Caracterización de elección modal mediante la aplicación de regresión estadística considerando la heterogeneidad espacial
dc.contributor.advisor | Escobar García, Diego Alexander | |
dc.contributor.author | Aristizábal Salazar, Juan Esteban | |
dc.contributor.cvlac | Aristizábal Salazar, Juan Esteban [0001824750] | |
dc.contributor.googlescholar | Aristizábal Salazar, Juan Esteban [zetwXcYAAAAJ&hl] | |
dc.contributor.orcid | Aristizábal Salazar, Juan Esteban [0000000158591649] | |
dc.contributor.researchgate | Aristizábal Salazar, Juan Esteban [Juan-Aristizabal-Salazar] | |
dc.contributor.researchgroup | Grupo de Trabajo Académico en Movilidad Sostenible | spa |
dc.contributor.scopus | Aristizábal Salazar, Juan Esteban [58681405000] | |
dc.date.accessioned | 2025-04-02T16:52:34Z | |
dc.date.available | 2025-04-02T16:52:34Z | |
dc.date.issued | 2024 | |
dc.description | graficas, mapas, tablas | spa |
dc.description.abstract | En la toma de decisiones públicas en materia de transporte y planificación urbana, es clave conocer el uso que realiza la población de los medios de transporte disponibles en un área geográfica y, consecuentemente, caracterizar los determinantes tanto personales como colectivos en la decisión del modo de viaje de las personas. En esta investigación, se desarrollan técnicas de análisis de regresión sobre datos espaciales de patrones socioeconómicos, de transporte y del ambiente construido para caracterizar la elección modal de transporte público, caminata, automóvil y motocicleta en Manizales (Colombia). Con este objetivo, en este trabajo se emplean cuatro fases: (i) modelos de accesibilidad geográfica, (ii) recolección y ajuste de datos socioeconómicos, de transporte y del ambiente construido, (iii) análisis estadístico descriptivo y espacial, y (iv) modelos de regresión estadística. La aplicación de esta metodología y sus resultados exhiben interesantes asociaciones estadísticas de indicadores como la accesibilidad a servicios de proximidad, la posesión de vehículos, el costo temporal de los desplazamientos, los niveles educativos e ingresos en la tendencia al uso de transporte público, caminata, automóvil y motocicleta. Esta investigación propone un instrumento técnico para apoyar la estructuración e implementación de políticas públicas de movilidad, en la medida que suministra conocimiento acerca de la relación de patrones socioeconómicos, de transporte y del ambiente construido en la elección modal, bajo el objetivo de incentivar, desde la toma de decisiones públicas, una elección modal urbana de mayor eficiencia espacial, ambiental y económica, como la movilidad activa y el transporte público (Texto tomado de la fuente). | spa |
dc.description.abstract | In public decision-making for transportation and urban planning, it is essential to understand how the population uses the available transport modes within a geographic area and, consequently, to characterize the personal and collective determinants in people's travel mode decisions. In this research, regression analysis techniques are developed on spatial data of socioeconomic, transport and built environment patterns to characterize the modal choice of public transportation, walking, car, and motorcycle in Manizales (Colombia). In this sense, this work employs four stages: (i) geographic accessibility models, (ii) collection and adjustment of socioeconomic, transportation and built environment data, (iii) descriptive and spatial statistical analysis, and (iv) statistical regression models. The application of this methodology and its results show interesting statistical associations of indicators such as accessibility to proximity services, vehicle ownership, time cost of travel, education, and income levels on the tendency to use public transportation, walking, car, and motorcycle. This research proposes a technical instrument to support the structuring and implementation of public mobility policies, to the extent that it provides knowledge about the relationship between socioeconomic, transportation and built environment patterns in the modal choice, with the objective of encouraging, from public decision-making, an urban modal choice of greater spatial, environmental and economic efficiency, such as active mobility and public transportation. | eng |
dc.description.curriculararea | Ingeniería Civil.Sede Manizales | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ingeniería – Infraestructura y Sistemas de Transporte | spa |
dc.description.methods | En esta investigación, se desarrollan técnicas de análisis de regresión sobre datos espaciales de patrones socioeconómicos, de transporte y del ambiente construido para caracterizar la elección modal de transporte público, caminata, automóvil y motocicleta en Manizales (Colombia). Con este objetivo, en este trabajo se emplean cuatro fases: (i) modelos de accesibilidad geográfica, (ii) recolección y ajuste de datos socioeconómicos, de transporte y del ambiente construido, (iii) análisis estadístico descriptivo y espacial, y (iv) modelos de regresión estadística. | spa |
dc.description.researcharea | Análisis de accesibilidad territorial | spa |
dc.format.extent | xii, 93 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87819 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Manizales | spa |
dc.publisher.faculty | Facultad de Ingeniería y Arquitectura | spa |
dc.publisher.place | Manizales, Colombia | spa |
dc.publisher.program | Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Infraestructura y Sistemas de Transporte | spa |
dc.relation.references | Acevedo Bohórquez, I., & Velásquez Ceballos, E. (2008). Algunos conceptos de la econometría espacial y el análisis exploratorio de datos espaciales. Ecos de Economía, 27, 9–34. | spa |
dc.relation.references | Andrienko, G., Andrienko, N., & Weibel, R. (2017). Geographic Data Science. IEEE Computer Graphics and Applications, 37(5), 15–17. https://doi.org/10.1109/MCG.2017.3621219 | spa |
dc.relation.references | Angotti, T., & Irazábal, C. (2017). Planning Latin American Cities. Latin American Perspectives, 44(2), 4–17. https://doi.org/10.1177/0094582X16689556 | spa |
dc.relation.references | Anselin, L. (1996). Interactive Techniques and Exploratory Spatial Data Analysis (200). https://researchrepository.wvu.edu/rri_pubs | spa |
dc.relation.references | Aristizábal, J. E., Sarache, W., & Escobar, D. A. (2023). Spatial regression model of urban walkability under the 15-minute city approach. GeoJournal of Tourism and Geosites, 49(3), 1037–1045. https://doi.org/10.30892/gtg.49319-1103 | spa |
dc.relation.references | Barbosa, H., Hazarie, S., Dickinson, B., Bassolas, A., Frank, A., Kautz, H., Sadilek, A., Ramasco, J. J., & Ghoshal, G. (2021). Uncovering the socioeconomic facets of human mobility. Scientific Reports, 11(1), 8616. https://doi.org/10.1038/s41598-021-87407-4 | spa |
dc.relation.references | Beale, C. M., Lennon, J. J., Yearsley, J. M., Brewer, M. J., & Elston, D. A. (2010). Regression analysis of spatial data. Ecology Letters, 13(2), 246–264. https://doi.org/10.1111/j.1461-0248.2009.01422.x | spa |
dc.relation.references | Behrens, J. T. (1997). Principles and procedures of exploratory data analysis. Psychological Methods, 2(2), 131–160. https://doi.org/10.1037/1082-989X.2.2.131 | spa |
dc.relation.references | Besser, L., & Dannenberg, A. (2005). Walking to Public TransitSteps to Help Meet Physical Activity Recommendations. American Journal of Preventive Medicine, 29(4), 273–280. https://doi.org/10.1016/j.amepre.2005.06.010 | spa |
dc.relation.references | Brownstone, D., & Golob, T. F. (2009). The impact of residential density on vehicle usage and energy consumption. Journal of Urban Economics, 65(1), 91–98. https://doi.org/10.1016/j.jue.2008.09.002 | spa |
dc.relation.references | Calafiore, A., Dunning, R., Nurse, A., & Singleton, A. (2022). The 20-minute city: An equity analysis of Liverpool City Region. Transportation Research Part D: Transport and Environment, 102, 103111. https://doi.org/10.1016/j.trd.2021.103111 | spa |
dc.relation.references | Calvo, F., Eboli, L., Forciniti, C., & Mazzulla, G. (2019). Factors influencing trip generation on metro system in Madrid (Spain). Transportation Research Part D: Transport and Environment, 67, 156–172. https://doi.org/10.1016/j.trd.2018.11.021 | spa |
dc.relation.references | Cantillo-García, V., Guzman, L. A., & Arellana, J. (2019). Socioeconomic strata as proxy variable for household income in transportation research. Evaluation for Bogotá, Medellín, Cali and Barranquilla. DYNA, 86(211), 258–267. https://doi.org/10.15446/dyna.v86n211.81821 | spa |
dc.relation.references | Cavalcanti, C. de O., Limont, M., Dziedzic, M., & Fernandes, V. (2017). Sustainability assessment methodology of urban mobility projects. Land Use Policy, 60, 334–342. https://doi.org/10.1016/j.landusepol.2016.11.005 | spa |
dc.relation.references | Cervero, R., & Duncan, M. (2003). Walking, Bicycling, and Urban Landscapes: Evidence From the San Francisco Bay Area. American Journal of Public Health, 93(9), 1478–1483. https://doi.org/10.2105/AJPH.93.9.1478 | spa |
dc.relation.references | Chen, Y., Li, K., Zhou, Q., & Zhang, Y. (2022). Can Population Mobility Make Cities More Resilient? Evidence from the Analysis of Baidu Migration Big Data in China. International Journal of Environmental Research and Public Health, 20(1), 36. https://doi.org/10.3390/ijerph20010036 | spa |
dc.relation.references | Clark, A., & Scott, D. (2014). Understanding the Impact of the Modifiable Areal Unit Problem on the Relationship between Active Travel and the Built Environment. Urban Studies, 51(2), 284–299. https://doi.org/10.1177/0042098013489742 | spa |
dc.relation.references | Cliff, A. D., & Ord, K. (1976). Statistical modelling for geographically dependent and modifiable data. Advances in Applied Probability, 8(4), 653–653. https://doi.org/10.1017/S0001867800042737 | spa |
dc.relation.references | Departamento Administrativo Nacional de Estadística (DANE). (2018). Censo Nacional de Población y Vivienda 2018. | spa |
dc.relation.references | Duque, J. C., Lozano-Gracia, N., Patino, J. E., Restrepo, P., & Velasquez, W. A. (2019). Spatiotemporal dynamics of urban growth in Latin American cities: An analysis using nighttime light imagery. Landscape and Urban Planning, 191, 103640. https://doi.org/10.1016/j.landurbplan.2019.103640 | spa |
dc.relation.references | Escobar, D. A., Aristizábal, J. E., & Moncada, C. A. (2022). Análisis de la distribución espacial de cruces peatonales aplicando un modelo de accesibilidad geográfica. Caso de estudio: Avenida Santander, Manizales (Colombia). Información Tecnológica, 33(2), 157–168. https://doi.org/10.4067/s0718-07642022000200157 | spa |
dc.relation.references | Escobar, D. A., Sarache, W., & Jiménez-Riaño, E. (2022). The impact of a new aerial cable-car project on accessibility and CO2 emissions considering socioeconomic stratum. A case study in Colombia. Journal of Cleaner Production, 340. https://doi.org/10.1016/j.jclepro.2022.130802 | spa |
dc.relation.references | Food and Agriculture Organization of the United Nations (FAO). (2006). Guidelines for soil description (4th ed.). | spa |
dc.relation.references | Gandelman, N., Serebrisky, T., & Suárez-Alemán, A. (2019). Household spending on transport in Latin America and the Caribbean: A dimension of transport affordability in the region. Journal of Transport Geography, 79, 102482. https://doi.org/10.1016/j.jtrangeo.2019.102482 | spa |
dc.relation.references | García-Ayllón, S. (2016). Rapid development as a factor of imbalance in urban growth of cities in Latin America: A perspective based on territorial indicators. Habitat International, 58, 127–142. https://doi.org/10.1016/j.habitatint.2016.10.005 | spa |
dc.relation.references | Getis, A. (2007). Reflections on spatial autocorrelation. Regional Science and Urban Economics, 37(4), 491–496. https://doi.org/10.1016/j.regsciurbeco.2007.04.005 | spa |
dc.relation.references | Getis, A. (2009). Spatial Weights Matrices. Geographical Analysis, 41(4), 404–410. https://doi.org/10.1111/j.1538-4632.2009.00768.x | spa |
dc.relation.references | Gómez Gélvez, J. A., & Obando Forero, C. (2014). La motorización, el número de viajes y la distribución modal en Bogotá: pasado y posible futuro. Revista de Ingeniería, 40, 6–13. https://doi.org/10.16924/revinge.40.1 | spa |
dc.relation.references | Gómez, J. M., Moncada, C. A., & Escobar, D. A. (2022). University Infrastructure, Sustainable, and Equitable Accessibility? Study Case: Manizales–Villamaría (Colombia) Metropolitan Area. In The Science and Development of Transport—ZIRP 2021 (pp. 33–46). Springer International Publishing. https://doi.org/10.1007/978-3-030-97528-9_3 | spa |
dc.relation.references | Grande-Ayala, C. E., Marin, M. A., & Rincon-Garcia, N. (2024). Social sustainability in urban mobility: An approach for policies and urban planning from the Global South. Journal of Infrastructure, Policy and Development, 8(8), 5786. https://doi.org/10.24294/jipd.v8i8.5786 | spa |
dc.relation.references | Guzman, L. A., Arellana, J., Oviedo, D., Castaño Herrera, D., & Sarmiento, O. L. (2023). Lifting urban mobility for the poor: Cable-cars, travel satisfaction and subjective well-being. Transportation Research Part D: Transport and Environment, 119. https://doi.org/10.1016/j.trd.2023.103765 | spa |
dc.relation.references | Hansen, W. G. (1959). How Accessibility Shapes Land Use. Journal of the American Institute of Planners, 25(2), 73–76. https://doi.org/10.1080/01944365908978307 | spa |
dc.relation.references | Haque, M. B., Choudhury, C., Hess, S., & Sourd, R. C. dit. (2019). Modelling residential mobility decision and its impact on car ownership and travel mode. Travel Behaviour and Society, 17, 104–119. https://doi.org/10.1016/j.tbs.2019.07.005 | spa |
dc.relation.references | Heinen, E., Harshfield, A., Panter, J., Mackett, R., & Ogilvie, D. (2017). Does exposure to new transport infrastructure result in modal shifts? Patterns of change in commute mode choices in a four-year quasi-experimental cohort study. Journal of Transport & Health, 6, 396–410. https://doi.org/10.1016/j.jth.2017.07.009 | spa |
dc.relation.references | Hidalgo, D., & Huizenga, C. (2013). Implementation of sustainable urban transport in Latin America. Research in Transportation Economics, 40(1), 66–77. https://doi.org/10.1016/j.retrec.2012.06.034 | spa |
dc.relation.references | Hildebrand, M. (2021). Mobilidade urbana à luz da justiça social: convite a uma perspectiva alternativa. Revista INVI, 36(102), 20–53. https://doi.org/10.4067/S0718-83582021000200020 | spa |
dc.relation.references | Jeon, J. H., Kho, S. Y., Park, J. J., & Kim, D. K. (2012). Effects of spatial aggregation level on an urban transportation planning model. KSCE Journal of Civil Engineering, 16(5), 835–844. https://doi.org/10.1007/s12205-012-1400-4 | spa |
dc.relation.references | Kumar, A. (1990). Impact of Technological Developments on Urban Form and Travel Behaviour. Regional Studies, 24(2), 137–148. https://doi.org/10.1080/00343409012331345854 | spa |
dc.relation.references | Lawson, C. T., Krans, E., Rentz, E. (Green), & Lynch, J. (2023). Emerging trends in household travel survey programs. Social Sciences & Humanities Open, 7(1), 100466. https://doi.org/10.1016/j.ssaho.2023.100466 | spa |
dc.relation.references | Li, J., Lo, K., & Guo, M. (2018). What Influences the Choice Between Private Car and Public Transport for Shopping Trips? Impact of Socio-economic and Built Environment Factors. Journal of Asian Energy Studies, 2(1). https://doi.org/10.24112/jaes.020103 | spa |
dc.relation.references | Liang, K. Y., & Zeger, S. L. (1993). Regression Analysis for Correlated Data. Annual Review of Public Health, 14(1), 43–68. https://doi.org/10.1146/annurev.pu.14.050193.000355 | spa |
dc.relation.references | Liu, D., & Lam, W. H. K. (2014). Modeling the Effects of Population Density on Prospect Theory-Based Travel Mode-Choice Equilibrium. Journal of Intelligent Transportation Systems, 18(4), 379–392. https://doi.org/10.1080/15472450.2013.806745 | spa |
dc.relation.references | Liu, M., Liu, Y., & Ye, Y. (2023). Nonlinear effects of built environment features on metro ridership: An integrated exploration with machine learning considering spatial heterogeneity. Sustainable Cities and Society, 95. https://doi.org/10.1016/j.scs.2023.104613 | spa |
dc.relation.references | Liu, Y., Min, S., Shi, Z., & He, M. (2024). Exploring students’ choice of active travel to school in different spatial environments: A case study in a mountain city. Journal of Transport Geography, 115, 103795. https://doi.org/10.1016/j.jtrangeo.2024.103795 | spa |
dc.relation.references | Lucas, K. (2012). Transport and social exclusion: Where are we now? Transport Policy, 20, 105–113. https://doi.org/10.1016/j.tranpol.2012.01.013 | spa |
dc.relation.references | Marquet, O., & Miralles-Guasch, C. (2018). Resilient territories and mobility adaptation strategies in times of economic recession: Evidence from the metropolitan region of Barcelona, Spain 2004–2012. European Urban and Regional Studies, 25(4), 345–359. https://doi.org/10.1177/0969776417703158 | spa |
dc.relation.references | McNally, M. G. (2007). The Four-Step Model (pp. 35–53). https://doi.org/10.1108/9780857245670-003 | spa |
dc.relation.references | Miller, H. J. (1999). Potential Contributions of Spatial Analysis to Geographic Information Systems for Transportation (GIS‐T). Geographical Analysis, 31(4), 373–399. https://doi.org/10.1111/j.1538-4632.1999.tb00991.x | spa |
dc.relation.references | Montoya, J. A., Escobar, D. A., & Moncada, C. A. (2021). Condiciones de accesibilidad del transporte automotor privado dada la propuesta de construcción de una infraestructura ciclista. Información Tecnológica, 32(5), 45–56. https://doi.org/10.4067/s0718-07642021000500045 | spa |
dc.relation.references | Montoya, J. A., Escobar, D. A., & Moncada, C. A. (2023). Test de la variabilidad en las condiciones de accesibilidad urbana ofrecida por el sistema de transporte público en Manizales (Colombia). Información Tecnológica, 34(2), 99–110. https://doi.org/10.4067/s0718-07642023000200099 | spa |
dc.relation.references | Moreno, C., Allam, Z., Chabaud, D., Gall, C., & Pratlong, F. (2021). Introducing the “15-Minute City”: Sustainability, Resilience and Place Identity in Future Post-Pandemic Cities. Smart Cities, 4(1), 93–11. https://doi.org/10.3390/smartcities | spa |
dc.relation.references | Munshi, T. (2016). Built environment and mode choice relationship for commute travel in the city of Rajkot, India. Transportation Research Part D: Transport and Environment, 44, 239–253. https://doi.org/10.1016/j.trd.2015.12.005 | spa |
dc.relation.references | Ortúzar, J. de D., & Willumsen, L. G. (2011). Modelling Transport (4th ed.). Wiley. https://doi.org/10.1002/9781119993308 | spa |
dc.relation.references | O’Sullivan, D., & Unwin, D. J. (2010). Geographic Information Analysis. Wiley. https://doi.org/10.1002/9780470549094 | spa |
dc.relation.references | Oviedo, D., & Guzmán, L. Á. (2020). Should Urban Transport Become a Social Policy? Interrogating the Role of Accessibility in Social Equity and Urban Development in Bogotá, Colombia. In Urban Mobility and Social Equity in Latin America: Evidence, Concepts, Methods (Vol. 12, pp. 11–32). Emerald Publishing Limited. https://doi.org/10.1108/S2044-994120200000012005 | spa |
dc.relation.references | Paiva, S., Ahad, M., Tripathi, G., Feroz, N., & Casalino, G. (2021). Enabling Technologies for Urban Smart Mobility: Recent Trends, Opportunities and Challenges. Sensors, 21(6), 2143. https://doi.org/10.3390/s21062143 | spa |
dc.relation.references | Poole, M. A., & O’Farrell, P. N. (1971). The Assumptions of the Linear Regression Model. Transactions of the Institute of British Geographers, 52, 145. https://doi.org/10.2307/621706 | spa |
dc.relation.references | Ryan, J. (2020). Examining the Process of Modal Choice for Everyday Travel Among Older People. International Journal of Environmental Research and Public Health, 17(3), 691. https://doi.org/10.3390/ijerph17030691 | spa |
dc.relation.references | Santana, M. (2009). Análisis comparativo de metodologías estadísticas y definición de variables de las encuestas de viajes de Bogotá, años 1995 y 2005. Revista de Ingeniería, 29, 148–155. https://doi.org/10.16924/revinge.29.17 | spa |
dc.relation.references | Schwanen, T., Dieleman, F. M., & Dijst, M. (2001). Travel behaviour in Dutch monocentric and policentric urban systems. Journal of Transport Geography, 9(3), 173–186. https://doi.org/10.1016/S0966-6923(01)00009-6 | spa |
dc.relation.references | Seredynski, M. (2023). Pathways to reducing the negative impact of urban transport on climate change. IET Smart Cities, 5(1), 41–48. https://doi.org/10.1049/smc2.12043 | spa |
dc.relation.references | Sohoni, A. V, Thomas, M., & Rao, K. V. K. (2017). Mode shift behavior of commuters due to the introduction of new rail transit mode. Transportation Research Procedia, 25, 2603–2618. https://doi.org/10.1016/j.trpro.2017.05.311 | spa |
dc.relation.references | Stapor, K. (2020). Descriptive and Inferential Statistics (pp. 63–131). https://doi.org/10.1007/978-3-030-45799-0_2 | spa |
dc.relation.references | Steer Davies Gleave. (2017). Línea base y diagnóstico de la situación actual de la movilidad de Manizales. Plan Maestro de Movilidad de Manizales. | spa |
dc.relation.references | Sultana, S., Salon, D., & Kuby, M. (2019). Transportation sustainability in the urban context: a comprehensive review. Urban Geography, 40(3), 279–308. https://doi.org/10.1080/02723638.2017.1395635 | spa |
dc.relation.references | Tobler, W. R. (1970). A Computer Movie Simulating Urban Growth in the Detroit Region. Economic Geography, 46, 234. https://doi.org/10.2307/143141 | spa |
dc.relation.references | Wang, F., Fan, W., Lin, X., Liu, J., & Ye, X. (2020). Does Population Mobility Contribute to Urbanization Convergence? Empirical Evidence from Three Major Urban Agglomerations in China. Sustainability, 12(2), 458. https://doi.org/10.3390/su12020458 | spa |
dc.relation.references | Wang, J., Haining, R., Zhang, T., Xu, C., Hu, M., Yin, Q., Li, L., Zhou, C., Li, G., & Chen, H. (2024). Statistical Modeling of Spatially Stratified Heterogeneous Data. Annals of the American Association of Geographers, 114(3), 499–519. https://doi.org/10.1080/24694452.2023.2289982 | spa |
dc.relation.references | Whalen, K. E., Páez, A., & Carrasco, J. A. (2013). Mode choice of university students commuting to school and the role of active travel. Journal of Transport Geography, 31, 132–142. https://doi.org/10.1016/j.jtrangeo.2013.06.008 | spa |
dc.relation.references | Winkler, L., Pearce, D., Nelson, J., & Babacan, O. (2023). The effect of sustainable mobility transition policies on cumulative urban transport emissions and energy demand. Nature Communications, 14(1), 2357. https://doi.org/10.1038/s41467-023-37728-x | spa |
dc.relation.references | Wójcik, S. (2019). The determinants of travel mode choice: the case of Łódź, Poland. Bulletin of Geography. Socio-Economic Series, 44(44), 93–101. https://doi.org/10.2478/bog-2019-0018 | spa |
dc.relation.references | Yang, Y., & Diez-Roux, A. V. (2012). Walking Distance by Trip Purpose and Population Subgroups. American Journal of Preventive Medicine, 43(1), 11–19. https://doi.org/10.1016/j.amepre.2012.03.015 | spa |
dc.relation.references | Yang, Y., Samaranayake, S., & Dogan, T. (2023). A clustering-based approach to quantifying socio-demographic impacts on urban mobility patterns. Environment and Planning B: Urban Analytics and City Science, 50(9), 2452–2469. https://doi.org/10.1177/23998083231159909 | spa |
dc.relation.references | Zhang, M., & Kukadia, N. (2005). Metrics of Urban Form and the Modifiable Areal Unit Problem. Transportation Research Record: Journal of the Transportation Research Board, 1902, 71–79. https://doi.org/10.3141/1902-09 | spa |
dc.relation.references | Zhao, X., Ke, Y., Zuo, J., Xiong, W., & Wu, P. (2020). Evaluation of sustainable transport research in 2000–2019. Journal of Cleaner Production, 256, 120404. https://doi.org/10.1016/j.jclepro.2020.120404 | spa |
dc.relation.references | Zhu, D., & Liu, Y. (2018). Modelling Irregular Spatial Patterns using Graph Convolutional Neural Networks. 10th International Conference on Geographic Information Science (GIScience2018). https://doi.org/https://doi.org/10.4230/LIPIcs.GISCIENCE.2018.73 | spa |
dc.relation.references | Zuluaga, J. D., Escobar, D. A., & Moncada, C. A. (2021). Aplicación de la predicción espacial para el mejoramiento de la cobertura del sistema de bicicletas compartidas en Manizales, Colombia. Información Tecnológica, 32(4), 121–132. https://doi.org/10.4067/s0718-07642021000400121 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 620 - Ingeniería y operaciones afines::624 - Ingeniería civil | spa |
dc.subject.proposal | Elección modal | spa |
dc.subject.proposal | Análisis de regresión | spa |
dc.subject.proposal | Heterogeneidad espacial | spa |
dc.subject.proposal | Ambiente construido | spa |
dc.subject.proposal | Estadística espacial | spa |
dc.subject.proposal | Movilidad urbana | spa |
dc.subject.proposal | Modal choice | eng |
dc.subject.proposal | Regression analysis | eng |
dc.subject.proposal | Spatial heterogeneity | eng |
dc.subject.proposal | Built environment | eng |
dc.subject.proposal | Spatial statistics | eng |
dc.subject.proposal | Urban mobility | eng |
dc.subject.unesco | Transporte público | spa |
dc.subject.unesco | Public transport | eng |
dc.subject.unesco | Planificación urbana | spa |
dc.subject.unesco | Urban planning | eng |
dc.subject.unesco | Desarrollo sostenible | spa |
dc.subject.unesco | Sustainable development | eng |
dc.title | Caracterización de elección modal mediante la aplicación de regresión estadística considerando la heterogeneidad espacial | spa |
dc.title.translated | Characterization of modal choice by applying statistical regression considering spatial heterogeneity | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1053873255.2025.pdf
- Tamaño:
- 4.28 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ingeniería - Infraestructura y Sistemas de Transporte
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: