El método de los (L, n)-modelos: una posible respuesta sobre la independencia de la versión a la Paris-Harrington del teorema de Folkman
dc.contributor.advisor | Villaveces Niño, Andrés | |
dc.contributor.author | Valderrama Hernández, David | |
dc.date.accessioned | 2022-03-14T16:56:48Z | |
dc.date.available | 2022-03-14T16:56:48Z | |
dc.date.issued | 2021 | |
dc.description | ilustraciones, graficas | spa |
dc.description.abstract | En esta tesis estudiamos la versión de Switzer del método de los (L, n)-modelos, originalmente desarrollado por Shelah como una manera más modelo-teórica de demostrar el teorema de Paris-Harrington, y para encontrar una pi_0^1-sentencia verdadera pero independiente de la aritmética de Peano (PA). El objetivo principal de este trabajo era investigar si se podían usar los (L, n)-modelos para demostrar la independencia de la versión à la Paris-Harrington del teorema de Folkman de PA; sin embargo, encontramos una problemática en la prueba de Shelah del teorema de Paris-Harrington. Presentamos el contraejemplo y proponemos una nueva versión del cumplimiento denominada cumplimiento en subsucesiones para rescatar la demostración. Demostramos que la nueva versión satisface, con sus respectivas modificaciones, los teoremas principales del método; sin embargo, aún desconocemos si se pueda desarrollar en la aritmética de segundo orden (débil), hecho importante para demostrar los resultados de independencia. (Texto tomado de la fuente) | spa |
dc.description.abstract | In this thesis, we study Switzer’s version of the method of (L, n)-models. It was developed originally by Shelah as a model theoretic way of proving the Paris-Harrington theorem, and to find a true pi_0^1-sentence not provable in the Peano arithmetic (PA). The main objective of this work was to investigate whether the (L, n)-models could be used to prove the independence of the Paris-Harrington version of Folkman’s theorem of Peano arithmetic; however, we found an issue in Shelah’s alternative proof of the Paris-Harrington theorem. We present the counterexample and propose a new version of fulfillment called subsequence fulfillment to rescue the proof. We show that the new version satisfies, with their respective modifications, the principal theorems of the method; nevertheless, we still do not know if it can be developed in weak second order arithmetic, which is important to prove the independent results. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Matemáticas | spa |
dc.format.extent | x, 64 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/81205 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.department | Departamento de Matemáticas | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Matemáticas | spa |
dc.relation.references | S. Shelah, On logical sentences in PA, Studies in Logic and the Foundations of Mathematics, 112, 12 1984. | spa |
dc.relation.references | C. Switzer, Independence in Arithmetic: The Method of (L, n)-Models, Mathematics ArXiv. arXiv: 1906.04273 [math.LO], 2019. | spa |
dc.relation.references | J. E. Quinsey, Some Problems in Logic: Applications of Kripke’s Notion of Fulfilment, PhD thesis, St. Catherine’s College, Oxford, arXiv:1904.10540 [math.LO], 1980. | spa |
dc.relation.references | M. G. Olsson, A Model-Theoretic Proof of Gödel’s Theorem: Kripke’s Notion of Fulfilment, MSc thesis, Department of Mathematics, Stockholm University, 2017. | spa |
dc.relation.references | H. Towsner, Hindman’s Theorem: An Ultrafilter Argument in Second Order Arithmetic, Journal of Symbolic Logic. 76. 10.2178/jsl/1294171005, 2011. | spa |
dc.relation.references | H. Towsner, A Simple Proof and Some Difficult Examples for Hindman’s Theorem, Notre Dame J. Formal Logic 53 (1) 53 - 65, 2012. | spa |
dc.relation.references | W. Gasarch, C. Kruskal, A. Parrish, Van der Waerden’s Theorem: Variants and “Applications”, 2018. | spa |
dc.relation.references | J. L. Bell, M. Machover, A course in mathematical logic, North-Holland Publishing Company, 1977. | spa |
dc.relation.references | M. C. Fitting, Intuitionistic Logic, Model Theory and Forcing, North-Holland Publishing Company, 1969. | spa |
dc.relation.references | S.G. Simpson, Subsystems of Second Order Arithmetic, 2nd edn. Perspectives in Logic. Cambridge University Press, Cambridge, 2009. | spa |
dc.relation.references | J. Avigad, Forcing in Proof Theory. The Bulletin of Symbolic Logic, vol. 10, no. 3, 2004, pp. 305–333. JSTOR, www.jstor.org/stable/3185188. Accessed 16 Jan. 2021. | spa |
dc.relation.references | D. M. Gabbay, Model Theory for Intuitionistic Logic, Mathematical Logic Quarterly, 18: 49-54, 1972. | spa |
dc.relation.references | R. Fagin, J. Y. Halpern, Y. Moses, M. Y. Vardi, Reasoning About Knowledge, Cambridge, MA: MIT Press, 1995. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-CompartirIgual 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | spa |
dc.subject.ddc | 510 - Matemáticas::513 - Aritmética | spa |
dc.subject.ddc | 160 - Lógica::161 - Inducción | spa |
dc.subject.proposal | (L,n)-modelo | spa |
dc.subject.proposal | Teorema de Paris-Harrington | spa |
dc.subject.proposal | Sistemas de la aritmética de segundo orden | spa |
dc.subject.proposal | (L,n)-model | eng |
dc.subject.proposal | Fulfillment | eng |
dc.subject.proposal | Paris-Harrington theorem | eng |
dc.subject.proposal | Subsystems of second order arithmetic | eng |
dc.subject.proposal | Cumplimiento | spa |
dc.subject.proposal | Semántica de Kripke | spa |
dc.subject.proposal | Kripke semantics | eng |
dc.subject.unesco | Aritmética | spa |
dc.subject.unesco | Arithmetic | eng |
dc.title | El método de los (L, n)-modelos: una posible respuesta sobre la independencia de la versión a la Paris-Harrington del teorema de Folkman | spa |
dc.title.translated | The method of (L, n)-models: a possible way to determine the independence of the Paris-Harrington version of Folkman’s theorem | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1022426578.2021.pdf
- Tamaño:
- 876.3 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Matemáticas
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 3.98 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: