Caracterización genómica y transcriptómica de los aislamientos de Leishmania (V.) braziliensis con diferente patrón de susceptibilidad a la Anfotericina B (AmB).
dc.contributor.advisor | Echeverry Gaitán, María Clara | spa |
dc.contributor.advisor | Clavijo-Ramírez, Carlos Arturo | spa |
dc.contributor.author | Clavijo Vanegas, Ana María | spa |
dc.contributor.cvlac | Clavijo Vanegas, Ana María [0000146519] | spa |
dc.contributor.orcid | Clavijo Vanegas, Ana María [0000000221592768] | spa |
dc.contributor.researchgroup | Infecciones y Salud en El Trópico | spa |
dc.date.accessioned | 2024-07-18T15:00:53Z | |
dc.date.available | 2024-07-18T15:00:53Z | |
dc.date.issued | 2024 | |
dc.description | ilustraciones a color, diagramas | spa |
dc.description.abstract | La leishmaniasis es una enfermedad causada por un parásito perteneciente al género Leishmania, el cual se transmite en el nuevo mundo por una mosca vector hematófaga perteneciente al género Lutzomyia, mediante ciclos de infección zoonótica y antroponótica. La leishmaniasis presenta manifestaciones viscerales (LV), cutáneas (LC) o mucosas (LM). En Colombia la forma más común es la LC y está asociada principalmente a las especies de Leishmania pertenecientes al subgénero Viannia [L.(V.) braziliensis, L. (V.) panamensis y L. (V.) guyanensis]. El tratamiento de la LC se hace de manera sistémica mediante el uso de fármacos con alto nivel de toxicidad como son las sales de antimonio (SbV), tratamiento de primera línea y la anfotericina B (AmB) que se emplea como tratamiento de segunda línea. Datos de meta-análisis estiman la falla terapéutica en el tratamiento de LC con SbV en un 25% de los casos. Adicionalmente, en Colombia se ha informado la circulación de aislamientos clínicos de L.(V.) braziliensis y L.(V.) panamensis con susceptibilidad reducida a la AmB. Una de las posibles causas de falla terapéutica en LC es la resistencia por parte del parásito, no obstante, los mecanismos moleculares asociados a resistencia a la AmB en Leishmania spp, son poco conocidos y han sido estudiados principalmente en cepas del laboratorio de especies del subgénero Leishmania Leishmania. Por lo tanto, en la presente investigación, se emplearon aislamientos clínicos de L.(V.) braziliensis, en los que previamente se determinó un patrón diferencial de susceptibilidad a la AmB in vitro, y se estudiaron factores potencialmente asociados al patrón de susceptibilidad, con el fin de proponer posibles moléculas o vías metabólicas involucradas en la respuesta in vitro de L.(V.) braziliensis a la AmB. Entre los factores estudiados están el mantenimiento en cultivo del aislamiento clínico y las diferencias genómicas y de niveles de transcrito entre aislamientos con diferente susceptibilidad. Para lograr el propósito mencionado, se realizaron ensayos de dosis-respuesta a la AmB en los dos estadios parasitarios, se analizó el genoma de los aislamientos clínicos, se evaluaron niveles de transcrito de genes seleccionados y se adelantaron ensayos preliminares de sobre-expresión génica. Mediante esta aproximación, se determinó que en los aislamientos clínicos de L.(V.) braziliensis, no existe relación entre susceptibilidad in vitro a la AmB y el mantenimiento in vitro. Con el análisis de la secuenciación del genoma, se evidenció aumento en el número de copias de algunos genes codificantes de enzimas relacionadas con la maquinaria de respiración mitocondrial y la biosíntesis de la biopeterina en aislamientos clínicos con baja susceptibilidad in vitro a la AmB. Se encontró la presencia de la región LD1, un locus multigénico ampliamente estudiado en Leishmania spp. Y adicionalmente, se estableció que el incremento en el número de copias de un gen, no necesariamente implica el aumento en los niveles de transcrito correspondiente. (Texto tomado de la fuente) | spa |
dc.description.abstract | Leishmaniasis is a disease caused by a parasite belonging to the genus Leishmania, which is transmitted in the New World by a hematophagous female sandfly vector belonging to the genus Lutzomyia, through zoonotic and anthroponotic infection cycles. Leishmaniasis presents visceral (VL), cutaneous (CL) or mucosal (ML) manifestations. In Colombia, the most common form is CL and is mainly associated with Leishmania species belonging to the subgenus Viannia [L.(V.) braziliensis, L. (V.) panamensis and L. (V.) guyanensis]. CL is treated systemically using highly toxic drugs such as antimony salts (SbV) as first-line treatment and amphotericin B (Amphotericin B (AmB) as second-line treatment. Meta-analysis data estimate therapeutic failure in the treatment of CL with SbV in 25% of cases. Additionally, clinical isolates of L.(V.) braziliensis and L.(V.) panamensis with reduced susceptibility to AmB have been reported in Colombia. One of the possible causes of therapeutic failure in CL is resistance by the parasite; however, the molecular mechanisms associated with AmB resistance in Leishmania spp. are poorly understood and have been studied mainly in laboratory strains of species of the subgenus Leishmania Leishmania. Therefore, in the present investigation, clinical isolates of L.(V.) braziliensis, in which a differential pattern of susceptibility to AmB in vitro was previously determined, were used. Factors potentially associated with the susceptibility pattern were studied in order to propose possible molecules or metabolic pathways involved in the in vitro response of L.(V.) braziliensis to AmB. Among the factors studied are the maintenance in the culture of the clinical isolate and the genomic and transcript level differences between isolates with different susceptibility. To achieve the study purpose, dose-response assays to AmB were performed in the two parasite stages, the genome of clinical isolates was analyzed, transcript levels of selected genes were evaluated, and preliminary gene overexpression assays were performed. This approach determined that in clinical isolates of L.(V.) braziliensis, there is no relationship between in vitro susceptibility to AmB and in vitro maintenance. The genome sequencing analysis revealed increased copies of some genes encoding enzymes related to the mitochondrial respiration machinery and the biosynthesis of biopeterin in clinical isolates with low in vitro susceptibility to AmB. The presence of the LD1 region, a multigene locus widely studied in Leishmania spp. was found. Additionally, it was established that the increase in the number of copies of a gene does not necessarily imply an increase in the corresponding transcript levels. (Texto tomado de la fuente) | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Infecciones y Salud en el Trópico | spa |
dc.description.researcharea | Mecanismos moleculares de farmacorresistencia en parásitos de la familia Trypanosomatidae | spa |
dc.format.extent | 80 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/86558 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Medicina | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Medicina - Maestría en Infecciones y Salud en el Trópico | spa |
dc.relation.references | Acestor, N., Zíková, A., Dalley, R., Anupama, A., Panigrahi, A., y Stuart, K. (2011). Trypanosoma brucei mitochondrial respiratome: Composition and organization in procyclic form. Molecular and Cellular Proteomics, 10(9), 1–14. https://doi.org/10.1074/mcp.M110.006908 | spa |
dc.relation.references | Adler, J., Gangneux, J., y Pappas, P. (2016). Comparison between liposomal formulations of amphotericin B. Medical Mycology, 54(3), 223–231. https://doi.org/10.1093/mmy/myv111 | spa |
dc.relation.references | Alpizar, E., Binti, N., Wei, W., Pountain, A., Weidt, S., Donachie, A., Ritchie, R., Dickie, E., Burchmore, R., Denny, P., y Barrettid, M. (2022). Amphotericin B resistance in Leishmania mexicana: Alterations to sterol metabolism and oxidative stress response. In PLoS Neglected Tropical Diseases (Vol. 16, Issue 9). https://doi.org/10.1371/journal.pntd.0010779 | spa |
dc.relation.references | Amato, V., Tuon, F., Imamura, R., Abegão De Camargo, R., Duarte, M., y Neto, V. (2009). Mucosal leishmaniasis: Description of case management approaches and analysis of risk factors for treatment failure in a cohort of 140 patients in Brazil. Journal of the European Academy of Dermatology and Venereology, 23(9), 1026–1034. https://doi.org/10.1111/j.1468-3083.2009.03238.x | spa |
dc.relation.references | Ameen, M. (2010). Cutaneous leishmaniasis: advances in disease pathogenesis, diagnostics and therapeutics. Clinical and Experimental Dermatology, 35(7), 699–705. https://doi.org/10.1111/j.1365-2230.2010.03851.x | spa |
dc.relation.references | Aronson, N., y Joya, C. (2019). Cutaneous Leishmaniasis: Updates in Diagnosis and Management. Infectious Disease Clinics of North America, 33(1), 101–117. https://doi.org/10.1016/j.idc.2018.10.004 | spa |
dc.relation.references | Azanza, J. (2021). Anfotericina B liposomal: farmacología clínica, farmacocinética y farmacodinamia. Revista Iberoamericana de Micología, 38(2), 52–55. https://doi.org/10.1016/j.riam.2021.02.004 | spa |
dc.relation.references | Baginski, M., y Czub, J. (2009). Amphotericin B and Its New Derivatives – Mode of Action. Current Drug Metabolism, 10(5), 459–469. https://doi.org/10.2174/138920009788898019 | spa |
dc.relation.references | Baginski, M., Czub, J., y Sternal, K. (2006). Interaction of amphotericin B and its selected derivatives with membranes: Molecular modeling studies. Chemical Record, 6(6), 320–332. https://doi.org/10.1002/tcr.20096 | spa |
dc.relation.references | Bansal, R., Sen, S., Muthuswami, R., y Madhubala, R. (2019a). A Plant like Cytochrome P450 Subfamily CYP710C1 Gene in Leishmania donovani Encodes Sterol C-22 Desaturase and its Overexpression Leads to Resistance to Amphotericin B. PLoS Neglected Tropical Diseases, 13(4), 1–23. https://doi.org/10.1371/journal.pntd.0007260 | spa |
dc.relation.references | Bansal, R., Sen, S., Muthuswami, R., y Madhubala, R. (2019b). Stigmasterol as a potential biomarker for amphotericin B resistance in Leishmania donovani. Journal of Antimicrobial Chemotherapy, 75(4), 942–950. https://doi.org/10.1093/jac/dkz515 | spa |
dc.relation.references | Bates, E., Knuepfer, E., y Smith, D. (2000). Poly(A)-binding protein I of Leishmania: Functional analysis and localisation in trypanosomatid parasites. Nucleic Acids Research, 28(5), 1211–1220. https://doi.org/10.1093/nar/28.5.1211 | spa |
dc.relation.references | Bates, P. (1994). Complete developmental cycle of Leishmania mexicana in axenic culture. Parasitology, 108(1), 1–9. https://doi.org/10.1017/S0031182000078458 | spa |
dc.relation.references | Bates, P. (2018). Revising Leishmania’s life cycle. Nature Microbiology, 3(5), 529–530. https://doi.org/10.1038/s41564-018-0154-2 | spa |
dc.relation.references | Bringaud, F., Müller, M., Cerqueira, G., Smith, M., Rochette, A., El-Sayed, N., Papadopoulou, B., y Ghedin, E. (2007). Members of a large retroposon family are determinants of post-transcriptional gene expression in Leishmania. PLoS Pathogens, 3(9), 1291–1307. https://doi.org/10.1371/journal.ppat.0030136 | spa |
dc.relation.references | Brotherton, M., Bourassa, S., Légaré, D., Poirier, G., Droit, A., y Ouellette, M. (2014). Quantitative proteomic analysis of amphotericin B resistance in Leishmania infantum. International Journal for Parasitology: Drugs and Drug Resistance, 4(2), 126–132. https://doi.org/10.1016/j.ijpddr.2014.05.002 | spa |
dc.relation.references | Burza, S., Croft, S., y Boelaert, M. (2018). Leishmaniasis. The Lancet, 392(10151), 951–970. https://doi.org/10.1016/S0140-6736(18)31204-2 | spa |
dc.relation.references | Bussotti, G., Gouzelou, E., Cortes, M., Kherachi, I., Harrat, Z., Eddaikra, N., Mottram, J., Antoniou, M., Christodoulou, V., Bali, A., Guerfali, F., Laouini, D., Mukhtar, M., y Dumetz, F. (2018). Leishmania Genome Dynamics during Environmental Adaptation Reveal Strain-Specific Differences in Gene Copy Number Variation, Karyotype Instability, and Telomeric Amplification. American Society for Microbiology, 9(6), 1–18. | spa |
dc.relation.references | Bussotti, G., Piel, L., Pescher, P., Domagalska, M., Rajan, K., Cohen, S., Doniger, T., Hiregange, D., Myler, P., Unger, R., Michaeli, S., y Spath, G. (2021). Genome instability drives epistatic adaptation in the human pathogen Leishmania. PNAS, 118(51), 1–8. https://doi.org/10.1073/pnas.2113744118/-/DCSupplemental.Published | spa |
dc.relation.references | Camacho, E., González, S., Rastrojo, A., Peiró, R., Solana, J., Tabera, L., Gamarro, F., Carrasco, F., Requena, J., y Aguado, B. (2019). Complete assembly of the Leishmania donovani (HU3 strain) genome and transcriptome annotation. Scientific Reports, 9(6), 1–15. https://doi.org/10.1038/s41598-019-42511-4 | spa |
dc.relation.references | Catalán, M., y Montejo, J. (2006). Antifúngicos sistémicos. Farmacodinamia y farmacocinética. Revista Iberoamericana de Micología, 23(1), 39–49. https://doi.org/10.1016/s1130-1406(06)70012-2 | spa |
dc.relation.references | Chevalier, N., Bertrand, L., Rider, M., Opperdoes, F., Rigden, D., & Michels, P. (2005). 6-Phosphofructo-2-kinase and fructose-2,6-bisphosphatase in trypanosomatidae: Molecular characterization, database searches, modelling studies and evolutionary analysis. FEBS Journal, 272(14), 3542–3560. https://doi.org/10.1111/j.1742-4658.2005.04774.x | spa |
dc.relation.references | Chia, J., y McManus, E. (1990). In vitro tumor necrosis factor induction assay for analysis of febrile toxicity associated with amphotericin B preparations. Antimicrobial Agents and Chemotherapy, 34(5), 906–908. https://doi.org/10.1128/AAC.34.5.906 | spa |
dc.relation.references | Clayton, C. (2016). Gene expression in Kinetoplastids. Current Opinion in Microbiology, 32, 46–51. https://doi.org/10.1016/j.mib.2016.04.018 | spa |
dc.relation.references | Clos, J., Grünebast, J., y Holm, M. (2022). Promastigote-to-Amastigote Conversion in Leishmania spp.—A Molecular View. Pathogens, 11(9). https://doi.org/10.3390/pathogens11091052 | spa |
dc.relation.references | Collett, C., Kitson, C., Baker, N., Steele, H., Santrot, M., Hutchinson, S., Horn, D., y Alsford, S. (2019). Chemogenomic profiling of antileishmanial efficacy and resistance in the related kinetoplastid parasite trypanosoma brucei. Antimicrobial Agents and Chemotherapy, 63(8). https://doi.org/10.1128/AAC.00795-19 | spa |
dc.relation.references | Cunha, M., Leão, A., De Cassia Soler, R., y Lindoso, J. (2015). Efficacy and safety of liposomal amphotericin B for the treatment of mucosal leishmaniasis from the new world: A retrospective study. American Journal of Tropical Medicine and Hygiene, 93(6), 1214–1218. https://doi.org/10.4269/ajtmh.15-0033 | spa |
dc.relation.references | De Gaudenzi, J., Noé, G., Campo, V., Frasch, A., y Cassola, A. (2011). Gene expression regulation in trypanosomatids. Essays in Biochemistry, 51(1), 31–46. https://doi.org/10.1042/BSE0510031 | spa |
dc.relation.references | Dujardin, J. (2009). Structure, dynamics and function of Leishmania genome: Resolving the puzzle of infection, genetics and evolution? Infection, Genetics and Evolution, 9(2), 290–297. https://doi.org/10.1016/j.meegid.2008.11.007 | spa |
dc.relation.references | Dujardin, J., Bañuls, A., Llanos, A., Alvarez, E., DeDoncker, S., Jacquet, D., Le Ray, D., Arevalo, J., y Tibayrenc, M. (1995). Putative Leishmania hybrids in the Eastern Andean valley of Huanuco, Peru. Acta Tropica, 59(4), 293–307. https://doi.org/10.1016/0001-706X(95)00094-U | spa |
dc.relation.references | Dumetz, F., Imamura, H., Sanders, M., Seblova, V., Myskova, J., y Pescher, P. (2017). crossm Modulation of Aneuploidy in Leishmania In Vitro and In Vivo Environments and Its. Mbio, 8(3), 1–14. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5442457/pdf/mBio.00599-17.pdf | spa |
dc.relation.references | Equbal, A., Suman, S., Anwar, S., Singh, K., Zaidi, A., Sardar, A., Das, P., y Ali, V. (2014). Stage-dependent expression and up regulation of trypanothione synthetase in amphotericin B resistant Leishmania donovani. PLoS ONE, 9(6), 1–18. https://doi.org/10.1371/journal.pone.0097600 | spa |
dc.relation.references | Ferro, C., López, M., Fuya, P., Lugo, L., Cordovez, J., y González, C. (2015). Spatial distribution of sand fly vectors and eco-epidemiology of cutaneous leishmaniasis transmission in Colombia. PLoS ONE, 10(10), 1–16. https://doi.org/10.1371/journal.pone.0139391 | spa |
dc.relation.references | Figueiredo de Sá, B., Rezende, A., De Melo Neto, O., De Brito, M., y Brandão Filho, S. (2019). Identification of divergent leishmania (Viannia) braziliensis ecotypes derived from a geographically restricted area through whole genome analysis. PLoS Neglected Tropical Diseases, 13(6), 1–23. https://doi.org/10.1371/journal.pntd.0007382 | spa |
dc.relation.references | Franco-Muñoz, C., Manjarrés-Estremor, M., y Ovalle-Bracho, C. (2018). Intraspecies differences in natural susceptibility to amphotericine B of clinical isolates of Leishmania subgenus Viannia. PLoS ONE, 13(4), 1–15. https://doi.org/10.1371/journal.pone.0196247 | spa |
dc.relation.references | Garami, A., Mehlert, A., & Ilg, T. (2001). Glycosylation Defects and Virulence Phenotypes of Leishmania mexicana Phosphomannomutase and Dolicholphosphate-Mannose Synthase Gene Deletion Mutants. Molecular and Cellular Biology, 21(23), 8168–8183. https://doi.org/10.1128/mcb.21.23.8168-8183.2001 | spa |
dc.relation.references | Ghosh, S., Biswas, S., Mukherjee, S., Pal, A., Saxena, A., Sundar, S., Dujardin, J., Das, S., Roy, S., Mukhopadhyay, R., y Mukherjee, B. (2021). A Novel Bioimpedance-Based Detection of Miltefosine Susceptibility Among Clinical Leishmania donovani Isolates of the Indian Subcontinent Exhibiting Resistance to Multiple Drugs. Frontiers in Cellular and Infection Microbiology, 11(November), 1–9. https://doi.org/10.3389/fcimb.2021.768830 | spa |
dc.relation.references | Goad, L., Holz, G., y Beach, D. (1984). Sterols of Leishmania species, implications for biosynthesis. Molecular and Biochemical Parasitology, 10(2), 161–170. https://doi.org/10.1016/0166-6851(84)90004-5 | spa |
dc.relation.references | Gonzalez, L., Rodríguez, A., Vargas, C., Aponte, S., Bonilla, L., Matiz, J., Clavijo, A., Duarte, G., Urrea, D., Duitama, J., y Echeverry, M. (2024). Whole genomic characterization of L. (V.) braziliensis clinical isolates according to their in vitro response to Amphotericin B [Manuscrito presentado para su publicación]. Universidad de Los Andes, Bogotá Colombia, Universidad del Tolima y Universidad Nacional de Colombia. | spa |
dc.relation.references | Gossage, S., Rogers, M., y Bates, P. (2003). Two separate growth phases during the development of Leishmania in sand flies: Implications for understanding the life cycle. International Journal for Parasitology, 33(10), 1027–1034. https://doi.org/10.1016/S0020-7519(03)00142-5 | spa |
dc.relation.references | Guery, R., Henry, B., Martinl, G., Rouzaud, C., Cordoliani, F., Harms, G., Gangneux, J., Foulet, F., Bourrat, E., Baccard, M., Morizot, G., Consigny, P., Berry, A., Blum, J., Lortholary, O., y Buffet, P. (2017). Liposomal amphotericin B in travelers with cutaneous and muco-cutaneous leishmaniasis: Not a panacea. PLoS Neglected Tropical Diseases, 11(11), 1–12. https://doi.org/10.1371/journal.pntd.0006094 | spa |
dc.relation.references | Gurel, M., Tekin, B., y Uzun, S. (2020). Cutaneous leishmaniasis: A great imitator. Clinics in Dermatology, 38(2), 140–151. https://doi.org/10.1016/j.clindermatol.2019.10.008 | spa |
dc.relation.references | Gutiérrez, C., Domínguez, B., Martínez, M., Pérez, Y., García, C., Balaña, R., y Reguera, R. (2021). Reproduction in trypanosomatids: Past and present. Biology, 10(6), 1–15. https://doi.org/10.3390/biology10060471 | spa |
dc.relation.references | Hall, M., & Ho, K. (2006). Characterization of a Trypanosoma brucei RNA cap (guanine N-7) methyltransferase. RNA, 12(3), 488–497. https://doi.org/10.1261/rna.2250606 | spa |
dc.relation.references | Hamill, R. (2013). Amphotericin B formulations: A comparative review of efficacy and toxicity. Drugs, 73(9), 919–934. https://doi.org/10.1007/s40265-013-0069-4 | spa |
dc.relation.references | Hernández, A., Gutierrez, J., Xiao, Y., Branscum, A., y Cuadros, D. (2019). Spatial epidemiology of cutaneous leishmaniasis in Colombia: Socioeconomic and demographic factors associated with a growing epidemic. Transactions of the Royal Society of Tropical Medicine and Hygiene, 113(9), 560–568. https://doi.org/10.1093/trstmh/trz043 | spa |
dc.relation.references | Herrmann, J., Dubois, N., Fourgeaud, M., Basset, D., y Lagrange, P. (1994). Synergic inhibitory activity of amphotericin-b and γ interferon against intracellular cryptococcus neoformans in murine macrophages. Journal of Antimicrobial Chemotherapy, 34(6), 1051–1058. https://doi.org/10.1093/jac/34.6.1051 | spa |
dc.relation.references | Hury, A., Goldshmidt, H., Tkacz, I., & Michaeli, S. (2009). Trypanosome spliced-leader-associated RNA (SLA1) localization and implications for spliced-leader RNA biogenesis. Eukaryotic Cell, 8(1), 56–68. https://doi.org/10.1128/EC.00322-08 | spa |
dc.relation.references | Ilg, T. (2002). Generation of myo -inositol-auxotrophic Leishmania mexicana mutants by targeted replacement of the myo -inositol-1-phosphate synthase gene. Molecular and Biochemical Parasitology, 120, 151–156. | spa |
dc.relation.references | Ilgoutz, S., Zawadzki, J., Ralton, J., & McConville, M. (1999). Evidence that free GPI glycolipids are essential for growth of Leishmania mexicana. EMBO Journal, 18(10), 2746–2755. https://doi.org/10.1093/emboj/18.10.2746 | spa |
dc.relation.references | Imamura, H., Monsieurs, P., Jara, M., Sanders, M., Maes, I., Vanaerschot, M., Berriman, M., Cotton, J., Dujardin, J., y Domagalska, M. (2020). Evaluation of whole genome amplification and bioinformatic methods for the characterization of Leishmania genomes at a single cell level. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-71882-2 | spa |
dc.relation.references | INS. (2022). Protocolo de vigilancia de Leishmaniasis. Instituto Nacional de Salud, 1–28. https://www.ins.gov.co/buscador-eventos/Lineamientos/PRO_Leishmaniasis.pdf | spa |
dc.relation.references | Jain, M., y Madhubala, R. (2008). Characterization and localization of ORFF gene from the LD1 locus of Leishmania donovani. Gene, 416(1–2), 1–10. https://doi.org/10.1016/j.gene.2008.01.011 | spa |
dc.relation.references | Jones, N., Thomas, E., Brown, E., Dickens, N., Hammarton, T., & Mottram, J. (2014). Regulators of Trypanosoma brucei Cell Cycle Progression and Differentiation Identified Using a Kinome-Wide RNAi Screen. PLoS Pathogens, 10(1). https://doi.org/10.1371/journal.ppat.1003886 | spa |
dc.relation.references | Kazemi, B. (2011). Genomic organization of Leishmania species. Iranian Journal of Parasitology, 6(3), 1–18. | spa |
dc.relation.references | Kelly, J., Law, J., Chapman, C., Van, V., y Evans, D. (1991). Evidence of genetic recombination in Leishmania. Molecular and Biochemical Parasitology, 46(2), 253–263. https://doi.org/10.1016/0166-6851(91)90049-C | spa |
dc.relation.references | Kumar, A., Das, S., Purkait, B., Sardar, A., Ghosh, A., Dikhit, M., Abhishek, K., y Das, P. (2014). Ascorbate peroxidase, a key molecule regulating amphotericin B resistance in clinical isolates of Leishmania donovani. Antimicrobial Agents and Chemotherapy, 58(10), 6172–6184. https://doi.org/10.1128/AAC.02834-14 | spa |
dc.relation.references | Kumari, D., Perveen, S., Sharma, R., y Singh, K. (2021). Advancement in leishmaniasis diagnosis and therapeutics: An update. European Journal of Pharmacology, 910(August), 174436. https://doi.org/10.1016/j.ejphar.2021.174436 | spa |
dc.relation.references | Laffitte, M., Leprohon, P., Papadopoulou, B., y Ouellette, M. (2016). Plasticity of the Leishmania genome leading to gene copy number variations and drug resistance. F1000Research, 5, 1–10. https://doi.org/10.12688/f1000research.9218.1 | spa |
dc.relation.references | Lemley, C., Yan, S., Dole, V., Madhubala, R., Cunningham, M., Beverley, S., Myler, P., y Stuart, K. (1999). The Leishmania donovani LD1 locus gene ORFG encodes a biopterin transporter (BT1). Molecular and Biochemical Parasitology, 104(1), 93–105. https://doi.org/10.1016/S0166-6851(99)00132-2 | spa |
dc.relation.references | Leprohon, P., Légaré, D., Raymond, F., Madore, É., Hardiman, G., Corbeil, J., y Ouellette, M. (2009). Gene expression modulation is associated with gene amplification, supernumerary chromosomes and chromosome loss in antimony-resistant Leishmania infantum. Nucleic Acids Research, 37(5), 1387–1399. https://doi.org/10.1093/nar/gkn1069 | spa |
dc.relation.references | Llanes, A., Restrepo, C., Vecchio, G., Anguizola, F., y Lleonart, R. (2015). The genome of Leishmania panamensis: Insights into genomics of the L. (Viannia) subgenus. Scientific Reports, 5, 1–10. https://doi.org/10.1038/srep08550 | spa |
dc.relation.references | Lye, L., Cunningham, M., y Beverley, S. (2002). Characterization of quinonoid-dihydropteridine reductase (QDPR) from the lower eukaryote Leishmania major. Journal of Biological Chemistry, 277(41), 38245–38253. https://doi.org/10.1074/jbc.M206543200 | spa |
dc.relation.references | Milone, J., Wilusz, J., y Bellofatto, V. (2002). Identification of mRNA decapping activities and an ARE-regulated 3′ to 5′ exonuclease activity in trypanosome extracts. Nucleic Acids Research, 30(18), 4040–4050. https://doi.org/10.1093/nar/gkf521 | spa |
dc.relation.references | Mokni, M. (2019). Cutaneous leishmaniasis. Annales de Dermatologie et de Venereologie, 146(3), 232–246. https://doi.org/10.1016/j.annder.2019.02.002 | spa |
dc.relation.references | Mora, D. (2020). Revisión sistemática de respuesta al tratamiento de Leishmaniasis Tegumentaria Americana con Anfotericina B. Universidad Nacional de Colombia, 1–104. | spa |
dc.relation.references | Morizot, G., Jouffroy, R., Faye, A., Chabert, P., Belhouari, K., Calin, R., Charlier, C., Miailhes, P., Siriez, J., Mouri, O., Yera, H., Gilquin, J., Tubiana, R., Lanternier, F., Mamzer, M., Legendre, C., Peyramond, D., Caumes, E., Lortholary, O., y Buffet, P. (2016). Antimony to Cure Visceral Leishmaniasis Unresponsive to Liposomal Amphotericin B. PLoS Neglected Tropical Diseases, 10(1), 2–8. https://doi.org/10.1371/journal.pntd.0004304 | spa |
dc.relation.references | Motta, J., y Sampaio, R. (2012). A pilot study comparing low-dose liposomal amphotericin B with N-methyl glucamine for the treatment of American cutaneous leishmaniasis. Journal of the European Academy of Dermatology and Venereology, 26(3), 331–335. https://doi.org/10.1111/j.1468-3083.2011.04070.x | spa |
dc.relation.references | Murta, A., y Fonseca, S. (2022). Impact of Genetic Diversity and Genome Plasticity of Leishmania spp. in Treatment and the Search for Novel Chemotherapeutic Targets. Frontiers in Cellular and Infection Microbiology, 12(January), 1–9. https://doi.org/10.3389/fcimb.2022.826287 | spa |
dc.relation.references | Mwenechanya, R., Kovářová, J., Dickens, N., Manikhandan, M., Herzyk, P., Vincent, I., Weidt, S., Burgess, K., Burchmore, R., Pountain, A., Smith, T., Creek, D., Kim, D., Lepesheva, G., y Barrett, M. (2017). Sterol 14α-demethylase mutation leads to amphotericin B resistance in Leishmania mexicana. PLoS Neglected Tropical Diseases, 11(6), 1–21. https://doi.org/10.1371/journal.pntd.0005649 | spa |
dc.relation.references | Naderer, T., Heng, J., y Mcconville, M. (2010). Evidence That Intracellular Stages of Leishmania major Utilize Amino Sugars as a Major Carbon Source. PLoS Pathogens, 6(12). https://doi.org/10.1371/journal.ppat.1001245 | spa |
dc.relation.references | Niemann, M., Wiese, S., Mani, J., Chanfon, A., Jackson, C., Meisinger, C., Warscheid, B., y Schneider, A. (2013). Mitochondrial outer membrane proteome of trypanosoma brucei reveals novel factors required to maintain mitochondrial morphology. Molecular and Cellular Proteomics, 12(2), 515–528. https://doi.org/10.1074/mcp.M112.023093 | spa |
dc.relation.references | Ning, Y., Frankfater, C., Hsu, F., Soares, R., Cardoso, C., Nogueira, P., Lander, N., Docampo, R., y Zhang, K. (2020). Lathosterol Oxidase (Sterol C-5 Desaturase) Deletion Confers Resistance to Amphotericin B and Sensitivity to Acidic Stress in Leishmania major. American Society for Microbiology, 5(4), 1–18. | spa |
dc.relation.references | Nolder, D., Roncal, N., Davies, C., Llanos, A., y Miles, M. (2007). Multiple hybrid genotypes of Leishmania (Viannia) in a focus of mucocutaneous leishmaniasis. American Journal of Tropical Medicine and Hygiene, 76(3), 573–578. https://doi.org/10.4269/ajtmh.2007.76.573 | spa |
dc.relation.references | OMS. (2010). Control de las leishmaniasis Informe de una reunión del. Organización Mundial de La Salud, 186. | spa |
dc.relation.references | OPS. (2013). Organización Panamericana de la Salud. Leishmaniasis en las Américas: recomendaciones para el tratamiento. Organización Panamericana de La Salud. | spa |
dc.relation.references | OPS. (2020a). Colombia: Leishmaniasis cutánea y mucosa 2019. Organización Panamericana de La Salud. | spa |
dc.relation.references | OPS. (2020b). Leishmaniasis: Informe epidemiológico de las Américas. Organización Panamericana de La Salud, 9, 1–11. https://iris.paho.org/handle/10665.2/51742 | spa |
dc.relation.references | Ovalle, C., Londoño, D., Salgado, J., y G, C. (2019). Evaluating the spatial distribution of Leishmania parasites in Colombia from clinical samples and human isolates (1999 to 2016). PLoS ONE, 14(3), 1–16. https://doi.org/10.1371/journal.pone.0214124 | spa |
dc.relation.references | Patino, L., Muñoz, M., Cruz, L., Muskus, C., y Ramírez, J. (2020). Genomic Diversification, Structural Plasticity, and Hybridization in Leishmania (Viannia) braziliensis. Frontiers in Cellular and Infection Microbiology, 10(October), 1–17. https://doi.org/10.3389/fcimb.2020.582192 | spa |
dc.relation.references | Pedras, M., Carvalho, J., da Silva, R., Ramalho, D., de Senna, M., Moreira, H., Matos, L., Rabello, A., y Cota, G. (2018). Mucosal leishmaniasis: The experience of a brazilian referral center. Revista Da Sociedade Brasileira de Medicina Tropical, 51(3), 318–323. https://doi.org/10.1590/0037-8682-0478-2017 | spa |
dc.relation.references | Perez, J., Cruz, M., Robayo, M., Lopez, M., Daza, C., Bedoya, A., Mariño, M., Saavedra, C., y Echeverry, M. (2016). Clinical and Parasitological Features of Patients with American Cutaneous Leishmaniasis that Did Not Respond to Treatment with Meglumine Antimoniate. PLoS Neglected Tropical Diseases, 10(5), 1–13. https://doi.org/10.1371/journal.pntd.0004739 | spa |
dc.relation.references | Pourshafie, M., Morand, S., Virion, A., Rakotomanga, M., Dupuy, C., y Loiseau, P. (2004). Cloning of S-adenosyl-L-methionine:C-24-Δ-sterol-methyltransferase (ERG6) from Leishmania donovani and characterization of mRNAs in wild-type and amphotericin B-resistant promastigotes. Antimicrobial Agents and Chemotherapy, 48(7), 2409–2414. https://doi.org/10.1128/AAC.48.7.2409-2414.2004 | spa |
dc.relation.references | Prieto, P., Pescher, P., Bussotti, G., Dumetz, F., Imamura, H., Kedra, D., Domagalska, M., Chaumeau, V., Himmelbauer, H., Pages, M., Sterkers, Y., Dujardin, J., Notredame, C., y Späth, G. (2017). Haplotype selection as an adaptive mechanism in the protozoan pathogen Leishmania donovani. Nature Ecology and Evolution, 1(12), 1961–1969. https://doi.org/10.1038/s41559-017-0361-x | spa |
dc.relation.references | Purkait, B., Kumar, A., Nandi, N., Sardar, A., Das, S., Kumar, S., Pandey, K., Ravidas, V., Kumar, M., De, T., Singh, D., y Das, P. (2011). Mechanism of amphotericin B resistance in clinical isolates of Leishmania donovani. Antimicrobial Agents and Chemotherapy, 56(2), 1031–1041. https://doi.org/10.1128/AAC.00030-11 | spa |
dc.relation.references | Kumar, D., Kulshrestha, A., Singh, R., y Salotra, P. (2009). In vitro susceptibility of field isolates of Leishmania donovani to miltefosine and amphotericin B: Correlation with sodium antimony gluconate susceptibility and implications for treatment in areas of endemicity. Antimicrobial Agents and Chemotherapy, 53(2), 835–838. https://doi.org/10.1128/AAC.01233-08 | spa |
dc.relation.references | Ramanathan, R., Talaat, K., Fedorko, D., Mahanty, S., y Nash, T. (2011). A species-specific approach to the use of non-antimony treatments for cutaneous leishmaniasis. American Journal of Tropical Medicine and Hygiene, 84(1), 109–117. https://doi.org/10.4269/ajtmh.2011.10-0437 | spa |
dc.relation.references | Ramírez, J., Hernández, C., León, C., Ayala, M., Flórez, C., y González, C. (2016). Taxonomy, diversity, temporal and geographical distribution of Cutaneous Leishmaniasis in Colombia: A retrospective study. Scientific Reports, 6(June), 1–10. https://doi.org/10.1038/srep28266 | spa |
dc.relation.references | Rastrojo, A., Carrasco, F., Martín, D., Crespillo, A., Reguera, R., Aguado, B., y Requena, J. (2013). The transcriptome of Leishmania major in the axenic promastigote stage: transcript annotation and relative expression levels by RNA-seq. BMC Genomics, 14(1), 1–13. https://doi.org/10.1186/1471-2164-14-223 | spa |
dc.relation.references | Ready, P. (2013). Biology of phlebotomine sand flies as vectors of disease agents. Annual Review of Entomology, 58, 227–250. https://doi.org/10.1146/annurev-ento-120811-153557 | spa |
dc.relation.references | Roatt, B., Oliveira, J., Fortes, R., Coura, W., Oliveira, R., y Barbosa, A. (2020). Recent advances and new strategies on leishmaniasis treatment. Applied Microbiology and Biotechnology, 104(21), 8965–8977. https://doi.org/10.1007/s00253-020-10856-w | spa |
dc.relation.references | Rodríguez, D., Feng, X., Keeney, K., Bouwer, H., y Landfear, S. (2007). Phenotypic characterization of a glucose transporter null mutant in Leishmania mexicana. National Institutes of Health, 153(1), 9–18. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdf | spa |
dc.relation.references | Rodríguez, M., Pérez, J., Casas, M., y Ordoñez, M. (2020). Effectiveness and safety of amphotericin b deoxycholate, amphotericin b colloidal dispersion, and liposomal amphotericin b as third-line treatments for cutaneous and mucocutaneous leishmaniasis: A retrospective study. American Journal of Tropical Medicine and Hygiene, 102(2), 274–279. https://doi.org/10.4269/ajtmh.18-0514 | spa |
dc.relation.references | Sampaio, M., Barbosa, A., Este, M., Pirmez, C., Bello, A., y Traub, Y. (2009). A 245 kb mini-chromosome impacts on Leishmania braziliensis infection and survival. Biochemical and Biophysical Research Communications, 382(1), 74–78. https://doi.org/10.1016/j.bbrc.2009.02.128 | spa |
dc.relation.references | Sampaio, R., y Marsden, P. (1997). Tratamento da forma mucosa de leishmaniose sem resposta a glucantime, com anfotericina B liposomal. Revista Da Sociedade Brasileira de Medicina Tropical, 30(2), 125–128. https://doi.org/10.1590/s0037-86821997000200007 | spa |
dc.relation.references | Sampaio, S., Castro, R., Dillon, N., y Costa, J. (1971). Treatment of mucocutaneous (American) leishmaniasis with amphotericin b: report of 70 cases. International Journal of Dermatology, 10, 179–181. | spa |
dc.relation.references | Santos, C., Tuon, F., Cieslinski, J., de Souza, R., Imamura, R., y Amato, V. (2019). Comparative study on liposomal amphotericin B and other therapies in the treatment of mucosal leishmaniasis: A 15-year retrospective cohort study. PLoS ONE, 14(6), 1–12. https://doi.org/10.1371/journal.pone.0218786 | spa |
dc.relation.references | Sernee, M., Ralton, J., Dinev, Z., Khairallah, G., O’Hair, R., Williams, S., y McConville, M. (2006). Leishmania β-1,2-mannan is assembled on a mannose-cyclic phosphate primer. Proceedings of the National Academy of Sciences of the United States of America, 103(25), 9458–9463. https://doi.org/10.1073/pnas.0603539103 | spa |
dc.relation.references | Solomon, M., Pavlotzky, F., Barzilai, A., y Schwartz, E. (2013). Liposomal amphotericin B in comparison to sodium stibogluconate for Leishmania braziliensis cutaneous leishmaniasis in travelers. Journal of the American Academy of Dermatology, 68(2), 284–289. https://doi.org/10.1016/j.jaad.2012.06.014 | spa |
dc.relation.references | Späth, G., Drini, S., y Rachidi, N. (2015). A touch of Zen: post-translational regulation of the Leishmania stress response. Cellular Microbiology, 17(5), 632–638. https://doi.org/10.1111/cmi.12440 | spa |
dc.relation.references | Srivastava, P., Prajapati, V., Rai, M., y Sundar, S. (2011). Unusual case of resistance to amphotericin B in visceral leishmaniasis in a region in India where leishmaniasis is not endemic. Journal of Clinical Microbiology, 49(8), 3088–3091. https://doi.org/10.1128/JCM.00173-11 | spa |
dc.relation.references | Staneva, D., Carloni, R., Auchynnikava, T., Tong, P., Rappsilber, J., Jeyaprakash, A., Matthews, K., & Allshire, R. (2021). A systematic analysis of Trypanosoma brucei chromatin factors identifies novel protein interaction networks associated with sites of transcription initiation and termination. Genome Research, 31(11), 2138–2154. https://doi.org/10.1101/gr.275368.121 | spa |
dc.relation.references | Stevens, J. (2008). Kinetoplastid phylogenetics, with special reference to the evolution of parasitic trypanosomes. Parasite, 15(3), 226–232. https://doi.org/10.1051/parasite/2008153226 | spa |
dc.relation.references | Stone, N., Bicanic, T., Salim, R., y Hope, W. (2016). Liposomal Amphotericin B (AmBisome®): A Review of the Pharmacokinetics, Pharmacodynamics, Clinical Experience and Future Directions. Drugs, 76(4), 485–500. https://doi.org/10.1007/s40265-016-0538-7 | spa |
dc.relation.references | Sundar, M., y Singh, A. (2018). Chemotherapeutics of Visceral Leishmaniasis: present and future developments. Parasitology, 145(4), 481–489. https://doi.org/10.1017/S0031182017002116.Chemotherapeutics | spa |
dc.relation.references | Sundar, S., y Chakravarty, J. (2010). Liposomal amphotericin B and leishmaniasis: Dose and response. Journal of Global Infectious Diseases, 2(2), 159. https://doi.org/10.4103/0974-777x.62886 | spa |
dc.relation.references | Taschner, A., Weber, C., Buzet, A., Hartmann, R., Hartig, A., y Rossmanith, W. (2012). Nuclear RNase P of Trypanosoma brucei: A Single Protein in Place of the Multicomponent RNA-Protein Complex. Cell Reports, 2(1), 19–25. https://doi.org/10.1016/j.celrep.2012.05.021 | spa |
dc.relation.references | Tello, D., Gil, J., Loaiza, C., Riascos, J., Cardozo, N., & Duitama, J. (2019). NGSEP3: Accurate variant calling across species and sequencing protocols. Bioinformatics, 35(22), 4716–4723. https://doi.org/10.1093/bioinformatics/btz275 | spa |
dc.relation.references | Tibayrenc, M., y Ayala, F. (2012). How clonal are Trypanosoma and Leishmania? Trends in Parasitology, 29(6), 264–269. https://doi.org/10.1016/j.pt.2013.03.007 | spa |
dc.relation.references | Tripp, C., Myler, P., & Stuart, K. (1991). A DNA sequence (LD1) which occurs in several genomic organizations in Leishmania. Molecular and Biochemical Parasitology, 47(2), 151–160. https://doi.org/10.1016/0166-6851(91)90174-5 | spa |
dc.relation.references | Tuon, F., Amato, V., Graf, M., Siqueira, A., Nicodemo, A., y Neto, V. (2008). Treatment of New World cutaneous leishmaniasis - A systematic review with a meta-analysis. International Journal of Dermatology, 47(2), 109–124. https://doi.org/10.1111/j.1365-4632.2008.03417.x | spa |
dc.relation.references | Van den Broeck, F., Savill, N., Imamura, H., Sanders, M., Maes, I., Cooper, S., Mateus, D., Jara, M., Adaui, V., Arevalo, J., Llanos, A., Garcia, L., Cupolillo, E., Miles, M., Berriman, M., Schnaufer, A., Cotton, J., y Dujardin, J. (2020). Ecological divergence and hybridization of Neotropical Leishmania parasites. Proceedings of the National Academy of Sciences of the United States of America, 117(40), 25159–25168. https://doi.org/10.1073/pnas.1920136117 | spa |
dc.relation.references | Van der Ploeg, L., Liu, A., Michels, P., De Lange, T., Borst, P., Majumder, H., Weber, H., Veeneman, G., y Boom, J. (1982). RNA splicing is required to make the messenger RNA for a variant surface antigen in trypanosomes. Nucleic Acids Research, 10(12). | spa |
dc.relation.references | Vargas, C. (2021). Identificación y asociación de polimorfismos de Toll-Like Receptor 3 con el desarrollo de Leishmaniasis mucosa frente a la coinfección Leishmania spp. –Leishmania RNA Virus 1. [Tesis de maestría no publicada]. Universidad Nacional de Colombia. | spa |
dc.relation.references | Vargas, C., Fonte, B., De Souza, D., Peruhype, V., & Fonseca, S. (2019). Mannosyltransferase (GPI-14) overexpression protects promastigote and amastigote forms of Leishmania braziliensis against trivalent antimony. Parasites and Vectors, 12(1), 1–7. https://doi.org/10.1186/s13071-019-3305-2 | spa |
dc.relation.references | Wilson, E., Thorson, L., y Speert, D. (1991). Enhancement of macrophage superoxide anion production by amphotericin B. Antimicrobial Agents and Chemotherapy, 35(5), 796–800. https://doi.org/10.1128/AAC.35.5.796 | spa |
dc.relation.references | Zíková, A., Panigrahi, A., Dalley, R., Acestor, N., Anupama, A., Ogata, Y., Myler, P., & Stuart, K. (2008). Trypanosoma brucei mitochondrial ribosomes. Molecular and Cellular Proteomics, 7(7), 1286–1296. https://doi.org/10.1074/mcp.M700490-MCP200 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | spa |
dc.subject.ddc | 570 - Biología::576 - Genética y evolución | spa |
dc.subject.ddc | 610 - Medicina y salud::615 - Farmacología y terapéutica | spa |
dc.subject.decs | Vacunas contra la Leishmaniasis | spa |
dc.subject.decs | Leishmaniasis vaccines | eng |
dc.subject.decs | Anfotericina B | spa |
dc.subject.decs | Amphotericin B | eng |
dc.subject.decs | Secuenciación completa del genoma | spa |
dc.subject.decs | Whole genome sequencing | eng |
dc.subject.decs | Farmacogenética | spa |
dc.subject.decs | Pharmacogenetics | eng |
dc.subject.decs | Variantes farmacogenómicas | spa |
dc.subject.decs | Pharmacogenomic variants | eng |
dc.subject.proposal | Infección parasitaria | spa |
dc.subject.proposal | Leishmania | spa |
dc.subject.proposal | Baja susceptibilidad | spa |
dc.subject.proposal | Tratamiento | spa |
dc.subject.proposal | Anfotericina B | spa |
dc.subject.proposal | Parasitic infection | eng |
dc.subject.proposal | Leishmania | eng |
dc.subject.proposal | Low susceptibility | eng |
dc.subject.proposal | Treatment | eng |
dc.subject.proposal | Amphotericin B | eng |
dc.title | Caracterización genómica y transcriptómica de los aislamientos de Leishmania (V.) braziliensis con diferente patrón de susceptibilidad a la Anfotericina B (AmB). | spa |
dc.title.translated | Genomic and transcriptomic characterization of Leishmania (V.) braziliensis isolates with different susceptibility pattern to amphotericin B (AmB). | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Personal de apoyo escolar | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | “Caracterización genotípica y fenotípica de aislamientos clínicos de Leishmania braziliensis con disminución en la sensibilidad para Glucantime® y Anfotericina B” | spa |
oaire.fundername | Ministerio de Ciencia, Tecnología e Innovación – (Minciencias) | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1013678476-2024.pdf
- Tamaño:
- 1.31 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Infecciones y Salud en el Trópico
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: