Estudio computacional de la reactividad de complejos de cobre como mimetizadores de las enzimas catalasa y superóxido dismutasa

dc.contributor.advisorAlí Torres, Jorge Isaac
dc.contributor.authorMontoya Moreno, Nicolas
dc.contributor.researchgroupQuímica Cuántica y Computacionalspa
dc.date.accessioned2024-06-18T13:48:23Z
dc.date.available2024-06-18T13:48:23Z
dc.date.issued2023
dc.description.abstractSon varias las especies radicales involucradas en el estrés oxidativo, un fenómeno que se ha relacionado con varias enfermedades que representan un gran riesgo a la salud como el cáncer, diabetes, enfermedades neurodegenerativas, entre otras. Una de ellas es el anión superóxido, que se produce continuamente en procesos metabólicos normales de las células y puede llegar a ocasionar reacciones en cadena, formando otras especies reactivas. Por lo tanto, se ha generado interés en encontrar moléculas que sean capaces de imitar la actividad antioxidante de enzimas como la superóxido dismutasa y catalasa, combinando esfuerzos y estrategias computacionales y experimentales. En este estudio se evaluaron mecanismos de reacción para 9 complejos de cobre como posibles mimetizadores de la enzima superóxido dismutasa (SOD) la enzima catalasa (CAT) mediante el cálculo de las energías libres de reacción para los mecanismos plausibles de la dismutación del anión radical superóxido y descomposición del peróxido de hidrógeno, usando la teoría del funcional de densidad con los funcionales M06-2X y modelo de solvatación implícita SMD. Posteriormente se realizó un análisis topológico de la distribución de la densidad electrónica siguiendo la teoría de átomos en moléculas o AIM, evaluando para los reactivos y productos parámetros electrónicos en los enlaces de coordinación en el mecanismo de la SOD. Como conclusión se encontró que los complejos estudiados mimetizarían a la SOD y la CAT mediante los mecanismos propuestos, además el análisis topológico demostró que los mecanismos favorables son aquellos en donde el cobre (II) y el superóxido presentan una interacción atractiva y parcialmente covalente que cambia en los productos a una interacción de carácter de capa cerrada, junto a un aumento ligero de la elipticidad. (Tomado de la fuente)spa
dc.description.abstractThere are several radical species involved in oxidative stress, a phenomenon that has been related to several diseases that represent a great risk to health such as cancer, diabetes, neurodegenerative diseases, among others; one of them is the superoxide radical anion, which is produced continuously in normal metabolic processes of cells and can cause chain reactions, forming other reactive species. Therefore, interest has been generated in finding molecules that can mimic the antioxidant activity of the superoxide dismutase and catalase enzymes, combining computational and experimental efforts and strategies. In this study, reaction mechanisms for 9 copper complexes were evaluated as possible mimics of the superoxide dismutase (SOD) and catalase (CAT) enzymes by calculating the reaction free energies for the plausible mechanisms of the dismutation of the superoxide radical anion and decomposition of hydrogen peroxide, using the density functional theory with the M06-2X functional and the SMD solvation model. Subsequently, a topological analysis of the electronic density distribution was carried out following the theory of atoms in molecules or AIM, evaluating electronic parameters in the coordination bonds for the reactants and products in the SOD mechanism. In conclusion, it was found that the complexes studied would mimic SOD and CAT through the proposed mechanisms. In addition the topological analysis discovered that the favorable mechanisms are those in which copper (II) and superoxide present an attractive and partially covalent interaction that changes in the products. to a closed shell character interaction, along with a slight increase in ellipticity.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.format.extent69 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86253
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesM. Lawson, K. Jomova, P. Poprac, K. Kuča, K. Musílek, and M. Valko, “Free Radicals and Antioxidants in Human Disease,” in Nutritional Antioxidant Therapies: Treatments and Perspectives, Cham: Springer International Publishing, 2017, pp. 283–305. doi: 10.1007/978-3-319-67625-8_12spa
dc.relation.referencesO. M. Ighodaro and O. A. Akinloye, “First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid,” Alexandria Journal of Medicine, vol. 54, no. 4, pp. 287–293, Dec. 2018, doi: 10.1016/j.ajme.2017.09.001spa
dc.relation.referencesV. Rani and U. C. Singh Yadav, Free Radicals in Human Health and Disease. New Delhi: Springer India, 2015. doi: 10.1007/978-81-322-2035-0spa
dc.relation.referencesM. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M. Mazur, and J. Telser, “Free radicals and antioxidants in normal physiological functions and human disease,” Int J Biochem Cell Biol, vol. 39, no. 1, pp. 44–84, Jan. 2007, doi: 10.1016/j.biocel.2006.07.001spa
dc.relation.referencesA. Bafana, S. Dutt, A. Kumar, S. Kumar, and P. S. Ahuja, “The basic and applied aspects of superoxide dismutase,” J Mol Catal B Enzym, vol. 68, no. 2, pp. 129–138, Feb. 2011, doi: 10.1016/j.molcatb.2010.11.007spa
dc.relation.referencesR. W. Strange, C. W. Yong, W. Smith, and S. S. Hasnain, “Molecular dynamics using atomic-resolution structure reveal structural fluctuations that may lead to polymerization of human Cu–Zn superoxide dismutase,” Proceedings of the National Academy of Sciences, vol. 104, no. 24, pp. 10040–10044, Jun. 2007, doi: 10.1073/pnas.0703857104spa
dc.relation.referencesI. A. Abreu and D. E. Cabelli, “Superoxide dismutases—a review of the metal-associated mechanistic variations,” Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol. 1804, no. 2, pp. 263–274, Feb. 2010, doi: 10.1016/j.bbapap.2009.11.005spa
dc.relation.referencesA. S. Hearn et al., “Amino Acid Substitution at the Dimeric Interface of Human Manganese Superoxide Dismutase,” Journal of Biological Chemistry, vol. 279, no. 7, pp. 5861–5866, Feb. 2004, doi: 10.1074/jbc.M311310200spa
dc.relation.referencesA. Merlino et al., “Structure and flexibility in cold-adapted iron superoxide dismutases: The case of the enzyme isolated from Pseudoalteromonas haloplanktis,” J Struct Biol, vol. 172, no. 3, pp. 343–352, Dec. 2010, doi: 10.1016/j.jsb.2010.08.008spa
dc.relation.referencesR. W. Herbst et al., “Role of Conserved Tyrosine Residues in NiSOD Catalysis: A Case of Convergent Evolution,” Biochemistry, vol. 48, no. 15, pp. 3354–3369, Apr. 2009, doi: 10.1021/bi802029tspa
dc.relation.referencesL. Miao and D. K. St. Clair, “Regulation of superoxide dismutase genes: Implications in disease,” Free Radic Biol Med, vol. 47, no. 4, pp. 344–356, Aug. 2009, doi: 10.1016/j.freeradbiomed.2009.05.018spa
dc.relation.referencesC. L. Matthiesen et al., “Superoxide dismutase 3 is expressed in bone tissue and required for normal bone homeostasis and mineralization,” Free Radic Biol Med, vol. 164, pp. 399–409, Feb. 2021, doi: 10.1016/j.freeradbiomed.2021.01.027spa
dc.relation.referencesT. Siddique, H. X. Deng, and S. Ajroud-Driss, “Motor Neuron Disease,” in Emery and Rimoin’s Principles and Practice of Medical Genetics, Elsevier, 2013, pp. 1–22. doi: 10.1016/B978-0-12-383834-6.00141-5spa
dc.relation.referencesJ. Choi, H. D. Rees, S. T. Weintraub, A. I. Levey, L.-S. Chin, and L. Li, “Oxidative Modifications and Aggregation of Cu,Zn-Superoxide Dismutase Associated with Alzheimer and Parkinson Diseases,” Journal of Biological Chemistry, vol. 280, no. 12, pp. 11648–11655, Mar. 2005, doi: 10.1074/jbc.M414327200spa
dc.relation.referencesB. G. Trist, J. B. Hilton, D. J. Hare, P. J. Crouch, and K. L. Double, “Superoxide Dismutase 1 in Health and Disease: How a Frontline Antioxidant Becomes Neurotoxic,” Angewandte Chemie International Edition, vol. 60, no. 17, pp. 9215–9246, Apr. 2021, doi: 10.1002/anie.202000451spa
dc.relation.referencesT. Fukai, “Extracellular superoxide dismutase and cardiovascular disease,” Cardiovasc Res, vol. 55, no. 2, pp. 239–249, Aug. 2002, doi: 10.1016/S0008-6363(02)00328-0spa
dc.relation.referencesL. A. Macmillan-Crow and D. L. Cruthirds, “Manganese superoxide dismutase in disease,” Free Radic Res, vol. 34, no. 4, pp. 325–336, Jan. 2001, doi: 10.1080/10715760100300281spa
dc.relation.referencesH. Younus, “Therapeutic potentials of superoxide dismutase.,” Int J Health Sci (Qassim), vol. 12, no. 3, pp. 88–93, 2018spa
dc.relation.referencesT. Ogiso, T. Fukami, C. Zhongzhe, K. Konishi, M. Nakano, and M. Nakajima, “Human superoxide dismutase 1 attenuates quinoneimine metabolite formation from mefenamic acid,” Toxicology, vol. 448, p. 152648, Jan. 2021, doi: 10.1016/j.tox.2020.152648spa
dc.relation.referencesM. N. Islam et al., “Superoxide dismutase: an updated review on its health benefits and industrial applications,” Crit Rev Food Sci Nutr, vol. 62, no. 26, pp. 7282–7300, Sep. 2022, doi: 10.1080/10408398.2021.1913400spa
dc.relation.referencesD. Salvemini, C. Muscoli, D. P. Riley, and S. Cuzzocrea, “Superoxide Dismutase Mimetics,” Pulm Pharmacol Ther, vol. 15, no. 5, pp. 439–447, Oct. 2002, doi: 10.1006/pupt.2002.0374spa
dc.relation.referencesA. Galano, “Free Radicals Induced Oxidative Stress at a Molecular Level: The Current Status, Challenges and Perspectives of Computational Chemistry Based Protocols,” J Mex Chem Soc, vol. 59, no. 4, pp. 231–262, 2015, [Online]. Available: http://www.redalyc.org/articulo.oa?id=47545630002spa
dc.relation.referencesA. Galano and J. Raúl Alvarez‐Idaboy, “Computational strategies for predicting free radical scavengers’ protection against oxidative stress: Where are we and what might follow?,” Int J Quantum Chem, vol. 119, no. 2, p. e25665, Jan. 2019, doi: 10.1002/qua.25665spa
dc.relation.referencesA. Mirats, J. Alí-Torres, L. Rodríguez-Santiago, M. Sodupe, and G. La Penna, “Dioxygen activation in the Cu–amyloid β complex,” Physical Chemistry Chemical Physics, vol. 17, no. 41, pp. 27270–27274, 2015, doi: 10.1039/C5CP04025Fspa
dc.relation.referencesK. Reybier et al., “Free Superoxide is an Intermediate in the Production of H 2 O 2 by Copper(I)-Aβ Peptide and O 2,” Angewandte Chemie International Edition, vol. 55, no. 3, pp. 1085–1089, Jan. 2016, doi: 10.1002/anie.201508597spa
dc.relation.referencesA. Carlioz and D. Touati, “Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life?,” EMBO J, vol. 5, no. 3, pp. 623–630, Mar. 1986, doi: 10.1002/j.1460-2075.1986.tb04256.xspa
dc.relation.referencesO. Iranzo, “Manganese complexes displaying superoxide dismutase activity: A balance between different factors,” Bioorg Chem, vol. 39, no. 2, pp. 73–87, Apr. 2011, doi: 10.1016/j.bioorg.2011.02.001spa
dc.relation.referencesD. P. Riley et al., “Synthesis, Characterization, and Stability of Manganese(II) C-Substituted 1,4,7,10,13-Pentaazacyclopentadecane Complexes Exhibiting Superoxide Dismutase Activity,” Inorg Chem, vol. 35, no. 18, pp. 5213–5231, Jan. 1996, doi: 10.1021/ic960262vspa
dc.relation.referencesM. Baudry, S. Etienne, A. Bruce, M. Palucki, E. Jacobsen, and B. Malfroy, “Salen-Manganese Complexes Are Superoxide Dismutase-Mimics,” Biochem Biophys Res Commun, vol. 192, no. 2, pp. 964–968, Apr. 1993, doi: 10.1006/bbrc.1993.1509spa
dc.relation.referencesI. Batinić-Haberle, J. S. Rebouças, and I. Spasojević, “Superoxide Dismutase Mimics: Chemistry, Pharmacology, and Therapeutic Potential,” Antioxid Redox Signal, vol. 13, no. 6, pp. 877–918, Sep. 2010, doi: 10.1089/ars.2009.2876spa
dc.relation.referencesA. Shariev et al., “Skin protective and regenerative effects of RM191A, a novel superoxide dismutase mimetic,” Redox Biol, vol. 38, p. 101790, Jan. 2021, doi: 10.1016/j.redox.2020.101790spa
dc.relation.referencesA. Vincent et al., “Evaluation of the compounds commonly known as superoxide dismutase and catalase mimics in cellular models,” J Inorg Biochem, vol. 219, p. 111431, Jun. 2021, doi: 10.1016/j.jinorgbio.2021.111431spa
dc.relation.referencesR. F. W. Bader, Atoms in Molecules: A Quantum Theory. in International series of monographs on chemistry. Clarendon Press, 1990. [Online]. Available: https://books.google.com.co/books?id=up1pQgAACAAJspa
dc.relation.referencesC. F. Matta and R. J. Boyd, The quantum theory of atoms in molecules : from solid state to DNA and drug design. Wiley-VCH, 2007spa
dc.relation.referencesM. Jabłoński and M. Palusiak, “Nature of a Hydride–Halogen Bond. A SAPT-, QTAIM-, and NBO-Based Study,” J Phys Chem A, vol. 116, no. 9, pp. 2322–2332, Mar. 2012, doi: 10.1021/jp211606tspa
dc.relation.referencesO. A. Syzgantseva, V. Tognetti, and L. Joubert, “On the Physical Nature of Halogen Bonds: A QTAIM Study,” J Phys Chem A, vol. 117, no. 36, pp. 8969–8980, Sep. 2013, doi: 10.1021/jp4059774spa
dc.relation.referencesS. J. Grabowski, “Non-covalent interactions – QTAIM and NBO analysis,” J Mol Model, vol. 19, no. 11, pp. 4713–4721, Nov. 2013, doi: 10.1007/s00894-012-1463-7spa
dc.relation.referencesA. R. M, A. Singh, M. S. S. Sundaram, Y. Wagh, A. Jegorov, and A. K. Jain, “In-Silico aided screening and characterization results in stability enhanced Novel Roxadustat co-crystal,” J Pharm Sci, Oct. 2023, doi: 10.1016/j.xphs.2023.10.024spa
dc.relation.referencesM. Doust Mohammadi, F. Abbas, H. Louis, Z. Zeb, M. U. Akem, and I. Benjamin, “Computational Investigation of the Intermolecular Interactions between Decatungstate Acid and CX 2 O (X=H, F, Cl, and Br),” ChemistrySelect, vol. 8, no. 39, Oct. 2023, doi: 10.1002/slct.202300504spa
dc.relation.referencesM. Moradkhani, A. Naghipour, and Y. A. Tyula, “Investigation of structural, spectral, and electronic properties of complexes resulting from the interaction of acetonitrile and hypohalous acids,” Struct Chem, Oct. 2023, doi: 10.1007/s11224-023-02243-8spa
dc.relation.referencesJ. Alí-Torres, A. Mirats, J.-D. Maréchal, L. Rodríguez-Santiago, and M. Sodupe, “Modeling Cu 2+ -Aβ complexes from computational approaches,” AIP Adv, vol. 5, no. 9, p. 092402, Sep. 2015, doi: 10.1063/1.4921072spa
dc.relation.referencesA. L. Orjuela, F. Núñez-Zarur, and J. Alí-Torres, “A computational protocol for the calculation of the standard reduction potential of iron complexes: application to Fe 2+/3+ -Aβ model systems relevant to Alzheimer’s disease,” RSC Adv, vol. 12, no. 37, pp. 24077–24087, 2022, doi: 10.1039/D2RA03907Aspa
dc.relation.referencesM. J. Frisch et al., “Gaussian 16.” Gaussian, Inc., Wallingford CT, 2016spa
dc.relation.referencesN. Puentes-Díaz, D. Chaparro, V. Reyes-Marquez, D. Morales-Morales, A. Flores-Gaspar, and J. Alí-Torres, “Computational Evaluation of the Potential Pharmacological Activity of Salen-Type Ligands in Alzheimer’s Disease,” Journal of Alzheimer’s Disease, pp. 1–14, Jul. 2023, doi: 10.3233/JAD-230542spa
dc.relation.referencesD. Chaparro and J. Alí-Torres, “Assessment of the isodesmic method in the calculation of standard reduction potential of copper complexes,” J Mol Model, vol. 23, no. 10, p. 283, Oct. 2017, doi: 10.1007/s00894-017-3469-7spa
dc.relation.referencesA.-F. Miller, K. Padmakumar, D. L. Sorkin, A. Karapetian, and C. K. Vance, “Proton-coupled electron transfer in Fe-superoxide dismutase and Mn-superoxide dismutase,” J Inorg Biochem, vol. 93, no. 1–2, pp. 71–83, Jan. 2003, doi: 10.1016/S0162-0134(02)00621-9spa
dc.relation.referencesJ. A. Fee and C. Bull, “Steady-state kinetic studies of superoxide dismutases. Saturative behavior of the copper- and zinc-containing protein.,” Journal of Biological Chemistry, vol. 261, no. 28, pp. 13000–13005, Oct. 1986, doi: 10.1016/S0021-9258(18)69261-0spa
dc.relation.referencesD. E. Heck, M. Shakarjian, H. D. Kim, J. D. Laskin, and A. M. Vetrano, “Mechanisms of oxidant generation by catalase,” Ann N Y Acad Sci, vol. 1203, no. 1, pp. 120–125, Aug. 2010, doi: 10.1111/j.1749-6632.2010.05603.xspa
dc.relation.referencesM. Lundberg and T. Borowski, “Oxoferryl species in mononuclear non-heme iron enzymes: Biosynthesis, properties and reactivity from a theoretical perspective,” Coord Chem Rev, vol. 257, no. 1, pp. 277–289, Jan. 2013, doi: 10.1016/j.ccr.2012.03.047spa
dc.relation.referencesR. A. Himes and K. D. Karlin, “Copper–dioxygen complex mediated C–H bond oxygenation: relevance for particulate methane monooxygenase (pMMO),” Curr Opin Chem Biol, vol. 13, no. 1, pp. 119–131, Feb. 2009, doi: 10.1016/j.cbpa.2009.02.025spa
dc.relation.referencesY. Feng, P.-H. Lee, D. Wu, Z. Zhou, H. Li, and K. Shih, “Degradation of contaminants by Cu + -activated molecular oxygen in aqueous solutions: Evidence for cupryl species (Cu 3+ ),” J Hazard Mater, vol. 331, pp. 81–87, Jun. 2017, doi: 10.1016/j.jhazmat.2017.02.029spa
dc.relation.referencesT. Lu and F. Chen, “Multiwfn: A multifunctional wavefunction analyzer,” J Comput Chem, vol. 33, no. 5, pp. 580–592, Feb. 2012, doi: 10.1002/jcc.22885spa
dc.relation.referencesP. S. V. KUMAR, V. RAGHAVENDRA, and V. SUBRAMANIAN, “Bader’s Theory of Atoms in Molecules (AIM) and its Applications to Chemical Bonding,” Journal of Chemical Sciences, vol. 128, no. 10, pp. 1527–1536, Oct. 2016, doi: 10.1007/s12039-016-1172-3spa
dc.relation.referencesC. Silva Lopez and A. R. de Lera, “Bond Ellipticity as a Measure of Electron Delocalization in Structure and Reactivity,” Curr Org Chem, vol. 15, no. 20, pp. 3576–3593, Oct. 2011, doi: 10.2174/138527211797636228spa
dc.relation.referencesA. H. Pakiari and K. Eskandari, “The chemical nature of very strong hydrogen bonds in some categories of compounds,” Journal of Molecular Structure: THEOCHEM, vol. 759, no. 1–3, pp. 51–60, Feb. 2006, doi: 10.1016/j.theochem.2005.10.040spa
dc.relation.referencesS. J. Grabowski, W. A. Sokalski, E. Dyguda, and J. Leszczyński, “Quantitative Classification of Covalent and Noncovalent H-Bonds,” J Phys Chem B, vol. 110, no. 13, pp. 6444–6446, Apr. 2006, doi: 10.1021/jp0600817spa
dc.relation.referencesS. Emamian, T. Lu, H. Kruse, and H. Emamian, “Exploring Nature and Predicting Strength of Hydrogen Bonds: A Correlation Analysis Between Atoms‐in‐Molecules Descriptors, Binding Energies, and Energy Components of Symmetry‐Adapted Perturbation Theory,” J Comput Chem, vol. 40, no. 32, pp. 2868–2881, Dec. 2019, doi: 10.1002/jcc.26068spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.lembRadicales (Química)
dc.subject.lembEnzimas de cobre
dc.subject.lembDensidad electrónica
dc.subject.proposalsuperóxido dismutasaspa
dc.subject.proposalmimetizadores SODspa
dc.subject.proposalradical superóxidospa
dc.subject.proposalestrés oxidativospa
dc.subject.proposalantioxidantespa
dc.subject.proposalestrategias computacionalesspa
dc.subject.proposalanálisis topológicosspa
dc.subject.proposalsuperoxide dismutaseeng
dc.subject.proposalSOD mimicseng
dc.subject.proposalsuperoxide radicaleng
dc.subject.proposaloxidative stresseng
dc.subject.proposalantioxidanteng
dc.subject.proposalcomputational strategieseng
dc.subject.proposaltopological analysiseng
dc.subject.wikidataSuperóxido dismutasa
dc.subject.wikidataCatalasa
dc.titleEstudio computacional de la reactividad de complejos de cobre como mimetizadores de las enzimas catalasa y superóxido dismutasaspa
dc.title.translatedComputational study of the reactivity of copper complexes as superoxide dismutase and catalase enzyme mimicseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1026592790.2024.pdf
Tamaño:
11.3 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: