Plant trait assembly in species-rich forests along elevation in the northwest Andes of Colombia

dc.contributor.advisorDuque Montoya, Álvaro Javier
dc.contributor.authorOchoa Beltrán, Angélica Liliana
dc.contributor.researchgroupConservación, Uso y Biodiversidadspa
dc.coverage.cityRegión Andina, Colombia
dc.date.accessioned2022-03-15T13:50:34Z
dc.date.available2022-03-15T13:50:34Z
dc.date.issued2021-12
dc.descriptionilustraciones, diagramas, mapas, tablasspa
dc.description.abstractThe Andean forests harbor an astonishing plant diversity, which hampers the understanding of the main drivers of species assemblage along the elevational gradient. In this study, we used the multivariate methods RLQ and Fourth corner to identify the main determinants of plant trait assembly in the northwestern Andean forests of Colombia. We evaluated the relationship between six functional traits and three groups of environmental drivers: climate, soil fertility, and symbiotic root associations (mycorrhizae and nitrifying bacteria). Our findings showed that five functional groups represented the communities in the Andes, where two main axes explain 95.75% of the variability. The first is associated with the leaf economic spectrum and the second with the trade-off between survival/growth. Furthermore, we found that the interaction of regional (climatic variables) and local factors (soil fertility, symbiotic root associations), played a key role in determining the assembly of plant communities in our study area.eng
dc.description.abstractLos bosques andinos albergan una amplia diversidad, lo que vuelve complejo el entendimiento del ensamblaje de las comunidades a lo largo de su gradiente altitudinal. En este estudio, usamos los métodos multivariados RLQ y Fourth corner para comprender el ensamblaje de los bosques andinos del noroeste de Colombia. Estos métodos evaluaron la relación entre seis rasgos funcionales y tres grupos de impulsores: ambientales (clima y fertilidad del suelo), asociaciones de raíces simbióticas (micorrizas y bacterias nitrificantes) y tamaño del árbol (grandes y pequeños). Nuestros resultados mostraron que las comunidades de los Andes están representado por cinco grupos funcionales, donde el 95,75% de la variabilidad es explicada por dos ejes principales. El primero está asociado con el espectro económico de la hoja y el segundo con el equilibrio entre supervivencia / crecimiento. Además, encontramos que la interacción de factores regionales (variables climáticas) y factores locales (fertilidad del suelo, asociaciones de raíces y tamaño de los árboles) determinaron el ensamblaje de las comunidades en nuestra área de estudio. (Texto tomado de la fuente)spa
dc.description.curricularareaÁrea Curricular de Medio Ambientespa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Medio Ambiente y Desarrollospa
dc.description.notesDe este trabajo también se derivo un articulo: Ochoa-Beltrán, A.; Martínez-Villa, J.A.; Kennedy, P.G.; Salgado-Negret, B.; Duque, A. Plant Trait Assembly in Species-Rich Forests at Varying Elevations in the Northwest Andes of Colombiaspa
dc.description.researchareaCiencias Naturales - Ciencias Biológicas - Ecologíaspa
dc.format.extentxii, 46 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81215
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Geociencias y Medo Ambientespa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Medio Ambiente y Desarrollospa
dc.relation.referencesAgudelo, C. M., Benavides, A. M., Taylor, T., Feeley, K. J., & Duque, A. (2019). Functional composition of epiphyte communities in the Colombian Andes. Ecology, 100(12), 1–11. https://doi.org/10.1002/ecy.2858spa
dc.relation.referencesAide, T. M., Clark, M. L., Grau, H. R., López-Carr, D., Levy, M. A., Redo, D., Bonilla-Moheno, M., Riner, G., Andrade-Núñez, M. J., & Muñiz, M. (2013). Deforestation and Reforestation of Latin America and the Caribbean (2001-2010). Biotropica, 45(2), 262–271. https://doi.org/10.1111/j.1744-7429.2012.00908.xspa
dc.relation.referencesAlbert, C. H., Thuiller, W., Yoccoz, N. G., Douzet, R., Aubert, S., & Lavorel, S. (2010). A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Functional Ecology, 24(6), 1192–1201. https://doi.org/10.1111/j.1365-2435.2010.01727.xspa
dc.relation.referencesAlboukadel, K., & Mundt, F. (2020). factoextra: Extract and Visualize the Results of Multivariate Data Analyses (R package version 1.0.7.). https://cran.r-project.org/package=factoextra%0Aspa
dc.relation.referencesAsner, G. P., Knapp, D. E., Anderson, C. B., Martin, R. E., & Vaughn, N. (2016). Large-scale climatic and geophysical controls on the leaf economics spectrum. Proceedings of the National Academy of Sciences of the United States of America, 113(28), 4043–4051. https://doi.org/10.1073/pnas.1604863113spa
dc.relation.referencesBaraloto, C., Paine, C. E. T., Poorter, L., Beauchene, J., Bonal, D., Domenach, A.-M., Hérault, B., Patiño, S., Roggy, J.-C., & Chave, J. (2010). Decoupled leaf and stem economics in rain forest trees. Ecology Letters, 13, 1338–1347. https://doi.org/10.1111/j.1461-0248.2010.01517.xspa
dc.relation.referencesBlonder, B., Salinas, N., Bentley, L. P., Shenkin, A., Chambi Porroa, P. O., Valdez Tejeira, Y., Cyrille, V., Fyllas, N. M., Goldsmith, G. R., Martin, R. E., Asner, G. P., Díaz, S., Enquist, B. J., & Malhi, Y. (2017). Predicting trait‐environment relationships for venation networks along an Andes‐Amazon elevation gradient. Ecology, 98(5), 1239–1255. https://doi.org/10.1111/ijlh.12426spa
dc.relation.referencesBlundo, C., Malizia, L. R., & González-Espinosa, M. (2015). Distribution of functional traits in subtropical trees across environmental and forest use gradients. Acta Oecologica, 69, 96–104. https://doi.org/10.1016/j.actao.2015.09.008spa
dc.relation.referencesBooth, B. D., & Swanton, C. J. (2002). Assembly theory applied to weed communities. Weed Science, 50, 2–13. http://www.bioone.org/doi/abs/10.1614/0043-1745(2002)050[0002:AIATAT]2.0.CO;2spa
dc.relation.referencesBunn, R. A., Simpson, D. T., Bullington, L. S., Lekberg, Y., & Janos, D. P. (2019). Revisiting the ‘direct mineral cycling’ hypothesis: arbuscular mycorrhizal fungi colonize leaf litter, but why? ISME Journal, 13(8), 1891–1898. https://doi.org/10.1038/s41396-019-0403-2spa
dc.relation.referencesCamenzind, T., Hättenschwiler, S., Treseder, K., Lehmann, A., & Rillig, M. (2017). Nutrient limitation of soil microbial processes in tropical forests. Ecological Monographs, 88(1), 4–21. https://doi.org/https://doi.org/10.1002/ecm.1279spa
dc.relation.referencesChave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology Letters, 12, 351–366. https://doi.org/10.1111/j.1461-0248.2009.01285.xspa
dc.relation.referencesCornelissen, J. H. C., Lavorel, S., Garnier, E., Diaz, S., Buchmann, N., Gurvich, D. E., Reich, P. B., & Steege, H. (2003). A Handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany, 51, 335–338. https://doi.org/10.1071/BT02124spa
dc.relation.referencesDing, Y., Zang, R., Lu, X., Huang, J., & Xu, Y. (2019). The effect of environmental filtering on variation in functional diversity along a tropical elevational gradient. Journal of Vegetation Science, 30, 973–983. https://doi.org/10.1111/jvs.12786spa
dc.relation.referencesDixon, R., Rao, M. . V. ., & Garg, V. . K. . (1994). Water relations and gas exchange of mycorrhizal leucaena leucocephala seedlings. Journal of Tropical Forest Science, 6(4), 542–552. https://www.jstor.org/stable/43581779spa
dc.relation.referencesDolédec, S., Chessel, D., Ter Braak, C. J. F., & Champely, S. (1996). Matching species traits to environmental variables: A new three-table ordination method. Environmental and Ecological Statistics, 3, 143–166. https://doi.org/10.1007/BF02427859spa
dc.relation.referencesDray, S., Dufour, A.-B., S, D., & A, D. (2007). The ade4 Package: Implementing the Duality Diagram for Ecologists. Journal of Statistical Software, 22(4), 1–20. https://doi.org/10.18637/jss.v022.i04.spa
dc.relation.referencesDray, S., & Legendre, P. (2008). Testing the species traits environment relationships: The fourth-corner problem revisited. Ecology, 89(12), 3400–3412. https://doi.org/10.1890/08-0349.1spa
dc.relation.referencesDuque, A., Peña, M. A., Cuesta, F., González-caro, S., Kennedy, P., Phillips, O. L., Calderón-loor, M., Blundo, C., Carilla, J., Cayola, L., Farfán-ríos, W., Fuentes, A., Grau, R., Homeier, J., Loza-rivera, M. I., Malhi, Y., Malizia, A., Malizia, L., Martínez-villa, J. A., … Saatchi, S. (2021). Mature Andean forests as globally important carbon sinks and future carbon refuges. Nature Communications, 12, 2138. https://doi.org/10.1038/s41467-021-22459-8spa
dc.relation.referencesEsquivel-Muelbert, A., Baker, T. R., Dexter, K. G., Lewis, S. L., ter Steege, H., Lopez-Gonzalez, G., Monteagudo Mendoza, A., Brienen, R., Feldpausch, T. R., Pitman, N., Alonso, A., van der Heijden, G., Peña-Claros, M., Ahuite, M., Alexiaides, M., Álvarez Dávila, E., Murakami, A. A., Arroyo, L., Aulestia, M., … Phillips, O. L. (2017). Seasonal drought limits tree species across the Neotropics. Ecography, 40, 618–629. https://doi.org/10.1111/ecog.01904spa
dc.relation.referencesFick, Steve, & Hijmans, R. (2017). WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology. https://doi.org/10.1002/joc.5086spa
dc.relation.referencesFinegan, B., Peña-Claros, M., de Oliveira, A., Ascarrunz, N., Bret-Harte, M. S., Carreño-Rocabado, G., Casanoves, F., Díaz, S., Eguiguren Velepucha, P., Fernandez, F., Licona, J. C., Lorenzo, L., Salgado Negret, B., Vaz, M., & Poorter, L. (2015). Does functional trait diversity predict above-ground biomass and productivity of tropical forests? Testing three alternative hypotheses. Journal of Ecology, 103(1), 191–201. https://doi.org/10.1111/1365-2745.12346spa
dc.relation.referencesFisher, J. B., Malhi, Y., Torres, I. C., Metcalfe, D. B., van de Weg, M. J., Meir, P., Silva-Espejo, J. E., & Huasco, W. H. (2013). Nutrient limitation in rainforests and cloud forests along a 3,000-m elevation gradient in the Peruvian Andes. Oecologia, 172(3), 889–902. https://doi.org/10.1007/s00442-012-2522-6spa
dc.relation.referencesGötzenberger, L., de Bello, F., Brathen, K. A., Davison, J., Dubuis, A., Guisan, A., Leps, J., Lindborg, R., Moora, M., Pärtel, M., Pellissier, L., Pottier, J., Vittoz, P., Zobel, K., & Zobel, M. (2012). Ecological assembly rules in plant communities — approaches , patterns and prospects. Biological Reviews, 88, 111–127. https://doi.org/10.1111/j.1469-185X.2011.00187.xspa
dc.relation.referencesGrossiord, C., Buckley, T. N., Cernusak, L. A., Novick, K. A., Poulter, B., Siegwolf, R. T. W., Sperry, J. S., & McDowell, N. G. (2020). Plant responses to rising vapor pressure deficit. New Phytologist, 226, 1550–1566. https://doi.org/10.1111/nph.16485spa
dc.relation.referencesHartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A K-means clustering algorithm. Applied Statistics, 28, 100–108. https://doi.org/10.2307/2346830spa
dc.relation.referencesHernández-Vargas, G., Perroni, Y., López-acosta, J. C., Noa-Carrazana, J. C., & Sánchez-velásquez, L. R. (2019). Do the distribution patterns of plant functional traits change during early secondary succession in tropical montane cloud forests? Acta Oecologica, 95, 26–35. https://doi.org/10.1016/j.actao.2019.01.003spa
dc.relation.referencesHomeier, J., Seeler, T., Pierick, K., & Leuschner, C. (2021). Leaf trait variation in species ‑ rich tropical Andean forests. Scientific Reports, 11, 9993. https://doi.org/10.1038/s41598-021-89190-8spa
dc.relation.referencesJager, M. M., Richardson, S. J., Bellingham, P. J., Clearwater, M. J., & Laughlin, D. C. (2015). Soil fertility induces coordinated responses of multiple independent functional traits. Journal of Ecology, 103, 374–385. https://doi.org/10.1111/1365-2745.12366spa
dc.relation.referencesKeddy, P. A. (1992). A Pragmatic Approach to Functional Ecology. Functional Ecology, 6, 621–626. https://doi.org/10.2307/2389954spa
dc.relation.referencesKerkhoff, A. J., & Enquist, B. J. (2009). Multiplicative by nature: Why logarithmic transformation is necessary in allometry. Journal of Theoretical Biology, 257(3), 519–521. https://doi.org/10.1016/j.jtbi.2008.12.026spa
dc.relation.referencesKörner, C. (2007). The use of “altitude” in ecological research. Trends in Ecology and Evolution, 22(11), 569–574. https://doi.org/10.1016/j.tree.2007.09.006spa
dc.relation.referencesKörner, C., Neumayer, M., Menendez-Riedl, S. P., & Smeets-Scheel, A. (1989). Functional Morphology of Mountain Plants. Flora, 182, 353–383. https://doi.org/10.1016/s0367-2530(17)30426-7spa
dc.relation.referencesLegendre, P., Galzin, R. G., & Harmelin-Vivien, M. L. (1997). Relating behavior to habitat: Solutions to the fourth-corner problem. Ecology, 78(2), 547–562. https://doi.org/10.2307/2266029spa
dc.relation.referencesLiu, F., Zhang, M., Yang, W., Liu, Y., Wang, W., Zheng, J., & An, S. (2012). Leaf Functional Traits and Trait Relationships of Tropical Woody Vegetation in Relation to Successional Stage : Shifts in Understory and Canopy Layers Leaf functional traits and trait relationships of tropical woody vegetation in relation to successional. Ecoscience, 19(3), 198–208. https://doi.org/10.2980/19-3-3499spa
dc.relation.referencesLópez Camacho, R., Quintero Gómez, A., & Amado Ariza, S. M. (2020). Rasgos funcionales de la madera de tres bosques en Colombia: Bosque Seco, Andino y Alto-Andino. Ciencia Florestal, 30(3), 856–872. https://doi.org/10.5902/1980509839184spa
dc.relation.referencesMaherali, H. (2020). Mutualism as a plant functional trait: linking variation in the mycorrhizal symbiosis to climatic tolerance, geographic range and population dynamics. International Journal of Plant Sciences, 181(1), 1–30.spa
dc.relation.referencesMaherali, H., Oberle, B., Stevens, P. F., Cornwell, W. K., & McGlinn, D. J. (2016). Mutualism persistence and abandonment during the evolution of the mycorrhizal symbiosis. American Naturalist, 188(5), 113–125. https://doi.org/10.1086/688675spa
dc.relation.referencesMalizia, A., Blundo, C., Carilla, J., Acosta, O. O., Cuesta, F., Duque, A., Aguirre, N., Aguirre, Z., Ataroff, M., Baez, S., Calderón-Loor, M., Cayola, L., Cayuela, L., Ceballos, S., Cedillo, H., Ríos, W. F., Feeley, K. J., Fuentes, A. F., Gámez Álvarez, L. E., … Young, K. R. (2020). Elevation and latitude drives structure and tree species composition in Andean forests : Results from a large-scale plot network. PLOS ONE, 14(4), e0231553. https://doi.org/10.1371/journal.pone.0231553spa
dc.relation.referencesMcgill, B. J., Enquist, B. J., Weiher, E., & Westoby, M. (2006). Rebuilding community ecology from functional traits. Trends in Ecology and Evolution, 21(4), 178–185. https://doi.org/10.1016/j.tree.2006.02.002spa
dc.relation.referencesMuscarella, R., Uriarte, M., Erickson, D. L., Swenson, N. G., Kress, W. J., & Zimmerman, J. K. (2016). Variation of tropical forest assembly processes across regional environmental gradients. Perspectives in Plant Ecology, Evolution and Systematics, 23, 52–62. https://doi.org/10.1016/j.ppees.2016.09.007spa
dc.relation.referencesMyers, N., Mittermeier, R., Mittermeier, C., da Fonseca, G., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403, 853–858. https://doi.org/10.1038/468895aspa
dc.relation.referencesNiinemets, Ü. (2010). A review of light interception in plant stands from leaf to canopy in different plant functional types and in species with varying shade tolerance. Ecological Research, 25(4), 693–714. https://doi.org/10.1007/s11284-010-0712-4spa
dc.relation.referencesNiinemets, Ü. (2016). Within-Canopy Variations in Functional Leaf Traits: Structural, Chemical and Ecological Controls and Diversity of Responses. In Canopy Photosynthesis: From Basics to Applications. Advances in Photosynthesis and Respiration (Including Bioenergy and Related Processes) (pp. 100–130). Springer. https://doi.org/10.1007/978-94-017-7291-4spa
dc.relation.referencesNuccio, E. E., Hodge, A., Pett-Ridge, J., Herman, D. J., Weber, P. K., & Firestone, M. K. (2013). An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environmental Microbiology, 15(6), 1870–1881. https://doi.org/10.1111/1462-2920.12081spa
dc.relation.referencesOrdoñez, J. C., Van Bodegom, P. M., Witte, J. P. M., Wright, I. J., Reich, P. B., & Aerts, R. (2009). A global study of relationships between leaf traits , climate and soil measures of nutrient fertility. Global Ecology and Biogeography, 18, 137–149. https://doi.org/10.1111/j.1466-8238.2008.00441.xspa
dc.relation.referencesOrme, C. D. L., Davies, R. G., Burgess, M., Eigenbrod, F., Pickup, N., Olson, V. A., Webster, A. J., Ding, T. S., Rasmussen, P. C., Ridgely, R. S., Stattersfield, A. J., Bennett, P. M., Blackburn, T. M., Gaston, K. J., & Owens, I. P. F. (2005). Global hotspots of species richness are not congruent with endemism or threat. Nature, 436, 1016–1019. https://doi.org/10.1038/nature03850spa
dc.relation.referencesPerez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Cornwell, W. K., Craine, J. M., Gurvich, D. E., Urcelay, C., Veneklaas, E. J., Reich, P. B., Poorter, L., Wright, I. J., Ray, P., Enrico, L., Pausas, J. G., Vos, A. C. De, Buchmann, N., … Cornelissen, J. H. C. (2016). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 64, 715–716.spa
dc.relation.referencesPhillips, R. P., Brzostek, E., & Midgley, M. G. (2013). The mycorrhizal-associated nutrient economy: A new framework for predicting carbon-nutrient couplings in temperate forests. New Phytologist, 199, 41–51. https://doi.org/10.1111/nph.12221spa
dc.relation.referencesPinho, B. X., Tabarelli, M., Engelbrecht, B. M. J., Sfair, J., & Melo, F. P. L. (2019). Plant functional assembly is mediated by rainfall and soil conditions in a seasonally dry tropical forest. Basic and Applied Ecology, 40, 1–11. https://doi.org/10.1016/j.baae.2019.08.002spa
dc.relation.referencesPoorter, L. (2009). Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests. New Phytologist, 181, 890–900.spa
dc.relation.referencesPoorter, L., Mcdonald, I., Alarco, A., Fichtler, E., Licona, J., Marielos, P.-C., Sterck, F., Villegas, Z., & Sass-klaassen, U. (2010). The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytologist, 185, 481–492.spa
dc.relation.referencesRead, Q. D., Moorhead, L. C., Swenson, N. G., Bailey, J. K., & Sanders, N. J. (2014). Convergent effects of elevation on functional leaf traits within and among species. Funtional Ecology, 28, 37–45. https://doi.org/10.1111/1365-2435.12162spa
dc.relation.referencesReich, P. B. (2014). The world-wide ‘ fast – slow ’ plant economics spectrum : a traits manifesto. Journal of Ecology, 102, 275–301. https://doi.org/10.1111/1365-2745.12211spa
dc.relation.referencesReich, P., Wright, I., Bares, J. C., Craine, J. M., Oleksyn, J., Walters, M. B., Reich, P. B., Wright, I. J., Craine, J. M., Oleksyn, J., Westoby, M., & Walters, M. B. (2003). The Evolution of Plant Functional Variation : Traits , Spectra , and Strategies. International Journal of Plant Sciences, 164(3), 143–164.spa
dc.relation.referencesRodríguez, N., Armenteras, D., Morales, M., & Romero, M. (2006). Ecosistemas de los Andes colombianos. (Segunda ed). Instituto de Investigación de Recursos Biológicos Alexander von Humboldt.spa
dc.relation.referencesSalgado-Luarte, C., & Gianoli, E. (2012). Herbivores Modify Selection on Plant Functional Traits in a Temperate Rainforest Understory. The American Naturalist, 180(2), 42–53. https://doi.org/10.1086/666612spa
dc.relation.referencesSánchez-Cuervo, A. M., & Aide, T. M. (2013). Consequences of the Armed Conflict, Forced Human Displacement, and Land Abandonment on Forest Cover Change in Colombia: A Multi-scaled Analysis. Ecosystems, 16, 1052–1070. https://doi.org/10.1007/s10021-013-9667-yspa
dc.relation.referencesSantiago, L. S., & Wright, S. J. (2007). Leaf functional traits of tropical forest plants in relation to growth form. Functional Ecology, 21(1), 19–27. https://doi.org/10.1111/j.1365-2435.2006.01218.xspa
dc.relation.referencesShen, Y., Yu, S., Lian, J., Shen, H., Cao, H.-L., Lu, H.-P., & Ye, W.-H. (2016). Inferring community assembly processes from trait diversity across environmental gradients. Journal of Tropical Ecology, 32(4), 1–10. https://doi.org/10.1017/S0266467416000262spa
dc.relation.referencesShi, L., Wang, J., Liu, B., Nara, K., Lian, C., Shen, Z., Xia, Y., & Chen, Y. (2017). Ectomycorrhizal fungi reduce the light compensation point and promote carbon fixation of Pinus thunbergii seedlings to adapt to shade environments. Mycorrhiza, 27(8), 823–830. https://doi.org/10.1007/s00572-017-0795-7spa
dc.relation.referencesShi, Z., Li, K., Zhu, X., & Wang, F. (2020). The worldwide leaf economic spectrum traits are closely linked with mycorrhizal traits. Fungal Ecology, 43, 100877. https://doi.org/10.1016/j.funeco.2019.100877spa
dc.relation.referencesShipley, B., Lechowicz, M. J., Wright, I., & Reich, P. B. (2006). Fundamental Trade-Offs Generating the Worldwide Leaf Economics Spectrum. Ecology, 87(3), 535–541. https://doi.org/10.1890/05-1051spa
dc.relation.referencesSteidinger, B. S., Crowther, T. W., Liang, J., Van Nuland, M. E., Werner, G. D. A., Reich, P. B., Nabuurs, G., De-Miguel, S., Zhou, M., Picard, N., Herault, B., Zhao, X., Zhang, C., Routh, D., GFBI Consortium, & Peay, K. G. (2019). Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature, 569, 404–408. https://doi.org/10.1038/s41586-019-1128-0spa
dc.relation.referencesTanner, E. V. J., Vitousek, P. M., & Cuevas, E. (1998). Experimental Investigation of Nutrient Limitation of Forest Growth on Wet Tropical Mountains. Ecology, 79(1), 10–22. https://doi.org/10.2307/176860spa
dc.relation.referencesTedersoo, L., Laanisto, L., Rahimlou, S., Toussaint, A., Hallikma, T., & Pärtel, M. (2018). Global database of plants with root-symbiotic nitrogen fixation: NodDB. Journal of Vegetation Science, 29(3), 560–568. https://doi.org/10.1111/jvs.12627spa
dc.relation.referencesTer Braak, C. J. F., Cormont, A., & Dray, S. (2012). Improved testing of species traits--environment relationships in the fourth-corner problem. Ecology, 93(7), 1525–1526.spa
dc.relation.referencesTränkner, M., Tavakol, E., & Jákli, B. (2018). Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiologia Plantarum, 163(3), 414–431. https://doi.org/10.1111/ppl.12747spa
dc.relation.referencesValladares, F., Gianoli, E., & Gómez, J. M. (2007). Ecological limits to plant phenotypic plasticity. New Phytologist, 176(4), 749–763. https://doi.org/10.1111/j.1469-8137.2007.02275.xspa
dc.relation.referencesvan de Weg, M. J., Meir, P., Grace, J., & Atkin, O. K. (2009). Altitudinal variation in leaf mass per unit area, leaf tissue density and foliar nitrogen and phosphorus content along an Amazon-Andes gradient in Peru. Plant Ecology and Diversity, 2(3), 243–254. https://doi.org/10.1080/17550870903518045spa
dc.relation.referencesWang, J., Wen, X., Zhang, X., Li, S., & Zhang, D. Y. (2018). Co-regulation of photosynthetic capacity by nitrogen, phosphorus and magnesium in a subtropical Karst forest in China. Scientific Reports, 8(1), 1–9. https://doi.org/10.1038/s41598-018-25839-1spa
dc.relation.referencesWieczynski, D. J., Boyle, B., Buzzard, V., Duran, S. M., Henderson, A. N., Hulshof, C. M., Kerkhoff, A. J., McCarthy, M. C., Michaletz, S. T., Swenson, N. G., Asner, G. P., Bentley, L. P., Enquist, B. J., & Savage, V. M. (2019). Climate shapes and shifts functional biodiversity in forests worldwide. Proceedings of the National Academy of Sciences of the United States of America, 116(2), 587–592. https://doi.org/10.1073/pnas.1813723116spa
dc.relation.referencesWorthy, S. J., & Swenson, N. G. (2019). Functional perspectives on tropical tree demography and forest dynamics. Ecological Processes, 8(1), 1–11. https://doi.org/10.1186/s13717-018-0154-4spa
dc.relation.referencesWright, I., Reich, P. B., Cornelissen, J. H. C. C., Falster, D. S., Garnier, E., Hikosaka, K., Lamont, B. B., Lee, W., Oleksyn, J., Osada, N., Poorter, H., Villar, R., Warton, D. I., Westoby, M., & Wright, I. J. (2005). Assessing the generality of global leaf trait relationships. New Phytologist, 166, 485–496. https://doi.org/10.1111/j.1469-8137.2005.01349.xspa
dc.relation.referencesWright, I., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornellssen, J. H. ., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., … Villar, R. (2004). The worldwide leaf economics spectrum. Nature, 428, 821–827. https://doi.org/10.1038/nature02403spa
dc.relation.referencesWright, S. J., Kitajima, K., Kraft, N. J. B., Reich, P. B., Wright, I. J., Bunker, D. E., Condit, R., Dalling, J. W., Davies, S. J., Díaz, S., Engelbrecht, B. M. J., Harms, K. E., Hubbell, S. P., Marks, C. O., Ruiz-Jaen, M. C., Salvador, C. M., & Zanne, A. E. (2010). Functional traits and the growth – mortality trade-off in tropical trees. Ecography, 91(12), 3664–3674.spa
dc.relation.referencesZuleta, D., Duque, A., Cardenas, D., Muller-Landau, H., & Davies, S. (2017). Comparison between different D-Dimer cutoff values to assess the individual risk of recurrent venous thromboembolism: Analysis of results obtained in the DULCIS study. Ecology, 98, 2538–2546. https://doi.org/10.1111/ijlh.12426spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.lembForests and forestry - Colombia
dc.subject.otherBosques Andinos - Colombia
dc.subject.proposalCommunity assembleeng
dc.subject.proposalFunctional traitseng
dc.subject.proposalEnvironmental driverseng
dc.subject.proposalAndean Mountainseng
dc.subject.proposalEnsamblaje comunitarioeng
dc.subject.proposalRasgos funcionalesspa
dc.subject.proposalImpulsores ambientalesspa
dc.subject.proposalAndesspa
dc.titlePlant trait assembly in species-rich forests along elevation in the northwest Andes of Colombiaeng
dc.title.translatedEnsamblaje de rasgos funcionales en bosques biodiversos a lo largo de un gradiente de elevación en los Andes del noroeste de Colombiaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1017165209.2021.pdf
Tamaño:
1.3 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Medio Ambiente y Desarrollo

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: