Caracterización de elección modal mediante la aplicación de regresión estadística considerando la heterogeneidad espacial

dc.contributor.advisorEscobar García, Diego Alexander
dc.contributor.authorAristizábal Salazar, Juan Esteban
dc.contributor.cvlacAristizábal Salazar, Juan Esteban [0001824750]
dc.contributor.googlescholarAristizábal Salazar, Juan Esteban [zetwXcYAAAAJ&hl]
dc.contributor.orcidAristizábal Salazar, Juan Esteban [0000000158591649]
dc.contributor.researchgateAristizábal Salazar, Juan Esteban [Juan-Aristizabal-Salazar]
dc.contributor.researchgroupGrupo de Trabajo Académico en Movilidad Sosteniblespa
dc.contributor.scopusAristizábal Salazar, Juan Esteban [58681405000]
dc.date.accessioned2025-04-02T16:52:34Z
dc.date.available2025-04-02T16:52:34Z
dc.date.issued2024
dc.descriptiongraficas, mapas, tablasspa
dc.description.abstractEn la toma de decisiones públicas en materia de transporte y planificación urbana, es clave conocer el uso que realiza la población de los medios de transporte disponibles en un área geográfica y, consecuentemente, caracterizar los determinantes tanto personales como colectivos en la decisión del modo de viaje de las personas. En esta investigación, se desarrollan técnicas de análisis de regresión sobre datos espaciales de patrones socioeconómicos, de transporte y del ambiente construido para caracterizar la elección modal de transporte público, caminata, automóvil y motocicleta en Manizales (Colombia). Con este objetivo, en este trabajo se emplean cuatro fases: (i) modelos de accesibilidad geográfica, (ii) recolección y ajuste de datos socioeconómicos, de transporte y del ambiente construido, (iii) análisis estadístico descriptivo y espacial, y (iv) modelos de regresión estadística. La aplicación de esta metodología y sus resultados exhiben interesantes asociaciones estadísticas de indicadores como la accesibilidad a servicios de proximidad, la posesión de vehículos, el costo temporal de los desplazamientos, los niveles educativos e ingresos en la tendencia al uso de transporte público, caminata, automóvil y motocicleta. Esta investigación propone un instrumento técnico para apoyar la estructuración e implementación de políticas públicas de movilidad, en la medida que suministra conocimiento acerca de la relación de patrones socioeconómicos, de transporte y del ambiente construido en la elección modal, bajo el objetivo de incentivar, desde la toma de decisiones públicas, una elección modal urbana de mayor eficiencia espacial, ambiental y económica, como la movilidad activa y el transporte público (Texto tomado de la fuente).spa
dc.description.abstractIn public decision-making for transportation and urban planning, it is essential to understand how the population uses the available transport modes within a geographic area and, consequently, to characterize the personal and collective determinants in people's travel mode decisions. In this research, regression analysis techniques are developed on spatial data of socioeconomic, transport and built environment patterns to characterize the modal choice of public transportation, walking, car, and motorcycle in Manizales (Colombia). In this sense, this work employs four stages: (i) geographic accessibility models, (ii) collection and adjustment of socioeconomic, transportation and built environment data, (iii) descriptive and spatial statistical analysis, and (iv) statistical regression models. The application of this methodology and its results show interesting statistical associations of indicators such as accessibility to proximity services, vehicle ownership, time cost of travel, education, and income levels on the tendency to use public transportation, walking, car, and motorcycle. This research proposes a technical instrument to support the structuring and implementation of public mobility policies, to the extent that it provides knowledge about the relationship between socioeconomic, transportation and built environment patterns in the modal choice, with the objective of encouraging, from public decision-making, an urban modal choice of greater spatial, environmental and economic efficiency, such as active mobility and public transportation.eng
dc.description.curricularareaIngeniería Civil.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería – Infraestructura y Sistemas de Transportespa
dc.description.methodsEn esta investigación, se desarrollan técnicas de análisis de regresión sobre datos espaciales de patrones socioeconómicos, de transporte y del ambiente construido para caracterizar la elección modal de transporte público, caminata, automóvil y motocicleta en Manizales (Colombia). Con este objetivo, en este trabajo se emplean cuatro fases: (i) modelos de accesibilidad geográfica, (ii) recolección y ajuste de datos socioeconómicos, de transporte y del ambiente construido, (iii) análisis estadístico descriptivo y espacial, y (iv) modelos de regresión estadística.spa
dc.description.researchareaAnálisis de accesibilidad territorialspa
dc.format.extentxii, 93 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87819
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Infraestructura y Sistemas de Transportespa
dc.relation.referencesAcevedo Bohórquez, I., & Velásquez Ceballos, E. (2008). Algunos conceptos de la econometría espacial y el análisis exploratorio de datos espaciales. Ecos de Economía, 27, 9–34.spa
dc.relation.referencesAndrienko, G., Andrienko, N., & Weibel, R. (2017). Geographic Data Science. IEEE Computer Graphics and Applications, 37(5), 15–17. https://doi.org/10.1109/MCG.2017.3621219spa
dc.relation.referencesAngotti, T., & Irazábal, C. (2017). Planning Latin American Cities. Latin American Perspectives, 44(2), 4–17. https://doi.org/10.1177/0094582X16689556spa
dc.relation.referencesAnselin, L. (1996). Interactive Techniques and Exploratory Spatial Data Analysis (200). https://researchrepository.wvu.edu/rri_pubsspa
dc.relation.referencesAristizábal, J. E., Sarache, W., & Escobar, D. A. (2023). Spatial regression model of urban walkability under the 15-minute city approach. GeoJournal of Tourism and Geosites, 49(3), 1037–1045. https://doi.org/10.30892/gtg.49319-1103spa
dc.relation.referencesBarbosa, H., Hazarie, S., Dickinson, B., Bassolas, A., Frank, A., Kautz, H., Sadilek, A., Ramasco, J. J., & Ghoshal, G. (2021). Uncovering the socioeconomic facets of human mobility. Scientific Reports, 11(1), 8616. https://doi.org/10.1038/s41598-021-87407-4spa
dc.relation.referencesBeale, C. M., Lennon, J. J., Yearsley, J. M., Brewer, M. J., & Elston, D. A. (2010). Regression analysis of spatial data. Ecology Letters, 13(2), 246–264. https://doi.org/10.1111/j.1461-0248.2009.01422.xspa
dc.relation.referencesBehrens, J. T. (1997). Principles and procedures of exploratory data analysis. Psychological Methods, 2(2), 131–160. https://doi.org/10.1037/1082-989X.2.2.131spa
dc.relation.referencesBesser, L., & Dannenberg, A. (2005). Walking to Public TransitSteps to Help Meet Physical Activity Recommendations. American Journal of Preventive Medicine, 29(4), 273–280. https://doi.org/10.1016/j.amepre.2005.06.010spa
dc.relation.referencesBrownstone, D., & Golob, T. F. (2009). The impact of residential density on vehicle usage and energy consumption. Journal of Urban Economics, 65(1), 91–98. https://doi.org/10.1016/j.jue.2008.09.002spa
dc.relation.referencesCalafiore, A., Dunning, R., Nurse, A., & Singleton, A. (2022). The 20-minute city: An equity analysis of Liverpool City Region. Transportation Research Part D: Transport and Environment, 102, 103111. https://doi.org/10.1016/j.trd.2021.103111spa
dc.relation.referencesCalvo, F., Eboli, L., Forciniti, C., & Mazzulla, G. (2019). Factors influencing trip generation on metro system in Madrid (Spain). Transportation Research Part D: Transport and Environment, 67, 156–172. https://doi.org/10.1016/j.trd.2018.11.021spa
dc.relation.referencesCantillo-García, V., Guzman, L. A., & Arellana, J. (2019). Socioeconomic strata as proxy variable for household income in transportation research. Evaluation for Bogotá, Medellín, Cali and Barranquilla. DYNA, 86(211), 258–267. https://doi.org/10.15446/dyna.v86n211.81821spa
dc.relation.referencesCavalcanti, C. de O., Limont, M., Dziedzic, M., & Fernandes, V. (2017). Sustainability assessment methodology of urban mobility projects. Land Use Policy, 60, 334–342. https://doi.org/10.1016/j.landusepol.2016.11.005spa
dc.relation.referencesCervero, R., & Duncan, M. (2003). Walking, Bicycling, and Urban Landscapes: Evidence From the San Francisco Bay Area. American Journal of Public Health, 93(9), 1478–1483. https://doi.org/10.2105/AJPH.93.9.1478spa
dc.relation.referencesChen, Y., Li, K., Zhou, Q., & Zhang, Y. (2022). Can Population Mobility Make Cities More Resilient? Evidence from the Analysis of Baidu Migration Big Data in China. International Journal of Environmental Research and Public Health, 20(1), 36. https://doi.org/10.3390/ijerph20010036spa
dc.relation.referencesClark, A., & Scott, D. (2014). Understanding the Impact of the Modifiable Areal Unit Problem on the Relationship between Active Travel and the Built Environment. Urban Studies, 51(2), 284–299. https://doi.org/10.1177/0042098013489742spa
dc.relation.referencesCliff, A. D., & Ord, K. (1976). Statistical modelling for geographically dependent and modifiable data. Advances in Applied Probability, 8(4), 653–653. https://doi.org/10.1017/S0001867800042737spa
dc.relation.referencesDepartamento Administrativo Nacional de Estadística (DANE). (2018). Censo Nacional de Población y Vivienda 2018.spa
dc.relation.referencesDuque, J. C., Lozano-Gracia, N., Patino, J. E., Restrepo, P., & Velasquez, W. A. (2019). Spatiotemporal dynamics of urban growth in Latin American cities: An analysis using nighttime light imagery. Landscape and Urban Planning, 191, 103640. https://doi.org/10.1016/j.landurbplan.2019.103640spa
dc.relation.referencesEscobar, D. A., Aristizábal, J. E., & Moncada, C. A. (2022). Análisis de la distribución espacial de cruces peatonales aplicando un modelo de accesibilidad geográfica. Caso de estudio: Avenida Santander, Manizales (Colombia). Información Tecnológica, 33(2), 157–168. https://doi.org/10.4067/s0718-07642022000200157spa
dc.relation.referencesEscobar, D. A., Sarache, W., & Jiménez-Riaño, E. (2022). The impact of a new aerial cable-car project on accessibility and CO2 emissions considering socioeconomic stratum. A case study in Colombia. Journal of Cleaner Production, 340. https://doi.org/10.1016/j.jclepro.2022.130802spa
dc.relation.referencesFood and Agriculture Organization of the United Nations (FAO). (2006). Guidelines for soil description (4th ed.).spa
dc.relation.referencesGandelman, N., Serebrisky, T., & Suárez-Alemán, A. (2019). Household spending on transport in Latin America and the Caribbean: A dimension of transport affordability in the region. Journal of Transport Geography, 79, 102482. https://doi.org/10.1016/j.jtrangeo.2019.102482spa
dc.relation.referencesGarcía-Ayllón, S. (2016). Rapid development as a factor of imbalance in urban growth of cities in Latin America: A perspective based on territorial indicators. Habitat International, 58, 127–142. https://doi.org/10.1016/j.habitatint.2016.10.005spa
dc.relation.referencesGetis, A. (2007). Reflections on spatial autocorrelation. Regional Science and Urban Economics, 37(4), 491–496. https://doi.org/10.1016/j.regsciurbeco.2007.04.005spa
dc.relation.referencesGetis, A. (2009). Spatial Weights Matrices. Geographical Analysis, 41(4), 404–410. https://doi.org/10.1111/j.1538-4632.2009.00768.xspa
dc.relation.referencesGómez Gélvez, J. A., & Obando Forero, C. (2014). La motorización, el número de viajes y la distribución modal en Bogotá: pasado y posible futuro. Revista de Ingeniería, 40, 6–13. https://doi.org/10.16924/revinge.40.1spa
dc.relation.referencesGómez, J. M., Moncada, C. A., & Escobar, D. A. (2022). University Infrastructure, Sustainable, and Equitable Accessibility? Study Case: Manizales–Villamaría (Colombia) Metropolitan Area. In The Science and Development of Transport—ZIRP 2021 (pp. 33–46). Springer International Publishing. https://doi.org/10.1007/978-3-030-97528-9_3spa
dc.relation.referencesGrande-Ayala, C. E., Marin, M. A., & Rincon-Garcia, N. (2024). Social sustainability in urban mobility: An approach for policies and urban planning from the Global South. Journal of Infrastructure, Policy and Development, 8(8), 5786. https://doi.org/10.24294/jipd.v8i8.5786spa
dc.relation.referencesGuzman, L. A., Arellana, J., Oviedo, D., Castaño Herrera, D., & Sarmiento, O. L. (2023). Lifting urban mobility for the poor: Cable-cars, travel satisfaction and subjective well-being. Transportation Research Part D: Transport and Environment, 119. https://doi.org/10.1016/j.trd.2023.103765spa
dc.relation.referencesHansen, W. G. (1959). How Accessibility Shapes Land Use. Journal of the American Institute of Planners, 25(2), 73–76. https://doi.org/10.1080/01944365908978307spa
dc.relation.referencesHaque, M. B., Choudhury, C., Hess, S., & Sourd, R. C. dit. (2019). Modelling residential mobility decision and its impact on car ownership and travel mode. Travel Behaviour and Society, 17, 104–119. https://doi.org/10.1016/j.tbs.2019.07.005spa
dc.relation.referencesHeinen, E., Harshfield, A., Panter, J., Mackett, R., & Ogilvie, D. (2017). Does exposure to new transport infrastructure result in modal shifts? Patterns of change in commute mode choices in a four-year quasi-experimental cohort study. Journal of Transport & Health, 6, 396–410. https://doi.org/10.1016/j.jth.2017.07.009spa
dc.relation.referencesHidalgo, D., & Huizenga, C. (2013). Implementation of sustainable urban transport in Latin America. Research in Transportation Economics, 40(1), 66–77. https://doi.org/10.1016/j.retrec.2012.06.034spa
dc.relation.referencesHildebrand, M. (2021). Mobilidade urbana à luz da justiça social: convite a uma perspectiva alternativa. Revista INVI, 36(102), 20–53. https://doi.org/10.4067/S0718-83582021000200020spa
dc.relation.referencesJeon, J. H., Kho, S. Y., Park, J. J., & Kim, D. K. (2012). Effects of spatial aggregation level on an urban transportation planning model. KSCE Journal of Civil Engineering, 16(5), 835–844. https://doi.org/10.1007/s12205-012-1400-4spa
dc.relation.referencesKumar, A. (1990). Impact of Technological Developments on Urban Form and Travel Behaviour. Regional Studies, 24(2), 137–148. https://doi.org/10.1080/00343409012331345854spa
dc.relation.referencesLawson, C. T., Krans, E., Rentz, E. (Green), & Lynch, J. (2023). Emerging trends in household travel survey programs. Social Sciences & Humanities Open, 7(1), 100466. https://doi.org/10.1016/j.ssaho.2023.100466spa
dc.relation.referencesLi, J., Lo, K., & Guo, M. (2018). What Influences the Choice Between Private Car and Public Transport for Shopping Trips? Impact of Socio-economic and Built Environment Factors. Journal of Asian Energy Studies, 2(1). https://doi.org/10.24112/jaes.020103spa
dc.relation.referencesLiang, K. Y., & Zeger, S. L. (1993). Regression Analysis for Correlated Data. Annual Review of Public Health, 14(1), 43–68. https://doi.org/10.1146/annurev.pu.14.050193.000355spa
dc.relation.referencesLiu, D., & Lam, W. H. K. (2014). Modeling the Effects of Population Density on Prospect Theory-Based Travel Mode-Choice Equilibrium. Journal of Intelligent Transportation Systems, 18(4), 379–392. https://doi.org/10.1080/15472450.2013.806745spa
dc.relation.referencesLiu, M., Liu, Y., & Ye, Y. (2023). Nonlinear effects of built environment features on metro ridership: An integrated exploration with machine learning considering spatial heterogeneity. Sustainable Cities and Society, 95. https://doi.org/10.1016/j.scs.2023.104613spa
dc.relation.referencesLiu, Y., Min, S., Shi, Z., & He, M. (2024). Exploring students’ choice of active travel to school in different spatial environments: A case study in a mountain city. Journal of Transport Geography, 115, 103795. https://doi.org/10.1016/j.jtrangeo.2024.103795spa
dc.relation.referencesLucas, K. (2012). Transport and social exclusion: Where are we now? Transport Policy, 20, 105–113. https://doi.org/10.1016/j.tranpol.2012.01.013spa
dc.relation.referencesMarquet, O., & Miralles-Guasch, C. (2018). Resilient territories and mobility adaptation strategies in times of economic recession: Evidence from the metropolitan region of Barcelona, Spain 2004–2012. European Urban and Regional Studies, 25(4), 345–359. https://doi.org/10.1177/0969776417703158spa
dc.relation.referencesMcNally, M. G. (2007). The Four-Step Model (pp. 35–53). https://doi.org/10.1108/9780857245670-003spa
dc.relation.referencesMiller, H. J. (1999). Potential Contributions of Spatial Analysis to Geographic Information Systems for Transportation (GIS‐T). Geographical Analysis, 31(4), 373–399. https://doi.org/10.1111/j.1538-4632.1999.tb00991.xspa
dc.relation.referencesMontoya, J. A., Escobar, D. A., & Moncada, C. A. (2021). Condiciones de accesibilidad del transporte automotor privado dada la propuesta de construcción de una infraestructura ciclista. Información Tecnológica, 32(5), 45–56. https://doi.org/10.4067/s0718-07642021000500045spa
dc.relation.referencesMontoya, J. A., Escobar, D. A., & Moncada, C. A. (2023). Test de la variabilidad en las condiciones de accesibilidad urbana ofrecida por el sistema de transporte público en Manizales (Colombia). Información Tecnológica, 34(2), 99–110. https://doi.org/10.4067/s0718-07642023000200099spa
dc.relation.referencesMoreno, C., Allam, Z., Chabaud, D., Gall, C., & Pratlong, F. (2021). Introducing the “15-Minute City”: Sustainability, Resilience and Place Identity in Future Post-Pandemic Cities. Smart Cities, 4(1), 93–11. https://doi.org/10.3390/smartcitiesspa
dc.relation.referencesMunshi, T. (2016). Built environment and mode choice relationship for commute travel in the city of Rajkot, India. Transportation Research Part D: Transport and Environment, 44, 239–253. https://doi.org/10.1016/j.trd.2015.12.005spa
dc.relation.referencesOrtúzar, J. de D., & Willumsen, L. G. (2011). Modelling Transport (4th ed.). Wiley. https://doi.org/10.1002/9781119993308spa
dc.relation.referencesO’Sullivan, D., & Unwin, D. J. (2010). Geographic Information Analysis. Wiley. https://doi.org/10.1002/9780470549094spa
dc.relation.referencesOviedo, D., & Guzmán, L. Á. (2020). Should Urban Transport Become a Social Policy? Interrogating the Role of Accessibility in Social Equity and Urban Development in Bogotá, Colombia. In Urban Mobility and Social Equity in Latin America: Evidence, Concepts, Methods (Vol. 12, pp. 11–32). Emerald Publishing Limited. https://doi.org/10.1108/S2044-994120200000012005spa
dc.relation.referencesPaiva, S., Ahad, M., Tripathi, G., Feroz, N., & Casalino, G. (2021). Enabling Technologies for Urban Smart Mobility: Recent Trends, Opportunities and Challenges. Sensors, 21(6), 2143. https://doi.org/10.3390/s21062143spa
dc.relation.referencesPoole, M. A., & O’Farrell, P. N. (1971). The Assumptions of the Linear Regression Model. Transactions of the Institute of British Geographers, 52, 145. https://doi.org/10.2307/621706spa
dc.relation.referencesRyan, J. (2020). Examining the Process of Modal Choice for Everyday Travel Among Older People. International Journal of Environmental Research and Public Health, 17(3), 691. https://doi.org/10.3390/ijerph17030691spa
dc.relation.referencesSantana, M. (2009). Análisis comparativo de metodologías estadísticas y definición de variables de las encuestas de viajes de Bogotá, años 1995 y 2005. Revista de Ingeniería, 29, 148–155. https://doi.org/10.16924/revinge.29.17spa
dc.relation.referencesSchwanen, T., Dieleman, F. M., & Dijst, M. (2001). Travel behaviour in Dutch monocentric and policentric urban systems. Journal of Transport Geography, 9(3), 173–186. https://doi.org/10.1016/S0966-6923(01)00009-6spa
dc.relation.referencesSeredynski, M. (2023). Pathways to reducing the negative impact of urban transport on climate change. IET Smart Cities, 5(1), 41–48. https://doi.org/10.1049/smc2.12043spa
dc.relation.referencesSohoni, A. V, Thomas, M., & Rao, K. V. K. (2017). Mode shift behavior of commuters due to the introduction of new rail transit mode. Transportation Research Procedia, 25, 2603–2618. https://doi.org/10.1016/j.trpro.2017.05.311spa
dc.relation.referencesStapor, K. (2020). Descriptive and Inferential Statistics (pp. 63–131). https://doi.org/10.1007/978-3-030-45799-0_2spa
dc.relation.referencesSteer Davies Gleave. (2017). Línea base y diagnóstico de la situación actual de la movilidad de Manizales. Plan Maestro de Movilidad de Manizales.spa
dc.relation.referencesSultana, S., Salon, D., & Kuby, M. (2019). Transportation sustainability in the urban context: a comprehensive review. Urban Geography, 40(3), 279–308. https://doi.org/10.1080/02723638.2017.1395635spa
dc.relation.referencesTobler, W. R. (1970). A Computer Movie Simulating Urban Growth in the Detroit Region. Economic Geography, 46, 234. https://doi.org/10.2307/143141spa
dc.relation.referencesWang, F., Fan, W., Lin, X., Liu, J., & Ye, X. (2020). Does Population Mobility Contribute to Urbanization Convergence? Empirical Evidence from Three Major Urban Agglomerations in China. Sustainability, 12(2), 458. https://doi.org/10.3390/su12020458spa
dc.relation.referencesWang, J., Haining, R., Zhang, T., Xu, C., Hu, M., Yin, Q., Li, L., Zhou, C., Li, G., & Chen, H. (2024). Statistical Modeling of Spatially Stratified Heterogeneous Data. Annals of the American Association of Geographers, 114(3), 499–519. https://doi.org/10.1080/24694452.2023.2289982spa
dc.relation.referencesWhalen, K. E., Páez, A., & Carrasco, J. A. (2013). Mode choice of university students commuting to school and the role of active travel. Journal of Transport Geography, 31, 132–142. https://doi.org/10.1016/j.jtrangeo.2013.06.008spa
dc.relation.referencesWinkler, L., Pearce, D., Nelson, J., & Babacan, O. (2023). The effect of sustainable mobility transition policies on cumulative urban transport emissions and energy demand. Nature Communications, 14(1), 2357. https://doi.org/10.1038/s41467-023-37728-xspa
dc.relation.referencesWójcik, S. (2019). The determinants of travel mode choice: the case of Łódź, Poland. Bulletin of Geography. Socio-Economic Series, 44(44), 93–101. https://doi.org/10.2478/bog-2019-0018spa
dc.relation.referencesYang, Y., & Diez-Roux, A. V. (2012). Walking Distance by Trip Purpose and Population Subgroups. American Journal of Preventive Medicine, 43(1), 11–19. https://doi.org/10.1016/j.amepre.2012.03.015spa
dc.relation.referencesYang, Y., Samaranayake, S., & Dogan, T. (2023). A clustering-based approach to quantifying socio-demographic impacts on urban mobility patterns. Environment and Planning B: Urban Analytics and City Science, 50(9), 2452–2469. https://doi.org/10.1177/23998083231159909spa
dc.relation.referencesZhang, M., & Kukadia, N. (2005). Metrics of Urban Form and the Modifiable Areal Unit Problem. Transportation Research Record: Journal of the Transportation Research Board, 1902, 71–79. https://doi.org/10.3141/1902-09spa
dc.relation.referencesZhao, X., Ke, Y., Zuo, J., Xiong, W., & Wu, P. (2020). Evaluation of sustainable transport research in 2000–2019. Journal of Cleaner Production, 256, 120404. https://doi.org/10.1016/j.jclepro.2020.120404spa
dc.relation.referencesZhu, D., & Liu, Y. (2018). Modelling Irregular Spatial Patterns using Graph Convolutional Neural Networks. 10th International Conference on Geographic Information Science (GIScience2018). https://doi.org/https://doi.org/10.4230/LIPIcs.GISCIENCE.2018.73spa
dc.relation.referencesZuluaga, J. D., Escobar, D. A., & Moncada, C. A. (2021). Aplicación de la predicción espacial para el mejoramiento de la cobertura del sistema de bicicletas compartidas en Manizales, Colombia. Información Tecnológica, 32(4), 121–132. https://doi.org/10.4067/s0718-07642021000400121spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::624 - Ingeniería civilspa
dc.subject.proposalElección modalspa
dc.subject.proposalAnálisis de regresiónspa
dc.subject.proposalHeterogeneidad espacialspa
dc.subject.proposalAmbiente construidospa
dc.subject.proposalEstadística espacialspa
dc.subject.proposalMovilidad urbanaspa
dc.subject.proposalModal choiceeng
dc.subject.proposalRegression analysiseng
dc.subject.proposalSpatial heterogeneityeng
dc.subject.proposalBuilt environmenteng
dc.subject.proposalSpatial statisticseng
dc.subject.proposalUrban mobilityeng
dc.subject.unescoTransporte públicospa
dc.subject.unescoPublic transporteng
dc.subject.unescoPlanificación urbanaspa
dc.subject.unescoUrban planningeng
dc.subject.unescoDesarrollo sosteniblespa
dc.subject.unescoSustainable developmenteng
dc.titleCaracterización de elección modal mediante la aplicación de regresión estadística considerando la heterogeneidad espacialspa
dc.title.translatedCharacterization of modal choice by applying statistical regression considering spatial heterogeneityeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053873255.2025.pdf
Tamaño:
4.28 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Infraestructura y Sistemas de Transporte

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: