Aprovechamiento de cenizas de fondo de carbón como reemplazante de materia prima en la producción de ladrillos cerámicos

dc.contributor.advisorTorres Agredo, Janneth
dc.contributor.authorBenítez Vivas, José Fernando
dc.contributor.researchgroupGrupo de Investigación: Materiales y Medio Ambiente (Gimma)spa
dc.date.accessioned2023-02-02T16:37:23Z
dc.date.available2023-02-02T16:37:23Z
dc.date.issued2022-12-15
dc.descriptionIlustraciones, tablasspa
dc.description.abstractEl ladrillo de mampostería es uno de los materiales de construcción más utilizados en todo el mundo, lo que conlleva a una sobreexplotación de sus materias primas. Su producción consume gran cantidad de energía y tiene una alta huella ambiental. La industria de ladrillos de arcilla tiene la capacidad de adicionar residuos a su materia prima. Se ha reportado el uso de residuos del procesamiento del té, residuos de ladrillo, residuo de la industria del papel, residuos del beneficio de café, cenizas de carbón, entre otros. Una empresa de Colombia, productora de derivados de arcilla genera dentro de su proceso de producción 20 Ton/mes de ceniza de fondo de carbón (CFC), residuo que actualmente se envía a disposición final conllevando a sobrecostos. El objetivo de este estudio fue encontrar un posible aprovechamiento de este residuo dentro del mismo proceso productivo de la empresa en un contexto de economía circular como reemplazante de materia prima en la elaboración de ladrillos cerámicos. Para el desarrollo de este objetivo inicialmente se caracterizó la ceniza de fondo de carbón por Fluorescencia de Rayos X, difracción de rayos X, análisis de termogravimetría, granulometría laser, microestructura y tamaño de partícula; además, se determinó su densidad, pérdida al fuego y análisis ambiental de lixiviación de metales pesados. Por otro lado, se evaluó la incorporación de cenizas en la elaboración de ladrillos de arcilla, con porcentajes de reemplazo de arena con diferentes muestreos de ceniza en 0, 3, 5 y 7%; además 0, 2, 4,6 y 8%. Por último, se evaluaron las propiedades físicas, mecánicas y ambientales de los ladrillos. Como resultados de los ladrillos con adición de ceniza de fondo de carbón se obtuvo que la absorción de agua, la porosidad aparente, pérdida de peso por calcinación y gravedad específica aparente se incrementaron, mientras que la resistencia a la compresión, contracción total por secado lineal y la densidad aparente disminuyeron con la incorporación de cenizas en las muestras de ladrillos. Los ladrillos con mejor desempeño fueron los adicionados con el 4% de ceniza, ya que estos tuvieron un mejor desempeño en las propiedades evaluadas acorde a la normatividad de Colombia, por lo que este residuo presenta un gran potencial de ser valorizado en este material de construcción. (Texto tomado de la fuente)spa
dc.description.abstractMasonry brick is one of the most widely used building materials in the world, which leads to an overexploitation of its raw materials. Its production consumes high quantity of energy and has a high environmental footprint. The clay brick industry has the ability to add waste to its raw material. The use of tea processing waste, brick waste, waste from the paper industry, waste from coffee mill, coal ash has been reported. A Colombian company, producer of clay derivatives, generates 20 tons/month of coal bottom ash (CBA) within its production process, a residue that is currently sent to final disposal with high cost overruns. The objective of this study was to find a possible use of this waste within the same production process of the company in a context of circular economy as a substitute for raw material in the production of ceramic bricks. For the development of this objective, coal bottom ash was initially characterized by X-ray Fluorescence, X-ray diffraction, thermogravimetric analysis, laser granulometry, microstructure and particle size; In addition, its density, loss on ignition and environmental analysis of heavy metal leaching were determined. On the other hand, the incorporation of ash in the production of clay bricks was evaluated, with percentages of sand replacement with different ash samples at 0, 3, 5 and 7% and 0, 2, 4.6 and 8%. Finally, the physical, mechanical and environmental properties of the bricks were evaluated. As results of the bricks with the addition of coal bottom ash, it was obtained that the water absorption, the apparent porosity, loss of ignition and apparent specific gravity increased, while the compressive strength, total contraction due to linear drying and the apparent density decreased with the incorporation of ashes in the brick samples. The bricks with the best performance were those added with 4% ash, since these had a better performance in the properties evaluated according to Colombian regulations. Therefore, this waste has great potential to be recovered in this construction material.eng
dc.description.curricularareaIngeniería.Sede Palmiraspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMaestría en Ingeniería-Ingeniería Ambientalspa
dc.description.methodsSe propone una metodología que consiste en 6 etapas fundamentales. La primera etapa consiste en la búsqueda bibliográfica relevante del tema a investigar, después se procede a caracterización físico química, mineralógica y ambiental del residuo (2 y 3 etapa), en la etapa 4 se procede a fabricar los ladrillos con adición de las CFC teniendo en cuenta las condiciones de operación en la empresa con respecto a cantidad de materias primas disponibles. Para la etapa 5, se determinarán parámetros de calidad y ambientales de los ladrillos para definir parámetros óptimos. Por último, en la etapa 6 se procede analizar resultados y escritura de informe final además de socialización a la comunidad académicaspa
dc.description.researchareaAprovechamiento de residuosspa
dc.format.extentxx, 85 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83247
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.facultyFacultad de Ingeniería y Administraciónspa
dc.publisher.placePalmira, Valle del Cauca, Colombiaspa
dc.publisher.programPalmira - Ingeniería y Administración - Maestría en Ingeniería - Ingeniería Ambientalspa
dc.relation.referencesAbbas, S., Saleem, M. A., Kazmi, S. M. S., & Munir, M. J. (2017). Production of sustainable clay bricks using waste fly ash: Mechanical and durability properties. Journal of Building Engineering, 14(September), 7–14. https://doi.org/10.1016/j.jobe.2017.09.008spa
dc.relation.referencesAgencia Nacional de Minas. (2022). El futuro del carbón en Colombia no termina, se fortalece con las ruedas de negocios.spa
dc.relation.referencesAlvarez, M., & González, T. (1994). Restauración de edificios monumentales: estudio de materiales y técnicas instrumentales. Centro de Estudios y Experimentación de Obras Pública.spa
dc.relation.referencesAsokbunyarat, V., Van Hullebusch, E. D., Lens, P. N. L., & Annachhatre, A. P. (2015). Coal bottom ash as sorbing material for Fe(II), Cu(II), Mn(II), and Zn(II) removal from aqueous solutions. Water, Air, and Soil Pollution, 226(5). https://doi.org/10.1007/s11270-015-2415-5spa
dc.relation.referencesASTM. (1997). ASTM C326: 1997. Test Method for Drying and Firing Shrinkage of Ceramic Whiteware Clays. American Society for Testing and Material.spa
dc.relation.referencesASTM. (2009). ASTM C326Standard Test Method for Drying and Firing Shrinkages of Ceramic Whiteware Clays.spa
dc.relation.referencesASTM. (2019). ASTM C618. Standard Specification for Standard Specification for Fly Ash and Raw Material or Calcined Natural Pozzolan for Use as a Mineral Admixture in Portland Cement Concrete.spa
dc.relation.referencesASTM. (2021a). Standard Test Methods for Loss on Ignition (LOI) of Solid Combustion Residues ( D7348 − 13) (pp. 1–7). ASTM international.spa
dc.relation.referencesASTM. (2021b). Standard Test Methods for Sampling and Testing Brick and Structural Clay Tile (C67/C67M − 20) (pp. 1–17). ASTM international.spa
dc.relation.referencesASTM C-20. (2005). Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity, and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water.spa
dc.relation.referencesBaba, A., & Kaya, A. (2004). Leaching characteristics of solid wastes from thermal power plants of western Turkey and comparison of toxicity methodologies. Journal of Environmental Management, 73(3), 199–207. https://doi.org/10.1016/j.jenvman.2004.06.005spa
dc.relation.referencesBaino, F., & Ferraris, S. (2018). Production and characterization of ceramic foams derived from vitrified bottom ashes. Material Letters, 236, 281–284.spa
dc.relation.referencesBakalar, T., Pavolová, H., & Hajduová, Z. (2021). Metal recovery from municipal solid waste incineration fly ash as a tool of circular economy. Journal of Cleaner Production, 302. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.126977spa
dc.relation.referencesBandow, N., Gartiser, S., Ilvonen, O., & Schoknecht, U. (2018). Evaluation of the impact of construction products on the environment by leaching of possibly hazardous substances. Environmental Sciences Europe, 30(1). https://doi.org/10.1186/s12302-018-0144-2spa
dc.relation.referencesBharathi, S., Devasena, T., Islam, V. I. H., & Prakhya, B. M. (2015). Characterization of coal fly ash nanoparticles and their induced in vitro cellular toxicity and oxidative DNA damage in different cell lines. 585–593.spa
dc.relation.referencesBlissett, R. S., & Rowson, N. A. (2012). A review of the multi-component utilisation of coal fly ash. Fuel, 97, 1–23. https://doi.org/10.1016/j.fuel.2012.03.024spa
dc.relation.referencesBragança, S. R., Zimmer, A., & Bergmann, C. P. (2008). Use of mineral coal ashes in insulating refractory brick. Refractories and Industrial Ceramics, 49(4), 320–323. https://doi.org/10.1007/s11148-008-9088-1spa
dc.relation.referencesCastells, E. (2012). Tecnologías aplicables al tratamiento de residuos. In Ediciones Díaz de Santos (Ed.), Reciclaje de Residuos Industriales.spa
dc.relation.referencesCultrone, G., & Sebastián, E. (2009). Fly ash addition in clayey materials to improve the quality of solid bricks. Construction and Building Materials, 23(2), 1178–1184. https://doi.org/10.1016/j.conbuildmat.2008.07.001spa
dc.relation.referencesDalkılıç, N. (2017). Traditional manufacturing of clay brick used in the historical buildings of Diyarbakir (Turkey). Frontiers of Architectural Research, 346–359.spa
dc.relation.referencesDNP. (2017). Política Nacional de Edificaciones Sostenibles (pp. 1–68).spa
dc.relation.referencesDNP, D. N. de planeación. (2019). Ley 1955 del 25 de mayo 2019.spa
dc.relation.referencesDwivedi, A., & Jain, M. K. (2014). Fly ash – waste management and overview : A Review. Recent Research in Science and Technology, 30–35.spa
dc.relation.referencesEarthjustice. (2019). La Agencia de Protección Ambiental Elimina Protecciones Adicionales De La Tóxica Ceniza de Carbón | Earthjustice. https://earthjustice.org/news/press/2019/la-agencia-de-protecci-n-ambiental-elimina-protecciones-adicionales-de-la-t-xica-ceniza-de-carb-nspa
dc.relation.referencesElias, X. (n.d.). LA CERÁMICA COMO TECNOLOGÍAS PARA LA VALORIZACIÓN DE RESIDUOS.spa
dc.relation.referencesElias, X. (2009a). Reciclaje de residuos industriales, residuos sólidos urbanos y fangos de depuradora (Segunda). Diaz de Santos, S.A.spa
dc.relation.referencesElias, X. (2009b). Tecnologias aplicables al tratamiento de residuos . Valorización y fabricación de materiales a partir de residuos. In Reciclaje de Residuos Industriales (Díaz de Sa, pp. 91–172).spa
dc.relation.referencesEliche-Quesada, D., Felipe-Sesé, M. A., Martínez-Martínez, S., & Pérez-Villarejo, L. (2017). Comparative Study of the Use of Different Biomass Bottom Ash in the Manufacture of Ceramic Bricks. Journal of Materials in Civil Engineering, 29(12), 04017238. https://doi.org/10.1061/(asce)mt.1943-5533.0002078spa
dc.relation.referencesEliche-Quesada, D., & Leite-Costa, J. (2016). Use of bottom ash from olive pomace combustion in the production of eco-friendly fired clay bricks. Waste Management, 48, 323–333. https://doi.org/10.1016/j.wasman.2015.11.042spa
dc.relation.referencesEPA. (1992). United States Environmental Protection Agency (US EPA), Test Method 1311: The Toxicity Characteristic Leaching Procedure (pp. 1–35). United States Environmental Protection Agency.spa
dc.relation.referencesFederal Highway Administration. (2016). User Guidelines for Waste and Byproduct Materials in Pavement Construction. https://www.fhwa.dot.gov/publications/research/infrastructure/structures/97148/cbabs1.cfmspa
dc.relation.referencesFernandes, F. M. (2019). Clay bricks. In Long-term Performance and Durability of Masonry Structures (pp. 3–19). Elsevier. https://doi.org/10.1016/b978-0-08-102110-1.00001-7spa
dc.relation.referencesGarcía-Ubaque, C. A., González-Hässig, A., & Vaca-Bohórquez, M. L. (2013). Ceramic bricks made from municipal solid waste incineration-derived clay and ashes: A quality study. Ingenieria e Investigacion, 33(2), 36–41.spa
dc.relation.referencesGe, X., Zhou, M., Wang, H., Liu, Z., Wu, H., & Chen, X. (2018). Preparation and characterization of ceramic foams from chromium slag and coal bottom ash. Ceramics International, 44(10), 11888–11891. https://doi.org/10.1016/j.ceramint.2018.03.122spa
dc.relation.referencesGlymond, D., Roberts, A., Russell, M., & Cheeseman, C. (2018). Production of ceramics from coal furnace bottom ash. Ceramics International, 44(3), 3009–3014. https://doi.org/10.1016/j.ceramint.2017.11.057spa
dc.relation.referencesHashemi, S. S. G., Mahmud, H. Bin, Ghuan, T. C., Chin, A. B., Kuenzel, C., & Ranjbar, N. (2019). Safe disposal of coal bottom ash by solidification and stabilization techniques. Construction and Building Materials, 197, 705–715. https://doi.org/10.1016/j.conbuildmat.2018.11.123spa
dc.relation.referencesHossain, S. S., Mathur, · L, Majhi, · M R, & Roy, · P K. (2019). Manufacturing of green building brick: recycling of waste for construction purpose. Journal of Material Cycles and Waste Management, 21, 281–292. https://doi.org/10.1007/s10163-018-0788-4spa
dc.relation.referencesHuang, T. Y., Chiueh, P. T., & Lo, S. L. (2017). Life-cycle environmental and cost impacts of reusing fly ash. Resources, Conservation and Recycling, 123, 255–260. https://doi.org/10.1016/j.resconrec.2016.07.001spa
dc.relation.referencesICONTEC. (2005a). Métodos para muestreo y ensayos de unidades de mampostería y otros productos de arcilla (NTC-4017).spa
dc.relation.referencesICONTEC. (2005b). Norma Tecnica Colombiana-NTC 4205 (pp. 1–30).spa
dc.relation.referencesIDEAM. (2007). Resolución 0062 “Por la cual se adoptan los protocolos de muestreo y análisis de laboratorio para la caracterización fisicoquímica de los residuos o desechos peligrosos en el país” (pp. 1–55). http://www.ideam.gov.co/documents/51310/56882/Parte_1_Resolucion_0062_de_2007.pdf/6cd3555a-2bfc-403a-83ae-5f4fde24e5dcspa
dc.relation.referencesResolución No. 0062, Por la cual se adoptan los protocolos de muestreo y análisis de laboratorio para la caracterización fisicoquímica de los residuos o desechos peligrosos en el país, 1 (2005).spa
dc.relation.referencesIwaszko, J., Zajemska, M., Zawada, A., & Szwaja, S. (2020). Vitrification of environmentally harmful by-products from biomass torrefaction process. Ournal of Cleaner Production, 249(4).spa
dc.relation.referencesJ. Kusuma, G., Shimada, H., Sasaoka, T., Matsui, K., Nugraha, C., S. Gautama, R., & Sulistianto, B. (2012). An Evaluation on the Physical and Chemical Composition of Coal Combustion Ash and Its Co-Placement with Coal-Mine Waste Rock. Journal of Environmental Protection, 03(07), 589–596. https://doi.org/10.4236/jep.2012.37071spa
dc.relation.referencesKurama, H., & Kaya, M. (2008). Usage of coal combustion bottom ash in concrete mixture. Construction and Building Materials, 22(9), 1922–1928. https://doi.org/10.1016/j.conbuildmat.2007.07.008spa
dc.relation.referencesLegarda, M. (2020). Reducción de la peligrosidad de una escoria de plomo secundario mediante un proceso de vitrificación (pp. 1–79).spa
dc.relation.referencesLeiva, C., Arenas, C., Alonso-fariñas, B., Vilches, L., Peceño, B., Rodriguez-galán, M., & Baena, F. (2016). Characteristics of fired bricks with co-combustion fly ashes. Journal of Building Engineering, 5, 114–118. https://doi.org/10.1016/j.jobe.2015.12.001spa
dc.relation.referencesLeiva, C., Rodriguez-Galán, M., Arenas, C., Alonso-Fariñas, B., & Peceño, B. (2018). A mechanical, leaching and radiological assessment of fired bricks with a high content of fly ash. Ceramics International, 44, 13313–13319. https://doi.org/10.1016/j.ceramint.2018.04.162spa
dc.relation.referencesLieder, M., & Rashid, A. (2016a). Towards circular economy implementation: a comprehensive review in context of manufacturing industry. Journal of Cleaner Production, 115. https://doi.org/https://doi.org/10.1016/j.jclepro.2015.12.042spa
dc.relation.referencesLieder, M., & Rashid, A. (2016b). Towards circular economy implementation: A comprehensive review in context of manufacturing industry. Journal of Cleaner Production, 115, 36–51. https://doi.org/10.1016/j.jclepro.2015.12.042spa
dc.relation.referencesLin, K. L. (2006). Feasibility study of using brick made from municipal solid waste incinerator fly ash slag. Journal of Hazardous Materials, 137(3), 1810–1816. https://doi.org/10.1016/j.jhazmat.2006.05.027spa
dc.relation.referencesMinambiente. (2005). Decreto 4741 del 30 de Diciembre 2005 (pp. 1–30). MINISTERIO DE AMBIENTE, VIVIENDA Y DESARROLLO TERRITORIAL.spa
dc.relation.referencesMinisterio de vivienda. (2021, December 6). Con 209638 viviendas nuevas vendidas en los últimos 11 meses, el 2021 ya es el mejor año en ventas de Colombia.spa
dc.relation.referencesMuñoz, P., Morales, M. P., Mendívil, M. A., Juárez, M. C., & Muñoz, L. (2014). Using of waste pomace from winery industry to improve thermal insulation of fired clay bricks. Eco-friendly way of building construction. Construction and Building Materials, 71, 181–187. https://doi.org/10.1016/j.conbuildmat.2014.08.027spa
dc.relation.referencesMuthusamy, K., Rasid, M. H., Jokhio, G. A., Mokhtar Albshir Budiea, A., Hussin, M. W., & Mirza, J. (2020). Coal bottom ash as sand replacement in concrete: A review. Construction and Building Materials, 236. https://doi.org/10.1016/j.conbuildmat.2019.117507spa
dc.relation.referencesNaciones Unidas. (n.d.). Objetivo 12: Garantizar modalidades de consumo y producción sostenibles.spa
dc.relation.referencesNaganathan, S., Mohamed, A. Y. O., & Mustapha, K. N. (2015). Performance of bricks made using fly ash and bottom ash. Construction and Building Materials, 96, 576–580. https://doi.org/10.1016/j.conbuildmat.2015.08.068spa
dc.relation.referencesOrganización de Cooperación y Desarrollo Económicos. (2014). Evalcuaciones de desempeño ambiental: Colombia Highlights.spa
dc.relation.referencesP, B. (2017). 6 - The utilization of flue-gas desulfurization materials. In Coal Combustion Products (CCP’s) (pp. 155–184).spa
dc.relation.referencesPires, M., & Querol, X. (2004). Characterization of Candiota (South Brazil) coal and combustion by-product. International Journal of Coal Geology, 60(1), 57–72. https://doi.org/10.1016/j.coal.2004.04.003spa
dc.relation.referencesPliatsikas, I., Robou, E., Samouhos, M., Katsiotis, N. S., & Tsakiridis, P. E. (2019). Valorization of demolition ceramic wastes and lignite bottom ash for the production of ternary blended cements. Construction and Building Materials, 229, 116879. https://doi.org/10.1016/j.conbuildmat.2019.116879spa
dc.relation.referencesPredeanu, G., Popescu, L. G., Abagiu, T. A., Panaitescu, C., Valentim, B., & Guedes, A. (2016). Characterization of bottom ash of Pliocene lignite as ceramic composites raw material by petrographic, SEM/EDS and Raman microspectroscopical methods. International Journal of Coal Geology, 168, 131–145. https://doi.org/10.1016/j.coal.2016.08.004spa
dc.relation.referencesProColombia. (2016). Inversión en el sector Materiales de Construcción en Colombia. https://www.inviertaencolombia.com.co/sectores/manufacturas/materiales-de-construccion.htmlspa
dc.relation.referencesRafieizonooz, M., Mirza, J., Salim, M. R., Hussin, M. W., & Khankhaje, E. (2016). Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement. Construction and Building Materials, 116, 15–24. https://doi.org/10.1016/j.conbuildmat.2016.04.080spa
dc.relation.referencesRESOLUCION No. 0062, (2007).spa
dc.relation.referencesRodrigues, P., Silvestre, J. D., Flores-Colen, I., Viegas, C. A., De Brito, J., Kurad, R., Demertzi, M., Feo, L., & Zhao, Q. (2017). Methodology for the Assessment of the Ecotoxicological Potential of Construction Materials. https://doi.org/10.3390/ma10060649spa
dc.relation.referencesRussell, N. V., Méndez, L. B., Wigley, F., & Williamson, J. (2002). Ash deposition of a Spanish anthracite: Effects of included and excluded mineral matter. Fuel, 81(5), 657–663. https://doi.org/10.1016/S0016-2361(01)00155-7spa
dc.relation.referencesSaikia, B. K., Saikia, J., Rabha, S., Silva, L. F. O., & Finkelman, R. (2018). Ambient nanoparticles/nanominerals and hazardous elements from coal combustion activity: Implications on energy challenges and health hazards. Geoscience Frontiers, 9(3), 863–875. https://doi.org/10.1016/j.gsf.2017.11.013spa
dc.relation.referencesSalleh, S. Z., Awang Kechik, A., Yusoff, A. H., Taib, M. A. A., Mohamad Nor, M., Mohamad, M., Tan, T. G., Ali, A., Masri, M. N., Mohamed, J. J., Zakaria, S. K., Boon, J. G., Budiman, F., & Teo, P. Ter. (2021). Recycling food, agricultural, and industrial wastes as pore-forming agents for sustainable porous ceramic production: A review. Journal of Cleaner Production, 306. https://doi.org/10.1016/j.jclepro.2021.127264spa
dc.relation.referencesSena da Fonseca, B., Galhano, C., & Seixas, D. (2015). Technical feasibility of reusing coal combustion by-products from a thermoelectric power plant in the manufacture of fired clay bricks. Applied Clay Science, 104, 189–195. https://doi.org/10.1016/j.clay.2014.11.030spa
dc.relation.referencesSilva, L., & Kátia, B. (2011). Nanominerals and nanoparticles in feed coal and bottom ash: implications for human health effects. Environmental Monitoring and Assessment, 174, 187–197.spa
dc.relation.referencesSingh, M. (2018). Coal bottom ash. In Waste and Supplementary Cementitious Materials in Concrete. Elsevier Ltd. https://doi.org/10.1016/b978-0-08-102156-9.00001-8spa
dc.relation.referencesSingh, M., & Siddique, R. (2013). Effect of coal bottom ash as partial replacement of sand on properties of concrete. Resources, Conservation and Recycling, 72, 20–32. https://doi.org/10.1016/j.resconrec.2012.12.006spa
dc.relation.referencesSingh, N., Mithulraj, M., & Arya, S. (2018). Influence of coal bottom ash as fine aggregates replacement on various properties of concretes: A review. Resources, Conservation and Recycling, 138, 257–271. https://doi.org/10.1016/j.resconrec.2018.07.025spa
dc.relation.referencesSingh, N., Shehnazdeep, & Bhardwaj, A. (2020). Reviewing the role of coal bottom ash as an alternative of cement. Construction and Building Materials, 233, 117276. https://doi.org/10.1016/j.conbuildmat.2019.117276spa
dc.relation.referencesSutcu, M., Erdogmus, E., Gencel, O., Gholampour, A., Atan, E., & Ozbakkaloglu, T. (2019). Recycling of bottom ash and fly ash wastes in eco-friendly clay brick production. Journal of Cleaner Production, 233, 753–764. https://doi.org/10.1016/j.jclepro.2019.06.017spa
dc.relation.referencesTjaronge, M. W., & Caronge, M. A. (2021). Physico-mechanical and thermal performances of eco-friendly fired clay bricks incorporating palm oil fuel ash. Materialia, 17(March), 101130. https://doi.org/10.1016/j.mtla.2021.101130spa
dc.relation.referencesTorres-Agredo, J., Mosquera-Idrobo, L. F., Paz-Villegas, P., & Díaz-Huertas, M. F. (2021). Evaluación de cenizas de fondo de carbón para la fabricación de ladrillos de arcilla: estudio preliminar. Revista UIS Ingenierías, 20(4), 161–170. https://doi.org/10.18273/revuin.v20n4-2021013spa
dc.relation.referencesUN. (2019). Informe de los Objetivos de Desarrollo Sostenible (pp. 1–64).spa
dc.relation.referencesUnidad de Planeación Minero Energética. (2012). El Carbón Colombiano: Fuente de energía para el mundo.spa
dc.relation.referencesVu, D. H., Wang, K. S., Chen, J. H., Nam, B. X., & Bac, B. H. (2012). Glass-ceramic from mixtures of bottom ash and fly ash. Waste Management, 32(12), 2306–2314. https://doi.org/10.1016/j.wasman.2012.05.040spa
dc.relation.referencesWang, N., Sun, X., Zhao, Q., Yang, Y., & Wang, P. (2020). Leachability and adverse effects of coal fly ash: A review. Journal of Hazardous Materials, 396(April). https://doi.org/10.1016/j.jhazmat.2020.122725spa
dc.relation.referencesWCA. (2014). REPORT 2. ANALYSIS OF COAL COMPOSITION, ECOTOXICITY AND HUMAN HEALTH HAZARDS.spa
dc.relation.referencesWeaver, M. (1997). Conserving Buildings: A manual of techniques and Materials, Revised Edition.spa
dc.relation.referencesXu, G., & Shi, X. (2018). Characteristics and applications of fly ash as a sustainable construction material: A state-of-the-art review. Resources, Conservation and Recycling, 136, 95–109. https://doi.org/10.1016/j.resconrec.2018.04.010spa
dc.relation.referencesYao, Z. T., Ji, X. S., Sarker, P. K., Tang, J. H., Ge, L. Q., Xia, M. S., & Xi, Y. Q. (2015). A comprehensive review on the applications of coal fly ash. Earth-Science Reviews, 141, 105–121. https://doi.org/10.1016/j.earscirev.2014.11.016spa
dc.relation.referencesYüksel, I., Bilir, T., & Özkan, Ö. (2007). Durability of concrete incorporating non-ground blast furnace slag and bottom ash as fine aggregate. Building and Environment, 42(7), 2651–2659. https://doi.org/10.1016/j.buildenv.2006.07.003spa
dc.relation.referencesZhang, Z., Choy Wong, Y., Arulrajah, A., & Horpibulsuk, S. (2018). A review of studies on bricks using alternative materials and approaches. Construction and Building Materials, 188, 1101–1118. https://doi.org/10.1016/j.conbuildmat.2018.08.152spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.agrovocCeniza
dc.subject.agrovocAshes
dc.subject.agrovocCeniza de madera
dc.subject.agrovocWood ash
dc.subject.agrovocPolvo de cenizas
dc.subject.agrovocFly ash
dc.subject.ddc690 - Construcción de edificios::691 - Materiales de construcciónspa
dc.subject.proposalResiduos Industrialesspa
dc.subject.proposalArcillaspa
dc.subject.proposalEconomía Circularspa
dc.subject.proposalSostenibilidadspa
dc.subject.proposalbrickseng
dc.subject.proposalcoal bottom asheng
dc.subject.proposalclayeng
dc.subject.proposalindustrial waste
dc.subject.proposalcircular economyeng
dc.subject.proposalsustainabilityeng
dc.subject.proposalLadrillosspa
dc.subject.proposalCenizas de fondo de carbónspa
dc.subject.unescoMateriales de construcción
dc.subject.unescoBuilding materials
dc.subject.unescoAdobe
dc.subject.unescoAdobe bricks
dc.titleAprovechamiento de cenizas de fondo de carbón como reemplazante de materia prima en la producción de ladrillos cerámicosspa
dc.title.translatedUse of coal bottom ash as a raw material replacement for the production of clay brickseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
1128440842.2022.pdf
Tamaño:
1.92 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Ingeniería Ambiental

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: