Caracterización genómica y transcriptómica de los aislamientos de Leishmania (V.) braziliensis con diferente patrón de susceptibilidad a la Anfotericina B (AmB).

dc.contributor.advisorEcheverry Gaitán, María Claraspa
dc.contributor.advisorClavijo-Ramírez, Carlos Arturospa
dc.contributor.authorClavijo Vanegas, Ana Maríaspa
dc.contributor.cvlacClavijo Vanegas, Ana María [0000146519]spa
dc.contributor.orcidClavijo Vanegas, Ana María [0000000221592768]spa
dc.contributor.researchgroupInfecciones y Salud en El Trópicospa
dc.date.accessioned2024-07-18T15:00:53Z
dc.date.available2024-07-18T15:00:53Z
dc.date.issued2024
dc.descriptionilustraciones a color, diagramasspa
dc.description.abstractLa leishmaniasis es una enfermedad causada por un parásito perteneciente al género Leishmania, el cual se transmite en el nuevo mundo por una mosca vector hematófaga perteneciente al género Lutzomyia, mediante ciclos de infección zoonótica y antroponótica. La leishmaniasis presenta manifestaciones viscerales (LV), cutáneas (LC) o mucosas (LM). En Colombia la forma más común es la LC y está asociada principalmente a las especies de Leishmania pertenecientes al subgénero Viannia [L.(V.) braziliensis, L. (V.) panamensis y L. (V.) guyanensis]. El tratamiento de la LC se hace de manera sistémica mediante el uso de fármacos con alto nivel de toxicidad como son las sales de antimonio (SbV), tratamiento de primera línea y la anfotericina B (AmB) que se emplea como tratamiento de segunda línea. Datos de meta-análisis estiman la falla terapéutica en el tratamiento de LC con SbV en un 25% de los casos. Adicionalmente, en Colombia se ha informado la circulación de aislamientos clínicos de L.(V.) braziliensis y L.(V.) panamensis con susceptibilidad reducida a la AmB. Una de las posibles causas de falla terapéutica en LC es la resistencia por parte del parásito, no obstante, los mecanismos moleculares asociados a resistencia a la AmB en Leishmania spp, son poco conocidos y han sido estudiados principalmente en cepas del laboratorio de especies del subgénero Leishmania Leishmania. Por lo tanto, en la presente investigación, se emplearon aislamientos clínicos de L.(V.) braziliensis, en los que previamente se determinó un patrón diferencial de susceptibilidad a la AmB in vitro, y se estudiaron factores potencialmente asociados al patrón de susceptibilidad, con el fin de proponer posibles moléculas o vías metabólicas involucradas en la respuesta in vitro de L.(V.) braziliensis a la AmB. Entre los factores estudiados están el mantenimiento en cultivo del aislamiento clínico y las diferencias genómicas y de niveles de transcrito entre aislamientos con diferente susceptibilidad. Para lograr el propósito mencionado, se realizaron ensayos de dosis-respuesta a la AmB en los dos estadios parasitarios, se analizó el genoma de los aislamientos clínicos, se evaluaron niveles de transcrito de genes seleccionados y se adelantaron ensayos preliminares de sobre-expresión génica. Mediante esta aproximación, se determinó que en los aislamientos clínicos de L.(V.) braziliensis, no existe relación entre susceptibilidad in vitro a la AmB y el mantenimiento in vitro. Con el análisis de la secuenciación del genoma, se evidenció aumento en el número de copias de algunos genes codificantes de enzimas relacionadas con la maquinaria de respiración mitocondrial y la biosíntesis de la biopeterina en aislamientos clínicos con baja susceptibilidad in vitro a la AmB. Se encontró la presencia de la región LD1, un locus multigénico ampliamente estudiado en Leishmania spp. Y adicionalmente, se estableció que el incremento en el número de copias de un gen, no necesariamente implica el aumento en los niveles de transcrito correspondiente. (Texto tomado de la fuente)spa
dc.description.abstractLeishmaniasis is a disease caused by a parasite belonging to the genus Leishmania, which is transmitted in the New World by a hematophagous female sandfly vector belonging to the genus Lutzomyia, through zoonotic and anthroponotic infection cycles. Leishmaniasis presents visceral (VL), cutaneous (CL) or mucosal (ML) manifestations. In Colombia, the most common form is CL and is mainly associated with Leishmania species belonging to the subgenus Viannia [L.(V.) braziliensis, L. (V.) panamensis and L. (V.) guyanensis]. CL is treated systemically using highly toxic drugs such as antimony salts (SbV) as first-line treatment and amphotericin B (Amphotericin B (AmB) as second-line treatment. Meta-analysis data estimate therapeutic failure in the treatment of CL with SbV in 25% of cases. Additionally, clinical isolates of L.(V.) braziliensis and L.(V.) panamensis with reduced susceptibility to AmB have been reported in Colombia. One of the possible causes of therapeutic failure in CL is resistance by the parasite; however, the molecular mechanisms associated with AmB resistance in Leishmania spp. are poorly understood and have been studied mainly in laboratory strains of species of the subgenus Leishmania Leishmania. Therefore, in the present investigation, clinical isolates of L.(V.) braziliensis, in which a differential pattern of susceptibility to AmB in vitro was previously determined, were used. Factors potentially associated with the susceptibility pattern were studied in order to propose possible molecules or metabolic pathways involved in the in vitro response of L.(V.) braziliensis to AmB. Among the factors studied are the maintenance in the culture of the clinical isolate and the genomic and transcript level differences between isolates with different susceptibility. To achieve the study purpose, dose-response assays to AmB were performed in the two parasite stages, the genome of clinical isolates was analyzed, transcript levels of selected genes were evaluated, and preliminary gene overexpression assays were performed. This approach determined that in clinical isolates of L.(V.) braziliensis, there is no relationship between in vitro susceptibility to AmB and in vitro maintenance. The genome sequencing analysis revealed increased copies of some genes encoding enzymes related to the mitochondrial respiration machinery and the biosynthesis of biopeterin in clinical isolates with low in vitro susceptibility to AmB. The presence of the LD1 region, a multigene locus widely studied in Leishmania spp. was found. Additionally, it was established that the increase in the number of copies of a gene does not necessarily imply an increase in the corresponding transcript levels. (Texto tomado de la fuente)eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Infecciones y Salud en el Trópicospa
dc.description.researchareaMecanismos moleculares de farmacorresistencia en parásitos de la familia Trypanosomatidaespa
dc.format.extent80 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86558
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Infecciones y Salud en el Trópicospa
dc.relation.referencesAcestor, N., Zíková, A., Dalley, R., Anupama, A., Panigrahi, A., y Stuart, K. (2011). Trypanosoma brucei mitochondrial respiratome: Composition and organization in procyclic form. Molecular and Cellular Proteomics, 10(9), 1–14. https://doi.org/10.1074/mcp.M110.006908spa
dc.relation.referencesAdler, J., Gangneux, J., y Pappas, P. (2016). Comparison between liposomal formulations of amphotericin B. Medical Mycology, 54(3), 223–231. https://doi.org/10.1093/mmy/myv111spa
dc.relation.referencesAlpizar, E., Binti, N., Wei, W., Pountain, A., Weidt, S., Donachie, A., Ritchie, R., Dickie, E., Burchmore, R., Denny, P., y Barrettid, M. (2022). Amphotericin B resistance in Leishmania mexicana: Alterations to sterol metabolism and oxidative stress response. In PLoS Neglected Tropical Diseases (Vol. 16, Issue 9). https://doi.org/10.1371/journal.pntd.0010779spa
dc.relation.referencesAmato, V., Tuon, F., Imamura, R., Abegão De Camargo, R., Duarte, M., y Neto, V. (2009). Mucosal leishmaniasis: Description of case management approaches and analysis of risk factors for treatment failure in a cohort of 140 patients in Brazil. Journal of the European Academy of Dermatology and Venereology, 23(9), 1026–1034. https://doi.org/10.1111/j.1468-3083.2009.03238.xspa
dc.relation.referencesAmeen, M. (2010). Cutaneous leishmaniasis: advances in disease pathogenesis, diagnostics and therapeutics. Clinical and Experimental Dermatology, 35(7), 699–705. https://doi.org/10.1111/j.1365-2230.2010.03851.xspa
dc.relation.referencesAronson, N., y Joya, C. (2019). Cutaneous Leishmaniasis: Updates in Diagnosis and Management. Infectious Disease Clinics of North America, 33(1), 101–117. https://doi.org/10.1016/j.idc.2018.10.004spa
dc.relation.referencesAzanza, J. (2021). Anfotericina B liposomal: farmacología clínica, farmacocinética y farmacodinamia. Revista Iberoamericana de Micología, 38(2), 52–55. https://doi.org/10.1016/j.riam.2021.02.004spa
dc.relation.referencesBaginski, M., y Czub, J. (2009). Amphotericin B and Its New Derivatives – Mode of Action. Current Drug Metabolism, 10(5), 459–469. https://doi.org/10.2174/138920009788898019spa
dc.relation.referencesBaginski, M., Czub, J., y Sternal, K. (2006). Interaction of amphotericin B and its selected derivatives with membranes: Molecular modeling studies. Chemical Record, 6(6), 320–332. https://doi.org/10.1002/tcr.20096spa
dc.relation.referencesBansal, R., Sen, S., Muthuswami, R., y Madhubala, R. (2019a). A Plant like Cytochrome P450 Subfamily CYP710C1 Gene in Leishmania donovani Encodes Sterol C-22 Desaturase and its Overexpression Leads to Resistance to Amphotericin B. PLoS Neglected Tropical Diseases, 13(4), 1–23. https://doi.org/10.1371/journal.pntd.0007260spa
dc.relation.referencesBansal, R., Sen, S., Muthuswami, R., y Madhubala, R. (2019b). Stigmasterol as a potential biomarker for amphotericin B resistance in Leishmania donovani. Journal of Antimicrobial Chemotherapy, 75(4), 942–950. https://doi.org/10.1093/jac/dkz515spa
dc.relation.referencesBates, E., Knuepfer, E., y Smith, D. (2000). Poly(A)-binding protein I of Leishmania: Functional analysis and localisation in trypanosomatid parasites. Nucleic Acids Research, 28(5), 1211–1220. https://doi.org/10.1093/nar/28.5.1211spa
dc.relation.referencesBates, P. (1994). Complete developmental cycle of Leishmania mexicana in axenic culture. Parasitology, 108(1), 1–9. https://doi.org/10.1017/S0031182000078458spa
dc.relation.referencesBates, P. (2018). Revising Leishmania’s life cycle. Nature Microbiology, 3(5), 529–530. https://doi.org/10.1038/s41564-018-0154-2spa
dc.relation.referencesBringaud, F., Müller, M., Cerqueira, G., Smith, M., Rochette, A., El-Sayed, N., Papadopoulou, B., y Ghedin, E. (2007). Members of a large retroposon family are determinants of post-transcriptional gene expression in Leishmania. PLoS Pathogens, 3(9), 1291–1307. https://doi.org/10.1371/journal.ppat.0030136spa
dc.relation.referencesBrotherton, M., Bourassa, S., Légaré, D., Poirier, G., Droit, A., y Ouellette, M. (2014). Quantitative proteomic analysis of amphotericin B resistance in Leishmania infantum. International Journal for Parasitology: Drugs and Drug Resistance, 4(2), 126–132. https://doi.org/10.1016/j.ijpddr.2014.05.002spa
dc.relation.referencesBurza, S., Croft, S., y Boelaert, M. (2018). Leishmaniasis. The Lancet, 392(10151), 951–970. https://doi.org/10.1016/S0140-6736(18)31204-2spa
dc.relation.referencesBussotti, G., Gouzelou, E., Cortes, M., Kherachi, I., Harrat, Z., Eddaikra, N., Mottram, J., Antoniou, M., Christodoulou, V., Bali, A., Guerfali, F., Laouini, D., Mukhtar, M., y Dumetz, F. (2018). Leishmania Genome Dynamics during Environmental Adaptation Reveal Strain-Specific Differences in Gene Copy Number Variation, Karyotype Instability, and Telomeric Amplification. American Society for Microbiology, 9(6), 1–18.spa
dc.relation.referencesBussotti, G., Piel, L., Pescher, P., Domagalska, M., Rajan, K., Cohen, S., Doniger, T., Hiregange, D., Myler, P., Unger, R., Michaeli, S., y Spath, G. (2021). Genome instability drives epistatic adaptation in the human pathogen Leishmania. PNAS, 118(51), 1–8. https://doi.org/10.1073/pnas.2113744118/-/DCSupplemental.Publishedspa
dc.relation.referencesCamacho, E., González, S., Rastrojo, A., Peiró, R., Solana, J., Tabera, L., Gamarro, F., Carrasco, F., Requena, J., y Aguado, B. (2019). Complete assembly of the Leishmania donovani (HU3 strain) genome and transcriptome annotation. Scientific Reports, 9(6), 1–15. https://doi.org/10.1038/s41598-019-42511-4spa
dc.relation.referencesCatalán, M., y Montejo, J. (2006). Antifúngicos sistémicos. Farmacodinamia y farmacocinética. Revista Iberoamericana de Micología, 23(1), 39–49. https://doi.org/10.1016/s1130-1406(06)70012-2spa
dc.relation.referencesChevalier, N., Bertrand, L., Rider, M., Opperdoes, F., Rigden, D., & Michels, P. (2005). 6-Phosphofructo-2-kinase and fructose-2,6-bisphosphatase in trypanosomatidae: Molecular characterization, database searches, modelling studies and evolutionary analysis. FEBS Journal, 272(14), 3542–3560. https://doi.org/10.1111/j.1742-4658.2005.04774.xspa
dc.relation.referencesChia, J., y McManus, E. (1990). In vitro tumor necrosis factor induction assay for analysis of febrile toxicity associated with amphotericin B preparations. Antimicrobial Agents and Chemotherapy, 34(5), 906–908. https://doi.org/10.1128/AAC.34.5.906spa
dc.relation.referencesClayton, C. (2016). Gene expression in Kinetoplastids. Current Opinion in Microbiology, 32, 46–51. https://doi.org/10.1016/j.mib.2016.04.018spa
dc.relation.referencesClos, J., Grünebast, J., y Holm, M. (2022). Promastigote-to-Amastigote Conversion in Leishmania spp.—A Molecular View. Pathogens, 11(9). https://doi.org/10.3390/pathogens11091052spa
dc.relation.referencesCollett, C., Kitson, C., Baker, N., Steele, H., Santrot, M., Hutchinson, S., Horn, D., y Alsford, S. (2019). Chemogenomic profiling of antileishmanial efficacy and resistance in the related kinetoplastid parasite trypanosoma brucei. Antimicrobial Agents and Chemotherapy, 63(8). https://doi.org/10.1128/AAC.00795-19spa
dc.relation.referencesCunha, M., Leão, A., De Cassia Soler, R., y Lindoso, J. (2015). Efficacy and safety of liposomal amphotericin B for the treatment of mucosal leishmaniasis from the new world: A retrospective study. American Journal of Tropical Medicine and Hygiene, 93(6), 1214–1218. https://doi.org/10.4269/ajtmh.15-0033spa
dc.relation.referencesDe Gaudenzi, J., Noé, G., Campo, V., Frasch, A., y Cassola, A. (2011). Gene expression regulation in trypanosomatids. Essays in Biochemistry, 51(1), 31–46. https://doi.org/10.1042/BSE0510031spa
dc.relation.referencesDujardin, J. (2009). Structure, dynamics and function of Leishmania genome: Resolving the puzzle of infection, genetics and evolution? Infection, Genetics and Evolution, 9(2), 290–297. https://doi.org/10.1016/j.meegid.2008.11.007spa
dc.relation.referencesDujardin, J., Bañuls, A., Llanos, A., Alvarez, E., DeDoncker, S., Jacquet, D., Le Ray, D., Arevalo, J., y Tibayrenc, M. (1995). Putative Leishmania hybrids in the Eastern Andean valley of Huanuco, Peru. Acta Tropica, 59(4), 293–307. https://doi.org/10.1016/0001-706X(95)00094-Uspa
dc.relation.referencesDumetz, F., Imamura, H., Sanders, M., Seblova, V., Myskova, J., y Pescher, P. (2017). crossm Modulation of Aneuploidy in Leishmania In Vitro and In Vivo Environments and Its. Mbio, 8(3), 1–14. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5442457/pdf/mBio.00599-17.pdfspa
dc.relation.referencesEqubal, A., Suman, S., Anwar, S., Singh, K., Zaidi, A., Sardar, A., Das, P., y Ali, V. (2014). Stage-dependent expression and up regulation of trypanothione synthetase in amphotericin B resistant Leishmania donovani. PLoS ONE, 9(6), 1–18. https://doi.org/10.1371/journal.pone.0097600spa
dc.relation.referencesFerro, C., López, M., Fuya, P., Lugo, L., Cordovez, J., y González, C. (2015). Spatial distribution of sand fly vectors and eco-epidemiology of cutaneous leishmaniasis transmission in Colombia. PLoS ONE, 10(10), 1–16. https://doi.org/10.1371/journal.pone.0139391spa
dc.relation.referencesFigueiredo de Sá, B., Rezende, A., De Melo Neto, O., De Brito, M., y Brandão Filho, S. (2019). Identification of divergent leishmania (Viannia) braziliensis ecotypes derived from a geographically restricted area through whole genome analysis. PLoS Neglected Tropical Diseases, 13(6), 1–23. https://doi.org/10.1371/journal.pntd.0007382spa
dc.relation.referencesFranco-Muñoz, C., Manjarrés-Estremor, M., y Ovalle-Bracho, C. (2018). Intraspecies differences in natural susceptibility to amphotericine B of clinical isolates of Leishmania subgenus Viannia. PLoS ONE, 13(4), 1–15. https://doi.org/10.1371/journal.pone.0196247spa
dc.relation.referencesGarami, A., Mehlert, A., & Ilg, T. (2001). Glycosylation Defects and Virulence Phenotypes of Leishmania mexicana Phosphomannomutase and Dolicholphosphate-Mannose Synthase Gene Deletion Mutants. Molecular and Cellular Biology, 21(23), 8168–8183. https://doi.org/10.1128/mcb.21.23.8168-8183.2001spa
dc.relation.referencesGhosh, S., Biswas, S., Mukherjee, S., Pal, A., Saxena, A., Sundar, S., Dujardin, J., Das, S., Roy, S., Mukhopadhyay, R., y Mukherjee, B. (2021). A Novel Bioimpedance-Based Detection of Miltefosine Susceptibility Among Clinical Leishmania donovani Isolates of the Indian Subcontinent Exhibiting Resistance to Multiple Drugs. Frontiers in Cellular and Infection Microbiology, 11(November), 1–9. https://doi.org/10.3389/fcimb.2021.768830spa
dc.relation.referencesGoad, L., Holz, G., y Beach, D. (1984). Sterols of Leishmania species, implications for biosynthesis. Molecular and Biochemical Parasitology, 10(2), 161–170. https://doi.org/10.1016/0166-6851(84)90004-5spa
dc.relation.referencesGonzalez, L., Rodríguez, A., Vargas, C., Aponte, S., Bonilla, L., Matiz, J., Clavijo, A., Duarte, G., Urrea, D., Duitama, J., y Echeverry, M. (2024). Whole genomic characterization of L. (V.) braziliensis clinical isolates according to their in vitro response to Amphotericin B [Manuscrito presentado para su publicación]. Universidad de Los Andes, Bogotá Colombia, Universidad del Tolima y Universidad Nacional de Colombia.spa
dc.relation.referencesGossage, S., Rogers, M., y Bates, P. (2003). Two separate growth phases during the development of Leishmania in sand flies: Implications for understanding the life cycle. International Journal for Parasitology, 33(10), 1027–1034. https://doi.org/10.1016/S0020-7519(03)00142-5spa
dc.relation.referencesGuery, R., Henry, B., Martinl, G., Rouzaud, C., Cordoliani, F., Harms, G., Gangneux, J., Foulet, F., Bourrat, E., Baccard, M., Morizot, G., Consigny, P., Berry, A., Blum, J., Lortholary, O., y Buffet, P. (2017). Liposomal amphotericin B in travelers with cutaneous and muco-cutaneous leishmaniasis: Not a panacea. PLoS Neglected Tropical Diseases, 11(11), 1–12. https://doi.org/10.1371/journal.pntd.0006094spa
dc.relation.referencesGurel, M., Tekin, B., y Uzun, S. (2020). Cutaneous leishmaniasis: A great imitator. Clinics in Dermatology, 38(2), 140–151. https://doi.org/10.1016/j.clindermatol.2019.10.008spa
dc.relation.referencesGutiérrez, C., Domínguez, B., Martínez, M., Pérez, Y., García, C., Balaña, R., y Reguera, R. (2021). Reproduction in trypanosomatids: Past and present. Biology, 10(6), 1–15. https://doi.org/10.3390/biology10060471spa
dc.relation.referencesHall, M., & Ho, K. (2006). Characterization of a Trypanosoma brucei RNA cap (guanine N-7) methyltransferase. RNA, 12(3), 488–497. https://doi.org/10.1261/rna.2250606spa
dc.relation.referencesHamill, R. (2013). Amphotericin B formulations: A comparative review of efficacy and toxicity. Drugs, 73(9), 919–934. https://doi.org/10.1007/s40265-013-0069-4spa
dc.relation.referencesHernández, A., Gutierrez, J., Xiao, Y., Branscum, A., y Cuadros, D. (2019). Spatial epidemiology of cutaneous leishmaniasis in Colombia: Socioeconomic and demographic factors associated with a growing epidemic. Transactions of the Royal Society of Tropical Medicine and Hygiene, 113(9), 560–568. https://doi.org/10.1093/trstmh/trz043spa
dc.relation.referencesHerrmann, J., Dubois, N., Fourgeaud, M., Basset, D., y Lagrange, P. (1994). Synergic inhibitory activity of amphotericin-b and γ interferon against intracellular cryptococcus neoformans in murine macrophages. Journal of Antimicrobial Chemotherapy, 34(6), 1051–1058. https://doi.org/10.1093/jac/34.6.1051spa
dc.relation.referencesHury, A., Goldshmidt, H., Tkacz, I., & Michaeli, S. (2009). Trypanosome spliced-leader-associated RNA (SLA1) localization and implications for spliced-leader RNA biogenesis. Eukaryotic Cell, 8(1), 56–68. https://doi.org/10.1128/EC.00322-08spa
dc.relation.referencesIlg, T. (2002). Generation of myo -inositol-auxotrophic Leishmania mexicana mutants by targeted replacement of the myo -inositol-1-phosphate synthase gene. Molecular and Biochemical Parasitology, 120, 151–156.spa
dc.relation.referencesIlgoutz, S., Zawadzki, J., Ralton, J., & McConville, M. (1999). Evidence that free GPI glycolipids are essential for growth of Leishmania mexicana. EMBO Journal, 18(10), 2746–2755. https://doi.org/10.1093/emboj/18.10.2746spa
dc.relation.referencesImamura, H., Monsieurs, P., Jara, M., Sanders, M., Maes, I., Vanaerschot, M., Berriman, M., Cotton, J., Dujardin, J., y Domagalska, M. (2020). Evaluation of whole genome amplification and bioinformatic methods for the characterization of Leishmania genomes at a single cell level. Scientific Reports, 10(1), 1–13. https://doi.org/10.1038/s41598-020-71882-2spa
dc.relation.referencesINS. (2022). Protocolo de vigilancia de Leishmaniasis. Instituto Nacional de Salud, 1–28. https://www.ins.gov.co/buscador-eventos/Lineamientos/PRO_Leishmaniasis.pdfspa
dc.relation.referencesJain, M., y Madhubala, R. (2008). Characterization and localization of ORFF gene from the LD1 locus of Leishmania donovani. Gene, 416(1–2), 1–10. https://doi.org/10.1016/j.gene.2008.01.011spa
dc.relation.referencesJones, N., Thomas, E., Brown, E., Dickens, N., Hammarton, T., & Mottram, J. (2014). Regulators of Trypanosoma brucei Cell Cycle Progression and Differentiation Identified Using a Kinome-Wide RNAi Screen. PLoS Pathogens, 10(1). https://doi.org/10.1371/journal.ppat.1003886spa
dc.relation.referencesKazemi, B. (2011). Genomic organization of Leishmania species. Iranian Journal of Parasitology, 6(3), 1–18.spa
dc.relation.referencesKelly, J., Law, J., Chapman, C., Van, V., y Evans, D. (1991). Evidence of genetic recombination in Leishmania. Molecular and Biochemical Parasitology, 46(2), 253–263. https://doi.org/10.1016/0166-6851(91)90049-Cspa
dc.relation.referencesKumar, A., Das, S., Purkait, B., Sardar, A., Ghosh, A., Dikhit, M., Abhishek, K., y Das, P. (2014). Ascorbate peroxidase, a key molecule regulating amphotericin B resistance in clinical isolates of Leishmania donovani. Antimicrobial Agents and Chemotherapy, 58(10), 6172–6184. https://doi.org/10.1128/AAC.02834-14spa
dc.relation.referencesKumari, D., Perveen, S., Sharma, R., y Singh, K. (2021). Advancement in leishmaniasis diagnosis and therapeutics: An update. European Journal of Pharmacology, 910(August), 174436. https://doi.org/10.1016/j.ejphar.2021.174436spa
dc.relation.referencesLaffitte, M., Leprohon, P., Papadopoulou, B., y Ouellette, M. (2016). Plasticity of the Leishmania genome leading to gene copy number variations and drug resistance. F1000Research, 5, 1–10. https://doi.org/10.12688/f1000research.9218.1spa
dc.relation.referencesLemley, C., Yan, S., Dole, V., Madhubala, R., Cunningham, M., Beverley, S., Myler, P., y Stuart, K. (1999). The Leishmania donovani LD1 locus gene ORFG encodes a biopterin transporter (BT1). Molecular and Biochemical Parasitology, 104(1), 93–105. https://doi.org/10.1016/S0166-6851(99)00132-2spa
dc.relation.referencesLeprohon, P., Légaré, D., Raymond, F., Madore, É., Hardiman, G., Corbeil, J., y Ouellette, M. (2009). Gene expression modulation is associated with gene amplification, supernumerary chromosomes and chromosome loss in antimony-resistant Leishmania infantum. Nucleic Acids Research, 37(5), 1387–1399. https://doi.org/10.1093/nar/gkn1069spa
dc.relation.referencesLlanes, A., Restrepo, C., Vecchio, G., Anguizola, F., y Lleonart, R. (2015). The genome of Leishmania panamensis: Insights into genomics of the L. (Viannia) subgenus. Scientific Reports, 5, 1–10. https://doi.org/10.1038/srep08550spa
dc.relation.referencesLye, L., Cunningham, M., y Beverley, S. (2002). Characterization of quinonoid-dihydropteridine reductase (QDPR) from the lower eukaryote Leishmania major. Journal of Biological Chemistry, 277(41), 38245–38253. https://doi.org/10.1074/jbc.M206543200spa
dc.relation.referencesMilone, J., Wilusz, J., y Bellofatto, V. (2002). Identification of mRNA decapping activities and an ARE-regulated 3′ to 5′ exonuclease activity in trypanosome extracts. Nucleic Acids Research, 30(18), 4040–4050. https://doi.org/10.1093/nar/gkf521spa
dc.relation.referencesMokni, M. (2019). Cutaneous leishmaniasis. Annales de Dermatologie et de Venereologie, 146(3), 232–246. https://doi.org/10.1016/j.annder.2019.02.002spa
dc.relation.referencesMora, D. (2020). Revisión sistemática de respuesta al tratamiento de Leishmaniasis Tegumentaria Americana con Anfotericina B. Universidad Nacional de Colombia, 1–104.spa
dc.relation.referencesMorizot, G., Jouffroy, R., Faye, A., Chabert, P., Belhouari, K., Calin, R., Charlier, C., Miailhes, P., Siriez, J., Mouri, O., Yera, H., Gilquin, J., Tubiana, R., Lanternier, F., Mamzer, M., Legendre, C., Peyramond, D., Caumes, E., Lortholary, O., y Buffet, P. (2016). Antimony to Cure Visceral Leishmaniasis Unresponsive to Liposomal Amphotericin B. PLoS Neglected Tropical Diseases, 10(1), 2–8. https://doi.org/10.1371/journal.pntd.0004304spa
dc.relation.referencesMotta, J., y Sampaio, R. (2012). A pilot study comparing low-dose liposomal amphotericin B with N-methyl glucamine for the treatment of American cutaneous leishmaniasis. Journal of the European Academy of Dermatology and Venereology, 26(3), 331–335. https://doi.org/10.1111/j.1468-3083.2011.04070.xspa
dc.relation.referencesMurta, A., y Fonseca, S. (2022). Impact of Genetic Diversity and Genome Plasticity of Leishmania spp. in Treatment and the Search for Novel Chemotherapeutic Targets. Frontiers in Cellular and Infection Microbiology, 12(January), 1–9. https://doi.org/10.3389/fcimb.2022.826287spa
dc.relation.referencesMwenechanya, R., Kovářová, J., Dickens, N., Manikhandan, M., Herzyk, P., Vincent, I., Weidt, S., Burgess, K., Burchmore, R., Pountain, A., Smith, T., Creek, D., Kim, D., Lepesheva, G., y Barrett, M. (2017). Sterol 14α-demethylase mutation leads to amphotericin B resistance in Leishmania mexicana. PLoS Neglected Tropical Diseases, 11(6), 1–21. https://doi.org/10.1371/journal.pntd.0005649spa
dc.relation.referencesNaderer, T., Heng, J., y Mcconville, M. (2010). Evidence That Intracellular Stages of Leishmania major Utilize Amino Sugars as a Major Carbon Source. PLoS Pathogens, 6(12). https://doi.org/10.1371/journal.ppat.1001245spa
dc.relation.referencesNiemann, M., Wiese, S., Mani, J., Chanfon, A., Jackson, C., Meisinger, C., Warscheid, B., y Schneider, A. (2013). Mitochondrial outer membrane proteome of trypanosoma brucei reveals novel factors required to maintain mitochondrial morphology. Molecular and Cellular Proteomics, 12(2), 515–528. https://doi.org/10.1074/mcp.M112.023093spa
dc.relation.referencesNing, Y., Frankfater, C., Hsu, F., Soares, R., Cardoso, C., Nogueira, P., Lander, N., Docampo, R., y Zhang, K. (2020). Lathosterol Oxidase (Sterol C-5 Desaturase) Deletion Confers Resistance to Amphotericin B and Sensitivity to Acidic Stress in Leishmania major. American Society for Microbiology, 5(4), 1–18.spa
dc.relation.referencesNolder, D., Roncal, N., Davies, C., Llanos, A., y Miles, M. (2007). Multiple hybrid genotypes of Leishmania (Viannia) in a focus of mucocutaneous leishmaniasis. American Journal of Tropical Medicine and Hygiene, 76(3), 573–578. https://doi.org/10.4269/ajtmh.2007.76.573spa
dc.relation.referencesOMS. (2010). Control de las leishmaniasis Informe de una reunión del. Organización Mundial de La Salud, 186.spa
dc.relation.referencesOPS. (2013). Organización Panamericana de la Salud. Leishmaniasis en las Américas: recomendaciones para el tratamiento. Organización Panamericana de La Salud.spa
dc.relation.referencesOPS. (2020a). Colombia: Leishmaniasis cutánea y mucosa 2019. Organización Panamericana de La Salud.spa
dc.relation.referencesOPS. (2020b). Leishmaniasis: Informe epidemiológico de las Américas. Organización Panamericana de La Salud, 9, 1–11. https://iris.paho.org/handle/10665.2/51742spa
dc.relation.referencesOvalle, C., Londoño, D., Salgado, J., y G, C. (2019). Evaluating the spatial distribution of Leishmania parasites in Colombia from clinical samples and human isolates (1999 to 2016). PLoS ONE, 14(3), 1–16. https://doi.org/10.1371/journal.pone.0214124spa
dc.relation.referencesPatino, L., Muñoz, M., Cruz, L., Muskus, C., y Ramírez, J. (2020). Genomic Diversification, Structural Plasticity, and Hybridization in Leishmania (Viannia) braziliensis. Frontiers in Cellular and Infection Microbiology, 10(October), 1–17. https://doi.org/10.3389/fcimb.2020.582192spa
dc.relation.referencesPedras, M., Carvalho, J., da Silva, R., Ramalho, D., de Senna, M., Moreira, H., Matos, L., Rabello, A., y Cota, G. (2018). Mucosal leishmaniasis: The experience of a brazilian referral center. Revista Da Sociedade Brasileira de Medicina Tropical, 51(3), 318–323. https://doi.org/10.1590/0037-8682-0478-2017spa
dc.relation.referencesPerez, J., Cruz, M., Robayo, M., Lopez, M., Daza, C., Bedoya, A., Mariño, M., Saavedra, C., y Echeverry, M. (2016). Clinical and Parasitological Features of Patients with American Cutaneous Leishmaniasis that Did Not Respond to Treatment with Meglumine Antimoniate. PLoS Neglected Tropical Diseases, 10(5), 1–13. https://doi.org/10.1371/journal.pntd.0004739spa
dc.relation.referencesPourshafie, M., Morand, S., Virion, A., Rakotomanga, M., Dupuy, C., y Loiseau, P. (2004). Cloning of S-adenosyl-L-methionine:C-24-Δ-sterol-methyltransferase (ERG6) from Leishmania donovani and characterization of mRNAs in wild-type and amphotericin B-resistant promastigotes. Antimicrobial Agents and Chemotherapy, 48(7), 2409–2414. https://doi.org/10.1128/AAC.48.7.2409-2414.2004spa
dc.relation.referencesPrieto, P., Pescher, P., Bussotti, G., Dumetz, F., Imamura, H., Kedra, D., Domagalska, M., Chaumeau, V., Himmelbauer, H., Pages, M., Sterkers, Y., Dujardin, J., Notredame, C., y Späth, G. (2017). Haplotype selection as an adaptive mechanism in the protozoan pathogen Leishmania donovani. Nature Ecology and Evolution, 1(12), 1961–1969. https://doi.org/10.1038/s41559-017-0361-xspa
dc.relation.referencesPurkait, B., Kumar, A., Nandi, N., Sardar, A., Das, S., Kumar, S., Pandey, K., Ravidas, V., Kumar, M., De, T., Singh, D., y Das, P. (2011). Mechanism of amphotericin B resistance in clinical isolates of Leishmania donovani. Antimicrobial Agents and Chemotherapy, 56(2), 1031–1041. https://doi.org/10.1128/AAC.00030-11spa
dc.relation.referencesKumar, D., Kulshrestha, A., Singh, R., y Salotra, P. (2009). In vitro susceptibility of field isolates of Leishmania donovani to miltefosine and amphotericin B: Correlation with sodium antimony gluconate susceptibility and implications for treatment in areas of endemicity. Antimicrobial Agents and Chemotherapy, 53(2), 835–838. https://doi.org/10.1128/AAC.01233-08spa
dc.relation.referencesRamanathan, R., Talaat, K., Fedorko, D., Mahanty, S., y Nash, T. (2011). A species-specific approach to the use of non-antimony treatments for cutaneous leishmaniasis. American Journal of Tropical Medicine and Hygiene, 84(1), 109–117. https://doi.org/10.4269/ajtmh.2011.10-0437spa
dc.relation.referencesRamírez, J., Hernández, C., León, C., Ayala, M., Flórez, C., y González, C. (2016). Taxonomy, diversity, temporal and geographical distribution of Cutaneous Leishmaniasis in Colombia: A retrospective study. Scientific Reports, 6(June), 1–10. https://doi.org/10.1038/srep28266spa
dc.relation.referencesRastrojo, A., Carrasco, F., Martín, D., Crespillo, A., Reguera, R., Aguado, B., y Requena, J. (2013). The transcriptome of Leishmania major in the axenic promastigote stage: transcript annotation and relative expression levels by RNA-seq. BMC Genomics, 14(1), 1–13. https://doi.org/10.1186/1471-2164-14-223spa
dc.relation.referencesReady, P. (2013). Biology of phlebotomine sand flies as vectors of disease agents. Annual Review of Entomology, 58, 227–250. https://doi.org/10.1146/annurev-ento-120811-153557spa
dc.relation.referencesRoatt, B., Oliveira, J., Fortes, R., Coura, W., Oliveira, R., y Barbosa, A. (2020). Recent advances and new strategies on leishmaniasis treatment. Applied Microbiology and Biotechnology, 104(21), 8965–8977. https://doi.org/10.1007/s00253-020-10856-wspa
dc.relation.referencesRodríguez, D., Feng, X., Keeney, K., Bouwer, H., y Landfear, S. (2007). Phenotypic characterization of a glucose transporter null mutant in Leishmania mexicana. National Institutes of Health, 153(1), 9–18. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3624763/pdf/nihms412728.pdfspa
dc.relation.referencesRodríguez, M., Pérez, J., Casas, M., y Ordoñez, M. (2020). Effectiveness and safety of amphotericin b deoxycholate, amphotericin b colloidal dispersion, and liposomal amphotericin b as third-line treatments for cutaneous and mucocutaneous leishmaniasis: A retrospective study. American Journal of Tropical Medicine and Hygiene, 102(2), 274–279. https://doi.org/10.4269/ajtmh.18-0514spa
dc.relation.referencesSampaio, M., Barbosa, A., Este, M., Pirmez, C., Bello, A., y Traub, Y. (2009). A 245 kb mini-chromosome impacts on Leishmania braziliensis infection and survival. Biochemical and Biophysical Research Communications, 382(1), 74–78. https://doi.org/10.1016/j.bbrc.2009.02.128spa
dc.relation.referencesSampaio, R., y Marsden, P. (1997). Tratamento da forma mucosa de leishmaniose sem resposta a glucantime, com anfotericina B liposomal. Revista Da Sociedade Brasileira de Medicina Tropical, 30(2), 125–128. https://doi.org/10.1590/s0037-86821997000200007spa
dc.relation.referencesSampaio, S., Castro, R., Dillon, N., y Costa, J. (1971). Treatment of mucocutaneous (American) leishmaniasis with amphotericin b: report of 70 cases. International Journal of Dermatology, 10, 179–181.spa
dc.relation.referencesSantos, C., Tuon, F., Cieslinski, J., de Souza, R., Imamura, R., y Amato, V. (2019). Comparative study on liposomal amphotericin B and other therapies in the treatment of mucosal leishmaniasis: A 15-year retrospective cohort study. PLoS ONE, 14(6), 1–12. https://doi.org/10.1371/journal.pone.0218786spa
dc.relation.referencesSernee, M., Ralton, J., Dinev, Z., Khairallah, G., O’Hair, R., Williams, S., y McConville, M. (2006). Leishmania β-1,2-mannan is assembled on a mannose-cyclic phosphate primer. Proceedings of the National Academy of Sciences of the United States of America, 103(25), 9458–9463. https://doi.org/10.1073/pnas.0603539103spa
dc.relation.referencesSolomon, M., Pavlotzky, F., Barzilai, A., y Schwartz, E. (2013). Liposomal amphotericin B in comparison to sodium stibogluconate for Leishmania braziliensis cutaneous leishmaniasis in travelers. Journal of the American Academy of Dermatology, 68(2), 284–289. https://doi.org/10.1016/j.jaad.2012.06.014spa
dc.relation.referencesSpäth, G., Drini, S., y Rachidi, N. (2015). A touch of Zen: post-translational regulation of the Leishmania stress response. Cellular Microbiology, 17(5), 632–638. https://doi.org/10.1111/cmi.12440spa
dc.relation.referencesSrivastava, P., Prajapati, V., Rai, M., y Sundar, S. (2011). Unusual case of resistance to amphotericin B in visceral leishmaniasis in a region in India where leishmaniasis is not endemic. Journal of Clinical Microbiology, 49(8), 3088–3091. https://doi.org/10.1128/JCM.00173-11spa
dc.relation.referencesStaneva, D., Carloni, R., Auchynnikava, T., Tong, P., Rappsilber, J., Jeyaprakash, A., Matthews, K., & Allshire, R. (2021). A systematic analysis of Trypanosoma brucei chromatin factors identifies novel protein interaction networks associated with sites of transcription initiation and termination. Genome Research, 31(11), 2138–2154. https://doi.org/10.1101/gr.275368.121spa
dc.relation.referencesStevens, J. (2008). Kinetoplastid phylogenetics, with special reference to the evolution of parasitic trypanosomes. Parasite, 15(3), 226–232. https://doi.org/10.1051/parasite/2008153226spa
dc.relation.referencesStone, N., Bicanic, T., Salim, R., y Hope, W. (2016). Liposomal Amphotericin B (AmBisome®): A Review of the Pharmacokinetics, Pharmacodynamics, Clinical Experience and Future Directions. Drugs, 76(4), 485–500. https://doi.org/10.1007/s40265-016-0538-7spa
dc.relation.referencesSundar, M., y Singh, A. (2018). Chemotherapeutics of Visceral Leishmaniasis: present and future developments. Parasitology, 145(4), 481–489. https://doi.org/10.1017/S0031182017002116.Chemotherapeuticsspa
dc.relation.referencesSundar, S., y Chakravarty, J. (2010). Liposomal amphotericin B and leishmaniasis: Dose and response. Journal of Global Infectious Diseases, 2(2), 159. https://doi.org/10.4103/0974-777x.62886spa
dc.relation.referencesTaschner, A., Weber, C., Buzet, A., Hartmann, R., Hartig, A., y Rossmanith, W. (2012). Nuclear RNase P of Trypanosoma brucei: A Single Protein in Place of the Multicomponent RNA-Protein Complex. Cell Reports, 2(1), 19–25. https://doi.org/10.1016/j.celrep.2012.05.021spa
dc.relation.referencesTello, D., Gil, J., Loaiza, C., Riascos, J., Cardozo, N., & Duitama, J. (2019). NGSEP3: Accurate variant calling across species and sequencing protocols. Bioinformatics, 35(22), 4716–4723. https://doi.org/10.1093/bioinformatics/btz275spa
dc.relation.referencesTibayrenc, M., y Ayala, F. (2012). How clonal are Trypanosoma and Leishmania? Trends in Parasitology, 29(6), 264–269. https://doi.org/10.1016/j.pt.2013.03.007spa
dc.relation.referencesTripp, C., Myler, P., & Stuart, K. (1991). A DNA sequence (LD1) which occurs in several genomic organizations in Leishmania. Molecular and Biochemical Parasitology, 47(2), 151–160. https://doi.org/10.1016/0166-6851(91)90174-5spa
dc.relation.referencesTuon, F., Amato, V., Graf, M., Siqueira, A., Nicodemo, A., y Neto, V. (2008). Treatment of New World cutaneous leishmaniasis - A systematic review with a meta-analysis. International Journal of Dermatology, 47(2), 109–124. https://doi.org/10.1111/j.1365-4632.2008.03417.xspa
dc.relation.referencesVan den Broeck, F., Savill, N., Imamura, H., Sanders, M., Maes, I., Cooper, S., Mateus, D., Jara, M., Adaui, V., Arevalo, J., Llanos, A., Garcia, L., Cupolillo, E., Miles, M., Berriman, M., Schnaufer, A., Cotton, J., y Dujardin, J. (2020). Ecological divergence and hybridization of Neotropical Leishmania parasites. Proceedings of the National Academy of Sciences of the United States of America, 117(40), 25159–25168. https://doi.org/10.1073/pnas.1920136117spa
dc.relation.referencesVan der Ploeg, L., Liu, A., Michels, P., De Lange, T., Borst, P., Majumder, H., Weber, H., Veeneman, G., y Boom, J. (1982). RNA splicing is required to make the messenger RNA for a variant surface antigen in trypanosomes. Nucleic Acids Research, 10(12).spa
dc.relation.referencesVargas, C. (2021). Identificación y asociación de polimorfismos de Toll-Like Receptor 3 con el desarrollo de Leishmaniasis mucosa frente a la coinfección Leishmania spp. –Leishmania RNA Virus 1. [Tesis de maestría no publicada]. Universidad Nacional de Colombia.spa
dc.relation.referencesVargas, C., Fonte, B., De Souza, D., Peruhype, V., & Fonseca, S. (2019). Mannosyltransferase (GPI-14) overexpression protects promastigote and amastigote forms of Leishmania braziliensis against trivalent antimony. Parasites and Vectors, 12(1), 1–7. https://doi.org/10.1186/s13071-019-3305-2spa
dc.relation.referencesWilson, E., Thorson, L., y Speert, D. (1991). Enhancement of macrophage superoxide anion production by amphotericin B. Antimicrobial Agents and Chemotherapy, 35(5), 796–800. https://doi.org/10.1128/AAC.35.5.796spa
dc.relation.referencesZíková, A., Panigrahi, A., Dalley, R., Acestor, N., Anupama, A., Ogata, Y., Myler, P., & Stuart, K. (2008). Trypanosoma brucei mitochondrial ribosomes. Molecular and Cellular Proteomics, 7(7), 1286–1296. https://doi.org/10.1074/mcp.M700490-MCP200spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.decsVacunas contra la Leishmaniasisspa
dc.subject.decsLeishmaniasis vaccineseng
dc.subject.decsAnfotericina Bspa
dc.subject.decsAmphotericin Beng
dc.subject.decsSecuenciación completa del genomaspa
dc.subject.decsWhole genome sequencingeng
dc.subject.decsFarmacogenéticaspa
dc.subject.decsPharmacogeneticseng
dc.subject.decsVariantes farmacogenómicasspa
dc.subject.decsPharmacogenomic variantseng
dc.subject.proposalInfección parasitariaspa
dc.subject.proposalLeishmaniaspa
dc.subject.proposalBaja susceptibilidadspa
dc.subject.proposalTratamientospa
dc.subject.proposalAnfotericina Bspa
dc.subject.proposalParasitic infectioneng
dc.subject.proposalLeishmaniaeng
dc.subject.proposalLow susceptibilityeng
dc.subject.proposalTreatmenteng
dc.subject.proposalAmphotericin Beng
dc.titleCaracterización genómica y transcriptómica de los aislamientos de Leishmania (V.) braziliensis con diferente patrón de susceptibilidad a la Anfotericina B (AmB).spa
dc.title.translatedGenomic and transcriptomic characterization of Leishmania (V.) braziliensis isolates with different susceptibility pattern to amphotericin B (AmB).eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitle“Caracterización genotípica y fenotípica de aislamientos clínicos de Leishmania braziliensis con disminución en la sensibilidad para Glucantime® y Anfotericina B”spa
oaire.fundernameMinisterio de Ciencia, Tecnología e Innovación – (Minciencias)spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1013678476-2024.pdf
Tamaño:
1.31 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Infecciones y Salud en el Trópico

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: