Desarrollo de útiles génicos para la obtención de un doble mutante de Mycobacterium tuberculosis defectivo en proteínas de membrana MMPL7 y ATPasas tipo P

dc.contributor.advisorSoto Ospina, Carlos Yesidspa
dc.contributor.authorVásquez Godoy, Vanessaspa
dc.contributor.researchgroupBioquímica y Biología Molecular de las Micobacteriasspa
dc.date.accessioned2021-10-28T13:45:19Z
dc.date.available2021-10-28T13:45:19Z
dc.date.issued2021
dc.descriptionilustraciones, fotografías, gráficas, tablasspa
dc.description.abstractEl documento presenta la investigación realizada sobre Mycobacterium tuberculosis, en cuanto a los transportadores de metales como lo son las ATPasas tipo P y los lípidos presentes en la membrana externa de la pared y que están relacionados con la virulencia de la bacteria; por otro lado muestra la metodología de obtención de mutantes delecionados en genes específicos de la micobacteria y la obtención de cepas mutantes desmarcadas de marcadores de selección antibiótica tanto en Mycobacterium tuberculosis como en Mycobacterium smegmatis. (Texto tomado de la fuente).spa
dc.description.abstractThe document presents the research carried out on Mycobacterium tuberculosis, in terms of metal transporters such as P-type ATPases and lipids present in the outer membrane of the wall and which are related to the virulence of the bacterium; on the other hand, it shows the methodology for obtaining deletion mutants in specific genes of the mycobacterium and the obtaining of mutant strains unmarked for antibiotic selection markers in both Mycobacterium tuberculosis and Mycobacterium smegmatis.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Bioquímicaspa
dc.description.notesIncluye anexosspa
dc.description.researchareaInteracción hospedero-patógenospa
dc.format.extentxxi, 145 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80627
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.referencesWorld Health Organization, “Informe mundial sobre la tuberculosis 2017,” 2017. doi: ISBN 978 92 4 156539 4.spa
dc.relation.referencesR. E. and M. H. Chaisson, “How research can help control tuberculosis,” Int J Tuberc Lung Dis, vol. 13, no. 5, pp. 558–68, 2009.spa
dc.relation.referencesS.-G. Steven, Quezada; Sunny, “Vacuna contra la tuberculosis BCG : Eficacia y efectos adversos BCG vaccine against tuberculosis : Efficacy and adverse effects,” Rev. Cienc. UNEMI, vol. 8, no. 1390–4272, pp. 120–125, 2015.spa
dc.relation.referencesWorld-Health-Organization, “Global tuberculosis report 2015,” 2015.spa
dc.relation.referencesL. Novoa-Aponte and C. Y. Soto Ospina, “Mycobacterium tuberculosis P-type ATPases: possible targets for drug or vaccine development.,” Biomed Res. Int., vol. 2014, p. 296986, 2014, doi: 10.1155/2014/296986.spa
dc.relation.referencesM. G. Palmgren and P. Nissen, “P-type ATPases,” Annu Rev Biophys, vol. 40, pp. 243–266, 2011, doi: 10.1146/annurev.biophys.093008.131331spa
dc.relation.referencesJ. S. Cox, B. Chen, M. McNeil, and W. R. Jacobs, “Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice.,” Nature, vol. 402, no. 6757, pp. 79–83, 1999, doi: 10.1038/47042.spa
dc.relation.referencesW. Malaga, E. Perez, and C. Guilhot, “Production of unmarked mutations in mycobacteria using site-specific recombination,” FEMS Microbiol. Lett., 2003, doi: 10.1016/S0378-1097(03)00003-X.spa
dc.relation.referencesP. Andersen and S. H. E. Kaufmann, “Novel vaccination strategies against tuberculosis,” Cold Spring Harb. Perspect. Med., 2014, doi: 10.1101/cshperspect.a018523.spa
dc.relation.referencesJ. . Grange, “The biology of the genus Mycobacterium,” Soc Appl Bacteriol Symp Ser, vol. 25, pp. 1S-9S, 1996.spa
dc.relation.referencesA. C. Parte, “LPSN - List of prokaryotic names with standing in nomenclature,” Nucleic Acids Res., vol. 42, no. D1, 2014, doi: 10.1093/nar/gkt1111.spa
dc.relation.referencesE. C. Hett and E. J. Rubin, “Bacterial growth and cell division: a mycobacterial perspective,” Microbiol. Mol. Biol. Rev., vol. 72, no. 1, pp. 126–56, table of contents, 2008, doi: 10.1128/mmbr.00028-07.spa
dc.relation.referencesV. V. and F. P. Levy-Frebault, “Proposed minimal standards for the genus Mycobacterium and for description of new slowly growing Mycobacterium species.,” Int J Syst Bacteriol, vol. 42, no. 2, pp. 315–23, 1999.spa
dc.relation.referencesG. Wayne, LG, Kubica, “Family Mycobacteriaceae Chester,” in In Bergey’s manual of systematic bacteriology., M.N.S. eds Sneath P. H. A., Sharpe M. E., Holt J. G. (Williams and Wilkins, Baltimore, Md), 1986, pp. 1435–1457.spa
dc.relation.referencesE. L. Rastogi, N., “The mycobacteria: an introduction to nomenclature and pathogenesis.,” Rev Sci Tech, vol. 20, no. 1, pp. 21–54, 2001.spa
dc.relation.referencesM. Daffé and P. Draper, The Envelope Layers of Mycobacteria with Reference to their Pathogenicity, vol. 39. 1997.spa
dc.relation.referencesR. Issa, “Detection and discrimination of Mycobacterium tuberculosis complex,” Diagn Microbiol Infect Dis, vol. 72, no. 1, pp. 62–67, 2012spa
dc.relation.referencesP. J. Brennan and H. Nikaido, “The envelope of mycobacteria.,” Annu. Rev. Biochem., 1995, doi: 10.1146/annurev.biochem.64.1.29.spa
dc.relation.referencesE. Tortoli, “Phylogeny of the genus Mycobacterium: Many doubts, few certainties,” Infect. Genet. Evol., 2012, doi: 10.1016/j.meegid.2011.05.025.spa
dc.relation.referencesJ. Hacker and U. Dobrindt, Pathogenomics. Weinheim, 2006.spa
dc.relation.referencesK. Sakamoto, “The Pathology of Mycobacterium tuberculosis Infection,” Veterinary Pathology. 2012, doi: 10.1177/0300985811429313.spa
dc.relation.referencesY. and A. T. Zhang, “Genetic of Drug Resistance in Mycobacterium tuberculosis,” in In Molecular Genetics of Mycobacteria., ed. G.F.J. Hatfull, W.R., 2000, p. ASM Press Washington, D.C.spa
dc.relation.referencesJ. . Blanchard, “Molecular mechanisms of drug resistance in Mycobacterium tuberculosis,” Annu Rev Biochem, vol. 65, pp. 215–239, 1996.spa
dc.relation.referencesG. M. Cook et al., “Physiology of Mycobacteria,” Advances in Microbial Physiology. 2009, doi: 10.1016/S0065-2911(09)05502-7.spa
dc.relation.referencesV. and H. N. Jarlier, “Permeability barrier to hydrophilic solutes in Mycobacterium chelonei.,” J Bacteriol, vol. 79, no. 3, pp. 153–169, 1990.spa
dc.relation.referencesD. Chatterjee, “The mycobacterial cell wall: structure, biosynthesis and sites of drug action.,” Curr. Opin. Chem. Biol., 1997, doi: 10.1016/S1367-5931(97)80055-5.spa
dc.relation.referencesM. Daffé and G. Etienne, “The capsule of Mycobacterium tuberculosis and its implications for pathogenicity.,” Tuber. Lung Dis., vol. 79, no. 3, pp. 153–169, 1999, doi: 10.1054/tuld.1998.0200.spa
dc.relation.referencesP. J. Brennan, “Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis,” 2003, doi: 10.1016/S1472-9792(02)00089-6spa
dc.relation.referencesK. G. Mawuenyega et al., “Mycobacterium tuberculosis functional network analysis by global subcellular protein profiling.,” Mol. Biol. Cell, vol. 16, no. 1, pp. 396–404, 2005, doi: 10.1091/mbc.E04-04-0329.spa
dc.relation.referencesC. Chalut, “MmpL transporter-mediated export of cell-wall associated lipids and siderophores in mycobacteria,” Tuberculosis, vol. 100. pp. 32–45, 2016, doi: 10.1016/j.tube.2016.06.004.spa
dc.relation.referencesM. and J.-M. R. Daffé, “The Mycobacterial Cell Envelope,” DC ASM Press, vol. XVIII, p. 395, 2008.spa
dc.relation.referencesC. Whitfield, “Biosynthesis and Assembly of Capsular Polysaccharides in Escherichia coli,” Annu. Rev. Biochem., vol. 75, pp. 39–68, 2006, doi: 10.1146/.spa
dc.relation.referencesA. O’Garra, P. S. Redford, F. W. McNab, C. I. Bloom, R. J. Wilkinson, and M. P. R. Berry, “The immune response in tuberculosis.,” Annu. Rev. Immunol., 2013, doi: 10.1146/annurev-immunol-032712-095939.spa
dc.relation.references“‘The immune response in tuberculosis.’ Annu. Rev. Immunol. vol. 31, no. 1, pp. 475–527, 2013.,” Trends in Microbiology, vol. 26, no. 6. 2018, doi: 10.1016/j.tim.2018.02.012.spa
dc.relation.referencesN. A. Knechel, “Tuberculosis: Pathophysiology, clinical features, and diagnosis,” Crit. Care Nurse, 2009, doi: 10.4037/ccn2009968.spa
dc.relation.referencesM. Gengenbacher and S. H. E. Kaufmann, “Mycobacterium tuberculosis: Success through dormancy,” FEMS Microbiology Reviews. 2012, doi: 10.1111/j.1574-6976.2012.00331.x.spa
dc.relation.referencesJ. D. Ernst, “The immunological life cycle of tuberculosis,” Nature Reviews Immunology. 2012, doi: 10.1038/nri3259.spa
dc.relation.referencesS. Sturgill-Koszycki et al., “Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase,” Science (80-. )., vol. 263, no. 5147, pp. 678–681, 1994, doi: 10.1126/science.8303277.spa
dc.relation.referencesS. K. Ward, E. A. Hoye, and A. M. Talaat, “The global responses of Mycobacterium tuberculosis to physiological levels of copper,” J. Bacteriol., vol. 190, no. 8, pp. 2939–2946, 2008, doi: 10.1128/JB.01847-07.spa
dc.relation.referencesS. M. Hingley-Wilson, V. K. Sambandamurthy, and W. R. Jacobs, “Survival perspectives from the world’s most successful pathogen, Mycobacterium tuberculosis,” Nature Immunology. 2003, doi: 10.1038/ni981.spa
dc.relation.referencesJ. A. Philips and J. D. Ernst, “Tuberculosis Pathogenesis and Immunity,” Annu. Rev. Pathol. Mech. Dis., 2012, doi: 10.1146/annurev-pathol-011811-132458.spa
dc.relation.referencesG. Walzl, K. Ronacher, W. Hanekom, T. J. Scriba, and A. Zumla, “Immunological biomarkers of tuberculosis,” Nature Reviews Immunology. 2011, doi: 10.1038/nri2960spa
dc.relation.referencesF. Squeglia, A. Ruggiero, and R. Berisio, “Collagen degradation in tuberculosis pathogenesis: the biochemical consequences of hosting an undesired guest,” Biochem. J., 2018, doi: 10.1042/bcj20180482.spa
dc.relation.referencesM. A. Forrellad et al., “Virulence factors of the Mycobacterium tuberculosis complex.,” Virulence, vol. 4, no. 1, pp. 3–66, 2013, doi: 10.4161/viru.22329.spa
dc.relation.referencesJ. E. Galagan et al., “The Mycobacterium tuberculosis regulatory network and hypoxia,” Nature, 2013, doi: 10.1038/nature12337.spa
dc.relation.referencesJ. Gonzalo-Asensio et al., “PhoP: A missing piece in the intricate puzzle of Mycobacterium tuberculosis virulence,” PLoS One, 2008, doi: 10.1371/journal.pone.0003496.spa
dc.relation.referencesP. Coll, “Fármacos con actividad frente a Mycobacterium tuberculosis,” Enfermedades Infecciosas y Microbiologia Clinica. 2009, doi: 10.1016/j.eimc.2009.06.010.spa
dc.relation.referencesA. Koul, E. Arnoult, N. Lounis, J. Guillemont, and K. Andries, “The challenge of new drug discovery for tuberculosis,” Nature. 2011, doi: 10.1038/nature09657.spa
dc.relation.referencesA. Zumla et al., “Tuberculosis treatment and management-an update on treatment regimens, trials, new drugs, and adjunct therapies,” The Lancet Respiratory Medicine. 2015, doi: 10.1016/S2213-2600(15)00063-6.spa
dc.relation.referencesWorld Health Organization, “Multidrug and extensively drug-resistant TB (M/XDR-TB): global report on surveillance and response. , 2010.,”spa
dc.relation.referencesT. Smith, K. A. Wolff, and L. Nguyen, “Molecular biology of drug resistance in Mycobacterium tuberculosis,” Curr. Top. Microbiol. Immunol., 2013, doi: 10.1007/82-2012-279.spa
dc.relation.referencesZ. C. J. Tang, W.-C. Yam, “Mycobacterium tuberculosis infection and vaccine development,” Tuberculosis, vol. 98, pp. 30–41, 2016.spa
dc.relation.referencesM. K. O’Shea and H. McShane, “A review of clinical models for the evaluation of human TB vaccines,” Human Vaccines and Immunotherapeutics. 2016, doi: 10.1080/21645515.2015.1134407.spa
dc.relation.referencesY. A. W. Skeiky and J. C. Sadoff, “Advances in tuberculosis vaccine strategies,” Nat. Rev. Microbiol., 2006, doi: 10.1038/nrmicro1419.spa
dc.relation.referencesH. A. Fletcher and L. Schrager, “TB vaccine development and the End TB Strategy: Importance and current status,” Trans. R. Soc. Trop. Med. Hyg., 2016, doi: 10.1093/trstmh/trw016.spa
dc.relation.referencesD. F. Hoft, “Tuberculosis vaccine development: goals, immunological design, and evaluation,” The Lancet. 2008, doi: 10.1016/S0140-6736(08)61036-3.spa
dc.relation.referencesS. Ginebra, “Organización Mundial de la Salud,” Wwwwhoint, 2011spa
dc.relation.referencesM. G. Palmgren and P. Nissen, “P-Type ATPases,” Annu. Rev. Biophys., 2011, doi: 10.1146/annurev.biophys.093008.131331.spa
dc.relation.referencesC. Martín Montañés and B. Gicquel, “New tuberculosis vaccines,” Enferm. Infecc. Microbiol. Clin., 2011, doi: 10.1016/S0213-005X(11)70019-2.spa
dc.relation.referencesY. Pang et al., “Current status of new tuberculosis vaccine in children,” Human Vaccines and Immunotherapeutics. 2016, doi: 10.1080/21645515.2015.1120393.spa
dc.relation.referencesR. Hernàndez Pando et al., “The use of mutant mycobacteria as new vaccines to prevent tuberculosis,” Tuberculosis, 2006, doi: 10.1016/j.tube.2006.01.022.spa
dc.relation.referencesM. Bublitz, H. Poulsen, J. P. Morth, and P. Nissen, “In and out of the cation pumps: P-Type ATPase structure revisited,” Current Opinion in Structural Biology. 2010, doi: 10.1016/j.sbi.2010.06.007.spa
dc.relation.referencesS. K. Ward, B. Abomoelak, E. A. Hoye, H. Steinberg, and A. M. Talaat, “CtpV: A putative copper exporter required for full virulence of Mycobacterium tuberculosis,” Mol. Microbiol., 2010, doi: 10.1111/j.1365-2958.2010.07273.x.spa
dc.relation.referencesL. Yatime et al., “P-type ATPases as drug targets: Tools for medicine and science,” Biochimica et Biophysica Acta - Bioenergetics, vol. 1787, no. 4. pp. 207–220, 2009, doi: 10.1016/j.bbabio.2008.12.019.spa
dc.relation.referencesW. Kühlbrandt, “Biology, structure and mechanism of P-type ATPases,” Nat. Rev. Mol. Cell Biol., vol. 5, no. 4, pp. 282–295, 2004, doi: 10.1038/nrm1354spa
dc.relation.referencesP. Chène, “ATPases as drug targets: learning from their structure.,” Nat. Rev. Drug Discov., vol. 1, no. 9, pp. 665–673, 2002, doi: 10.1038/nrd894.spa
dc.relation.referencesP. L. Pedersen, “Transport ATPases into the year 2008: A brief overview related to types, structures, functions and roles in health and disease,” Journal of Bioenergetics and Biomembranes. 2007, doi: 10.1007/s10863-007-9123-9.spa
dc.relation.referencesD. D. Agranoff and S. Krishna, “Metal ion homeostasis and intracellular parasitism,” Molecular Microbiology, vol. 28, no. 3. pp. 403–412, 1998, doi: 10.1046/j.1365-2958.1998.00790.x.spa
dc.relation.referencesM. G. Palmgren and P. Nissen, “P-type ATPases.,” Annu. Rev. Biophys., 2011, doi: 10.1146/annurev.biophys.093008.131331.spa
dc.relation.referencesK. B. Axelsen and M. G. Palmgren, “Evolution of substrate specificities in the P-type ATPase superfamily,” J. Mol. Evol., vol. 46, no. 1, pp. 84–101, 1998, doi: 10.1007/PL00006286.spa
dc.relation.referencesT. Ogura and A. J. Wilkinson, “AAA+ superfamily ATPases: Common structure-diverse function,” Genes to Cells, vol. 6, no. 7. pp. 575–597, 2001, doi: 10.1046/j.1365-2443.2001.00447.x.spa
dc.relation.referencesD. Agranoff and S. Krishna, “Metal ion transport and regulation in Mycobacterium tuberculosis.,” Front. Biosci., 2004.spa
dc.relation.referencesS. K. Ward, B. Abomoelak, E. a Hoye, H. Steinberg, and M. Adel, “NIH Public Access,” vol. 77, no. 5, pp. 1096–1110, 2011, doi: 10.1111/j.1365-2958.2010.07273.x.CtpV.spa
dc.relation.referencesL. Novoa-Aponte et al., “In silico Identification and characterization of the ion transport specificity for P-type ATPases in the Mycobacterium tuberculosis complex,” BMC Structural Biology. 2012, doi: 10.1186/1472-6807-12-25.spa
dc.relation.referencesL. V. Quitian Cruz, “Determinación de características funcionales de CtpG, una ATPasa tipo P transportadora de metales pesados a través de la membrana plasmática de Mycobacterium tuberculosis,” Universidad Nacional de Colombia Sede Bogotá, 2017.spa
dc.relation.referencesH. Botella et al., “Mycobacterial P 1-Type ATPases mediate resistance to Zinc poisoning in human macrophages,” Cell Host Microbe, vol. 10, no. 3, pp. 248–259, 2011, doi: 10.1016/j.chom.2011.08.006.spa
dc.relation.referencesT. Soldati and O. Neyrolles, “Mycobacteria and the Intraphagosomal Environment: Take It With a Pinch of Salt(s)!,” Traffic. 2012, doi: 10.1111/j.1600-0854.2012.01358.x.spa
dc.relation.referencesT. Padilla-Benavides, J. E. Long, D. Raimunda, C. M. Sassetti, and J. M. Argüello, “A novel P1B-type Mn2+-transporting ATPase is required for secreted protein metallation in mycobacteria,” J. Biol. Chem., vol. 288, no. 16, pp. 11334–11347, Apr. 2013, doi: 10.1074/jbc.M112.448175.spa
dc.relation.referencesJ. M. Argüello, M. González-Guerrero, and D. Raimunda, “Bacterial transition metal P 1B-ATPases: Transport mechanism and roles in virulence,” Biochemistry. 2011, doi: 10.1021/bi201418k.spa
dc.relation.referencesD. Raimunda, J. E. Long, T. Padilla-Benavides, C. M. Sassetti, and J. M. Argüello, “Differential roles for the Co2+/Ni2+ transporting ATPases, CtpD and CtpJ, in Mycobacterium tuberculosis virulence,” Mol. Microbiol., vol. 91, no. 1, pp. 185–197, Jan. 2014, doi: 10.1111/mmi.12454.spa
dc.relation.referencesS. M. Behar, M. Divangahi, and H. G. Remold, “Evasion of innate immunity by mycobacterium tuberculosis: Is death an exit strategy?,” Nature Reviews Microbiology. 2010, doi: 10.1038/nrmicro2387.spa
dc.relation.referencesM. Maya-Hoyos, C. Rosales, L. Novoa-Aponte, E. Castillo, and C. Y. Soto, “The P-type ATPase CtpF is a plasma membrane transporter mediating calcium efflux in Mycobacterium tuberculosis cells,” Heliyon, vol. 5, no. 11, p. e02852, 2019, doi: 10.1016/j.heliyon.2019.e02852.spa
dc.relation.referencesM. H. Touchette and J. C. Seeliger, “Transport of outer membrane lipids in mycobacteria,” Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, vol. 1862, no. 11. Elsevier B.V., pp. 1340–1354, Nov. 01, 2017, doi: 10.1016/j.bbalip.2017.01.005.spa
dc.relation.referencesM. Daffé, D. C. Crick, and M. Jackson, “Genetics of Capsular Polysaccharides and Cell Envelope (Glyco)lipids,” Microbiol. Spectr., 2014, doi: 10.1128/microbiolspec.mgm2-0021-2013.spa
dc.relation.referencesM. Jackson, G. Stadthagen, and B. Gicquel, “Long-chain multiple methyl-branched fatty acid-containing lipids of Mycobacterium tuberculosis: Biosynthesis, transport, regulation and biological activities,” Tuberculosis, vol. 87, no. 2. pp. 78–86, 2007, doi: 10.1016/j.tube.2006.05.003.spa
dc.relation.referencesT. D. Sirakova, A. K. Thirumala, V. S. Dubey, H. Sprecher, and P. E. Kolattukudy, “The Mycobacterium tuberculosis pks2 Gene Encodes the Synthase for the Hepta- and Octamethyl-branched Fatty Acids Required for Sulfolipid Synthesis,” J. Biol. Chem., 2001, doi: 10.1074/jbc.M011468200.spa
dc.relation.referencesCamacho LR, Constant P, Raynaud C, Laneélle MA, Triccas JA, Guicquel B, “Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis: evidence that this lipid is involved in cell wall permeability barrier,” J Biol Chem, vol. 276, pp. 19845–54, 2001.spa
dc.relation.referencesJ. Quigley, V. K. Hughitt, C. A. Velikovsky, R. A. Mariuzza, N. M. El-Sayed, and V. Briken, “The cell wall lipid PDIM contributes to phagosomal escape and host cell exit of Mycobacterium tuberculosis,” MBio, 2017, doi: 10.1128/mBio.00148-17.spa
dc.relation.referencesJ. Augenstreich et al., “ESX-1 and phthiocerol dimycocerosates of Mycobacterium tuberculosis act in concert to cause phagosomal rupture and host cell apoptosis,” Cell. Microbiol., vol. 19, no. 7, Jul. 2017, doi: 10.1111/cmi.12726.spa
dc.relation.referencesJ. P. Sarathy, V. Dartois, and E. J. D. Lee, “The role of transport mechanisms in Mycobacterium Tuberculosis drug resistance and tolerance,” Pharmaceuticals. 2012, doi: 10.3390/ph5111210.spa
dc.relation.referencesP. Domenech, M. B. Reed, and C. E. Barry, “Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance.,” Infect. Immun., vol. 73, no. 6, pp. 3492–501, Jun. 2005, doi: 10.1128/IAI.73.6.3492-3501.2005spa
dc.relation.referencesH. I. Zgurskaya and H. Nikaido, “Multidrug resistance mechanisms: Drug efflux across two membranes,” Molecular Microbiology, vol. 37, no. 2. pp. 219–225, 2000, doi: 10.1046/j.1365-2958.2000.01926.x.spa
dc.relation.referencesP. V. Reddy et al., “Disruption of mycobactin biosynthesis leads to attenuation of mycobacterium tuberculosis for growth and virulence,” J. Infect. Dis., vol. 208, no. 8, pp. 1255–1265, 2013, doi: 10.1093/infdis/jit250.spa
dc.relation.referencesR. Bailo, A. Bhatt, and J. A. Aínsa, “Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development,” Biochem. Pharmacol., vol. 96, no. 3, pp. 159–167, Aug. 2015, doi: 10.1016/J.BCP.2015.05.001.spa
dc.relation.referencesL. R. Camacho, D. Ensergueix, E. Perez, B. Gicquel, and C. Guilhot, “Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis,” Mol. Microbiol., vol. 34, no. 2, pp. 257–267, 1999, doi: 10.1046/j.1365-2958.1999.01593.x.spa
dc.relation.referencesJ. Manuel Belardinelli, G. Larrouy-Maumus, V. Jones, L. P. S. De Carvalho, M. R. McNeil, and M. Jackson, “Biosynthesis and translocation of unsulfated acyltrehaloses in mycobacterium tuberculosis,” J. Biol. Chem., vol. 289, no. 40, pp. 27952–27965, 2014, doi: 10.1074/jbc.M114.581199.spa
dc.relation.referencesM. H. Touchette et al., “The rv1184c locus encodes Chp2, an acyltransferase in Mycobacterium tuberculosis polyacyltrehalose lipid biosynthesis,” J. Bacteriol., vol. 197, no. 1, pp. 201–210, 2015, doi: 10.1128/JB.02015-14.spa
dc.relation.referencesK. Tahlan et al., “SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of mycobacterium tuberculosis,” Antimicrob. Agents Chemother., vol. 56, no. 4, pp. 1797–1809, 2012, doi: 10.1128/AAC.05708-11.spa
dc.relation.referencesS. A. Pacheco, F. F. Hsu, K. M. Powers, and G. E. Purdy, “MmpL11 protein transports mycolic acid-containing lipids to the mycobacterial cell wall and contributes to biofilm formation in Mycobacterium smegmatis,” J. Biol. Chem., vol. 288, no. 33, pp. 24213–24222, 2013, doi: 10.1074/jbc.M113.473371.spa
dc.relation.referencesC. M. Jones et al., “Self-poisoning of Mycobacterium tuberculosis by interrupting siderophore recycling.,” Proc. Natl. Acad. Sci. U. S. A., vol. 111, no. 5, pp. 1945–50, 2014, doi: 10.1073/pnas.1311402111.spa
dc.relation.referencesR. M. Wells et al., “Discovery of a Siderophore Export System Essential for Virulence of Mycobacterium tuberculosis,” PLoS Pathog., vol. 9, no. 1, 2013, doi: 10.1371/journal.ppat.1003120.spa
dc.relation.referencesM. R. Pasca, P. Guglierame, E. De Rossi, F. Zara, and G. Riccardi, “mmpL7 gene of Mycobacterium tuberculosis is responsible for isoniazid efflux in Mycobacterium smegmatis.,” Antimicrob. Agents Chemother., vol. 49, no. 11, pp. 4775–7, Nov. 2005, doi: 10.1128/AAC.49.11.4775-4777.2005.spa
dc.relation.referencesM. Jain and J. S. Cox, “Interaction between polyketide synthase and transporter suggests coupled synthesis and export of virulence lipid in M. tuberculosis,” PLoS Pathog., 2005, doi: 10.1371/journal.ppat.0010002.spa
dc.relation.referencesR. Bailo, A. Bhatt, and J. A. Aínsa, “Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development,” Biochem. Pharmacol., vol. 96, no. 3, pp. 159–167, 2015, doi: 10.1016/j.bcp.2015.05.001.spa
dc.relation.referencesM. B. Reed et al., “A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response.,” Nature, vol. 431, no. 7004, pp. 84–87, 2004, doi: 10.1038/nature02837.spa
dc.relation.referencesJ. C. van Kessel, “RECOMBINEERING IN MYCOBACTERIA USING MYCOBACTERIOPHAGE PROTEINS,” Pittsburgh, 2003.spa
dc.relation.referencesG. F. H. Van Kessel, J.C., L.J. Marinelli, “Recombineering mycobacteria and their phages.,” Nat. Rev. Microbiol., vol. 6, pp. 851–857, 2008.spa
dc.relation.referencesJ. C. van Kessel and G. F. Hatfull, “Recombineering in Mycobacterium tuberculosis,” Nat. Methods, 2007, doi: 10.1038/nmeth996.spa
dc.relation.referencesI. Hastings Software, “Gene Runner.” New York. [spa
dc.relation.referencesM. W. Davis, “ApE- A plasmid Editor,” University of Utah. 2013, [Online]. Available: http://biologylabs.utah.edu/jorgensen/wayned/ape/.spa
dc.relation.referencesPromega Corporation, “BioMath Calculators: Ligations: Molar Ratio of Insert to Vector Calculator.” 2008, [Online]. Available: https://www.promega.com/resources/tools/biomath-calculators/.spa
dc.relation.referencesA. F. L. Torres, “Respuesta de las ATPasas tipo P1B a las condiciones de estrés en Mycobacterium tuberculosis,” Universidad Ncional de Colombia, 2018.spa
dc.relation.referencesM. M. Hoyos, “ATPasas tipo P2 como blancos para la atenuación de Mycobacterium tuberculosis,” Universidad Naional de Colombia, 2021.spa
dc.relation.referencesS. Padmanabhan, S. Banerjee, and N. Mandi, “Molecular Cloning - Selected Applications in Medicine and BiologyScreening of Bacterial Recombinants: Strategies and Preventing False Positives,” Gregory G.Brown, Ed. 2011, pp. 1–15.spa
dc.relation.referencesPromega Corporation, “pGEM®-T and pGEM®-T Easy Vector Systems,” 2800, 2015.spa
dc.relation.referencesR. R. Reed, “Transposon-mediated site-specific recombination: A defined in vitro system,” Cell, vol. 25, no. 3, pp. 713–719, Sep. 1981, doi: 10.1016/0092-8674(81)90178-1.spa
dc.relation.referencesA. F. L. Torres, “Respuesta de las ATPasas tipo P1B a las condiciones de estrés en Mycobacterium tuberculosis,” Universidad Nacional de Colombia, 2018.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.decsMycobacterium tuberculosisspa
dc.subject.decsMycobacterium tuberculosiseng
dc.subject.decsPotencia de la Vacunaspa
dc.subject.decsVaccine Potencyeng
dc.subject.decsEnzymeseng
dc.subject.decsEnzimasspa
dc.subject.proposalMycobacterium tuberculosisspa
dc.subject.proposalVaccine potentialeng
dc.subject.proposalAttenuationeng
dc.subject.proposalMMPL7eng
dc.subject.proposalP-type ATPaseeng
dc.subject.proposalPotencial vacunalspa
dc.subject.proposalAtenuaciónspa
dc.subject.proposalATTPasa tipo Pspa
dc.titleDesarrollo de útiles génicos para la obtención de un doble mutante de Mycobacterium tuberculosis defectivo en proteínas de membrana MMPL7 y ATPasas tipo Pspa
dc.title.translatedDevelopment of gene tools to obtain a Mycobacterium tuberculosis double mutant defective in membrane proteins MMPL7 and P-type ATPaseseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1073687714.2021.pdf
Tamaño:
3.09 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: