Evaluación de la inmunogenicidad de células dendríticas pulsadas con diferentes formulaciones del antígeno con fines de inmunoterapia

dc.contributor.advisorBernal Estévez, David Andresspa
dc.contributor.advisorParra López, Carlos Albertospa
dc.contributor.authorAlfaro Marenco, María Alejandraspa
dc.date.accessioned2024-06-04T21:14:14Z
dc.date.available2024-06-04T21:14:14Z
dc.date.issued2024
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLas vacunas basadas en células dendríticas (DCs) se han proyectado como una importante alternativa para la inmunoterapia del cáncer. Su diseño típicamente se fundamenta en la estimulación ex vivo de DCs derivadas de monocitos (MoDCs) utilizando diferentes formulaciones de antígenos y condiciones de maduración. Sin embargo, no hay consenso frente a la formulación óptima del antígeno a la hora de diseñar vacunas basadas en DCs. Por otro lado, se ha descrito que el estímulo de maduración en las MoDCs podría influir en su capacidad para presentar determinados formatos del antígeno. Por lo anterior, el presente trabajo se propuso explorar las implicaciones de diversas formulaciones del antígeno en el desarrollo de respuestas inmunes antitumorales por LT CD8+ cultivados con MoDCs tratadas bajo distintas condiciones. Para ello, se identificaron donantes sanos con LT CD8+ específicos contra epítopes modelo, utilizando el método de citometría basado en tetrámero. De forma paralela, se derivaron MoDCs que fueron estimuladas con dichos antígenos, bajo las formulaciones de péptido corto, péptido largo, proteína recombinante y célula tumoral, todas portadoras de la epítope inmunogénica de cada antígeno. Las MoDCs fueron maduradas empleando diferentes cocteles de citoquinas y se analizó la expresión diferencial de marcadores de maduración. Las líneas tumorales fueron tratadas con agentes quimioterapéuticos, a fin de determinar la expresión de calreticulina (CLR) como indicador de muerte celular inmunogénica (ICD) y su capacidad de favorecer su fagocitosis por MoDCs. Finalmente, se estableció un cocultivo de MoDCs y LT CD8+ autólogos antígeno-específicos o clones de LT CD8+ alogénicos específicos para las epítopes de interés; cuya respuesta efectora fue evaluada por medio de la producción de citoquinas y la expresión de marcadores de activación, agotamiento y memoria, utilizando citometría de flujo multiparamétrica. Se logró la expansión de LT CD8+ HLA-A*02:01 tetrámero-positivos para una epítope viral y una tumoral, con los cuales se realizaron los ensayos de comparación entre formatos del antígeno y cocteles de maduración. Como se ha reportado clásicamente en la literatura, las formulaciones sencillas y directas basadas en péptidos promovieron respuestas robustas de activación y producción de citoquinas. Por el contrario, las formulaciones complejas como la proteína recombinante y las células tumorales tratadas mostraron respuestas efectoras menos evidentes. Los fenotipos de activación y agotamiento exhibieron una expresión dependiente principalmente del formato del antígeno utilizado, aunque se observó heterogeneidad entre los individuos. Adicionalmente, el marcador LAG-3 se vio influenciado por el coctel de maduración utilizado en las MoDCs. Por último, se logró inducir la expresión de CRL en las líneas tumorales tratadas y su fagocitosis por iDCs, aunque no se evidenció presentación cruzada del antígeno. Los resultados de este proyecto proporcionan información valiosa para el diseño de vacunas basadas en DCs y su potencial en inmunoterapia del cáncer. (Texto tomado de la fuente).spa
dc.description.abstractDendritic cell (DC)-based vaccines have been projected as a significant alternative for cancer immunotherapy. Typically, these vaccines are designed by stimulating monocyte-derived dendritic cells (MoDCs) ex vivo, employing diverse antigen formulations and maturation conditions. However, there is no consensus regarding the optimal antigen formulation when designing DC-based vaccines. On the other hand, it has been noted that the maturation stimulus in MoDCs could influence their ability to present specific antigen formats. This project aimed to investigate the effects of various antigen formulations on the development of anti-tumor immune responses by CD8+ T cells cultured with monocyte-derived dendritic cells (MoDCs) treated under different conditions. To achieve this, healthy donors with antigen-specific CD8+ T cell precursors for model epitopes were identified using tetramer-based flow cytometry. Simultaneously, MoDCs were derived and stimulated employing short peptide, long peptide, recombinant protein, or tumor cell formulations, all carrying the immunogenic epitope of each antigen. The MoDCs were matured using different cytokine cocktails, and the differential expression of maturation markers was analyzed. Tumor cell lines were treated with chemotherapeutic agents to determine calreticulin (CLR) expression as an indicator of immunogenic cell death (ICD). The ability of treated tumor cells to enhance phagocytosis by MoDCs was also assessed. Finally, a co-culture of autologous MoDCs and antigen-specific CD8+ T cells or allogeneic CD8+ T cell clones specific for the target epitopes was established. Their effector response was evaluated through cytokine production and the expression of activation, exhaustion, and memory markers, utilizing multiparametric flow cytometry. The expansion of HLA-A*02:01 tetramer-positive CD8+ T cells was achieved for a viral and a tumor epitope. Using these, comparative assays were carried out between antigen formats and maturation cocktails. As classically reported in the literature, peptide-based formulations promoted robust activation and cytokine production responses. In contrast, more complex formulations such as recombinant protein and treated tumor cells exhibited less evident effector responses. The activation and exhaustion phenotypes showed expression primarily dependent on the antigen format used, although heterogeneity was observed among individuals. Additionally, LAG-3 was 13 influenced by the maturation cocktail used in MoDCs. Finally, the induction of calreticulin (CRL) expression in treated tumor cell lines and their phagocytosis by iDCs was achieved, although no evidence of antigen cross-presentation was observed. The findings of this project provide valuable insights for the design of DC-based vaccines and their potential in cancer immunotherapy.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Inmunologíaspa
dc.description.methodsEstudio experimental in vitrospa
dc.description.sponsorshipFundación Salud de los Andesspa
dc.format.extent156 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86203
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Inmunologíaspa
dc.relation.referencesGierlich P, Lex V, Technau A, Keupp A, Morper L, Glunz A, et al. Prostaglandin E(2) in a TLR3- and 7/8-agonist-based DC maturation cocktail generates mature, cytokine-producing, migratory DCs but impairs antigen cross-presentation to CD8(+) T cells. Cancer Immunol Immunother. 2020;69(6):1029-42.spa
dc.relation.referencesChamucero-Millares JA, Bernal-Estevez DA, Parra-Lopez CA. Usefulness of IL-21, IL-7, and IL- 15 conditioned media for expansion of antigen-specific CD8+ T cells from healthy donor-PBMCs suitable for immunotherapy. Cell Immunol. 2021;360:104257.spa
dc.relation.referencesPatente TA, Pinho MP, Oliveira AA, Evangelista GCM, Bergami-Santos PC, Barbuto JAM. Human Dendritic Cells: Their Heterogeneity and Clinical Application Potential in Cancer Immunotherapy. Front Immunol. 2018;9:3176.spa
dc.relation.referencesGranot T, Senda T, Carpenter DJ, Matsuoka N, Weiner J, Gordon CL, et al. Dendritic Cells Display Subset and Tissue-Specific Maturation Dynamics over Human Life. Immunity. 2017;46(3):504-15.spa
dc.relation.referencesLamberti MJ, Nigro A, Mentucci FM, Rumie Vittar NB, Casolaro V, Dal Col J. Dendritic Cells and Immunogenic Cancer Cell Death: A Combination for Improving Antitumor Immunity. Pharmaceutics. 2020;12(3).spa
dc.relation.referencesBol KF, Schreibelt G, Gerritsen WR, de Vries IJ, Figdor CG. Dendritic Cell-Based Immunotherapy: State of the Art and Beyond. Clin Cancer Res. 2016;22(8):1897-906.spa
dc.relation.referencesSabado RL, Balan S, Bhardwaj N. Dendritic cell-based immunotherapy. Cell Res. 2017;27(1):74-95.spa
dc.relation.referencesHu Z, Ott PA, Wu CJ. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat Rev Immunol. 2018;18(3):168-82.spa
dc.relation.referencesThomas R, Al-Khadairi G, Roelands J, Hendrickx W, Dermime S, Bedognetti D, et al. NY-ESO-1 Based Immunotherapy of Cancer: Current Perspectives. Front Immunol. 2018;9:947.spa
dc.relation.referencesMastelic-Gavillet B, Balint K, Boudousquie C, Gannon PO, Kandalaft LE. Personalized Dendritic Cell Vaccines-Recent Breakthroughs and Encouraging Clinical Results. Front Immunol. 2019;10:766.spa
dc.relation.referencesSarivalasis A, Boudousquie C, Balint K, Stevenson BJ, Gannon PO, Iancu EM, et al. A Phase I/II trial comparing autologous dendritic cell vaccine pulsed either with personalized peptides (PEP-DC) or with tumor lysate (OC-DC) in patients with advanced high-grade ovarian serous carcinoma. J Transl Med. 2019;17(1):391.spa
dc.relation.referencesPrins RM, Wang X, Soto H, Young E, Lisiero DN, Fong B, et al. Comparison of gliomaassociated antigen peptide-loaded versus autologous tumor lysate-loaded dendritic cell vaccination in malignant glioma patients. J Immunother. 2013;36(2):152-7.spa
dc.relation.referencesCastiello L, Sabatino M, Jin P, Clayberger C, Marincola FM, Krensky AM, et al. Monocytederived DC maturation strategies and related pathways: a transcriptional view. Cancer Immunol Immunother. 2011;60(4):457-66.spa
dc.relation.referencesC DEW, M VDB, Hoefnagel M. Regulatory perspective on in vitro potency assays for human dendritic cells used in anti-tumor immunotherapy. Cytotherapy. 2018;20(11):1289-308.spa
dc.relation.referencesLee J, Breton G, Oliveira TY, Zhou YJ, Aljoufi A, Puhr S, et al. Restricted dendritic cell and monocyte progenitors in human cord blood and bone marrow. J Exp Med. 2015;212(3):385-99.spa
dc.relation.referencesGerlini G, Urso C, Mariotti G, Di Gennaro P, Palli D, Brandani P, et al. Plasmacytoid dendritic cells represent a major dendritic cell subset in sentinel lymph nodes of melanoma patients and accumulate in metastatic nodes. Clin Immunol. 2007;125(2):184-93.spa
dc.relation.referencesWylie B, Macri C, Mintern JD, Waithman J. Dendritic Cells and Cancer: From Biology to Therapeutic Intervention. Cancers (Basel). 2019;11(4).spa
dc.relation.referencesHuysamen C, Willment JA, Dennehy KM, Brown GD. CLEC9A is a novel activation C-type lectin-like receptor expressed on BDCA3+ dendritic cells and a subset of monocytes. J Biol Chem. 2008;283(24):16693-701.spa
dc.relation.referencesSancho D, Joffre OP, Keller AM, Rogers NC, Martinez D, Hernanz-Falcon P, et al. Identification of a dendritic cell receptor that couples sensing of necrosis to immunity. Nature. 2009;458(7240):899-903.spa
dc.relation.referencesConstantino J, Gomes C, Falcao A, Neves BM, Cruz MT. Dendritic cell-based immunotherapy: a basic review and recent advances. Immunol Res. 2017;65(4):798-810.spa
dc.relation.referencesCalmeiro J, Mendes L, Duarte IF, Leitao C, Tavares AR, Ferreira DA, et al. In-Depth Analysis of the Impact of Different Serum-Free Media on the Production of Clinical Grade Dendritic Cells for Cancer Immunotherapy. Front Immunol. 2020;11:593363.spa
dc.relation.referencesMunz C, Dao T, Ferlazzo G, de Cos MA, Goodman K, Young JW. Mature myeloid dendritic cell subsets have distinct roles for activation and viability of circulating human natural killer cells. Blood. 2005;105(1):266-73.spa
dc.relation.referencesLuo XL, Dalod M. The quest for faithful in vitro models of human dendritic cells types. Mol Immunol. 2020;123:40-59.spa
dc.relation.referencesChiang CL, Kandalaft LE, Tanyi J, Hagemann AR, Motz GT, Svoronos N, et al. A dendritic cell vaccine pulsed with autologous hypochlorous acid-oxidized ovarian cancer lysate primes effective broad antitumor immunity: from bench to bedside. Clin Cancer Res. 2013;19(17):4801-15.spa
dc.relation.referencesMailliard RB, Wankowicz-Kalinska A, Cai Q, Wesa A, Hilkens CM, Kapsenberg ML, et al. alphatype-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res. 2004;64(17):5934-7.spa
dc.relation.referencesLee JJ, Foon KA, Mailliard RB, Muthuswamy R, Kalinski P. Type 1-polarized dendritic cells loaded with autologous tumor are a potent immunogen against chronic lymphocytic leukemia. J Leukoc Biol. 2008;84(1):319-25.spa
dc.relation.referencesGarris CS, Arlauckas SP, Kohler RH, Trefny MP, Garren S, Piot C, et al. Successful Anti-PD-1 Cancer Immunotherapy Requires T Cell-Dendritic Cell Crosstalk Involving the Cytokines IFN-gamma and IL-12. Immunity. 2018;49(6):1148-61 e7.spa
dc.relation.referencesDel Prete A, Sozio F, Barbazza I, Salvi V, Tiberio L, Laffranchi M, et al. Functional Role of Dendritic Cell Subsets in Cancer Progression and Clinical Implications. Int J Mol Sci. 2020;21(11).spa
dc.relation.referencesCannon MJ, Schmid DS, Hyde TB. Review of cytomegalovirus seroprevalence and demographic characteristics associated with infection. Rev Med Virol. 2010;20(4):202-13.spa
dc.relation.referencesTerrazzini N, Kern F. Cell-mediated immunity to human CMV infection: a brief overview. F1000Prime Rep. 2014;6:28.spa
dc.relation.referencesSchober K, Buchholz VR, Busch DH. TCR repertoire evolution during maintenance of CMVspecific T-cell populations. Immunol Rev. 2018;283(1):113-28.spa
dc.relation.referencesO'Hara GA, Welten SP, Klenerman P, Arens R. Memory T cell inflation: understanding cause and effect. Trends Immunol. 2012;33(2):84-90.spa
dc.relation.referencesKhan N, Best D, Bruton R, Nayak L, Rickinson AB, Moss PA. T cell recognition patterns of immunodominant cytomegalovirus antigens in primary and persistent infection. J Immunol. 2007;178(7):4455-65.spa
dc.relation.referencesWills MR, Carmichael AJ, Mynard K, Jin X, Weekes MP, Plachter B, et al. The human cytotoxic T-lymphocyte (CTL) response to cytomegalovirus is dominated by structural protein pp65: frequency, specificity, and T-cell receptor usage of pp65-specific CTL. J Virol. 1996;70(11):7569-79.spa
dc.relation.referencesPittet MJ, Zippelius A, Valmori D, Speiser DE, Cerottini JC, Romero P. Melan-A/MART-1-specific CD8 T cells: from thymus to tumor. Trends Immunol. 2002;23(7):325-8.spa
dc.relation.referencesCoulie PG, Brichard V, Van Pel A, Wolfel T, Schneider J, Traversari C, et al. A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med. 1994;180(1):35-42.spa
dc.relation.referencesPittet MJ, Valmori D, Dunbar PR, Speiser DE, Lienard D, Lejeune F, et al. High frequencies of naive Melan-A/MART-1-specific CD8(+) T cells in a large proportion of human histocompatibility leukocyte antigen (HLA)-A2 individuals. J Exp Med. 1999;190(5):705-15.spa
dc.relation.referencesAlanio C, Lemaitre F, Law HK, Hasan M, Albert ML. Enumeration of human antigen-specific naive CD8+ T cells reveals conserved precursor frequencies. Blood. 2010;115(18):3718-25.spa
dc.relation.referencesValmori D, Fonteneau JF, Lizana CM, Gervois N, Lienard D, Rimoldi D, et al. Enhanced generation of specific tumor-reactive CTL in vitro by selected Melan-A/MART-1 immunodominant peptide analogues. J Immunol. 1998;160(4):1750-8.spa
dc.relation.referencesvan Elsas A, van der Burg SH, van der Minne CE, Borghi M, Mourer JS, Melief CJ, et al. Peptide-pulsed dendritic cells induce tumoricidal cytotoxic T lymphocytes from healthy donors against stably HLA-A*0201-binding peptides from the Melan-A/MART-1 self antigen. Eur J Immunol. 1996;26(8):1683-9.spa
dc.relation.referencesBakker AB, Marland G, de Boer AJ, Huijbens RJ, Danen EH, Adema GJ, et al. Generation of antimelanoma cytotoxic T lymphocytes from healthy donors after presentation of melanomaassociated antigen-derived epitopes by dendritic cells in vitro. Cancer Res. 1995;55(22):5330-4.spa
dc.relation.referencesCebon J, Knights A, Ebert L, Jackson H, Chen W. Evaluation of cellular immune responses in cancer vaccine recipients: lessons from NY-ESO-1. Expert Rev Vaccines. 2010;9(6):617-29.spa
dc.relation.referencesChen YT, Scanlan MJ, Sahin U, Tureci O, Gure AO, Tsang S, et al. A testicular antigen aberrantly expressed in human cancers detected by autologous antibody screening. Proc Natl Acad Sci U S A. 1997;94(5):1914-8.spa
dc.relation.referencesSabbatini P, Tsuji T, Ferran L, Ritter E, Sedrak C, Tuballes K, et al. Phase I trial of overlapping long peptides from a tumor self-antigen and poly-ICLC shows rapid induction of integrated immune response in ovarian cancer patients. Clin Cancer Res. 2012;18(23):6497-508.spa
dc.relation.referencesRaza A, Merhi M, Inchakalody VP, Krishnankutty R, Relecom A, Uddin S, et al. Unleashing the immune response to NY-ESO-1 cancer testis antigen as a potential target for cancer immunotherapy. J Transl Med. 2020;18(1):140.spa
dc.relation.referencesSlingluff CL, Jr. The present and future of peptide vaccines for cancer: single or multiple, long or short, alone or in combination? Cancer J. 2011;17(5):343-50.spa
dc.relation.referencesYamshchikov GV, Barnd DL, Eastham S, Galavotti H, Patterson JW, Deacon DH, et al. Evaluation of peptide vaccine immunogenicity in draining lymph nodes and peripheral blood of melanoma patients. Int J Cancer. 2001;92(5):703-11.spa
dc.relation.referencesRosenberg SA, Sherry RM, Morton KE, Scharfman WJ, Yang JC, Topalian SL, et al. Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma. J Immunol. 2005;175(9):6169-76.spa
dc.relation.referencesToes RE, Blom RJ, Offringa R, Kast WM, Melief CJ. Enhanced tumor outgrowth after peptide vaccination. Functional deletion of tumor-specific CTL induced by peptide vaccination can lead to the inability to reject tumors. J Immunol. 1996;156(10):3911-8.spa
dc.relation.referencesToes RE, Offringa R, Blom RJ, Melief CJ, Kast WM. Peptide vaccination can lead to enhanced tumor growth through specific T-cell tolerance induction. Proc Natl Acad Sci U S A. 1996;93(15):7855-60.spa
dc.relation.referencesJanssen EM, Droin NM, Lemmens EE, Pinkoski MJ, Bensinger SJ, Ehst BD, et al. CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death. Nature. 2005;434(7029):88-93.spa
dc.relation.referencesSrinivasan M, Domanico SZ, Kaumaya PT, Pierce SK. Peptides of 23 residues or greater are required to stimulate a high affinity class II-restricted T cell response. Eur J Immunol. 1993;23(5):1011-6.spa
dc.relation.referencesZwaveling S, Ferreira Mota SC, Nouta J, Johnson M, Lipford GB, Offringa R, et al. Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides. J Immunol. 2002;169(1):350-8.spa
dc.relation.referencesMa Y, Adjemian S, Mattarollo SR, Yamazaki T, Aymeric L, Yang H, et al. Anticancer chemotherapy-induced intratumoral recruitment and differentiation of antigen-presenting cells. Immunity. 2013;38(4):729-41.spa
dc.relation.referencesPathak SK, Skold AE, Mohanram V, Persson C, Johansson U, Spetz AL. Activated apoptotic cells induce dendritic cell maturation via engagement of Toll-like receptor 4 (TLR4), dendritic cellspecific intercellular adhesion molecule 3 (ICAM-3)-grabbing nonintegrin (DC-SIGN), and beta2 integrins. J Biol Chem. 2012;287(17):13731-42.spa
dc.relation.referencesHan Q, Bagheri N, Bradshaw EM, Hafler DA, Lauffenburger DA, Love JC. Polyfunctional responses by human T cells result from sequential release of cytokines. Proc Natl Acad Sci U S A. 2012;109(5):1607-12.spa
dc.relation.referencesde Araujo-Souza PS, Hanschke SCH, Nardy A, Secca C, Oliveira-Vieira B, Silva KL, et al. Differential interferon-gamma production by naive and memory-like CD8 T cells. J Leukoc Biol. 2020;108(4):1329-37.spa
dc.relation.referencesBhat P, Leggatt G, Waterhouse N, Frazer IH. Interferon-gamma derived from cytotoxic lymphocytes directly enhances their motility and cytotoxicity. Cell Death Dis. 2017;8(6):e2836.spa
dc.relation.referencesLachmann R, Bajwa M, Vita S, Smith H, Cheek E, Akbar A, et al. Polyfunctional T cells accumulate in large human cytomegalovirus-specific T cell responses. J Virol. 2012;86(2):1001-9.spa
dc.relation.referencesGubser PM, Bantug GR, Razik L, Fischer M, Dimeloe S, Hoenger G, et al. Rapid effector function of memory CD8+ T cells requires an immediate-early glycolytic switch. Nat Immunol. 2013;14(10):1064-72.spa
dc.relation.referencesSathaliyawala T, Kubota M, Yudanin N, Turner D, Camp P, Thome JJ, et al. Distribution and compartmentalization of human circulating and tissue-resident memory T cell subsets. Immunity. 2013;38(1):187-97.spa
dc.relation.referencesMehta AK, Gracias DT, Croft M. TNF activity and T cells. Cytokine. 2018;101:14-8.spa
dc.relation.referencesBrehm MA, Daniels KA, Welsh RM. Rapid production of TNF-alpha following TCR engagement of naive CD8 T cells. J Immunol. 2005;175(8):5043-9.spa
dc.relation.referencesHarari A, Dutoit V, Cellerai C, Bart PA, Du Pasquier RA, Pantaleo G. Functional signatures of protective antiviral T-cell immunity in human virus infections. Immunol Rev. 2006;211:236-54.spa
dc.relation.referencesHealy ZR, Weinhold KJ, Murdoch DM. Transcriptional Profiling of CD8+ CMV-Specific T Cell Functional Subsets Obtained Using a Modified Method for Isolating High-Quality RNA From Fixed and Permeabilized Cells. Front Immunol. 2020;11:1859.spa
dc.relation.referencesImai N, Tawara I, Yamane M, Muraoka D, Shiku H, Ikeda H. CD4(+) T cells support polyfunctionality of cytotoxic CD8(+) T cells with memory potential in immunological control of tumor. Cancer Sci. 2020;111(6):1958-68.spa
dc.relation.referencesReddy M, Eirikis E, Davis C, Davis HM, Prabhakar U. Comparative analysis of lymphocyte activation marker expression and cytokine secretion profile in stimulated human peripheral blood mononuclear cell cultures: an in vitro model to monitor cellular immune function. J Immunol Methods. 2004;293(1-2):127-42.spa
dc.relation.referencesAdamczyk M, Bartosinska J, Raczkiewicz D, Kowal M, Surdacka A, Krasowska D, et al. The Expression of Activation Markers CD25 and CD69 Increases during Biologic Treatment of Psoriasis. J Clin Med. 2023;12(20).spa
dc.relation.referencesCebrian M, Yague E, Rincon M, Lopez-Botet M, de Landazuri MO, Sanchez-Madrid F. Triggering of T cell proliferation through AIM, an activation inducer molecule expressed on activated human lymphocytes. J Exp Med. 1988;168(5):1621-37.spa
dc.relation.referencesRisso A, Smilovich D, Capra MC, Baldissarro I, Yan G, Bargellesi A, et al. CD69 in resting and activated T lymphocytes. Its association with a GTP binding protein and biochemical requirements for its expression. J Immunol. 1991;146(12):4105-14.spa
dc.relation.referencesCibrian D, Sanchez-Madrid F. CD69: from activation marker to metabolic gatekeeper. Eur J Immunol. 2017;47(6):946-53.spa
dc.relation.referencesZiegler SF, Ramsdell F, Alderson MR. The activation antigen CD69. Stem Cells. 1994;12(5):456-65.spa
dc.relation.referencesGonzalez-Amaro R, Cortes JR, Sanchez-Madrid F, Martin P. Is CD69 an effective brake to control inflammatory diseases? Trends Mol Med. 2013;19(10):625-32.spa
dc.relation.referencesde la Fuente H, Cruz-Adalia A, Martinez Del Hoyo G, Cibrian-Vera D, Bonay P, Perez-Hernandez D, et al. The leukocyte activation receptor CD69 controls T cell differentiation through its interaction with galectin-1. Mol Cell Biol. 2014;34(13):2479-87.spa
dc.relation.referencesSakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155(3):1151-64.spa
dc.relation.referencesBrusko TM, Wasserfall CH, Hulme MA, Cabrera R, Schatz D, Atkinson MA. Influence of membrane CD25 stability on T lymphocyte activity: implications for immunoregulation. PLoS One. 2009;4(11):e7980.spa
dc.relation.referencesGreen DR, Droin N, Pinkoski M. Activation-induced cell death in T cells. Immunol Rev. 2003;193:70-81.spa
dc.relation.referencesPoulton TA, Gallagher A, Potts RC, Beck JS. Changes in activation markers and cell membrane receptors on human peripheral blood T lymphocytes during cell cycle progression after PHA stimulation. Immunology. 1988;64(3):419-25.spa
dc.relation.referencesWatts TH. TNF/TNFR family members in costimulation of T cell responses. Annu Rev Immunol. 2005;23:23-68.spa
dc.relation.referencesWolfl M, Kuball J, Eyrich M, Schlegel PG, Greenberg PD. Use of CD137 to study the full repertoire of CD8+ T cells without the need to know epitope specificities. Cytometry A. 2008;73(11):1043-9.spa
dc.relation.referencesWen T, Bukczynski J, Watts TH. 4-1BB ligand-mediated costimulation of human T cells induces CD4 and CD8 T cell expansion, cytokine production, and the development of cytolytic effector function. J Immunol. 2002;168(10):4897-906.spa
dc.relation.referencesHalstead ES, Mueller YM, Altman JD, Katsikis PD. In vivo stimulation of CD137 broadens primary antiviral CD8+ T cell responses. Nat Immunol. 2002;3(6):536-41.spa
dc.relation.referencesVinay DS, Kwon BS. Role of 4-1BB in immune responses. Semin Immunol. 1998;10(6):481-9.spa
dc.relation.referencesEtxeberria I, Glez-Vaz J, Teijeira A, Melero I. New emerging targets in cancer immunotherapy: CD137/4-1BB costimulatory axis. ESMO Open. 2020;4(Suppl 3):e000733.spa
dc.relation.referencesAlosaimi MF, Hoenig M, Jaber F, Platt CD, Jones J, Wallace J, et al. Immunodeficiency and EBV-induced lymphoproliferation caused by 4-1BB deficiency. J Allergy Clin Immunol. 2019;144(2):574-83 e5.spa
dc.relation.referencesZhu Y, Zhu G, Luo L, Flies AS, Chen L. CD137 stimulation delivers an antigen-independent growth signal for T lymphocytes with memory phenotype. Blood. 2007;109(11):4882-9.spa
dc.relation.referencesMelero I, Shuford WW, Newby SA, Aruffo A, Ledbetter JA, Hellstrom KE, et al. Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat Med. 1997;3(6):682-5.spa
dc.relation.referencesGrewal IS, Flavell RA. CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol. 1998;16:111-35.spa
dc.relation.referencesCaux C, Massacrier C, Vanbervliet B, Dubois B, Van Kooten C, Durand I, et al. Activation of human dendritic cells through CD40 cross-linking. J Exp Med. 1994;180(4):1263-72.spa
dc.relation.referencesBennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature. 1998;393(6684):478-80.spa
dc.relation.referencesSchoenberger SP, Toes RE, van der Voort EI, Offringa R, Melief CJ. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature. 1998;393(6684):480-3.spa
dc.relation.referencesTay NQ, Lee DCP, Chua YL, Prabhu N, Gascoigne NRJ, Kemeny DM. CD40L Expression Allows CD8(+) T Cells to Promote Their Own Expansion and Differentiation through Dendritic Cells. Front Immunol. 2017;8:1484.spa
dc.relation.referencesWong KL, Lew FC, MacAry PA, Kemeny DM. CD40L-expressing CD8 T cells prime CD8alpha(+) DC for IL-12p70 production. Eur J Immunol. 2008;38(8):2251-62.spa
dc.relation.referencesWong KL, Tang LF, Lew FC, Wong HS, Chua YL, MacAry PA, et al. CD44high memory CD8 T cells synergize with CpG DNA to activate dendritic cell IL-12p70 production. J Immunol. 2009;183(1):41-50.spa
dc.relation.referencesBourgeois C, Rocha B, Tanchot C. A role for CD40 expression on CD8+ T cells in the generation of CD8+ T cell memory. Science. 2002;297(5589):2060-3.spa
dc.relation.referencesHernandez MG, Shen L, Rock KL. CD40-CD40 ligand interaction between dendritic cells and CD8+ T cells is needed to stimulate maximal T cell responses in the absence of CD4+ T cell help. J Immunol. 2007;178(5):2844-52.spa
dc.relation.referencesShugart JA, Bambina S, Alice AF, Montler R, Bahjat KS. A self-help program for memory CD8+ T cells: positive feedback via CD40-CD40L signaling as a critical determinant of secondary expansion. PLoS One. 2013;8(5):e64878.spa
dc.relation.referencesOlson MR, Seah SG, Edenborough K, Doherty PC, Lew AM, Turner SJ. CD154+ CD4+ T-cell dependence for effective memory influenza virus-specific CD8+ T-cell responses. Immunol Cell Biol. 2014;92(7):605-11.spa
dc.relation.referencesStinchcombe JC, Majorovits E, Bossi G, Fuller S, Griffiths GM. Centrosome polarization delivers secretory granules to the immunological synapse. Nature. 2006;443(7110):462-5.spa
dc.relation.referencesBallesteros-Tato A, Leon B, Lee BO, Lund FE, Randall TD. Epitope-specific regulation of memory programming by differential duration of antigen presentation to influenza-specific CD8(+) T cells. Immunity. 2014;41(1):127-40.spa
dc.relation.referencesBlank CU, Haining WN, Held W, Hogan PG, Kallies A, Lugli E, et al. Defining 'T cell exhaustion'. Nat Rev Immunol. 2019;19(11):665-74.spa
dc.relation.referencesAhn E, Araki K, Hashimoto M, Li W, Riley JL, Cheung J, et al. Role of PD-1 during effector CD8 T cell differentiation. Proc Natl Acad Sci U S A. 2018;115(18):4749-54.spa
dc.relation.referencesWherry EJ. T cell exhaustion. Nat Immunol. 2011;12(6):492-9.spa
dc.relation.referencesSharpe AH, Wherry EJ, Ahmed R, Freeman GJ. The function of programmed cell death 1 and its ligands in regulating autoimmunity and infection. Nat Immunol. 2007;8(3):239-45.spa
dc.relation.referencesHui E, Cheung J, Zhu J, Su X, Taylor MJ, Wallweber HA, et al. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science. 2017;355(6332):1428-33.spa
dc.relation.referencesParry RV, Chemnitz JM, Frauwirth KA, Lanfranco AR, Braunstein I, Kobayashi SV, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol. 2005;25(21):9543- 53.spa
dc.relation.referencesDong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates Tcell proliferation and interleukin-10 secretion. Nat Med. 1999;5(12):1365-9.spa
dc.relation.referencesTseng SY, Otsuji M, Gorski K, Huang X, Slansky JE, Pai SI, et al. B7-DC, a new dendritic cell molecule with potent costimulatory properties for T cells. J Exp Med. 2001;193(7):839-46.spa
dc.relation.referencesKeir ME, Freeman GJ, Sharpe AH. PD-1 regulates self-reactive CD8+ T cell responses to antigen in lymph nodes and tissues. J Immunol. 2007;179(8):5064-70.spa
dc.relation.referencesBrahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455-65.spa
dc.relation.referencesMeng X, Liu X, Guo X, Jiang S, Chen T, Hu Z, et al. FBXO38 mediates PD-1 ubiquitination and regulates anti-tumour immunity of T cells. Nature. 2018;564(7734):130-5.spa
dc.relation.referencesChan DV, Gibson HM, Aufiero BM, Wilson AJ, Hafner MS, Mi QS, et al. Differential CTLA-4 expression in human CD4+ versus CD8+ T cells is associated with increased NFAT1 and inhibition of CD4+ proliferation. Genes Immun. 2014;15(1):25-32.spa
dc.relation.referencesDariavach P, Mattei MG, Golstein P, Lefranc MP. Human Ig superfamily CTLA-4 gene: chromosomal localization and identity of protein sequence between murine and human CTLA-4 cytoplasmic domains. Eur J Immunol. 1988;18(12):1901-5.spa
dc.relation.referencesHarper K, Balzano C, Rouvier E, Mattei MG, Luciani MF, Golstein P. CTLA-4 and CD28 activated lymphocyte molecules are closely related in both mouse and human as to sequence, message expression, gene structure, and chromosomal location. J Immunol. 1991;147(3):1037-44.spa
dc.relation.referencesAuchincloss H, Turka LA. CTLA-4: not all costimulation is stimulatory. J Immunol. 2011;187(7):3457-8.spa
dc.relation.referencesLindsten T, Lee KP, Harris ES, Petryniak B, Craighead N, Reynolds PJ, et al. Characterization of CTLA-4 structure and expression on human T cells. J Immunol. 1993;151(7):3489-99.spa
dc.relation.referencesGajewski TF, Fallarino F, Fields PE, Rivas F, Alegre ML. Absence of CTLA-4 lowers the activation threshold of primed CD8+ TCR-transgenic T cells: lack of correlation with Src homology domain 2-containing protein tyrosine phosphatase. J Immunol. 2001;166(6):3900-7.spa
dc.relation.referencesWalunas TL, Lenschow DJ, Bakker CY, Linsley PS, Freeman GJ, Green JM, et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1994;1(5):405-13.spa
dc.relation.referencesTriebel F, Jitsukawa S, Baixeras E, Roman-Roman S, Genevee C, Viegas-Pequignot E, et al. LAG-3, a novel lymphocyte activation gene closely related to CD4. J Exp Med. 1990;171(5):1393-405.spa
dc.relation.referencesWorkman CJ, Cauley LS, Kim IJ, Blackman MA, Woodland DL, Vignali DA. Lymphocyte activation gene-3 (CD223) regulates the size of the expanding T cell population following antigen activation in vivo. J Immunol. 2004;172(9):5450-5.spa
dc.relation.referencesHannier S, Tournier M, Bismuth G, Triebel F. CD3/TCR complex-associated lymphocyte activation gene-3 molecules inhibit CD3/TCR signaling. J Immunol. 1998;161(8):4058-65.spa
dc.relation.referencesWorkman CJ, Dugger KJ, Vignali DA. Cutting edge: molecular analysis of the negative regulatory function of lymphocyte activation gene-3. J Immunol. 2002;169(10):5392-5.spa
dc.relation.referencesHuard B, Tournier M, Hercend T, Triebel F, Faure F. Lymphocyte-activation gene 3/major histocompatibility complex class II interaction modulates the antigenic response of CD4+ T lymphocytes. Eur J Immunol. 1994;24(12):3216-21.spa
dc.relation.referencesGoldberg MV, Drake CG. LAG-3 in Cancer Immunotherapy. Curr Top Microbiol Immunol. 2011;344:269-78.spa
dc.relation.referencesBlackburn SD, Shin H, Haining WN, Zou T, Workman CJ, Polley A, et al. Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection. Nat Immunol. 2009;10(1):29-37.spa
dc.relation.referencesBijker MS, van den Eeden SJ, Franken KL, Melief CJ, van der Burg SH, Offringa R. Superior induction of anti-tumor CTL immunity by extended peptide vaccines involves prolonged, DC-focused antigen presentation. Eur J Immunol. 2008;38(4):1033-42.spa
dc.relation.referencesGutierrez-Martinez E, Planes R, Anselmi G, Reynolds M, Menezes S, Adiko AC, et al. Cross-Presentation of Cell-Associated Antigens by MHC Class I in Dendritic Cell Subsets. Front Immunol. 2015;6:363.spa
dc.relation.referencesAlloatti A, Kotsias F, Magalhaes JG, Amigorena S. Dendritic cell maturation and crosspresentation: timing matters! Immunol Rev. 2016;272(1):97-108.spa
dc.relation.referencesMenager J, Ebstein F, Oger R, Hulin P, Nedellec S, Duverger E, et al. Cross-presentation of synthetic long peptides by human dendritic cells: a process dependent on ERAD component p97/VCP but Not sec61 and/or Derlin-1. PLoS One. 2014;9(2):e89897.spa
dc.relation.referencesTang-Huau TL, Gueguen P, Goudot C, Durand M, Bohec M, Baulande S, et al. Human in vivogenerated monocyte-derived dendritic cells and macrophages cross-present antigens through a vacuolar pathway. Nat Commun. 2018;9(1):2570.spa
dc.relation.referencesFonteneau JF, Kavanagh DG, Lirvall M, Sanders C, Cover TL, Bhardwaj N, et al. Characterization of the MHC class I cross-presentation pathway for cell-associated antigens by human dendritic cells. Blood. 2003;102(13):4448-55.spa
dc.relation.referencesDu J MA, Widlund HR, Horstmann MA, Ramaswamy S, Fisher DE. MLANA/MART1 and SILV/PMEL17/GP100 are transcriptionally regulated by MITF in melanocytes and melanoma. Am J Pathol. 2003(Jul;163(1):333-43.).spa
dc.relation.referencesLi J, Song JS, Bell RJ, Tran TN, Haq R, Liu H, et al. YY1 regulates melanocyte development and function by cooperating with MITF. PLoS Genet. 2012;8(5):e1002688.spa
dc.relation.referencesVidard L. 4-1BB and cytokines trigger human NK, gammadelta T, and CD8(+) T cell proliferation and activation, but are not required for their effector functions. Immun Inflamm Dis. 2023;11(1):e749.spa
dc.relation.referencesAlmunia C, Bretaudeau M, Held G, Babon A, Marchetti C, Castelli FA, et al. Bee Venom Phospholipase A2, a Good "Chauffeur" for Delivering Tumor Antigen to the MHC I and MHC II Peptide-Loading Compartments of the Dendritic Cells: The Case of NY-ESO-1. PLoS One. 2013;8(6):e67645.spa
dc.relation.referencesLevy F, Muehlethaler K, Salvi S, Peitrequin AL, Lindholm CK, Cerottini JC, et al. Ubiquitylation of a melanosomal protein by HECT-E3 ligases serves as sorting signal for lysosomal degradation. Mol Biol Cell. 2005;16(4):1777-87.spa
dc.relation.referencesSabbatino F, Wang Y, Scognamiglio G, Favoino E, Feldman SA, Villani V, et al. Antitumor Activity of BRAF Inhibitor and IFNalpha Combination in BRAF-Mutant Melanoma. J Natl Cancer Inst. 2016;108(7).spa
dc.relation.referencesSuriano R, Rajoria S, A LG, Geliebter J, Wallack M, Tiwari RK. Ex vivo derived primary melanoma cells: implications for immunotherapeutic vaccines. J Cancer. 2013;4(5):371-82.spa
dc.relation.referencesSallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med. 1994;179(4):1109-18.spa
dc.relation.referencesJonuleit H, Kuhn U, Muller G, Steinbrink K, Paragnik L, Schmitt E, et al. Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol. 1997;27(12):3135-42.spa
dc.relation.referencesMartinuzzi E, Afonso G, Gagnerault MC, Naselli G, Mittag D, Combadiere B, et al. acDCs enhance human antigen-specific T-cell responses. Blood. 2011;118(8):2128-37.spa
dc.relation.referencesAspord C, Leloup C, Reche S, Plumas J. pDCs efficiently process synthetic long peptides to induce functional virus- and tumour-specific T-cell responses. Eur J Immunol. 2014;44(10):2880-92.spa
dc.relation.referencesWada H, Isobe M, Kakimi K, Mizote Y, Eikawa S, Sato E, et al. Vaccination with NY-ESO-1 overlapping peptides mixed with Picibanil OK-432 and montanide ISA-51 in patients with cancers expressing the NY-ESO-1 antigen. J Immunother. 2014;37(2):84-92.spa
dc.relation.referencesMartínez-Enríquez L. Identificación y caracterización de linfocitos T neoantígeno específicos de donantes sanos con fines de inmunoterapia en cáncer: Universidad Nacional de Colombia; 2022.spa
dc.relation.referencesWeekes MP, Wills MR, Mynard K, Carmichael AJ, Sissons JG. The memory cytotoxic Tlymphocyte (CTL) response to human cytomegalovirus infection contains individual peptide-specific CTL clones that have undergone extensive expansion in vivo. J Virol. 1999;73(3):2099-108.spa
dc.relation.referencesSolache A, Morgan CL, Dodi AI, Morte C, Scott I, Baboonian C, et al. Identification of three HLA-A*0201-restricted cytotoxic T cell epitopes in the cytomegalovirus protein pp65 that are conserved between eight strains of the virus. J Immunol. 1999;163(10):5512-8.spa
dc.relation.referencesBruggner RV, Bodenmiller B, Dill DL, Tibshirani RJ, Nolan GP. Automated identification of stratifying signatures in cellular subpopulations. Proc Natl Acad Sci U S A. 2014;111(26):E2770-7.spa
dc.relation.referencesCarmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. Evaluation of a tetrazoliumbased semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 1987;47(4):936-42.spa
dc.relation.referencesInfante-Crúz A. Activación de respuesta inmune innata a partir de la inducción de muerte tumoral inmunogénica.: Universidad Nacional de Colombia; 2016.spa
dc.relation.referencesYadav B, Wennerberg K, Aittokallio T, Tang J. Searching for Drug Synergy in Complex Dose-Response Landscapes Using an Interaction Potency Model. Comput Struct Biotechnol J. 2015;13:504-13.spa
dc.relation.referencesAltomonte M, Gloghini A, Bertola G, Gasparollo A, Carbone A, Ferrone S, et al. Differential expression of cell adhesion molecules CD54/CD11a and CD58/CD2 by human melanoma cells and functional role in their interaction with cytotoxic cells. Cancer Res. 1993;53(14):3343-8.spa
dc.relation.referencesBernal Estévez D. Evaluación de la capacidad inmuno-estimulante de la terapia neoadyuvante con Doxorrubicina y Ciclofosfamida en pacientes con cáncer de mama: Universidad Nacional de Colombia Sede Bogotá 2017.spa
dc.relation.referencesMariotti S, Nisini R. Generation of human T cell clones. Methods Mol Biol. 2009;514:65-93.spa
dc.relation.referencesKlapper JA, Thomasian AA, Smith DM, Gorgas GC, Wunderlich JR, Smith FO, et al. Single-pass, closed-system rapid expansion of lymphocyte cultures for adoptive cell therapy. J Immunol Methods. 2009;345(1-2):90-9.spa
dc.relation.referencesRimoldi D, Muehlethaler K, Salvi S, Valmori D, Romero P, Cerottini JC, et al. Subcellular localization of the melanoma-associated protein Melan-AMART-1 influences the processing of its HLA-A2-restricted epitope. J Biol Chem. 2001;276(46):43189-96.spa
dc.relation.referencesBusam KJ JA. Melan-A, a new melanocytic differentiation marker. Adv Anat Pathol. 1999(Jan;6(1):12-8.).spa
dc.relation.referencesBlass E, Ott PA. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat Rev Clin Oncol. 2021;18(4):215-29.spa
dc.relation.referencesWahida A, Buschhorn L, Frohling S, Jost PJ, Schneeweiss A, Lichter P, et al. The coming decade in precision oncology: six riddles. Nat Rev Cancer. 2023;23(1):43-54.spa
dc.relation.referencesOlivier T, Haslam A, Tuia J, Prasad V. Eligibility for Human Leukocyte Antigen-Based Therapeutics by Race and Ethnicity. JAMA Netw Open. 2023;6(10):e2338612.spa
dc.relation.referencesWelten SPM, Baumann NS, Oxenius A. Fuel and brake of memory T cell inflation. Med Microbiol Immunol. 2019;208(3-4):329-38.spa
dc.relation.referencesvan der Leun AM, Thommen DS, Schumacher TN. CD8(+) T cell states in human cancer: insights from single-cell analysis. Nat Rev Cancer. 2020;20(4):218-32.spa
dc.relation.referencesRodriguez IJ, Bernal-Estevez DA, Llano-Leon M, Bonilla CE, Parra-Lopez CA. Neoadjuvant chemotherapy modulates exhaustion of T cells in breast cancer patients. PLoS One. 2023;18(2):e0280851.spa
dc.relation.referencesZhou LJ, Schwarting R, Smith HM, Tedder TF. A novel cell-surface molecule expressed by human interdigitating reticulum cells, Langerhans cells, and activated lymphocytes is a new member of the Ig superfamily. J Immunol. 1992;149(2):735-42.spa
dc.relation.referencesZhou LJ, Tedder TF. Human blood dendritic cells selectively express CD83, a member of the immunoglobulin superfamily. J Immunol. 1995;154(8):3821-35.spa
dc.relation.referencesLechmann M, Berchtold S, Hauber J, Steinkasserer A. CD83 on dendritic cells: more than just a marker for maturation. Trends Immunol. 2002;23(6):273-5.spa
dc.relation.referencesLi Z, Ju X, Silveira PA, Abadir E, Hsu WH, Hart DNJ, et al. CD83: Activation Marker for Antigen Presenting Cells and Its Therapeutic Potential. Front Immunol. 2019;10:1312.spa
dc.relation.referencesTrepiakas R, Pedersen AE, Met O, Hansen MH, Berntsen A, Svane IM. Comparison of alpha-Type-1 polarizing and standard dendritic cell cytokine cocktail for maturation of therapeutic monocyte-derived dendritic cell preparations from cancer patients. Vaccine. 2008;26(23):2824-32.spa
dc.relation.referencesLi JG, Du YM, Yan ZD, Yan J, Zhuansun YX, Chen R, et al. CD80 and CD86 knockdown in dendritic cells regulates Th1/Th2 cytokine production in asthmatic mice. Exp Ther Med. 2016;11(3):878-84.spa
dc.relation.referencesDustin ML, Rothlein R, Bhan AK, Dinarello CA, Springer TA. Induction by IL 1 and interferongamma: tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). J Immunol. 1986;137(1):245-54.spa
dc.relation.referencesCarrasco YR, Fleire SJ, Cameron T, Dustin ML, Batista FD. LFA-1/ICAM-1 interaction lowers the threshold of B cell activation by facilitating B cell adhesion and synapse formation. Immunity. 2004;20(5):589-99.spa
dc.relation.referencesSheikh NA, Jones LA. CD54 is a surrogate marker of antigen presenting cell activation. Cancer Immunol Immunother. 2008;57(9):1381-90.spa
dc.relation.referencesJosephs TM, Grant EJ, Gras S. Molecular challenges imposed by MHC-I restricted long epitopes on T cell immunity. Biol Chem. 2017;398(9):1027-36.spa
dc.relation.referencesJimenez-Fernandez M, de la Fuente H, Martin P, Cibrian D, Sanchez-Madrid F. Unraveling CD69 signaling pathways, ligands and laterally associated molecules. EXCLI J. 2023;22:334-51.spa
dc.relation.referencesHosono M, de Boer OJ, van der Wal AC, van der Loos CM, Teeling P, Piek JJ, et al. Increased expression of T cell activation markers (CD25, CD26, CD40L and CD69) in atherectomy specimens of patients with unstable angina and acute myocardial infarction. Atherosclerosis. 2003;168(1):73-80.spa
dc.relation.referencesEngelhard VH. Structure of peptides associated with class I and class II MHC molecules. Annu Rev Immunol. 1994;12:181-207.spa
dc.relation.referencesWang M, Larsen MV, Nielsen M, Harndahl M, Justesen S, Dziegiel MH, et al. HLA class I binding 9mer peptides from influenza A virus induce CD4 T cell responses. PLoS One. 2010;5(5):e10533.spa
dc.relation.referencesWang M, Tang ST, Stryhn A, Justesen S, Larsen MV, Dziegiel MH, et al. Identification of MHC class II restricted T-cell-mediated reactivity against MHC class I binding Mycobacterium tuberculosis peptides. Immunology. 2011;132(4):482-91.spa
dc.relation.referencesBioley G, Jandus C, Tuyaerts S, Rimoldi D, Kwok WW, Speiser DE, et al. Melan-A/MART-1-specific CD4 T cells in melanoma patients: identification of new epitopes and ex vivo visualization of specific T cells by MHC class II tetramers. J Immunol. 2006;177(10):6769-79.spa
dc.relation.referencesJandus C, Bioley G, Dojcinovic D, Derre L, Baitsch L, Wieckowski S, et al. Tumor antigenspecific FOXP3+ CD4 T cells identified in human metastatic melanoma: peptide vaccination results in selective expansion of Th1-like counterparts. Cancer Res. 2009;69(20):8085-93.spa
dc.relation.referencesGross S, Lennerz V, Gallerani E, Mach N, Bohm S, Hess D, et al. Short Peptide Vaccine Induces CD4+ T Helper Cells in Patients with Different Solid Cancers. Cancer Immunol Res. 2016;4(1):18-25.spa
dc.relation.referencesHemmer B, Kondo T, Gran B, Pinilla C, Cortese I, Pascal J, et al. Minimal peptide length requirements for CD4(+) T cell clones--implications for molecular mimicry and T cell survival. Int Immunol. 2000;12(3):375-83.spa
dc.relation.referencesMeeuwsen MH, Wouters AK, Hagedoorn RS, Kester MGD, Remst DFG, van der Steen DM, et al. Cutting Edge: Unconventional CD8(+) T Cell Recognition of a Naturally Occurring HLA-A*02:01- Restricted 20mer Epitope. J Immunol. 2022;208(8):1851-6.spa
dc.relation.referencesJimenez-Fernandez M, Rodriguez-Sinovas C, Canes L, Ballester-Servera C, Vara A, Requena S, et al. CD69-oxLDL ligand engagement induces Programmed Cell Death 1 (PD-1) expression in human CD4 + T lymphocytes. Cell Mol Life Sci. 2022;79(8):468.spa
dc.relation.referencesHu ZW, Sun W, Wen YH, Ma RQ, Chen L, Chen WQ, et al. CD69 and SBK1 as potential predictors of responses to PD-1/PD-L1 blockade cancer immunotherapy in lung cancer and melanoma. Front Immunol. 2022;13:952059.spa
dc.relation.referencesMaruhashi T, Okazaki IM, Sugiura D, Takahashi S, Maeda TK, Shimizu K, et al. LAG-3 inhibits the activation of CD4(+) T cells that recognize stable pMHCII through its conformation-dependent recognition of pMHCII. Nat Immunol. 2018;19(12):1415-26.spa
dc.relation.referencesMacLachlan BJ, Mason GH, Greenshields-Watson A, Triebel F, Gallimore A, Cole DK, et al. Molecular characterization of HLA class II binding to the LAG-3 T cell co-inhibitory receptor. Eur J Immunol. 2021;51(2):331-41.spa
dc.relation.referencesLiu W, Tang L, Zhang G, Wei H, Cui Y, Guo L, et al. Characterization of a novel C-type lectin-like gene, LSECtin: demonstration of carbohydrate binding and expression in sinusoidal endothelial cells of liver and lymph node. J Biol Chem. 2004;279(18):18748-58.spa
dc.relation.referencesKouo T, Huang L, Pucsek AB, Cao M, Solt S, Armstrong T, et al. Galectin-3 Shapes Antitumor Immune Responses by Suppressing CD8+ T Cells via LAG-3 and Inhibiting Expansion of Plasmacytoid Dendritic Cells. Cancer Immunol Res. 2015;3(4):412-23.spa
dc.relation.referencesLichtenegger FS, Rothe M, Schnorfeil FM, Deiser K, Krupka C, Augsberger C, et al. Targeting LAG-3 and PD-1 to Enhance T Cell Activation by Antigen-Presenting Cells. Front Immunol. 2018;9:385.spa
dc.relation.referencesAndreae S, Piras F, Burdin N, Triebel F. Maturation and activation of dendritic cells induced by lymphocyte activation gene-3 (CD223). J Immunol. 2002;168(8):3874-80.spa
dc.relation.referencesTiago M, de Oliveira EM, Brohem CA, Pennacchi PC, Paes RD, Haga RB, et al. Fibroblasts protect melanoma cells from the cytotoxic effects of doxorubicin. Tissue Eng Part A. 2014;20(17-18):2412-21.spa
dc.relation.referencesMehraj U, Mir IA, Hussain MU, Alkhanani M, Wani NA, Mir MA. Adapalene and Doxorubicin Synergistically Promote Apoptosis of TNBC Cells by Hyperactivation of the ERK1/2 Pathway Through ROS Induction. Front Oncol. 2022;12:938052.spa
dc.relation.referencesLicarete E, Rauca VF, Luput L, Drotar D, Stejerean I, Patras L, et al. Overcoming Intrinsic Doxorubicin Resistance in Melanoma by Anti-Angiogenic and Anti-Metastatic Effects of Liposomal Prednisolone Phosphate on Tumor Microenvironment. Int J Mol Sci. 2020;21(8).spa
dc.relation.referencesBernard S, Poon AC, Tam PM, Mutsaers AJ. Investigation of the effects of mTOR inhibitors rapamycin and everolimus in combination with carboplatin on canine malignant melanoma cells. BMC Vet Res. 2021;17(1):382.spa
dc.relation.referencesLiebmann JE, Cook JA, Lipschultz C, Teague D, Fisher J, Mitchell JB. Cytotoxic studies of paclitaxel (Taxol) in human tumour cell lines. Br J Cancer. 1993;68(6):1104-9.spa
dc.relation.referencesFucikova J, Kepp O, Kasikova L, Petroni G, Yamazaki T, Liu P, et al. Detection of immunogenic cell death and its relevance for cancer therapy. Cell Death Dis. 2020;11(11):1013.spa
dc.relation.referencesKim DY, Pyo A, Yun M, Thangam R, You SH, Zhang Y, et al. Imaging Calreticulin for Early Detection of Immunogenic Cell Death During Anticancer Treatment. J Nucl Med. 2021;62(7):956-60.spa
dc.relation.referencesObeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 2007;13(1):54-61.spa
dc.relation.referencesLiu P, Zhao L, Kepp O, Kroemer G. Quantitation of calreticulin exposure associated with immunogenic cell death. Methods Enzymol. 2020;632:1-13.spa
dc.relation.referencesMistarz A, Graczyk M, Winkler M, Singh PK, Cortes E, Miliotto A, et al. Induction of cell death in ovarian cancer cells by doxorubicin and oncolytic vaccinia virus is associated with CREB3L1 activation. Mol Ther Oncolytics. 2021;23:38-50.spa
dc.relation.referencesGolden EB, Frances D, Pellicciotta I, Demaria S, Helen Barcellos-Hoff M, Formenti SC. Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Oncoimmunology. 2014;3:e28518.spa
dc.relation.referencesSchaer DA, Geeganage S, Amaladas N, Lu ZH, Rasmussen ER, Sonyi A, et al. The Folate Pathway Inhibitor Pemetrexed Pleiotropically Enhances Effects of Cancer Immunotherapy. Clin Cancer Res. 2019;25(23):7175-88.spa
dc.relation.referencesLau TS, Chan LKY, Man GCW, Wong CH, Lee JHS, Yim SF, et al. Paclitaxel Induces Immunogenic Cell Death in Ovarian Cancer via TLR4/IKK2/SNARE-Dependent Exocytosis. Cancer Immunol Res. 2020;8(8):1099-111.spa
dc.relation.referencesArandjelovic S, Ravichandran KS. Phagocytosis of apoptotic cells in homeostasis. Nat Immunol. 2015;16(9):907-17.spa
dc.relation.referencesGardai SJ, McPhillips KA, Frasch SC, Janssen WJ, Starefeldt A, Murphy-Ullrich JE, et al. Cellsurface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell. 2005;123(2):321-34.spa
dc.relation.referencesLiu X, Li J, Liu Y, Ding J, Tong Z, Liu Y, et al. Calreticulin acts as an adjuvant to promote dendritic cell maturation and enhances antigen-specific cytotoxic T lymphocyte responses against non-small cell lung cancer cells. Cell Immunol. 2016;300:46-53.spa
dc.relation.referencesKepp O, Senovilla L, Vitale I, Vacchelli E, Adjemian S, Agostinis P, et al. Consensus guidelines for the detection of immunogenic cell death. Oncoimmunology. 2014;3(9):e955691.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.ddc610 - Medicina y salud::612 - Fisiología humanaspa
dc.subject.decsInmunoterapia/métodosspa
dc.subject.decsImmunotherapy/methodseng
dc.subject.decsVacunas contra el Cáncerspa
dc.subject.decsCancer Vaccineseng
dc.subject.decsAntígenos/uso terapéuticospa
dc.subject.decsAntigens/therapeutic useeng
dc.subject.proposalLinfocitos T CD8+spa
dc.subject.proposalMuerte celular inmunogénicaspa
dc.subject.proposalCitometría de flujospa
dc.subject.proposalCélulas dendríticas derivadas de monocitosspa
dc.subject.proposalFormulaciones del antígenospa
dc.subject.proposalAntígenos modelospa
dc.subject.proposalMonocyte-derived dendritic cellseng
dc.subject.proposalAntigen formulationseng
dc.subject.proposalModel antigenseng
dc.subject.proposalCD8+ T cellseng
dc.subject.proposalTumor cell lineseng
dc.subject.proposalimmunogenic cell deatheng
dc.subject.proposalFlow cytometryeng
dc.titleEvaluación de la inmunogenicidad de células dendríticas pulsadas con diferentes formulaciones del antígeno con fines de inmunoterapiaspa
dc.title.translatedAssessment of the immunogenicity of dendritic cells pulsed with different antigen formulations for immunotherapy purposeseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameUniversidad Nacional de Colombiaspa
oaire.fundernameMinisterio de Ciencia Tecnología e Innovaciónspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1026272802.2024.pdf
Tamaño:
3 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Inmunología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: