Evaluación de modelos de series de tiempo para pronosticar la demanda de transporte aéreo a corto y mediano plazo en Colombia

dc.contributor.advisorMoreno Rivas, Álvaro Martinspa
dc.contributor.authorAmezquita Bravo, Cristian Camilospa
dc.coverage.countryColombiaspa
dc.date.accessioned2022-03-03T16:58:34Z
dc.date.available2022-03-03T16:58:34Z
dc.date.issued2021
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractEl presente trabajo suministra una evaluación de la capacidad predictiva de diferentes modelos de serie de tiempo en datos mensuales del transporte aéreo de pasajeros de tráfico nacional, internacional y total entre 1994 y el 2019. Los modelos estimados son: modelo de regresión armónica, modelo de suavizado exponencial de Holt-Winters, modelo autorregresivo integrado de media móvil (ARIMA), ARIMA estacional (SARIMA) y ARIMA con variable exógena (ARIMAX). Los resultados muestran que los modelos SARIMA y SARIMAX proveen los mejores resultados en cuanto a bondad de ajuste y precisión con pronósticos en términos de MAPE y RMSE por debajo del umbral del 3% de la realización puntual media. El modelo multivariado SARIMAX supera los resultados de pronóstico de los modelos univariantes. El PIB logra potenciar los resultados del modelo y se confirma la relación positiva que posee con el sector aéreo. Se evaluaron otras variables como los precios del petróleo y choques exógenos locales e internacionales pero su efecto resultó ser no significativo. El modelo de regresión armónica solo puede predecir con alta precisión los pasajeros de tráfico internacional mientras que el modelo de Holt Winters logra obtener previsiones altamente precisas para la serie de tráfico internacional y total. (Texto tomado de la fuente).spa
dc.description.abstractThis thesis provides an evaluation of the predictive capacity of different time series models in monthly data of the air transport of passengers of national, international, and total traffic between 1994 and 2019. The estimated models are harmonic regression model, Holt-Winters exponential smoothing model, integrated moving average autoregressive model (ARIMA), seasonal ARIMA (SARIMA) and ARIMA with exogenous variable (ARIMAX). The results show that the SARIMA and SARIMAX models provide the best results in terms of goodness of fit and precision with forecasts in terms of MAPE and RMSE below the threshold of 3% of the average punctual realization. The SARIMAX multivariate model exceeds the forecast results of the univariate models. The GDP manages to enhance the results of the model and the positive relationship it has with the airline sector is confirmed. Other variables such as oil prices and local and international exogenous shocks were evaluated, but their effect was not significant. The harmonic regression model can only predict international traffic passengers with high precision while the Holt Winters model manages to obtain highly accurate forecasts for the international and total traffic series.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Económicasspa
dc.format.extentx, 46 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81124
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentEscuela de Economíaspa
dc.publisher.facultyFacultad de Ciencias Económicasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Económicas - Maestría en Ciencias Económicasspa
dc.relation.referencesAeronáutica Civil, (2014a). Guía para la elaboración de Planes Maestros Aeroportuarios – PMA, Circular Reglamentaria N° 053, https://www.aerocivil.gov.co/normatividad/CIRCULARES%20AGA/CI%20053%20-%20V2.pdfspa
dc.relation.referencesAeronáutica Civil, (2014b). Actualización del plan maestro del Aeropuerto Internacional ElDorado reporte final, Tylin international, https://www.aerocivil.gov.co/aeropuertos/_layouts/15/WopiFrame,aspx?sourcedoc=/aeropuertos/Consecionados/El%20Dorado%20-%20Bogot%C3%A1,pdf&action=defaultspa
dc.relation.referencesAeronáutica Civil, (2019). Aeropuertos – Planes Maestro, https://www.aerocivil.gov.co/aeropuertos/planes%20maestros/forms/allitems.aspxspa
dc.relation.referencesAlhassan, R., Abdulaal, R., & Alsulami, H. (2017). A Forecasting Model for Satisfying the Demand of International Flight Passengers Having Domestic Flight Connection. Journal of King Abdulaziz University Engineering Sciences, 28(1), 49–63. https://doi.org/10.4197/eng.28-1.4spa
dc.relation.referencesAndreoni, A., & Postorino, M. N. (2006). a Multivariate Arima Model To Forecast.spa
dc.relation.referencesArtis, M. J., Clavel, J. G., Hoffmann, M., & Nachane, D. M. (2007). Harmonic Regression Models: A Comparative Review with Applications. SSRN Electronic Journal, 333. https://doi.org/10.2139/ssrn.1017519spa
dc.relation.referencesBloomfield, P. (2000). Fourier Analysis of Time Series: An Introduction. In Journal of the American Statistical Association (Vol. 95, Issue 452, p. 1373). https://doi.org/10.2307/2669794spa
dc.relation.referencesChatfield, C. (2000). Time-Series Forecasting. In Urologiia (Moscow, Russia : 1999) (Issue 1). Chapman & Hall/CRC. http://www.ncbi.nlm.nih.gov/pubmed/16856455spa
dc.relation.referencesChen, C. F., Chang, Y. H., & Chang, Y. W. (2009). Seasonal ARIMA forecasting of inbound air travel arrivals to Taiwan. Transportmetrica, 5(2), 125–140. https://doi.org/10.1080/18128600802591210spa
dc.relation.referencesChow, G. C., & Lin, A. (1971). Best Linear Unbiased Interpolation, Distribution, and Extrapolation of Time Series by Related Series. The Review of Economics and Statistics, 53(4), 372. https://doi.org/10.2307/1928739spa
dc.relation.referencesCoshall, J. (2006). Time series analyses of UK outbound travel by air. Journal of Travel Research, 44(3), 335–347. https://doi.org/10.1177/0047287505279003spa
dc.relation.referencesCowpertwait, P., & Metcalfe, A. (2009). Introductory Time Series with R. Springer. http://www.springer.com/la/book/9780387886978%0Ahttp://www.springer.com/la/book/9780387886978?wt_mc=ThirdParty.SpringerLink.3.EPR653.About_eBookspa
dc.relation.referencesDantas, T. M., Cyrino Oliveira, F. L., & Varela Repolho, H. M. (2017). Air transportation demand forecast through Bagging Holt Winters methods. Journal of Air Transport Management, 59, 116–123. https://doi.org/10.1016/j.jairtraman.2016.12.006spa
dc.relation.referencesDenton, F. T. (1971). Adjustment of monthly or quarterly series to annual totals: An approach based on quadratic minimization. Journal of the American Statistical Association, 66(333), 99–102. https://doi.org/10.1080/01621459.1971.10482227spa
dc.relation.referencesDíaz Olariaga, O., Girón Amaya, E., & Mora-Camino, F. (2017, October). Pronóstico de la demanda de pasajeros en aeropuertos privatizados. In VI Congreso Internacional de la Red Iberoamericana de Investigación en Transporte Aéreo (pp. 10-12). https://www.researchgate.net/publication/320434160_PRONOSTICO_DE_LA_DEMANDA_DE_PASAJEROS_EN_AEROPUERTOS_PRIVATIZADOSspa
dc.relation.referencesDíaz Olariaga, Ó. (2016). Análisis del desarrollo reciente del transporte aéreo en Colombia. Revista Transporte y Territorio, 0(14), 122–143. https://doi.org/10.34096/rtt.i14.2432spa
dc.relation.referencesdu Preez, J., & Witt, S. F. (2003). Univariate versus multivariate time series forecasting: An application to international tourism demand. International Journal of Forecasting, 19(3), 435–451. https://doi.org/10.1016/S0169-2070(02)00057-2spa
dc.relation.referencesEmiray, E.; Rodríguez, G. (2003). Evaluating time series models in short and long-term forecasting of Canadian air passenger data. No. 0306E, January 2003.spa
dc.relation.referencesFranses, P. H. (1990). TESTING FOR SEASONAL UNIT ROOTS IN MONTHLY DATA. Erasmus University Rotterdam.spa
dc.relation.referencesGoh, C., & Law, R. (2002). Modeling and forecasting tourism demand for arrivals with stochastic nonstationary seasonality and intervention. Tourism Management, 23(5), 499–510. https://doi.org/10.1016/S0261-5177(02)00009-2spa
dc.relation.referencesGranger, C. W. J., & Newbold, P. (1974). Spurious Regressions in Econometrics. Journal of Econometrics, 2, 111–120. https://doi.org/10.1002/9780470996249.ch27spa
dc.relation.referencesGreene, W. H. (1999). Análisis Econométrico (3rd ed.). Prentice Hall.spa
dc.relation.referencesGujarati, D., & Porter, D. (2010). Econometría (Quinta edi). McGraw Hill.spa
dc.relation.referencesHamilton, J. (1994). Time Series Analysis. Princeton University Press.spa
dc.relation.referencesHarvey, A. C. (1993). Time Series Models. In Angewandte Chemie International Edition (2nd Editio, Vol. 6, Issue 11). MIT Press.spa
dc.relation.referencesHylleberg, S., Engle, R. F., Granger, C. W. J., & Yoo, B. S. (1990). Seasonal integration and cointegration. Journal of Econometrics, 44(1–2), 215–238. https://doi.org/10.1016/0304-4076(90)90080-Dspa
dc.relation.referencesIATA. (2007). Aviation Economic Benefits. IATA Economics Briefing, N° 8.spa
dc.relation.referencesIATA. (2020). Air connectivity: Measuring the connections that drive economic growth. 57(2), Contents2–Contents2. https://doi.org/10.3143/geriatrics.57.contents2spa
dc.relation.referencesKim, J. H., & Moosa, I. (2001). Seasonal behaviour of monthly international tourist flows: Specification and implications for forecasting models. Tourism Economics, 7(4), 381–396. https://doi.org/10.5367/000000001101297937spa
dc.relation.referencesLim, C., & Mcaleer, M. (2010). A seasonal analysis of Asian tourist arrivals to Australia. Applied Economics, 32(4), 499–509. https://doi.org/10.1080/000368400322660spa
dc.relation.referencesLim, C., & McAleer, M. (2001). Forecasting tourist arrivals. Annals of Tourism Research, 28(4), 965–977. https://doi.org/10.1016/S0160-7383(01)00006-8spa
dc.relation.referencesLin, C. J., Chen, H. F., & Lee, T. S. (2011). Forecasting Tourism Demand Using Time Series, Artificial Neural Networks and Multivariate Adaptive Regression Splines:Evidence from Taiwan. International Journal of Business Administration, 2(2). https://doi.org/10.5430/ijba.v2n2p14spa
dc.relation.referencesLutkepohl, H., & Kratzig, M. (2013). Applied Time Series Econometrics Time. In Journal of Chemical Information and Modeling (Vol. 53, Issue 9). Cambridge University Press.spa
dc.relation.referencesMarazzo, M., Scherre, R., & Fernandes, E. (2010). Air transport demand and economic growth in Brazil: A time series analysis. Transportation Research Part E: Logistics and Transportation Review, 46(2), 261–269. https://doi.org/10.1016/j.tre.2009.08.008spa
dc.relation.referencesMartínez-Ortíz, A., & García-Romero, H. (2016). Competitividad en el transporte aéreo en Colombia. 218. https://www.repository.fedesarrollo.org.co/bitstream/handle/11445/3280/Repor_Junio_2016_Martinez_y_Garcia.pdf?sequence=2&isAllowed=y&fbclid=IwAR2zdrF15WDXB7QHagHNepZLhhwPxF5nAE-06gXbchtCeFt6oq1I8ChgYGo%0Ahttp://www.repository.fedesarrollo.org.co/handle/11spa
dc.relation.referencesMogollón, J. D. (2020). Pronóstico de la demanda del transporte aéreo en aeropuerto distribuidor. Aplicación al caso de Aeropuerto Internacional el Dorado. 15, 1–137.spa
dc.relation.referencesNieto, M. R., & Carmona-Benítez, R. B. (2018). ARIMA + GARCH + Bootstrap forecasting method applied to the airline industry. Journal of Air Transport Management, 71(June), 1–8. https://doi.org/10.1016/j.jairtraman.2018.05.007spa
dc.relation.referencesOh, C. O., & Morzuch, B. J. (2005). Evaluating time-series models to forecast the demand for tourism in Singapore: Comparing within-sample and postsample results. Journal of Travel Research, 43(4), 404–413. https://doi.org/10.1177/0047287505274653spa
dc.relation.referencesOlivera, M., Cabrera, P., Bermúdez, W., & Hernandez, A. (2011). El impacto del transporte aéreo en la economía colombiana y las políticas públicas. In Cuaderno de fedesarrollo N.34. www.atac.aero/imagenesindex/cuaderno_fedesarrollo_34.pdfspa
dc.relation.referencesRamos, I., & Cardenas, L. (2016). Prognosis de tráfico en el Aeropuerto de Bogotá-El Dorado y análisis de la relación demanda-capacidad.spa
dc.relation.referencesSharif Azadeh, S., Labib, R., & Savard, G. (2013). Railway demand forecasting in revenue management using neural networks. International Journal of Revenue Management, 7(1), 18–36. https://doi.org/10.1504/IJRM.2013.053358spa
dc.relation.referencesStraszheim, M. (1978). Airline demand functions in the North Atlantic and their pricing implications. Journal of Transport Economics and Policy, 12(2), 179–195.spa
dc.relation.referencesThe R Development Core Team. (2008). R: A Language and Environment for Statistical Computing: Vol. Version 2. https://www.r-project.org/spa
dc.relation.referencesTsui, W. H. K., Ozer Balli, H., Gilbey, A., & Gow, H. (2014). Forecasting of Hong Kong airport’s passenger throughput. Tourism Management, 42(2014), 62–76. https://doi.org/10.1016/j.tourman.2013.10.008spa
dc.relation.referencesUnited States Bureau Census. (2021). X-13ARIMA-SEATS Reference Manual Accessible HTML Output Version.spa
dc.relation.referencesWei, W. (2006). Time Series Analysis: Univariate and Multivariate Methods. In Technometrics (Vol. 33, Issue 1). Pearson. https://doi.org/10.1080/00401706.1991.10484777spa
dc.relation.referencesWilliams, B. M. (2001). Multivariate Vehicular Traffic Flow Prediction: Evaluation of ARIMAX Modeling. Transportation Research Record, 01, 194–200.spa
dc.relation.referencesYule, G. U. (1926). Why do we Sometimes get Nonsense-Correlations between Time-Series?: A Study in Sampling and the Nature of Time-Series. Journal of the Royal Statistical Society, 89(1), 1–63.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc330 - Economíaspa
dc.subject.lembTime-series analysiseng
dc.subject.lembAnálisis de series de tiempospa
dc.subject.lembAeronautics, commercialeng
dc.subject.lembAviación comercialspa
dc.subject.lembForecasting techniqueseng
dc.subject.lembTécnicas de predicciónspa
dc.subject.proposalPronóstico de demandaspa
dc.subject.proposalTransporte aéreospa
dc.subject.proposalSeries de tiempospa
dc.subject.proposalARIMAspa
dc.subject.proposalSARIMAspa
dc.subject.proposalARIMAXspa
dc.subject.proposalForecasting demandeng
dc.subject.proposalAir transporteng
dc.subject.proposalAir passengers demandeng
dc.subject.proposalARIMAeng
dc.subject.proposalSARIMAeng
dc.subject.proposalARIMAXeng
dc.subject.proposalTime serieseng
dc.titleEvaluación de modelos de series de tiempo para pronosticar la demanda de transporte aéreo a corto y mediano plazo en Colombiaspa
dc.title.translatedEvaluation of time series models to forecast air transportation demand in the short and medium term in Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1018467917.2021.pdf
Tamaño:
1.33 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Económicas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: