advancing towards functional environmental flows for temperate floodplain rivers. Science of the Total Environment, 633, 1089–1104.spa
dc.relation.referencesHewlett, J. D. (1982). Principles of forest hydrology. University of Georgia press.spa
dc.relation.referencesHofstede, R. (1997). Los páramos del ecuador, 1–24.spa
dc.relation.referencesIDEAM (1999). El medio ambiente en Colombia.spa
dc.relation.referencesIDEAM (2008). Estudio Nacional del Agua 2008.spa
dc.relation.referencesIDEAM (2010). Estudio Nacional del Agua 2010.spa
dc.relation.referencesIDEAM (2013). Lineamientos conceptuales y metodológicos para la Evaluación Regional del Agua - ERA 2013.spa
dc.relation.referencesIDEAM (2013). Zonificación y Codificación de Cuencas Hidrográficas.spa
dc.relation.referencesJaramillo, G. P., Upegui, J. V., Sánchez, O. J. M., Bonilla, L. C., Arias, M. Z., & Ortiz, C. H. (2002). Estimación de caudales mínimos para colombia mediante regionalización y aplicación de la curva de recesión de caudales. Meteorol. Colomb, 6, 73–80.spa
dc.relation.referencesKeating, P. L. (1998). Effects of anthropogenic disturbances on páramo vegetation in podocarpus national park, ecuador. Physical Geography, 19 (3), 221–238.spa
dc.relation.referencesKingsford, R. T., Jenkins, K., & Porter, J. (2004). Imposed hydrological stability on lakes in arid australia and effects on waterbirds. Ecology, 85 (9), 2478–2492.spa
dc.relation.referencesKingsford, R. T. & Thomas, R. F. (1995). The macquarie marshes in arid australia and their waterbirds: a 50-year history of decline. Environmental management, 19 (6), 867–878.spa
dc.relation.referencesKlemeš, V. (1979). Storage mass-curve analysis in a systems-analytic perspective. Water Resources Research, 15 (2), 359–370.spa
dc.relation.referencesKottegoda, N. (1974). Effect of skewness in three stochastic pentad river flow models on crossing properties of synthesized data. Water Resources Research, 10 (3), 446–456.spa
dc.relation.referencesKupferberg, S. J., Palen, W. J., Lind, A. J., Bobzien, S., Catenazzi, A., Drennan, J., & Power, M. E. (2012). Effects of flow regimes altered by dams on survival, population declines, and range-wide losses of california river-breeding frogs. Conservation Biology, 26 (3), 513–524.spa
dc.relation.referencesLacombe, G., Ribolzi, O., De Rouw, A., Pierret, A., Latsachak, K., Silvera, N., Dinh, R. P., Orange, D., Janeau, J. L., Soulileuth, B., Robain, H., Taccoen, A., Sengphaathith, P., Mouche, E., Sengtaheuanghoung, O., Duc, T. T., & Valentin, C. (2016). Contradictory hydrological impacts of afforestation in the humid tropics evidenced by long-term field monitoring and simulation modelling. Hydrology and Earth System Sciences, 20 (7), 2691–2704.spa
dc.relation.referencesLi, Y. & Lence, B. J. (2008). Applicability of rice’s formula in stochastic hydrological modeling. Journal of Hydrologic Engineering, 13 (9), 776–780.spa
dc.relation.referencesLuteyn, J. L. & Balslev, H. (1992). Páramo: an Andean ecosystem under human influence. Academic Press London, UK.spa
dc.relation.referencesMaldonado, G. & De Bievre, B. (2011). paramundi 2009: Ii congreso mundial de páramos. memorias.spa
dc.relation.referencesMalmqvist, B. & Rundle, S. (2002). Threats to the running water ecosystems of the world. Environmental Conservation, 29 (02), 134–153.spa
dc.relation.referencesMarques, G. F., de Souza, V. B., & Moraes, N. V. (2017). The economic value of the flow regulation environmental service in a Brazilian urban watershed. Journal of Hydrology, 554, 406–419.spa
dc.relation.referencesMEA, M. E. A. (2005). Ecosystems and human well-being: Synthesis washington (dc) island press.spa
dc.relation.referencesMeador, M. R. & Carlisle, D. M. (2012). Relations between altered streamflow variability and fish assemblages in eastern usa streams. River research and applications, 28 (9), 1359–1368.spa
dc.relation.referencesMedici, C., Butturini, A., Bernal, S., Vázquez, E., Sabater, F., Vélez, J., & Francés, F. (2008). Modelling the non-linear hydrological behaviour of a small mediterranean forested catchment. Hydrological Processes: An International Journal, 22 (18), 3814–3828.spa
dc.relation.referencesMiller, S. W. & Judson, S. (2014). Responses of macroinvertebrate drift, benthic assemblages, and trout foraging to hydropeaking. Canadian Journal of Fisheries and Aquatic Sciences, 71 (5), 675–687.spa
dc.relation.referencesMinagricultura (2010). Informe de rendición de cuentas 2102-2010.spa
dc.relation.referencesMiserendino, M. L. (2009). Effects of flow regulation, basin characteristics and land-use on macro- invertebrate communities in a large arid patagonian river. Biodiversity and conservation, 18 (7), 1921–1943.spa
dc.relation.referencesMountainAgenda et al. (1998). Mountains of the world: water towers for the 21st century.spa
dc.relation.referencesNagrodski, A., Raby, G. D., Hasler, C. T., Taylor, M. K., & Cooke, S. J. (2012). Fish stranding in freshwater systems: sources, consequences, and mitigation. Journal of environmental management, 103, 133–141.spa
dc.relation.referencesNielsen, D. L., Podnar, K., Watts, R., & Wilson, A. (2013). Empirical evidence linking increased hydrologic stability with decreased biotic diversity within wetlands. Hydrobiologia, 708 (1), 81–96.spa
dc.relation.referencesNilsson, C., Reidy, C. A., Dynesius, M., & Revenga, C. (2005). Fragmentation and flow regulation of the world’s large river systems. Science, 308 (5720), 405–408.spa
dc.relation.referencesOcampo, O.L & Vélez, J.J. (2014). Análisis comparativo de modelos hidrológicos de simulación continua en cuencas de alta montaña: caso del Río Chinchiná. Revista Ingenierías Universidad de Medellín, 13 (24), 43–58.spa
dc.relation.referencesOlmos, C. F. G. (2007). Regulación hídrica bajo tres coberturas vegetales en la cuenca del río San Cristobal, Bogotá D.C.spa
dc.relation.referencesPaetzold, A., Yoshimura, C., & Tockner, K. (2008). Riparian arthropod responses to flow regulation and river channelization. Journal of applied ecology, 45 (3), 894–903.spa
dc.relation.referencesPerkin, J. & Bonner, T. (2011). Long-term changes in flow regime and fish assemblage composition in the guadalupe and san marcos rivers of texas. River Research and Applications, 27 (5), 566–579.spa
dc.relation.referencesPoff, N. (1996). A hydrogeography of unregulated streams in the united states and an examination of scale-dependence in some hydrological descriptors. Freshwater biology, 36 (1), 71–79.spa
dc.relation.referencesPoff, N. L. & Zimmerman, J. K. (2010). Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows. Freshwater biology, 55 (1), 194–205.spa
dc.relation.referencesPonsatí, L., Acuña, V., Aristi, I., Arroita, M., García-Berthou, E., Von Schiller, D., Elosegi, A., & Sabater, S. (2015). Biofilm responses to flow regulation by dams in mediterranean rivers. River research and applications, 31 (8), 1003–1016.spa
dc.relation.referencesPoulenard, J., Podwojewski, P., & Herbillon, A. J. (2003). Characteristics of non-allophanic andisols with hydric properties from the ecuadorian páramos. Geoderma, 117 (3-4), 267–281.spa
dc.relation.referencesPoveda, G. & Mesa, O. J. (1995). The relationship between enso and the hydrology of tropical south america. the case of Colombia. Proceedings of the Fifteenth Annual American Geophysical Union Hydrology Days, 227–236.spa
dc.relation.referencesReich, P., McMaster, D., Bond, N., Metzeling, L., & Lake, P. S. (2010). Examining the ecological consequences of restoring flow intermittency to artificially perennial lowland streams: patterns and predictions from the broken—boosey creek system in northern victoria, australia. River Research and Applications, 26 (5), 529–545.spa
dc.relation.referencesReynolds, L., Shafroth, P. B., & House, P. (2014). Abandoned floodplain plant communities along a regulated dryland river. River research and applications, 30 (9), 1084–1098.spa
dc.relation.referencesRice, S. O. (1945). Mathematical analysis of random noise. Bell system technical journal, 24 (1), 46–156. Richter, B., Baumgartner, J., Wigington, R., & Braun, D. (1997). How much water does a river need? Freshwater biology, 37 (1), 231–249.spa
dc.relation.referencesRichter, B. D., Baumgartner, J. V., Powell, J., & Braun, D. P. (1996). A method for assessing hydrologic alteration within ecosystems. Conservation biology, 10 (4), 1163–1174.spa
dc.relation.referencesRippl, W. (1883). The capacity of storage-reservoirs for water-slpply.(including plate). In Minutes of the Proceedings of the Institution of Civil Engineers, volume 71, (pp. 270–278). Thomas Telford-ICE Virtual Library.spa
dc.relation.referencesRodríguez-Iturbe, I. (1969). Applications of the theory of runs to hydrology. Water Resources Research, 5 (6), 1422–1426.spa
dc.relation.referencesRolls, R. J. & Arthington, A. H. (2014). How do low magnitudes of hydrologic alteration impact riverine fish populations and assemblage characteristics? Ecological Indicators, 39, 179–188.spa
dc.relation.referencesRolls, R. J. & Bond, N. R. (2017). Environmental and ecological effects of flow alteration in surface water ecosystems. In Water for the Environment (pp. 65–82). Elsevier.spa
dc.relation.referencesSalas, J. D., Chung, C.-h., & Cancelliere, A. (2005). Correlations and crossing rates of periodic stochastic hydrologic processes. Journal of Hydrologic Engineering, 10 (4), 278–287.spa
dc.relation.referencesSalas, J. D., Chung, C.-h., & Fernandez, B. (2001). Relating autocorrelations and crossing rates of continuous-and discrete-valued hydrologic processes. Journal of Hydrologic Engineering, 6 (2), 109–118.spa
dc.relation.referencesSalazar, J. F., Villegas, J. C., Rendón, A. M., Rodríguez, E., et al. (2018). Scaling properties reveal regulation of river flows in the amazon through a “forest reservoir”. Hydrology and Earth System Sciences, 22 (3), 1735–1748.spa
dc.relation.referencesSchlosser, I. J. & Karr, J. R. (1981). Water quality in agricultural watersheds: Impact of riparian vegetation during base flow 1. JAWRA Journal of the American Water Resources Association, 17 (2), 233–240.spa
dc.relation.referencesSchmutz, S., Bakken, T., Friedrich, T., Greimel, F., Harby, A., Jungwirth, M., Melcher, A., Unfer, G., & Zeiringer, B. (2015). Response of fish communities to hydrological and morphological alterations in hydropeaking rivers of austria. River research and applications, 31 (8), 919–930.spa
dc.relation.referencesSIAC (2002). Sistema de Información Ambiental de Colombia tomo III. perfil del estado de los recursos naturales y del medio ambiente en Colombia 2001. IDEAM. Min. Medio Ambiente, Bogotá.spa
dc.relation.referencesStadtmüller, T. (1987). Cloud forests in the humid tropics: a bibliographic review. Bib. Orton IICA/CATIE.spa
dc.relation.referencesStromberg, J. C., Lite, S. J., Marler, R., Paradzick, C., Shafroth, P. B., Shorrock, D., White, J. M., & White, M. S. (2007). Altered stream-flow regimes and invasive plant species: the tamarix case. Global Ecology and Biogeography, 16 (3), 381–393.spa
dc.relation.referencesThomas Jr, H. A. & Burden, R. P. (1963). Operations research in water quality management. Technical report, HARVARD UNIV CAMBRIDGE MASS DIV OF ENGINEERING AND APPLIED PHYSICS.spa
dc.relation.referencesTobón, C. & Arroyave, F. (2007). Inputs by fog and horizontal precipitation to the páramo ecosystems and their contribution to the water balance. In Proceedings Fourth International Conference on Frog Collection and Dew, (pp. 233–236).spa
dc.relation.referencesTobón, C. & Morales, E. G. G. (2007). Capacidad de interceptación de la niebla por la vegetación de los páramos andinos. Avances en recursos Hidráulicos, (15).spa
dc.relation.referencesUNAL, U. & UdeM-AMVA (2004). Diseño y puesta en marcha de la red de monitoreo ambiental en la cuenca hidrográfica del río medellín en jurisdicción del área metropolitana”.spa
dc.relation.referencesUpegui, J. I. V., Poveda, G., Oscar, J., & Mesa, S. (2000). Balances hidrológicos de Colombia. Universidad Nacional de Colombia, Sede Medellín, Facultad de Minas, Posgrado en Aprovechamiento de Recursos Hidráulicos.spa
dc.relation.referencesUPME (2000). Atlas Hidrológico de Colombia.spa
dc.relation.referencesUSDA (2003). Soil survey staff. Keys to Soil Taxonomy. USDA, Ninth Edition, 332p.spa
dc.relation.referencesVarlet, H. (1923). Étude graphique des conditions d’exploitation d’un réservoir de régularisation. Annales des Ponts et Chaussées, Partie Technique, 93e Année, 11e Série-Time, 64.spa
dc.relation.referencesVásconez, P. M., Medina, G., & Hofstede, R. (2001). Los páramos del ecuador. Botánica económica de los Andes Centrales, 2006, 91–109.spa
dc.relation.referencesVásquez, G. L. & Tobón, C. (2016). Influencia del uso de la tierra en la respuesta hidrológica de cuencas de cabecera en Los Andes centrales de Colombia. PhD thesis.spa
dc.relation.referencesVásquez-Velásquez, G. (2016). Headwaters deforestation for cattle pastures in the andes of Colombia and its implications for soils properties and hydrological dynamic. Open Journal of Forestry, 6 (5), 337–347.spa
dc.relation.referencesVélez, M. V. (2002). Hidrología para ingenieros. Medellín: Posgrado en Aprovechamiento de Recursos Hidráulicos. Facultad de Minas. Universidad Nacional de Colombia, sede Medellín.spa
dc.relation.referencesVelásquez, N. (2011). Simulación de sedimentos a partir de un modelo conceptual y distribuido no lineal. Tesis de Maestría, Universidad Nacional de Colombia, Sede Medellín.spa
dc.relation.referencesVillón Béjar, M. (2004). Hidrología. Instituto Tecnológico de Costa Rica.spa
dc.relation.referencesVélez, J. I. (2001). Desarrollo de un modelo hidrológico conceptual y distribuido orientado a la simulación de las crecidas. Valencia, España: Universidad Politécnica de Valencia.spa
dc.relation.referencesVélez, J. I. , Restrepo, C. A. , Correa, P. L. & others (2010a). Aplicaciones de un modelo hidrológico agregado en Colombia.spa
dc.relation.referencesVélez, J. I., Restrepo, C. A. , Correa, P.L. & others (2010b). IAHR AIIH XXIV Congreso Latinoamericano de Hidráulica Punta Del Este, Uruguay, Noviembre 2010: Aplicaciones de un modelo hidrológico agregado en Colombia.spa
dc.relation.referencesXu, J. (1998). A study of physico-geographical factors for formation of hyperconcentrated flows in the Loess Plateau of China. Geomorphology, 24 (2-3), 245–255.spa
dc.relation.referencesZhang, M., Wei, X., Liu, S., Harper, R., Li, Q., Liu, K., Ning, D., Hou, Y., & Liu, S. (2017). A global review on hydrological responses to forest change across multiple spatial scales : importance of scale ... Journal of Hydrology, 546 (December 2016).spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::627 - Ingeniería hidráulicaspa
dc.subject.proposalRegulación hídricaspa
dc.subject.proposalFlow regulationeng
dc.titlePropuesta metodológica para la representación cuantitativa de la regulación hídrica en las distintas escalas de cuenca hidrográficaspa
dc.title.translatedMethodological proposal to represent quantitatively the flow regulation at different water basin scaleseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1152445515.2020.pdf
Tamaño:
12.87 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Recursos Hidráulicos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: