Efecto de las propiedades estructurales de la partícula sobre la liberación de moléculas encapsuladas en sistemas lipídicos coloidales

dc.contributor.advisorMora Huertas, Claudia Elizabethspa
dc.contributor.advisorPonce Pedraza, Arturospa
dc.contributor.authorGordillo Galeano, Aldemarspa
dc.contributor.researchgroupDesarrollo y calidad de productos farmacéuticos y cosméticosspa
dc.date.accessioned2021-01-19T16:36:58Zspa
dc.date.available2021-01-19T16:36:58Zspa
dc.date.issued2020-01-16spa
dc.description.abstractLas nanopartículas sólidas lipídicas (SLN) y los transportadores lipídicos nanoestructurados (NLC) han atraído la atención durante más de dos décadas como una alternativa para la entrega de fármacos poco solubles en agua. Sin embargo, a pesar de su presumida relevancia frente a las nanoemulsiones (NE), todavía son escasas las investigaciones relacionadas con la organización estructural de estos sistemas. Este trabajo aborda el estudio de las características estructurales de las SLN, NLC y NE mediante el análisis comparativo de la estructura interna, las características de superficie y el comportamiento liberación. Los resultados muestran que las mezclas de trimiristina (MMM) y triglicérido cáprico/caprílico (TCC) conducen a la formación de una estructura bifásica en la que la MMM forma un cristal \beta rodeado de una fase líquida de MMM y TCC. Durante la cristalización, las moléculas modelo a incorporar (metil y propilparabeno) se concentran en la superficie en donde se distribuyen entre el tensioactivo (Poloxamer® 188) y la fase acuosa, en función de su coeficiente de distribución (logD). La interacción de los segmentos hidrófilos e hidrófobos del tensioactivo con las partículas depende de la proporción de TCC en la matriz lipídica. En las SLN hay un aumento de parches hidrófobos sobre las superficies sólidas mientras que en las NE ocurre interpenetración de los segmentos hidrófobos. El comportamiento de liberación es una consecuencia de la solubilidad de las moléculas en la fase lipídica y de la estructura de dicha fase. Por consiguiente, la liberación in vitro procede en el orden NE-MMM>SLN>NLC>NE-TCC.spa
dc.description.abstractSolid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) have attracted attention during the last two decades as a delivery method of drugs that are poorly soluble in water. However, despite its presumed relevance against nanoemulsions (NE), there is still little research related to the structural organization of these systems. This work aims the study of the structural characteristics of SLN, NLC, and NE by a comparative analysis of the internal structure, surface characteristics, and drug release. The results show that the mixtures of trimyristin (MMM) and capric/caprylic triglyceride (CCT) lead to the formation of a biphasic structure in which the MMM forms a \beta-crystal surrounded by a liquid phase of MMM and CCT. During crystallization, the model molecules to be entrapped (methyl and propylparaben) are concentrated to the surface where there are distributed between the surfactant (Poloxamer® 188) and the aqueous phase based on their distribution coefficients (logD). The interaction of the hydrophilic and hydrophobic segments of the surfactant with the particles depends on the proportion of CCT in the lipid matrix. In SLN there is an increase in hydrophobic patches on the solid surfaces, while interpenetration of hydrophobic segments occurs in NE. The release behavior is a consequence of the solubility of the molecules in the lipid phase and the lipid phase structure. Accordingly, in vitro release proceeds in the order NE-MMM>SLN>NLC> NE-CCT.spa
dc.description.additionalLínea de Investigación: Farmacotecniaspa
dc.description.degreelevelDoctoradospa
dc.description.projectConvocatoria 617 para la Formación de Investigadores de Alto Nivel para la Ciencia, la Tecnología y la Innovación; proyectos 28405, 36019 y 40987spa
dc.description.sponsorshipDepartamento Administrativo de Ciencia, Tecnología e Innovación-Colciencias; División de Investigación de la Sede Bogotá (DIB) de la Universidad Nacional de Colombiaspa
dc.format.extent318spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78818
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Farmaciaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias Farmacéuticasspa
dc.relation.referencesAbdelbary, G., Fahmy, R.H., 2009. Diazepam-loaded solid lipid nanoparticles: Design and characterization. AAPS PharmSciTech 10, 211–219. doi:10.1208/s12249-009-9197-2spa
dc.relation.referencesAditya, N.P., Macedo, A.S., Doktorovova, S., Souto, E.B., Kim, S., Chang, P.-S., Ko, S., 2014. Development and evaluation of lipid nanocarriers for quercetin delivery: A comparative study of solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), and lipid nanoemulsions (LNE). LWT - Food Sci. Technol. 59, 115–121. doi:10.1016/j.lwt.2014.04.058spa
dc.relation.referencesAditya, N.P., Shim, M., Lee, I., Lee, Y., Im, M.H., Ko, S., 2013. Curcumin and genistein coloaded nanostructured lipid carriers: In vitro digestion and antiprostate cancer activity. J. Agric. Food Chem. 61, 1878–1883. doi:10.1021/jf305143kspa
dc.relation.referencesAhlin, P., Kristl, J., Pečar, S., Štrancar, J., Šentjurc, M., 2003. The effect of lipophilicity of spin-labeled compounds on their distribution in solid lipid nanoparticle dispersions studied by electron paramagnetic resonance. J. Pharm. Sci. 92, 58–66. doi:10.1002/jps.10277spa
dc.relation.referencesAhlin, P., Kristl, J., Šentjurc, M., Štrancar, J., Pečar, S., 2000. Influence of spin probe structure on its distribution in SLN dispersions. Int. J. Pharm. 196, 241–244. doi:10.1016/S0378-5173(99)00431-7spa
dc.relation.referencesAkanda, M.H., Rai, R., Slipper, I.J., Chowdhry, B.Z., Lamprou, D., Getti, G., Douroumis, D., 2015. Delivery of retinoic acid to LNCap human prostate cancer cells using solid lipid nanoparticles. Int. J. Pharm. 493, 161–171. doi:10.1016/j.ijpharm.2015.07.042spa
dc.relation.referencesAlexandridis, P., 1997. Poly(ethylene oxide)/poly(propylene oxide) block copolymer surfactants. Curr. Opin. Colloid Interface Sci. 2, 478–489. doi:10.1016/S1359-0294(97)80095-7spa
dc.relation.referencesAlexandridis, P., Alan Hatton, T., 1995. Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: Thermodynamics, structure, dynamics, and modeling. Colloids Surfaces A Physicochem. Eng. Asp. 96, 1–46. doi:10.1016/0927-7757(94)03028-Xspa
dc.relation.referencesAlexandridis, P., Holzwarth, J.F., Hatton, T.A., 1994. Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules 27, 2414–2425. doi:10.1021/ma00087a009spa
dc.relation.referencesAlmeida, A.J., Runge, S., Müller, R.H., 1997. Peptide-loaded solid lipid nanoparticles (SLN): Influence of production parameters. Int. J. Pharm. 149, 255–265. doi:10.1016/S0378-5173(97)04885-0spa
dc.relation.referencesAlmeida, A.J., Souto, E.B., 2007. Solid lipid nanoparticles as a drug delivery system for peptides and proteins. Adv. Drug Deliv. Rev. 59, 478–490. doi:10.1016/j.addr.2007.04.007spa
dc.relation.referencesAnantachaisilp, S., Smith, S.M., Treetong, A., Pratontep, S., Puttipipatkhachorn, S., Ruktanonchai, U.R., 2010. Chemical and structural investigation of lipid nanoparticles: Drug-lipid interaction and molecular distribution. Nanotechnology 21, 125102. doi:10.1088/0957-4484/21/12/125102spa
dc.relation.referencesAndrade, L.M., de Fátima Reis, C., Maione-Silva, L., Anjos, J.L. V., Alonso, A., Serpa, R.C., Marreto, R.N., Lima, E.M., Taveira, S.F., 2014. Impact of lipid dynamic behavior on physical stability, in vitro release and skin permeation of genistein-loaded lipid nanoparticles. Eur. J. Pharm. Biopharm. 88, 40–47. doi:10.1016/j.ejpb.2014.04.015spa
dc.relation.referencesAronson, J.K. (Ed.), 2015. Meyler’s side effects of drugs. The international encyclopedia of adverse drug reactions and interactions, 15a ed. Elsevier Science, Oxford.spa
dc.relation.referencesASTM, 2018. E2865-12(2018), Standard guide for measurement of electrophoretic mobility and zeta potential of nanosized biological materials. doi:10.1520/E2865-12R18spa
dc.relation.referencesASTM, 2017. D445-17a, Standard guide for kinematic viscosity of transparent and opaque liquids (and calculation of dynamic viscosity). doi:10.1520/D0445-17Aspa
dc.relation.referencesASTM, 2015a. E2865-12, Standard guide for measurement of electrophoretic mobility and zeta potential of nanosized biological materials. doi:10.1520/E2865-12.2spa
dc.relation.referencesASTM, 2015b. E2490-09, Standard guide for measurement of particle size distribution of nanomaterials in suspension by photon correlation spectroscopy (PCS). doi:10.1520/E2490-09.2spa
dc.relation.referencesAttama, A.A., Reichl, S., Müller-Goymann, C.C., 2008. Diclofenac sodium delivery to the eye: In vitro evaluation of novel solid lipid nanoparticle formulation using human cornea construct. Int. J. Pharm. 355, 307–313. doi:10.1016/j.ijpharm.2007.12.007spa
dc.relation.referencesBacle, A., Gautier, R., Jackson, C.L., Fuchs, P.F.J., Vanni, S., 2017. Interdigitation between Triglycerides and Lipids Modulates Surface Properties of Lipid Droplets. Biophys. J. 112, 1417–1430. doi:10.1016/j.bpj.2017.02.032spa
dc.relation.referencesBaek, J.-S., Cho, C.-W., 2015a. Controlled release and reversal of multidrug resistance by co-encapsulation of paclitaxel and verapamil in solid lipid nanoparticles. Int. J. Pharm. 478, 617–624. doi:10.1016/j.ijpharm.2014.12.018spa
dc.relation.referencesBaek, J.-S., Cho, C.W., 2015b. Comparison of solid lipid nanoparticles for encapsulating paclitaxel or docetaxel. J. Pharm. Investig. 45, 625–631. doi:10.1007/s40005-015-0182-3spa
dc.relation.referencesBaek, J.-S., Kim, B.-S., Puri, A., Kumar, K., Cho, C.-W., 2016. Stability of paclitaxel-loaded solid lipid nanoparticles in the presence of 2-hydoxypropyl-β-cyclodextrin. Arch. Pharm. Res. 39, 785–793. doi:10.1007/s12272-016-0753-5spa
dc.relation.referencesBaek, J.-S., Shin, S.-C., Cho, C.-W., 2012. Effect of lipid on physicochemical properties of solid lipid nanoparticle of paclitaxel. J. Pharm. Investig. 42, 279–283. doi:10.1007/s40005-012-0038-zspa
dc.relation.referencesBaker, J.A., Pearson, R.A., Berg, J.C., 1989. Influence of particle curvature on polymer adsorption layer thickness. Langmuir 5, 339–342. doi:10.1021/la00086a008spa
dc.relation.referencesBan, C., Lim, S., Chang, P.-S.S., Choi, Y.J., 2014. Enhancing the stability of lipid nanoparticle systems by sonication during the cooling step and controlling the liquid oil content. J. Agric. Food Chem. 62, 11557–11567. doi:10.1021/jf503489vspa
dc.relation.referencesBanerjee, S., Roy, S., Bhaumik, K.N., Pillai, J., 2019. Mechanisms of the effectiveness of lipid nanoparticle formulations loaded with anti-tubercular drugs combinations toward overcoming drug bioavailability in tuberculosis. J. Drug Target. 0, 1–15. doi:10.1080/1061186X.2019.1613409spa
dc.relation.referencesBattaglia, L., Gallarate, M., Cavalli, R., Trotta, M., 2010. Solid lipid nanoparticles produced through a coacervation method. J. Microencapsul. 27, 78–85. doi:10.3109/02652040903031279spa
dc.relation.referencesBeloqui, A., Solinís, M.Á., Rodríguez-Gascón, A., Almeida, A.J., Préat, V., 2016. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine Nanotechnology, Biol. Med. 12, 143–161. doi:10.1016/j.nano.2015.09.004spa
dc.relation.referencesBenita, S., Klang, S., 1998. Design and evaluation of submicron emulsions as colloidal drug carriers for intravenous administration emulsions, en: Benita, S. (Ed.), Submicron Emulsions in Drug Targeting and Delivery. CRC Press, London, p. 352. doi:10.1201/9780367810528spa
dc.relation.referencesBerchane, N.S., Jebrail, F.F., Carson, K.H., Rice-Ficht, A.C., Andrews, M.J., 2006. About mean diameter and size distributions of poly(lactide-co-glycolide) (PLG) microspheres. J. Microencapsul. 23, 539–552. doi:10.1080/02652040600776440spa
dc.relation.referencesBernkop-Schnürch, A., Jalil, A., 2018. Do drug release studies from SEDDS make any sense? J. Control. Release 271, 55–59. doi:10.1016/j.jconrel.2017.12.027spa
dc.relation.referencesBerton-Carabin, C.C., Coupland, J.N., Elias, R.J., 2013. Effect of the lipophilicity of model ingredients on their location and reactivity in emulsions and solid lipid nanoparticles. Colloids Surfaces A Physicochem. Eng. Asp. 431, 9–17. doi:10.1016/j.colsurfa.2013.04.016spa
dc.relation.referencesBhatt, S., Sharma, J., Singh, M., Saini, V., 2018. Solid lipid nanoparticles: A promising technology for delivery of poorly water-soluble drugs. Acta Pharm. Sci. 56, 27–49. doi:10.23893/1307-2080.APS.05616spa
dc.relation.referencesBhattacharjee, S., 2016. DLS and zeta potential – What they are and what they are not? J. Control. Release 235, 337–351. doi:10.1016/j.jconrel.2016.06.017spa
dc.relation.referencesBhattacharjee, S., 2016. DLS and zeta potential – What they are and what they are not? J. Control. Release 235, 337–351. doi:10.1016/j.jconrel.2016.06.017spa
dc.relation.referencesBlaschke, T., Kankate, L., Kramer, K.D., 2007. Structure and dynamics of drug-carrier systems as studied by parelectric spectroscopy. Adv. Drug Deliv. Rev. 59, 403–10. doi:10.1016/j.addr.2007.04.003spa
dc.relation.referencesBoettinger, W.J., Kattner, U.R., Moon, K.-W., Perepezko, J.H., 2007. DTA and heat-flux DSC measurements of alloy melting and freezing, en: Zhao, J.-C. (Ed.), Methods for Phase Diagram Determination. Elsevier, Oxford, pp. 151–221. doi:10.1016/B978-008044629-5/50005-7spa
dc.relation.referencesBoreham, A., Volz, P., Peters, D., Keck, C.M., Alexiev, U., 2017. Determination of nanostructures and drug distribution in lipid nanoparticles by single molecule microscopy. Eur. J. Pharm. Biopharm. 110, 31–38. doi:10.1016/j.ejpb.2016.10.020spa
dc.relation.referencesBouzidi, L., Boodhoo, M. V., Kutek, T., Filip, V., Narine, S.S., 2010. The binary phase behavior of 1,3-dilauroyl-2-stearoyl-sn-glycerol and 1,2-dilauroyl-3-stearoyl-sn-glycerol. Chem. Phys. Lipids 163, 607–629. doi:10.1016/j.chemphyslip.2010.05.002spa
dc.relation.referencesBoyd, B.J., 2003. Characterisation of drug release from cubosomes using the pressure ultrafiltration method. Int. J. Pharm. 260, 239–247. doi:10.1016/S0378-5173(03)00262-Xspa
dc.relation.referencesBraem, C., Blaschke, T., Panek-Minkin, G., Herrmann, W., Schlupp, P., Paepenmüller, T., Müller-Goymann, C.C., Mehnert, W., Bittl, R., Schäfer-Korting, M., Kramer, K.D., 2007. Interaction of drug molecules with carrier systems as studied by parelectric spectroscopy and electron spin resonance. J. Control. Release 119, 128–135. doi:10.1016/j.jconrel.2007.01.017spa
dc.relation.referencesBresson, S., El Marssi, M., Khelifa, B., 2006. Conformational influences of the polymorphic forms on the CO and C-H stretching modes of five saturated monoacid triglycerides studied by Raman spectroscopy at various temperatures. Vib. Spectrosc. 40, 263–269. doi:10.1016/j.vibspec.2005.11.001spa
dc.relation.referencesBresson, S., El Marssi, M., Khelifa, B., 2005. Raman spectroscopy investigation of various saturated monoacid triglycerides. Chem. Phys. Lipids 134, 119–129. doi:10.1016/j.chemphyslip.2004.12.009spa
dc.relation.referencesBricarello, D.A., Pan, Y., Nitin, N., 2015. Interactions between the lipid core and the phospholipid interface in emulsions and solid lipid nanoparticles. Food Biophys. 10, 466–473. doi:10.1007/s11483-015-9413-4spa
dc.relation.referencesBunjes, H., 2011. Structural properties of solid lipid based colloidal drug delivery systems. Curr. Opin. Colloid Interface Sci. 16, 405–411. doi:10.1016/j.cocis.2011.06.007spa
dc.relation.referencesBunjes, H., 2010. Lipid nanoparticles for the delivery of poorly water-soluble drugs. J. Pharm. Pharmacol. 62, 1637–1645. doi:10.1111/j.2042-7158.2010.01024.xspa
dc.relation.referencesBunjes, H., 2004. Characterization of solid lipid nano-and microparticles, en: Nastruzzi, C. (Ed.), Lipospheres in drug targets and delivery. CRC Press, pp. 41–66. doi:10.1201/9780203505281.ch3spa
dc.relation.referencesBunjes, H., Drechsler, M., Koch, M.H.J., Westesen, K., 2001. Incorporation of the model drug ubidecarenone into solid lipid nanoparticles. Pharm. Res. 18, 287–93. doi:10.1023/A:1011042627714spa
dc.relation.referencesBunjes, H., Koch, M.H.J., 2005. Saturated phospholipids promote crystallization but slow down polymorphic transitions in triglyceride nanoparticles. J. Control. Release 107, 229–243. doi:10.1016/j.jconrel.2005.06.004spa
dc.relation.referencesBunjes, H., Koch, M.H.J., Westesen, K., 2003. Influence of emulsifiers on the crystallization of solid lipid nanoparticles. J. Pharm. Sci. 92, 1509–1520. doi:10.1002/jps.10413spa
dc.relation.referencesBunjes, H., Koch, M.H.J., Westesen, K., 2000. Effect of particle size on colloidal solid triglycerides. Langmuir 16, 5234–5241. doi:10.1021/la990856lspa
dc.relation.referencesBunjes, H., Steiniger, F., Richter, W., 2007. Visualizing the structure of triglyceride nanoparticles in different crystal modifications. Langmuir 23, 4005–4011. doi:10.1021/la062904pspa
dc.relation.referencesBunjes, H., Unruh, T., 2007. Characterization of lipid nanoparticles by differential scanning calorimetry, X-ray and neutron scattering. Adv. Drug Deliv. Rev. 59, 379–402. doi:10.1016/j.addr.2007.04.013spa
dc.relation.referencesBunjes, H., Westesen, K., Koch, M.H.J., 1996. Crystallization tendency and polymorphic transitions in triglyceride nanoparticles. Int. J. Pharm. 129, 159–173. doi:10.1016/0378-5173(95)04286-5spa
dc.relation.referencesBurgess, D.J., Hussain, A.S., Ingallinera, T.S., Chen, M.L., 2002. Assuring quality and performance of sustained and controlled release parenterals: Workshop report. AAPS PharmSci 4. doi:10.1208/ps040205spa
dc.relation.referencesBüyükköroğlu, G., Şenel, B., Başaran, E., Yenilmez, E., Yazan, Y., 2016a. Preparation and in vitro evaluation of vaginal formulations including siRNA and paclitaxel-loaded SLNs for cervical cancer. Eur. J. Pharm. Biopharm. 109, 174–183. doi:10.1016/j.ejpb.2016.10.017spa
dc.relation.referencesBüyükköroğlu, G., Şenel, B., Gezgin, S., Dinh, T., 2016b. The simultaneous delivery of paclitaxel and Herceptin® using solid lipid nanoparticles: In vitro evaluation. J. Drug Deliv. Sci. Technol. 35, 98–105. doi:10.1016/j.jddst.2016.06.010spa
dc.relation.referencesCárdenas, Z.J., Jiménez, D.M., Delgado, D.R., Almanza, O.A., Jouyban, A., Martínez, F., Acree, W.E., 2017. Solubility and preferential solvation of some n-alkyl-parabens in methanol+water mixtures at 298.15K. J. Chem. Thermodyn. 108, 26–37. doi:10.1016/j.jct.2017.01.005spa
dc.relation.referencesCarrillo, C., Sánchez-Hernández, N., García-Montoya, E., Pérez-Lozano, P., Suñé-Negre, J.M., Ticó, J.R., Suñé, C., Miñarro, M., 2013. DNA delivery via cationic solid lipid nanoparticles (SLNs). Eur. J. Pharm. Sci. 49, 157–165. doi:10.1016/j.ejps.2013.02.011spa
dc.relation.referencesCarstensen, H., Müller, B.W., Müller, R.H., 1991. Adsorption of ethoxylated surfactants on nanoparticles. I. Characterization by hydrophobic interaction chromatography. Int. J. Pharm. 67, 29–37. doi:10.1016/0378-5173(91)90262-Mspa
dc.relation.referencesCasadei, M.A., Cerreto, F., Cesa, S., Giannuzzo, M., Feeney, M., Marianecci, C., Paolicelli, P., 2006. Solid lipid nanoparticles incorporated in dextran hydrogels: A new drug delivery system for oral formulations. Int. J. Pharm. 325, 140–6. doi:10.1016/j.ijpharm.2006.06.012spa
dc.relation.referencesCattoz, B., Cosgrove, T., Crossman, M., Prescott, S.W., 2012. Surfactant-mediated desorption of polymer from the nanoparticle interface. Langmuir 28, 2485–2492. doi:10.1021/la204512dspa
dc.relation.referencesCavalli, R., Caputo, O., Eugenia, M., Trotta, M., Scarnecchia, C., Gasco, M.R., 1997. Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles. Int. J. Pharm. 148, 47–54. doi:10.1016/S0378-5173(96)04822-3spa
dc.relation.referencesCavalli, R., Caputo, O., Gasco, M.R., 1993. Solid lipospheres of doxorubicin and idarubicin. Int. J. Pharm. 89, 0–3. doi:10.1016/0378-5173(93)90313-5spa
dc.relation.referencesCerreto, F., Paolicelli, P., Cesa, S., Amara, H.M.A., D’Auria, F.D., Simonetti, G., Casadei, M.A., 2013. Solid lipid nanoparticles as effective reservoir systems for long-term preservation of multidose formulations. AAPS PharmSciTech 14, 847–853. doi:10.1208/s12249-013-9972-yspa
dc.relation.referencesChaban, V. V., Khandelia, H., 2014. Lipid structure in triolein lipid droplets. J. Phys. Chem. B 118, 10335–10340. doi:10.1021/jp503223zspa
dc.relation.referencesChantaburanan, T., Teeranachaideekul, V., Chantasart, D., Jintapattanakit, A., Junyaprasert, V.B., 2017. Effect of binary solid lipid matrix of wax and triglyceride on lipid crystallinity, drug-lipid interaction and drug release of ibuprofen-loaded solid lipid nanoparticles (SLN) for dermal delivery. J. Colloid Interface Sci. 504, 247–256. doi:10.1016/j.jcis.2017.05.038spa
dc.relation.referencesChapman, D., 1962. The polymorphism of glycerides. Chem. Rev. 62, 433–456. doi:10.1021/cr60219a003spa
dc.relation.referencesCharcosset, C., El-Harati, A., Fessi, H., 2005. Preparation of solid lipid nanoparticles using a membrane contactor. J. Control. release 108, 112–20. doi:10.1016/j.jconrel.2005.07.023spa
dc.relation.referencesCharoenputtakun, P., Li, S.K., Ngawhirunpat, T., 2015. Iontophoretic delivery of lipophilic and hydrophilic drugs from lipid nanoparticles across human skin. Int. J. Pharm. 495, 318–328. doi:10.1016/j.ijpharm.2015.08.094spa
dc.relation.referencesChidambaram, N., Burgess, D.J., 1999. A novel in vitro release method for submicron-sized dispersed systems. AAPS PharmSci 1, 1–9. doi:10.1208/ps010311spa
dc.relation.referencesChirio, D., Gallarate, M., Peira, E., Battaglia, L., Muntoni, E., Riganti, C., Biasibetti, E., Capucchio, M.T., Valazza, A., Panciani, P., Lanotte, M., Annovazzi, L., Caldera, V., Mellai, M., Filice, G., Corona, S., Schiffer, D., 2014. Positive-charged solid lipid nanoparticles as paclitaxel drug delivery system in glioblastoma treatment. Eur. J. Pharm. Biopharm. 88, 746–758. doi:10.1016/j.ejpb.2014.10.017spa
dc.relation.referencesChirio, D., Gallarate, M., Peira, E., Battaglia, L., Serpe, L., Trotta, M., 2011. Formulation of curcumin-loaded solid lipid nanoparticles produced by fatty acids coacervation technique. J. Microencapsul. 28, 537–548. doi:10.3109/02652048.2011.590615spa
dc.relation.referencesClares, B., Calpena, A.C., Parra, A., Abrego, G., Alvarado, H., Fangueiro, J.F., Souto, E.B., 2014. Nanoemulsions (NEs), liposomes (LPs) and solid lipid nanoparticles (SLNs) for retinyl palmitate: Effect on skin permeation. Int. J. Pharm. 473, 591–598. doi:10.1016/j.ijpharm.2014.08.001spa
dc.relation.referencesCzamara, K., Majzner, K., Pacia, M.Z., Kochan, K., Kaczor, A., Baranska, M., 2015. Raman spectroscopy of lipids: A review. J. Raman Spectrosc. 46, 4–20. doi:10.1002/jrs.4607spa
dc.relation.referencesDa Silva, E., Bresson, S., Rousseau, D., 2009. Characterization of the three major polymorphic forms and liquid state of tristearin by Raman spectroscopy. Chem. Phys. Lipids 157, 113–119. doi:10.1016/j.chemphyslip.2008.11.002spa
dc.relation.referencesDa Silva, E., Rousseau, D., 2010. Raman spectroscopy for the study of molecular order, thermodynamics, and solid-liquid transitions in triacylglycerols, en: Li-Chan, E.C.Y. (Ed.), Handbook of Vibrational Spectroscopy. John Wiley & Sons, Ltd, Chichester, UK, pp. 1–17. doi:10.1002/0470027320.s8947spa
dc.relation.referencesDa Silva, E., Rousseau, D., 2008. Molecular order and thermodynamics of the solid-liquid transition in triglycerides via Raman spectroscopy. Phys. Chem. Chem. Phys. 10, 4606–4613. doi:10.1039/b717412hspa
dc.relation.referencesDahan, A., Hoffman, A., 2007. The effect of different lipid based formulations on the oral absorption of lipophilic drugs: The ability of in vitro lipolysis and consecutive ex vivo intestinal permeability data to predict in vivo bioavailability in rats. Eur. J. Pharm. Biopharm. 67, 96–105. doi:10.1016/j.ejpb.2007.01.017spa
dc.relation.referencesDan, N., 2016. Compound release from nanostructured lipid carriers (NLCs). J. Food Eng. 171, 37–43. doi:10.1016/j.jfoodeng.2015.10.005spa
dc.relation.referencesDan, N., 2014. Nanostructured lipid carriers: Effect of solid phase fraction and distribution on the release of encapsulated materials. Langmuir 30, 13809–13814. doi:10.1021/la5030197spa
dc.relation.referencesDas, S., Ng, W.K., Tan, R.B.H., 2012. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): Development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur. J. Pharm. Sci. 47, 139–151. doi:10.1016/j.ejps.2012.05.010spa
dc.relation.referencesDavis, S., Haldipur, J., Zhao, Y., Dan, N., Pan, Y., Nitin, N., Tikekar, R. V., 2015. Effect of distribution of solid and liquid lipid domains on transport of free radicals in nanostructured lipid carriers. LWT - Food Sci. Technol. 64, 14–17. doi:10.1016/j.lwt.2015.05.013spa
dc.relation.referencesDe Souza, A.L.R., Andreani, T., Nunes, F.M., Cassimiro, D.L., De Almeida, A.E., Ribeiro, C.A., Sarmento, V.H.V., Gremião, M.P.D., Silva, A.M., Souto, E.B., 2012. Loading of praziquantel in the crystal lattice of solid lipid nanoparticles: Studies by DSC and SAXS. J. Therm. Anal. Calorim. 108, 353–360. doi:10.1007/s10973-011-1871-4spa
dc.relation.referencesDelgado, A. V, González-Caballero, F., Hunter, R.J., Koopal, L.K., Lyklema, J., 2005. Measurement and interpretation of electrokinetic phenomena (IUPAC technical report). Pure Appl. Chem. 77, 1753–1805. doi:10.1351/pac200577101753spa
dc.relation.referencesDeshpande, A., Mohamed, M., Daftardar, S.B., Patel, M., Boddu, S.H.S., Nesamony, J., 2017. Chapter 12 – Solid Lipid Nanoparticles in Drug Delivery: Opportunities and Challenges, en: Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices. pp. 291–330. doi:10.1016/B978-0-323-42978-8.00012-7spa
dc.relation.referencesDevani, M.J., Ashford, M., Craig, D.Q.M., 2005. The development and characterisation of triglyceride-based ‘spontaneous’ multiple emulsions. Int. J. Pharm. 300, 76–88. doi:10.1016/j.ijpharm.2005.05.011spa
dc.relation.referencesDoktorovova, S., Shegokar, R., Martins-Lopes, P., Silva, A.M., Lopes, C.M., Müller, R.H., Souto, E.B., 2012. Modified Rose Bengal assay for surface hydrophobicity evaluation of cationic solid lipid nanoparticles (cSLN). Eur. J. Pharm. Sci. 45, 606–612. doi:10.1016/j.ejps.2011.12.016spa
dc.relation.referencesDomalski, E.S., Hearing, E.D., 1996. Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III. J. Phys. Chem. Ref. Data 25, 1–525. doi:10.1063/1.555985spa
dc.relation.referencesDomb, A.J., 1995. Long acting injectable oxytetracycline-liposphere formulations. Int. J. Pharm. 124, 271–278. doi:10.1016/0378-5173(95)00098-4spa
dc.relation.referencesDong, Y. Da, Boyd, B.J., 2011. Applications of X-ray scattering in pharmaceutical science. Int. J. Pharm. 417, 101–111. doi:10.1016/j.ijpharm.2011.01.022spa
dc.relation.referencesDong, X., Mattingly, C.A., Tseng, M., Cho, M., Adams, V.R., Mumper, R.J., 2009. Development of new lipid-based paclitaxel nanoparticles using sequential simplex optimization. Eur. J. Pharm. Biopharm. 72, 9–17. doi:10.1016/j.ejpb.2008.11.012spa
dc.relation.referencesDong, Y., Ng, W.K., Shen, S., Kim, S., Tan, R.B.H., 2012. Solid lipid nanoparticles: Continuous and potential large-scale nanoprecipitation production in static mixers. Colloids Surfaces B Biointerfaces 94, 68–72. doi:10.1016/j.colsurfb.2012.01.018spa
dc.relation.referencesDouaire, M., di Bari, V., Norton, J.E., Sullo, A., Lillford, P., Norton, I.T., 2014. Fat crystallisation at oil–water interfaces. Adv. Colloid Interface Sci. 203, 1–10. doi:10.1016/j.cis.2013.10.022spa
dc.relation.referencesDyett, B., Zychowski, L., Bao, L., Meikle, T.G., Peng, S., Yu, H., Li, M., Strachan, J., Kirby, N., Logan, A., Conn, C.E., Zhang, X., 2018. Crystallization of femtoliter surface droplet arrays revealed by synchrotron small-angle X-ray scattering. Langmuir 34, 9470–9476. doi:10.1021/acs.langmuir.8b01252spa
dc.relation.referencesEckert, K.A., Dasgupta, S., Selge, B., Ay, P., 2016. Solid liquid phase diagrams of binary fatty acid mixtures - palmitic/stearic with oleic/linoleic/linolenic acid mixture. Thermochim. Acta 630, 50–63. doi:10.1016/j.tca.2016.02.008spa
dc.relation.referencesFadda, P., Monduzzi, M., Caboi, F., Piras, S., Lazzari, P., 2013. Solid lipid nanoparticle preparation by a warm microemulsion based process: Influence of microemulsion microstructure. Int. J. Pharm. 446, 166–175. doi:10.1016/j.ijpharm.2013.02.027spa
dc.relation.referencesFang, G., Tang, B., Chao, Y., Xu, H.H., Gou, J., Zhang, Y., Xu, H.H., Tang, X., 2015. Cysteine-functionalized nanostructured lipid carriers for oral delivery of docetaxel: A permeability and pharmacokinetic study. Mol. Pharm. 12, 2384–2395. doi:10.1021/acs.molpharmaceut.5b00081spa
dc.relation.referencesFang, J.Y., Fang, C.L., Liu, C.H., Su, Y.H., 2008. Lipid nanoparticles as vehicles for topical psoralen delivery: Solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur. J. Pharm. Biopharm. 70, 633–640. doi:10.1016/j.ejpb.2008.05.008spa
dc.relation.referencesFarboud, E.S., Nasrollahi, S.A., Tabbakhi, Z., 2011. Novel formulation and evaluation of a Q10-loaded solid lipid nanoparticle cream: in vitro and in vivo studies. Int. J. Nanomedicine 6, 611–617. doi:10.2147/IJN.S16815spa
dc.relation.referencesFathi, M., Varshosaz, J., Mohebbi, M., Shahidi, F., 2013. Hesperetin-loaded solid lipid nanoparticles and nanostructure lipid carriers for food fortification: Preparation, characterization, and modeling. Food Bioprocess Technol. 6, 1464–1475. doi:10.1007/s11947-012-0845-2spa
dc.relation.referencesFazly Bazzaz, B.S., Khameneh, B., Zarei, H., Golmohammadzadeh, S., 2016. Antibacterial efficacy of rifampin loaded solid lipid nanoparticles against Staphylococcus epidermidis biofilm. Microb. Pathog. 93, 137–44. doi:10.1016/j.micpath.2015.11.031spa
dc.relation.referencesFeng, Y., Grant, D.J.W., 2006. Influence of crystal structure on the compaction properties of n-alkyl 4-hydroxybenzoate esters (parabens). Pharm. Res. 23, 1608–1616. doi:10.1007/s11095-006-0275-9spa
dc.relation.referencesFinke, J.H., Richter, C., Gothsch, T., Kwade, A., Büttgenbach, S., Müller-Goymann, C.C., 2014. Coumarin 6 as a fluorescent model drug: How to identify properties of lipid colloidal drug delivery systems via fluorescence spectroscopy? Eur. J. Lipid Sci. Technol. 116, 1234–1246. doi:10.1002/ejlt.201300413spa
dc.relation.referencesFischer, K., Schmidt, M., 2016. Pitfalls and novel applications of particle sizing by dynamic light scattering. Biomaterials 98, 79–91. doi:10.1016/j.biomaterials.2016.05.003spa
dc.relation.referencesFontenele, D.M.A., Bandan, R.A.P.B., Guenter, K.T., Gioielli, L.A., Grimaldi, R., Cardoso, L.P., Guaraldo, G.L.A., 2015. Advances in lipids crystallization technology, en: Advanced Topics in Crystallization. InTech, pp. 105–132. doi:10.5772/59767spa
dc.relation.referencesForster, S., Buckton, G., Beezer, A.E., 1991. The importance of chain length on the wettability and solubility of organic homologs. Int. J. Pharm. 72, 29–34. doi:10.1016/0378-5173(91)90377-Zspa
dc.relation.referencesFoubert, I., Vanhoutte, B., Dewettinck, K., 2004. Temperature and concentration dependent effect of partial glycerides on milk fat crystallization. Eur. J. Lipid Sci. Technol. 106, 531–539. doi:10.1002/ejlt.200400979spa
dc.relation.referencesFreitas, C., Müller, R.H., 1999. Correlation between long-term stability of solid lipid nanoparticles (SLN) and crystallinity of the lipid phase. Eur. J. Pharm. Biopharm. 47, 125–132. doi:10.1016/S0939-6411(98)00074-5spa
dc.relation.referencesFreitas, C., Müller, R.H., 1998. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN®) dispersions. Int. J. Pharm. 168, 221–229. doi:10.1016/S0378-5173(98)00092-1spa
dc.relation.referencesFriedrich, I., Müller-Goymann, C.., 2003. Characterization of solidified reverse micellar solutions (SRMS) and production development of SRMS-based nanosuspensions. Eur. J. Pharm. Biopharm. 56, 111–119. doi:10.1016/S0939-6411(03)00043-2spa
dc.relation.referencesGandolfo, F.G., Bot, A., Flöter, E., 2003. Phase diagram of mixtures of stearic acid and stearyl alcohol. Thermochim. Acta 404, 9–17. doi:10.1016/S0040-6031(03)00086-8spa
dc.relation.referencesGandolfo, F.G., Bot, A., Flöter, E., 2003. Phase diagram of mixtures of stearic acid and stearyl alcohol. Thermochim. Acta 404, 9–17. doi:10.1016/S0040-6031(03)00086-8spa
dc.relation.referencesGao, S., McClements, D.J., 2016. Formation and stability of solid lipid nanoparticles fabricated using phase inversion temperature method. Colloids Surfaces A Physicochem. Eng. Asp. 499, 79–87. doi:10.1016/j.colsurfa.2016.03.065spa
dc.relation.referencesGarcia-Fuentes, M., Alonso, M.J., Torres, D., 2005. Design and characterization of a new drug nanocarrier made from solid-liquid lipid mixtures. J. Colloid Interface Sci. 285, 590–598. doi:10.1016/j.jcis.2004.10.012spa
dc.relation.referencesGarcia-Fuentes, M., Torres, D., Martín-Pastor, M., Alonso, M.J., 2004. Application of NMR spectroscopy to the characterization of PEG-stabilized lipid nanoparticles. Langmuir 20, 8839–8845. doi:10.1021/la049505jspa
dc.relation.referencesGarg, A., Singh, S., 2011. Enhancement in antifungal activity of eugenol in immunosuppressed rats through lipid nanocarriers. Colloids Surfaces B Biointerfaces 87, 280–288. doi:10.1016/j.colsurfb.2011.05.030spa
dc.relation.referencesGasco, M.R., 2007. Lipid nanoparticles: Perspectives and challenges. Adv. Drug Deliv. Rev. 59, 377–378. doi:10.1016/j.addr.2007.05.004spa
dc.relation.referencesGasco, M.R., 1993. Method for producing solid lipid microspheres having a narrow size distribution. U.S. Patent No. 5,250,236.spa
dc.relation.referencesGastaldi, L., Battaglia, L., Peira, E., Chirio, D., Muntoni, E., Solazzi, I., Gallarate, M., Dosio, F., 2014. Solid lipid nanoparticles as vehicles of drugs to the brain: Current state of the art. Eur. J. Pharm. Biopharm. 87, 433–444. doi:10.1016/j.ejpb.2014.05.004spa
dc.relation.referencesGaumet, M., Vargas, A., Gurny, R., Delie, F., 2008. Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. Eur. J. Pharm. Biopharm. 69, 1–9. doi:10.1016/j.ejpb.2007.08.001spa
dc.relation.referencesGaumet, M., Vargas, A., Gurny, R., Delie, F., 2008. Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. Eur. J. Pharm. Biopharm. 69, 1–9. doi:10.1016/j.ejpb.2007.08.001spa
dc.relation.referencesGaumet, M., Vargas, A., Gurny, R., Delie, F., 2008. Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. Eur. J. Pharm. Biopharm. 69, 1–9. doi:10.1016/j.ejpb.2007.08.001spa
dc.relation.referencesGiordano, F., Bettini, R., Donini, C., Gazzaniga, A., Caira, M.R., Zhang, G.G.Z., Grant, D.J.W., 1999. Physical properties of parabens and their mixtures: Solubility in water, thermal behavior, and crystal structures. J. Pharm. Sci. 88, 1210–1216. doi:10.1021/js9900452spa
dc.relation.referencesGöke, K., Bunjes, H., 2018. Carrier characteristics influence the kinetics of passive drug loading into lipid nanoemulsions. Eur. J. Pharm. Biopharm. 126, 132–139. doi:10.1016/j.ejpb.2017.08.004spa
dc.relation.referencesGöke, K., Roese, E., Arnold, A., Kuntsche, J., Bunjes, H., 2016. Control over particle size distribution by autoclaving poloxamer-stabilized trimyristin nanodispersions. Mol. Pharm. 13, 3187–3195. doi:10.1021/acs.molpharmaceut.6b00395spa
dc.relation.referencesGöke, K., Roese, E., Bunjes, H., 2018. Heat treatment of poloxamer-stabilized triglyceride nanodispersions: Effects and underlying mechanism. Mol. Pharm. 15, 3111–3120. doi:10.1021/acs.molpharmaceut.8b00202spa
dc.relation.referencesGordillo-Galeano, A., Mora-Huertas, C.E., 2018. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur. J. Pharm. Biopharm. 133, 285–308. doi:S0939641118310610spa
dc.relation.referencesGranero, G.E., Ramachandran, C., Amidon, G.L., 2005. Dissolution and solubility behavior of fenofibrate in sodium lauryl sulfate solutions. Drug Dev. Ind. Pharm. 31, 917–922. doi:10.1080/03639040500272108spa
dc.relation.referencesGregoriadis, G., Senior, J., Poste, G., 1986. Targeting of drugs with synthetic systems. Springer US, Boston, MA. doi:10.1007/978-1-4684-5185-6spa
dc.relation.referencesGüney, G., Kutlu, H.M., Genç, L., 2014. Preparation and characterization of ascorbic acid loaded solid lipid nanoparticles and investigation of their apoptotic effects. Colloids Surfaces B Biointerfaces 121, 270–280. doi:10.1016/j.colsurfb.2014.05.008spa
dc.relation.referencesGuo, T., Zhang, Y., Zhao, J., Zhu, C., Feng, N., 2015. Nanostructured lipid carriers for percutaneous administration of alkaloids isolated from Aconitum sinomontanum. J. Nanobiotechnology 13, 1–14. doi:10.1186/s12951-015-0107-3spa
dc.relation.referencesGüres, S., Siepmann, F., Siepmann, J., Kleinebudde, P., 2012. Drug release from extruded solid lipid matrices: Theoretical predictions and independent experiments. Eur. J. Pharm. Biopharm. 80, 122–129. doi:10.1016/j.ejpb.2011.10.002spa
dc.relation.referencesHaag, S.F., Chen, M., Peters, D., Keck, C.M., Taskoparan, B., Fahr, A., Teutloff, C., Bittl, R., Lademann, J., Schäfer-Korting, M., Meinke, M.C., 2011. Nanostructured lipid carriers as nitroxide depot system measured by electron paramagnetic resonance spectroscopy. Int. J. Pharm. 421, 364–369. doi:10.1016/j.ijpharm.2011.10.009spa
dc.relation.referencesHagemann, J.W., Rothfus, J.A., 1983. Polymorphism and transformation energetics of saturated monoacid triglycerides from differential scanning calorimetry and theoretical modeling. J. Am. Oil Chem. Soc. 60, 1123–1131. doi:10.1007/BF02671340spa
dc.relation.referencesHeiati, H., Phillips, N.C., Tawashi, R., 1996. Evidence for phospholipid bilayer formation in solid lipid nanoparticles formulated with phospholipid and triglyceride. Pharm. Res. 13, 1406–1410. doi:10.1023/A:1016090420759spa
dc.relation.referencesHeiati, H., Tawashi, R., Phillips, N.C., 1998. Drug retention and stability of solid lipid nanoparticles containing azidothymidine palmitate after autoclaving, storage and lyophilization. J. Microencapsul. 15, 173–184. doi:10.3109/02652049809006847spa
dc.relation.referencesHelena de Abreu-Martins, H., Artiga-Artigas, M., Hilsdorf Piccoli, R., Martín-Belloso, O., Salvia-Trujillo, L., 2020. The lipid type affects the in vitro digestibility and β-carotene bioaccessibility of liquid or solid lipid nanoparticles. Food Chem. 311, 126024. doi:10.1016/j.foodchem.2019.126024spa
dc.relation.referencesHelgason, T., Awad, T.S., Kristbergsson, K., Decker, E.A., McClements, D.J., Weiss, J., 2009a. Impact of surfactant properties on oxidative stability of β-carotene encapsulated within solid lipid nanoparticles. J. Agric. Food Chem. 57, 8033–8040. doi:10.1021/jf901682mspa
dc.relation.referencesHelgason, T., Awad, T.S., Kristbergsson, K., McClements, D.J., Weiss, J., 2009b. Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN). J. Colloid Interface Sci. 334, 75–81. doi:10.1016/j.jcis.2009.03.012spa
dc.relation.referencesHenneré, G., Prognon, P., Brion, F., Rosilio, V., Nicolis, I., 2009. Molecular dynamics simulation of a mixed lipid emulsion model: Influence of the triglycerides on interfacial phospholipid organization. J. Mol. Struct. THEOCHEM 901, 174–185. doi:10.1016/j.theochem.2009.01.020spa
dc.relation.referencesHenriksen, I., Sande, S.A., Smistad, G., Ågren, T., Karlsen, J., 1995. In vitro evaluation of drug release kinetics from liposomes by fractional dialysis. Int. J. Pharm. 119, 231–238. doi:10.1016/0378-5173(94)00403-Rspa
dc.relation.referencesHernqvist, L., 1984. On the structure of triglycerides in the liquid state and fat crystallization. Fette, Seifen, Anstrichm. 86, 297–300. doi:10.1002/lipi.19840860802spa
dc.relation.referencesHeurtault, B., Saulnier, P., Pech, B., Proust, J.E., Benoît, J.P., 2003. Physico-chemical stability of colloidal lipid particles. Biomaterials 24, 4283–4300. doi:10.1016/S0142-9612(03)00331-4spa
dc.relation.referencesHiemenz, P.C., Rajagopalan, R., 1997. Principles of Colloid and Surface Chemistry, Third Edit. ed. CRC Press, Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742.spa
dc.relation.referencesHoward, M.D., Lu, X., Rinehart, J.J., Jay, M., Dziubla, T.D., 2011. Physicochemical characterization of nanotemplate engineered solid lipid nanoparticles. Langmuir 27, 1964–1971. doi:10.1021/la104262kspa
dc.relation.referencesHsu, W.D., Violi, A., 2009. Order-disorder phase transformation of triacylglycerols: Effect of the structure of the aliphatic chains. J. Phys. Chem. B 113, 887–893. doi:10.1021/jp806440dspa
dc.relation.referencesHu, F.-Q.Q., Jiang, S.-P.P., Du, Y.-Z.Z., Yuan, H., Ye, Y.-Q.Q., Zeng, S., 2006. Preparation and characteristics of monostearin nanostructured lipid carriers. Int. J. Pharm. 314, 83–9. doi:10.1016/j.ijpharm.2006.01.040spa
dc.relation.referencesHu, F.Q., Hong, Y., Yuan, H., 2004. Preparation and characterization of solid lipid nanoparticles containing peptide. Int. J. Pharm. 273, 29–35. doi:10.1016/j.ijpharm.2003.12.016spa
dc.relation.referencesHu, F.Q., Jiang, S.P., Du, Y.Z., Yuan, H., Ye, Y.Q., Zeng, S., 2005. Preparation and characterization of stearic acid nanostructured lipid carriers by solvent diffusion method in an aqueous system. Colloids Surfaces B Biointerfaces 45, 167–73. doi:10.1016/j.colsurfb.2005.08.005spa
dc.relation.referencesICH, 2005. ICH Topic Q2 (R1) Validation of Analytical Procedures : Text and Methodology. Int. Conf. Harmon. 1994, 17.spa
dc.relation.referencesIlling, A., Unruh, T., 2004. Investigation on the flow behavior of dispersions of solid triglyceride nanoparticles. Int. J. Pharm. 284, 123–131. doi:10.1016/j.ijpharm.2004.07.017spa
dc.relation.referencesInoue, T., Hisatsugu, Y., Yamamoto, R., Suzuki, M., 2004. Solid-liquid phase behavior of binary fatty acid mixtures: 1. Oleic acid/stearic acid and oleic acid/behenic acid mixtures. Chem. Phys. Lipids 127, 143–152. doi:10.1016/j.chemphyslip.2003.09.014spa
dc.relation.referencesIslam, S.D.M., Ito, O., 1999. Solvent effects on rates of photochemical reactions of rose bengal triplet state studied by nanosecond laser photolysis. J. Photochem. Photobiol. A Chem. 123, 53–59. doi:10.1016/S1010-6030(99)00042-8spa
dc.relation.referencesIslan, G.A., Tornello, P.C., Abraham, G.A., Duran, N., Castro, G.R., 2016. Smart lipid nanoparticles containing levofloxacin and DNase for lung delivery. Design and characterization. Colloids Surfaces B Biointerfaces 143, 168–176. doi:10.1016/j.colsurfb.2016.03.040spa
dc.relation.referencesISO, 2012. Colloidal systems — Methods for zeta potential determination Part 2: Optical methods (ISO 13099-2:2012).spa
dc.relation.referencesISO, 1996. Particle size analysis - Photon correlation spectroscopy (ISO 13321:1996).spa
dc.relation.referencesIwahashi, M., Kasahara, Y., 2011. Dynamic molecular movements and aggregation structures of lipids in a liquid state. Curr. Opin. Colloid Interface Sci. 16, 359–366. doi:10.1016/j.cocis.2011.06.005spa
dc.relation.referencesIzquierdo, P., Esquena, J., Tadros, T.F., Dederen, C., Garcia, M.J., Azemar, N., Solans, C., 2002. Formation and stability of nano-emulsions prepared using the phase inversion temperature method. Langmuir 18, 26–30. doi:10.1021/la010808cspa
dc.relation.referencesJain, A., Singhai, P., Gurnany, E., Updhayay, S., Mody, N., 2013. Transferrin-tailored solid lipid nanoparticles as vectors for site-specific delivery of temozolomide to brain. J. Nanoparticle Res. 15. doi:10.1007/s11051-013-1518-4spa
dc.relation.referencesJain, A.K., Jain, Ashay, Garg, N.K., Agarwal, A., Jain, Atul, Jain, S.A., Tyagi, R.K., Jain, R.K., Agrawal, H., Agrawal, G.P., 2014. Adapalene loaded solid lipid nanoparticles gel: An effective approach for acne treatment. Colloids Surfaces B Biointerfaces 121, 222–229. doi:10.1016/j.colsurfb.2014.05.041spa
dc.relation.referencesJenning, V., Mäder, K., Gohla, S.H., 2000a. Solid lipid nanoparticles (SLNTM) based on binary mixtures of liquid and solid lipids: a 1H-NMR study. Int. J. Pharm. 205, 15–21. doi:10.1016/S0378-5173(00)00462-2spa
dc.relation.referencesJenning, V., Thünemann, A.F., Gohla, S.H., Th?nemann, A.F., Gohla, S.H., 2000b. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int. J. Pharm. 199, 167–177. doi:10.1016/S0378-5173(00)00378-1spa
dc.relation.referencesJores, K., Haberland, A., Wartewig, S., Mäder, K., Mehnert, W., 2005. Solid lipid nanoparticles (SLN) and oil-loaded SLN studied by spectrofluorometry and raman spectroscopy. Pharm. Res. 22, 1887–1897. doi:10.1007/s11095-005-7148-5spa
dc.relation.referencesJores, K., Mehnert, W., Drechsler, M., Bunjes, H., Johann, C., Mäder, K., 2004. Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. J. Control. Release 95, 217–227. doi:10.1016/j.jconrel.2003.11.012spa
dc.relation.referencesJores, K., Mehnert, W., Mäder, K., 2003. Physicochemical investigations on solid lipid nanoparticles and on oil-loaded solid lipid nanoparticles: A nuclear magnetic resonance and electron spin resonance study. Pharm. Res. 20, 1274–1283. doi:10.1023/A:1025065418309spa
dc.relation.referencesJose, J., Burgess, K., 2006. Benzophenoxazine-based fluorescent dyes for labeling biomolecules. Tetrahedron 62, 11021–11037. doi:10.1016/j.tet.2006.08.056spa
dc.relation.referencesJose, S., Anju, S.S., Cinu, T.A., Aleykutty, N.A., Thomas, S., Souto, E.B., 2014. In vivo pharmacokinetics and biodistribution of resveratrol-loaded solid lipid nanoparticles for brain delivery. Int. J. Pharm. 474, 6–13. doi:10.1016/j.ijpharm.2014.08.003spa
dc.relation.referencesJoshi, M.D., Müller, R.H., 2009. Lipid nanoparticles for parenteral delivery of actives. Eur. J. Pharm. Biopharm. 71, 161–172. doi:10.1016/j.ejpb.2008.09.003spa
dc.relation.referencesKabanov, A. V, Batrakova, E. V, Alakhov, V.Y., 2002. Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery. J. Control. Release 82, 189–212. doi:10.1016/S0168-3659(02)00009-3spa
dc.relation.referencesKalaycioglu, G.D., Aydogan, N., 2016. Preparation and investigation of solid lipid nanoparticles for drug delivery. Colloids Surfaces A Physicochem. Eng. Asp. 510, 77–86. doi:10.1016/j.colsurfa.2016.06.034spa
dc.relation.referencesKeck, C.M., Baisaeng, N., Durand, P., Prost, M., Meinke, M.C., Müller, R.H., 2014a. Oil-enriched, ultra-small nanostructured lipid carriers (usNLC): A novel delivery system based on flip-flop structure. Int. J. Pharm. 477, 227–235. doi:10.1016/j.ijpharm.2014.10.029spa
dc.relation.referencesKeck, C.M., Kovačević, A.B., Müller, R.H., Savić, S., Vuleta, G., Milić, J., 2014b. Formulation of solid lipid nanoparticles (SLN): The value of different alkyl polyglucoside surfactants. Int. J. Pharm. 474, 33–41. doi:10.1016/j.ijpharm.2014.08.008spa
dc.relation.referencesKern, S.F., 1953. X-Ray Testing and Research on Pharmaceuticals. Anal. Chem. 25, 731–734. doi:10.1021/ac60077a013spa
dc.relation.referencesKhalil, R.M., Abd-Elbary, A., Kassem, M.A., Ghorab, M.M., Basha, M., 2013. Nanostructured lipid carriers (NLCs) versus solid lipid nanoparticles (SLNs) for topical delivery of meloxicam. Pharm. Dev. Technol.spa
dc.relation.referencesKheradmandnia, S., Vasheghani-Farahani, E., Nosrati, M., Atyabi, F., 2010. Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax. Nanomedicine 6, 753–9. doi:10.1016/j.nano.2010.06.003spa
dc.relation.referencesKhurana, S., Bedi, P.M.S., Jain, N.K., 2013. Preparation and evaluation of solid lipid nanoparticles based nanogel for dermal delivery of meloxicam. Chem. Phys. Lipids 175–176, 65–72. doi:10.1016/j.chemphyslip.2013.07.010spa
dc.relation.referencesKim, J.H., Kim, Y., Bae, K.H., Park, T.G., Lee, J.H., Park, K., 2015. Tumor-targeted delivery of paclitaxel using low density lipoprotein-mimetic solid lipid nanoparticles. Mol. Pharm. 12, 1230–1241. doi:10.1021/mp500737yspa
dc.relation.referencesKim, J.K., Park, J.S., Kim, C.K., 2010. Development of a binary lipid nanoparticles formulation of itraconazole for parenteral administration and controlled release. Int. J. Pharm. 383, 209–215. doi:10.1016/j.ijpharm.2009.09.008spa
dc.relation.referencesKlang, V., Matsko, N.B., Valenta, C., Hofer, F., 2012. Electron microscopy of nanoemulsions: An essential tool for characterisation and stability assessment. Micron 43, 85–103. doi:10.1016/j.micron.2011.07.014spa
dc.relation.referencesKloek, W., Walstra, P., Van Vliet, T., 2000. Nucleation kinetics of emulsified triglyceride mixtures. JAOCS, J. Am. Oil Chem. Soc. 77, 643–652. doi:10.1007/s11746-000-0104-7spa
dc.relation.referencesKovačević, A.B., Müller, R.H., Savić, S.D., Vuleta, G.M., Keck, C.M., 2014. Solid lipid nanoparticles (SLN) stabilized with polyhydroxy surfactants: Preparation, characterization and physical stability investigation. Colloids Surfaces A Physicochem. Eng. Asp. 444, 15–25. doi:10.1016/j.colsurfa.2013.12.023spa
dc.relation.referencesKovačević, A.B., Savić, S.D., Vuleta, G.M., Müller, R.H., Keck, C.M., 2011. Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): Effects on size, physical stability and particle matrix structure. Int. J. Pharm. 406, 163–72. doi:10.1016/j.ijpharm.2010.12.036spa
dc.relation.referencesKumar, N., Goindi, S., Saini, B., Bansal, G., 2014. Thermal characterization and compatibility studies of itraconazole and excipients for development of solid lipid nanoparticles. J. Therm. Anal. Calorim. 115, 2375–2383. doi:10.1007/s10973-013-3237-6spa
dc.relation.referencesKumar, R., Yasir, M., Saraf, S.A., Gaur, P.K., Kumar, Y., Singh, A.P., 2013. Glyceryl monostearate based nanoparticles of mefenamic acid: Fabrication and in vitro characterization. Drug Invent. Today 5, 246–250. doi:10.1016/j.dit.2013.06.011spa
dc.relation.referencesKumar, S., Randhawa, J.K., 2013. High melting lipid based approach for drug delivery: Solid lipid nanoparticles. Mater. Sci. Eng. C 33, 1842–1852. doi:10.1016/j.msec.2013.01.037spa
dc.relation.referencesKuntsche, J., Horst, J.C., Bunjes, H., 2011. Cryogenic transmission electron microscopy (cryo-TEM) for studying the morphology of colloidal drug delivery systems. Int. J. Pharm. 417, 120–137. doi:10.1016/j.ijpharm.2011.02.001spa
dc.relation.referencesKuo, Y.-C., Chung, C.Y., 2011. Solid lipid nanoparticles comprising internal Compritol 888 ATO, tripalmitin and cacao butter for encapsulating and releasing stavudine, delavirdine and saquinavir. Colloids Surfaces B Biointerfaces 88, 682–90. doi:10.1016/j.colsurfb.2011.07.060spa
dc.relation.referencesKupetz, E., Bunjes, H., 2014. Lipid nanoparticles: Drug localization is substance-specific and achievable load depends on the size and physical state of the particles. J. Control. Release 189, 54–64. doi:10.1016/j.jconrel.2014.06.007spa
dc.relation.referencesLacerda, S.P., Cerize, N.N.P., Ré, M.I., 2011. Preparation and characterization of carnauba wax nanostructured lipid carriers containing benzophenone-3. Int. J. Cosmet. Sci. 33, 312–321. doi:10.1111/j.1468-2494.2010.00626.xspa
dc.relation.referencesLarsen, S.W., Østergaard, J., Yaghmur, A., Jensen, H., Larsen, C., 2013. Use of in vitro release models in the design of sustained and localized drug delivery systems for subcutaneous and intra-articular administration. J. Drug Deliv. Sci. Technol. 23, 315–324. doi:10.1016/S1773-2247(13)50048-7spa
dc.relation.referencesLawler, P., Dimick, P., 2008. Crystallization and polymorphism of fats, en: Akoh, C.C., Min, D.B. (Eds.), Food Lipids. Chemistry, Nutrition, and Biotechnology. CRC Press, pp. 275–300. doi:10.1201/9781420046649.ch9spa
dc.relation.referencesLee, A.G., 1977. Lipid phase transitions and phase diagrams II. Mixtures involving lipids. Biochim. Biophys. Acta - Rev. Biomembr. 472, 285–344. doi:10.1016/0304-4157(77)90001-6spa
dc.relation.referencesLee, M.-K., Lim, S.-J., Kim, C.-K., 2007. Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles. Biomaterials 28, 2137–2146. doi:10.1016/j.biomaterials.2007.01.014spa
dc.relation.referencesLee, S., Kwon, J.A., Park, K.H., Jin, C.M., Joo, J.B., Choi, I., 2018. Controlled drug release with surface-capped mesoporous silica nanoparticles and its label-free in situ Raman monitoring. Eur. J. Pharm. Biopharm. 131, 232–239. doi:10.1016/j.ejpb.2018.08.012spa
dc.relation.referencesLeonardi, A., Bucolo, C., Romano, G.L., Platania, C.B.M., Drago, F., Puglisi, G., Pignatello, R., 2014. Influence of different surfactants on the technological properties and in vivo ocular tolerability of lipid nanoparticles. Int. J. Pharm. 470, 133–140. doi:10.1016/j.ijpharm.2014.04.061spa
dc.relation.referencesLeong, T.S.H., Wooster, T.J., Kentish, S.E., Ashokkumar, M., 2009. Minimising oil droplet size using ultrasonic emulsification. Ultrason. Sonochem. 16, 721–727. doi:10.1016/j.ultsonch.2009.02.008spa
dc.relation.referencesLevy, M.Y., Benita, S., 1990. Drug release from submicronized o/w emulsion: a new in vitro kinetic evaluation model. Int. J. Pharm. 66, 29–37. doi:10.1016/0378-5173(90)90381-Dspa
dc.relation.referencesLi, Q., Cai, T., Huang, Y., Xia, X., Cole, S., Cai, Y., 2017. A review of the structure, preparation, and application of NLCs, PNPs, and PLNs. Nanomaterials 7, 122. doi:10.3390/nano7060122spa
dc.relation.referencesLi, R., Eun, J.S., Lee, M.-K., 2011. Pharmacokinetics and biodistribution of paclitaxel loaded in pegylated solid lipid nanoparticles after intravenous administration. Arch. Pharm. Res. 34, 331–337. doi:10.1007/s12272-011-0220-2spa
dc.relation.referencesLi, R., Eun, J.S., Lee, M.-K., 2011. Pharmacokinetics and biodistribution of paclitaxel loaded in pegylated solid lipid nanoparticles after intravenous administration. Arch. Pharm. Res. 34, 331–337. doi:10.1007/s12272-011-0220-2spa
dc.relation.referencesLim, S.J., Kim, C., 2002. Formulation parameters determining the physicochemical characteristics of solid lipid nanoparticles loaded with all-trans retinoic acid. Int. J. Pharm. 243, 135–146. doi:10.1016/S0378-5173(02)00269-7spa
dc.relation.referencesLin-Vien, D., Colthup, N.B., Fateley, W.G., Grasselli, J.G., 1991a. Compounds containing the carbonyl group, en: Colthup, N.B. (Ed.), The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. Academic Press, New York, pp. 117–154. doi:10.1016/b978-0-08-057116-4.50015-8spa
dc.relation.referencesLin-Vien, D., Colthup, N.B., Fateley, W.G., Grasselli, J.G., 1991b. Aromatic and heteroaromatic rings, en: Colthup, N.B. (Ed.), The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. Academic Press, New York, pp. 277–306. doi:10.1016/b978-0-08-057116-4.50023-7spa
dc.relation.referencesLin-Vien, D., Colthup, N.B., Fateley, W.G., Grasselli, J.G., 1991c. Alcohols and phenols, en: Colthup, N.B. (Ed.), The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules. Academic Press, New York, pp. 45–60. doi:10.1016/B978-0-08-057116-4.50010-9spa
dc.relation.referencesLin, W., Coombes, A.G., Garnett, M.C., Davies, M.C., Schacht, E., Davis, S.S., Illum, L., 1994. Preparation of sterically stabilized human serum albumin nanospheres using a novel Dextranox-MPEG crosslinking agent. Pharm. Res. 11, 1588–92. doi:10.1023/A:1018957704209spa
dc.relation.referencesLin, X., Li, X., Zheng, L., Yu, L., Zhang, Q., Liu, W., 2007. Preparation and characterization of monocaprate nanostructured lipid carriers. Colloids Surfaces A Physicochem. Eng. Asp. 311, 106–111. doi:10.1016/j.colsurfa.2007.06.003spa
dc.relation.referencesLiu, D., Jiang, S., Shen, H., Qin, S., Liu, J., Zhang, Q., Li, R., Xu, Q., 2011. Diclofenac sodium-loaded solid lipid nanoparticles prepared by emulsion/solvent evaporation method. J. Nanoparticle Res. 13, 2375–2386. doi:10.1007/s11051-010-9998-yspa
dc.relation.referencesLiu, J., Gong, T., Fu, H., Wang, C., Wang, X., Chen, Q., Zhang, Q., He, Q., Zhang, Z., 2008. Solid lipid nanoparticles for pulmonary delivery of insulin. Int. J. Pharm. 356, 333–344. doi:10.1016/j.ijpharm.2008.01.008spa
dc.relation.referencesLiu, Q., Zhang, S., Shen, S., Yun, J., Yao, K., 2011. Density and viscosity of ternary systems (Poloxamer 188 + Ethanol/Acetone + Water) at temperatures from 288.15 K to 308.15 K. Chinese J. Chem. Eng. 19, 478–483. doi:10.1016/S1004-9541(11)60009-8spa
dc.relation.referencesLiu, Y., Wang, L., Zhao, Y., He, M., Zhang, X., Niu, M., Feng, N., 2014. Nanostructured lipid carriers versus microemulsions for delivery of the poorly water-soluble drug luteolin. Int. J. Pharm. 476, 169–177. doi:10.1016/j.ijpharm.2014.09.052spa
dc.relation.referencesLobovkina, T., Jacobson, G.B., Gonzalez-Gonzalez, E., Hickerson, R.P., Leake, D., Kaspar, R.L., Contag, C.H., Zare, R.N., 2011. In vivo sustained release of siRNA from solid lipid nanoparticles. ACS Nano 5, 9977–9983. doi:10.1021/nn203745nspa
dc.relation.referencesLombardi Borgia, S., Regehly, M., Sivaramakrishnan, R., Mehnert, W., Korting, H.C., Danker, K., Röder, B., Kramer, K.D., Schäfer-Korting, M., 2005. Lipid nanoparticles for skin penetration enhancement - Correlation to drug localization within the particle matrix as determined by fluorescence and parelectric spectroscopy. J. Control. Release 110, 151–163. doi:10.1016/j.jconrel.2005.09.045spa
dc.relation.referencesLong, C., Zhang, L., Qian, Y., 2006. Mesoscale simulation of drug molecules distribution in the matrix of solid lipid microparticles (SLM). Chem. Eng. J. 119, 99–106. doi:10.1016/j.cej.2006.03.031spa
dc.relation.referencesLu, F., Wu, S.-H., Hung, Y., Mou, C.-Y., 2009. Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 5, 1408–1413. doi:10.1002/smll.200900005spa
dc.relation.referencesLukowski, G., Kasbohm, J., Pflegel, P., Illing, A., Wulff, H., 2000. Crystallographic investigation of cetylpalmitate solid lipid nanoparticles. Int. J. Pharm. 196, 201–205. doi:10.1016/S0378-5173(99)00421-4spa
dc.relation.referencesLuo, Y., Teng, Z., Li, Y., Wang, Q., 2015. Solid lipid nanoparticles for oral drug delivery: Chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. Carbohydr. Polym. 122, 221–229. doi:10.1016/j.carbpol.2014.12.084spa
dc.relation.referencesLutton, E.S., 1945. The polymorphism of tristearin and some of its homologs. J. Am. Chem. Soc. 67, 524–527. doi:10.1021/ja01220a008spa
dc.relation.referencesLv, Y., He, H., Qi, J., Lu, Y., Zhao, W., Dong, X., Wu, W., 2018. Visual validation of the measurement of entrapment efficiency of drug nanocarriers. Int. J. Pharm. 547, 395–403. doi:10.1016/j.ijpharm.2018.06.025spa
dc.relation.referencesMagenheim, B., Levy, M.Y., Benita, S., 1993. A new in vitro technique for the evaluation of drug release profile from colloidal carriers - ultrafiltration technique at low pressure. Int. J. Pharm. 94, 115–123. doi:10.1016/0378-5173(93)90015-8spa
dc.relation.referencesMarangoni, A.G., Acevedo, N., Maleky, F., Co, E., Peyronel, F., Mazzanti, G., Quinn, B., Pink, D., 2012. Structure and functionality of edible fats. Soft Matter 8, 1275–1300. doi:10.1039/C1SM06234Dspa
dc.relation.referencesMaretti, E., Rustichelli, C., Romagnoli, M., Balducci, A.G., Buttini, F., Sacchetti, F., Leo, E., Iannuccelli, V., 2016. Solid Lipid Nanoparticle assemblies (SLNas) for an anti-TB inhalation treatment—A Design of Experiments approach to investigate the influence of pre-freezing conditions on the powder respirability. Int. J. Pharm. 511, 669–679. doi:10.1016/j.ijpharm.2016.07.062spa
dc.relation.referencesMarinova, K.G., Alargova, R.G., Denkov, N.D., Velev, O.D., Petsev, D.N., Ivanov, I.B., Borwankar, R.P., 1996. Charging of oil−water interfaces due to spontaneous adsorption of hydroxyl ions. Langmuir 12, 2045–2051. doi:10.1021/la950928ispa
dc.relation.referencesMartinez, V., Henary, M., 2016. Nile Red and Nile Blue: Applications and syntheses of structural analogues. Chem. - A Eur. J. 22, 13764–13782. doi:10.1002/chem.201601570spa
dc.relation.referencesMartins, S., Tho, I., Souto, E.B., Ferreira, D., Brandl, M., 2012. Multivariate design for the evaluation of lipid and surfactant composition effect for optimisation of lipid nanoparticles. Eur. J. Pharm. Sci. 45, 613–623. doi:10.1016/j.ejps.2011.12.015spa
dc.relation.referencesMazuryk, J., Deptuła, T., Polchi, A., Gapiński, J., Giovagnoli, S., Magini, A., Emiliani, C., Kohlbrecher, J., Patkowski, A., 2016. Rapamycin-loaded solid lipid nanoparticles: Morphology and impact of the drug loading on the phase transition between lipid polymorphs. Colloids Surfaces A Physicochem. Eng. Asp. 502, 54–65. doi:10.1016/j.colsurfa.2016.05.017spa
dc.relation.referencesMehnert, W., Mäder, K., 2012. Solid lipid nanoparticles. Producción, characterization and applications. Adv. Drug Deliv. Rev. 64, 83–101. doi:10.1016/j.addr.2012.09.021spa
dc.relation.referencesMetin, S., Hartel, R.W., 2005. Crystallization of fats and oils, en: Shahidi, F. (Ed.), Bailey’s Industrial Oil and Fat Products. John Wiley & Sons, Inc., Hoboken, New Jersey, pp. 45–76. doi:10.1002/047167849X.bio021spa
dc.relation.referencesMiao, J., Du, Y., Yuan, H., Zhang, X., Li, Q., Rao, Y., Zhao, M., Hu, F., 2015. Improved cytotoxicity of paclitaxel loaded in nanosized lipid carriers by intracellular delivery. J. Nanoparticle Res. 17, 10. doi:10.1007/s11051-014-2852-xspa
dc.relation.referencesMiao, J., Du, Y.Z., Yuan, H., Zhang, X., Hu, F.Q., 2013. Drug resistance reversal activity of anticancer drug loaded solid lipid nanoparticles in multi-drug resistant cancer cells. Colloids Surfaces B Biointerfaces 110, 74–80. doi:10.1016/j.colsurfb.2013.03.037spa
dc.relation.referencesMiglietta, A., Cavalli, R., Bocca, C., Gabriel, L., Rosa Gasco, M., 2000. Cellular uptake and cytotoxicity of solid lipid nanospheres (SLN) incorporating doxorubicin or paclitaxel. Int. J. Pharm. 210, 61–67. doi:10.1016/S0378-5173(00)00562-7spa
dc.relation.referencesMilsmann, J., Oehlke, K., Greiner, R., Steffen-Heins, A., 2017. Fate of edible solid lipid nanoparticles (SLN) in surfactant stabilized o/w emulsions. Part 2: Release and partitioning behavior of lipophilic probes from SLN into different phases of o/w emulsions. Colloids Surfaces A Physicochem. Eng. Asp. 1–0. doi:10.1016/j.colsurfa.2017.05.050spa
dc.relation.referencesMoinard-Chécot, D., Chevalier, Y., Briançon, S., Beney, L., Fessi, H., 2008. Mechanism of nanocapsules formation by the emulsion-diffusion process. J. Colloid Interface Sci. 317, 458–68. doi:10.1016/j.jcis.2007.09.081spa
dc.relation.referencesMojahedian, M.M., Daneshamouz, S., Samani, S.M., Zargaran, A., 2013. A novel method to produce solid lipid nanoparticles using n-butanol as an additional co-surfactant according to the o/w microemulsion quenching technique. Chem. Phys. Lipids 174, 32–38. doi:10.1016/j.chemphyslip.2013.05.001spa
dc.relation.referencesMontenegro, L., Lai, F., Offerta, A., Sarpietro, M.G., Micicchè, L., Maccioni, A.M., Valenti, D., Fadda, A.M., 2015. From nanoemulsions to nanostructured lipid carriers: A relevant development in dermal delivery of drugs and cosmetics. J. Drug Deliv. Sci. Technol. 32, 100–112. doi:10.1016/j.jddst.2015.10.003spa
dc.relation.referencesMontenegro, L., Sarpietro, M.G., Ottimo, S., Puglisi, G., Castelli, F., 2011. Differential scanning calorimetry studies on sunscreen loaded solid lipid nanoparticles prepared by the phase inversion temperature method. Int. J. Pharm. 415, 301–306. doi:10.1016/j.ijpharm.2011.05.076spa
dc.relation.referencesMora-Huertas, C.E., Fessi, H., Elaissari, A., 2011. Influence of process and formulation parameters on the formation of submicron particles by solvent displacement and emulsification-diffusion methods critical comparison. Adv. Colloid Interface Sci. 163, 90–122. doi:10.1016/j.cis.2011.02.005spa
dc.relation.referencesMosallaei, N., Jaafari, M.R., Hanafi-Bojd, M.Y., Golmohammadzadeh, S., Malaekeh-Nikouei, B., 2013. Docetaxel-loaded solid lipid nanoparticles: Preparation, characterization, in vitro, and in vivo evaluations. J. Pharm. Sci. 102, 1994–2004. doi:10.1002/jps.23522spa
dc.relation.referencesMukherjee, S., Ray, S., Thakur, R.S., 2009. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J. Pharm. Sci. 71, 349–358. doi:10.4103/0250-474X.57282spa
dc.relation.referencesMüller, R.H., Maassen, S., Schwarz, C., Mehnert, W., 1997. Solid lipid nanoparticles (SLN) as potential carrier for human use: Interaction with human granulocytes. J. Control. Release 47, 261–269. doi:10.1016/S0168-3659(97)01653-2spa
dc.relation.referencesMüller, R.H., Mäder, K., Gohla, S.H., 2000. Solid lipid nanoparticles (SLN) for controlled drug delivery a review of the state of the art. Eur. J. Pharm. Biopharm. 50, 161–177. doi:10.1016/S0939-6411(00)00087-4spa
dc.relation.referencesMüller, R.H., Mäder, K., Lippacher, A., Jenning, V., 1999. Fest-flüssig (halbfeste) lipidpartikel (nano-compartiment-carrier-NCC) und verfahren zur herstellung hochkonzentrierter lipidpartkel. Germany Patent DE19945203A1.spa
dc.relation.referencesMüller, R.H., Petersen, R.D., Hommoss, A., Pardeike, J., 2007. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv. Drug Deliv. Rev. 59, 522–530. doi:10.1016/j.addr.2007.04.012spa
dc.relation.referencesMüller, R.H., Runge, S.A., Ravelli, V., Thünemann, A.F., Mehnert, W., Souto, E.B., 2008. Cyclosporine-loaded solid lipid nanoparticles (SLN®): Drug–lipid physicochemical interactions and characterization of drug incorporation. Eur. J. Pharm. Biopharm. 68, 535–544. doi:10.1016/j.ejpb.2007.07.006spa
dc.relation.referencesNafee, N., Husari, A., Maurer, C.K., Lu, C., de Rossi, C., Steinbach, A., Hartmann, R.W., Lehr, C.-M., Schneider, M., 2014. Antibiotic-free nanotherapeutics: Ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors. J. Control. Release 192, 131–140. doi:10.1016/j.jconrel.2014.06.055spa
dc.relation.referencesNahak, P., Karmakar, G., Chettri, P., Roy, B., Guha, P., Besra, S.E., Soren, A., Bykov, A.G., Akentiev, A. V, Noskov, B.A., Panda, A.K., 2016. Influence of lipid core material on physicochemical characteristics of an ursolic acid-loaded nanostructured lipid carrier: An attempt to enhance anticancer activity. Langmuir 32, 9816–9825. doi:10.1021/acs.langmuir.6b02402spa
dc.relation.referencesNapper, D.., 1977. Steric stabilization. J. Colloid Interface Sci. 58, 390–407. doi:10.1016/0021-9797(77)90150-3spa
dc.relation.referencesNegi, J.S., Chattopadhyay, P., Sharma, A.K., Ram, V., 2014. Development and evaluation of glyceryl behenate based solid lipid nanoparticles (SLNs) using hot self-nanoemulsification (SNE) technique. Arch. Pharm. Res. 37, 361–370. doi:10.1007/s12272-013-0154-yspa
dc.relation.referencesNelson, A., Cosgrove, T., 2004. Dynamic light scattering studies of poly(ethylene oxide) adsorbed on laponite: Layer conformation and its effect on particle stability. Langmuir 20, 10382–10388. doi:10.1021/la049323pspa
dc.relation.referencesNelson, D.D., Pan, Y., Tikekar, R. V, Dan, N., Nitin, N., 2017. Compound stability in nanoparticles: The effect of solid phase fraction on diffusion of degradation agents into nanostructured lipid carriers. Langmuir 33, 14115–14122. doi:10.1021/acs.langmuir.7b03407spa
dc.relation.referencesNg, W.L., 1989. Nucleation behaviour of tripalmitin from a triolein solution. J. Am. Oil Chem. Soc. 66, 1103–1106. doi:10.1007/BF02670093spa
dc.relation.referencesNik, A.M., Langmaid, S., Wright, A.J., 2012. Nonionic surfactant and interfacial structure impact crystallinity and stability of β-carotene loaded lipid nanodispersions. J. Agric. Food Chem. 60, 4126–4135. doi:10.1021/jf204810mspa
dc.relation.referencesNoack, A., Hause, G., Mäder, K., 2012. Physicochemical characterization of curcuminoid-loaded solid lipid nanoparticles. Int. J. Pharm. 423, 440–51. doi:10.1016/j.ijpharm.2011.12.011spa
dc.relation.referencesObeidat, W.M., Schwabe, K., Müller, R.H., Keck, C.M., 2010. Preservation of nanostructured lipid carriers (NLC). Eur. J. Pharm. Biopharm. 76, 56–67. doi:10.1016/j.ejpb.2010.05.001spa
dc.relation.referencesOh, K.T., Bronich, T.K., Kabanov, A. V., 2004. Micellar formulations for drug delivery based on mixtures of hydrophobic and hydrophilic Pluronic® block copolymers. J. Control. Release 94, 411–422. doi:10.1016/j.jconrel.2003.10.018spa
dc.relation.referencesOhshima, H., 2002. Electrophoretic mobility of a charged spherical colloidal particle covered with an uncharged polymer layer. Electrophoresis 23, 1995. doi:10.1002/1522-2683(200207)23:13<1995::AID-ELPS1995>3.0.CO;2-Mspa
dc.relation.referencesOkuda, S., McClements, D.J., Decker, E.A., 2005. Impact of lipid physical state on the oxidation of methyl linolenate in oil-in-water emulsions. J. Agric. Food Chem. 53, 9624–9628. doi:10.1021/jf0518960spa
dc.relation.referencesOlbrich, C., Kayser, O., Müller, R.H., 2002a. Lipase degradation of Dynasan 114 and 116 solid lipid nanoparticles (SLN) - Effect of surfactants, storage time and crystallinity. Int. J. Pharm. 237, 119–128. doi:10.1016/S0378-5173(02)00035-2spa
dc.relation.referencesOlbrich, C., Kayser, O., Müller, R.H., 2002b. Enzymatic degradation of Dynasan 114 SLN - Effect of surfactants and particle size. J. Nanoparticle Res. 4, 121–129. doi:10.1023/A:1020159331420spa
dc.relation.referencesOlbrich, C., Müller, R.H., 1999. Enzymatic degradation of SLN—effect of surfactant and surfactant mixtures. Int. J. Pharm. 180, 31–39. doi:10.1016/S0378-5173(98)00404-9spa
dc.relation.referencesOlerile, L.D., Liu, Y., Zhang, B., Wang, T., Mu, S., Zhang, J., Selotlegeng, L., Zhang, N., 2017. Near-infrared mediated quantum dots and paclitaxel co-loaded nanostructured lipid carriers for cancer theragnostic. Colloids Surfaces B Biointerfaces 150, 121–130. doi:10.1016/j.colsurfb.2016.11.032spa
dc.relation.referencesOliveira, M.S., Mussi, S. V, Gomes, D.A., Yoshida, M.I., Frezard, F., Carregal, V.M., Ferreira, L.A.M., 2016. α-Tocopherol succinate improves encapsulation and anticancer activity of doxorubicin loaded in solid lipid nanoparticles. Colloids Surfaces B Biointerfaces 140, 246–53. doi:10.1016/j.colsurfb.2015.12.019spa
dc.relation.referencesPalanuwech, J., Coupland, J.N., 2003. Effect of surfactant type on the stability of oil-in-water emulsions to dispersed phase crystallization. Colloids Surfaces A Physicochem. Eng. Asp. 223, 251–262. doi:10.1016/S0927-7757(03)00169-9spa
dc.relation.referencesPaliwal, R., Paliwal, S.R., Agrawal, G.P., Vyas, S.P., 2011. Biomimetic solid lipid nanoparticles for oral bioavailability enhancement of low molecular weight heparin and its lipid conjugates: In vitro and in vivo evaluation. Mol. Pharm. 1314–1321. doi:10.1021/mp200109mspa
dc.relation.referencesPan, Y., Tikekar, R. V., Nitin, N., 2016. Distribution of a model bioactive within solid lipid nanoparticles and nanostructured lipid carriers influences its loading efficiency and oxidative stability. Int. J. Pharm. 511, 322–330. doi:10.1016/j.ijpharm.2016.07.019spa
dc.relation.referencesPandita, D., Ahuja, A., Lather, V., Benjamin, B., Dutta, T., Velpandian, T., Khar, R.K., 2011. Development of lipid-based nanoparticles for enhancing the oral bioavailability of paclitaxel. AAPS PharmSciTech 12, 712–22. doi:10.1208/s12249-011-9636-8spa
dc.relation.referencesPandita, D., Kumar, S., Poonia, N., Lather, V., 2014. Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol. Food Res. Int. 62, 1165–1174. doi:10.1016/j.foodres.2014.05.059spa
dc.relation.referencesPardeike, J., Hommoss, A., Müller, R.H., 2009. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm. 366, 170–184. doi:10.1016/j.ijpharm.2008.10.003spa
dc.relation.referencesPardeike, J., Weber, S., Haber, T., Wagner, J., Zarfl, H.P., Plank, H., Zimmer, A., 2011. Development of an Itraconazole-loaded nanostructured lipid carrier (NLC) formulation for pulmonary application. Int. J. Pharm. 419, 329–338. doi:10.1016/j.ijpharm.2011.07.040spa
dc.relation.referencesPatel, N.K., Kostenbauder, H.B., 1958. Interaction of preservatives with macromolecules I. J. Am. Pharm. Assoc. (Scientific ed.) 47, 289–293. doi:10.1002/jps.3030470420spa
dc.relation.referencesPatist, A., Bhagwat, S.S., Penfield, K.W., Aikens, P., Shah, D.O., 2000. On the measurement of critical micelle concentrations of pure and technical-grade nonionic surfactants. J. Surfactants Deterg. 3, 53–58. doi:10.1007/s11743-000-0113-4spa
dc.relation.referencesPattarino, F., Bettini, R., Foglio Bonda, A., Della Bella, A., Giovannelli, L., 2015. Polymorphism and kinetic behavior of binary mixtures of triglycerides. Int. J. Pharm. 473, 87–94. doi:10.1016/j.ijpharm.2014.06.042spa
dc.relation.referencesPecora, R., 2000. Dynamic light scattering measurement of nanometer particles in liquids. J. Nanoparticle Res. 2, 123–131. doi:10.1023/A:1010067107182spa
dc.relation.referencesPhipps, L.W., 1964. Heterogeneous and homogeneous nucleation in supercooled triglycerides and n-paraffins. Trans. Faraday Soc. 60, 1873. doi:10.1039/tf9646001873spa
dc.relation.referencesPilcer, G., Amighi, K., 2010. Formulation strategy and use of excipients in pulmonary drug delivery. Int. J. Pharm. 392, 1–19. doi:10.1016/j.ijpharm.2010.03.017spa
dc.relation.referencesPink, D.L., Loruthai, O., Ziolek, R.M., Wasutrasawat, P., Terry, A.E., Lawrence, M.J., Lorenz, C.D., 2019. On the structure of solid lipid nanoparticles. Small 15. doi:10.1002/smll.201903156spa
dc.relation.referencesPovey, M.J.W., 2014. Crystal nucleation in food colloids. Food Hydrocoll. 42, 118–129. doi:10.1016/j.foodhyd.2014.01.016spa
dc.relation.referencesPředota, M., Machesky, M.L., Wesolowski, D.J., 2016. Molecular origins of the zeta potential. Langmuir 32, 10189–10198. doi:10.1021/acs.langmuir.6b02493spa
dc.relation.referencesPriel, Z., Silberberg, A., 1978. The thickness of adsorbed polymer layers at a liquid–solid interface as a function of bulk concentration. J. Polym. Sci. Polym. Phys. Ed. 16, 1917–1925. doi:10.1002/pol.1978.180161102spa
dc.relation.referencesQian, C., Decker, E.A., Xiao, H., McClements, D.J., 2013. Impact of lipid nanoparticle physical state on particle aggregation and β-carotene degradation: Potential limitations of solid lipid nanoparticles. Food Res. Int. 52, 342–349. doi:10.1016/j.foodres.2013.03.035spa
dc.relation.referencesQuintanar-Guerrero, D., Tamayo-Esquivel, D., Ganem-Quintanar, A., Allémann, E., Doelker, E., 2005. Adaptation and optimization of the emulsification-diffusion technique to prepare lipidic nanospheres. Eur. J. Pharm. Sci. 26, 211–218. doi:10.1016/j.ejps.2005.06.001spa
dc.relation.referencesRadaic, A., Barbosa, L.R.S., Jaime, C., Kapila, Y.L., Pessine, F.B.T., de Jesus, M.B., 2016. How lipid cores affect lipid nanoparticles as drug and gene delivery systems, en: Advances in Biomembranes and Lipid Self-Assembly. pp. 1–42. doi:10.1016/bs.abl.2016.04.001spa
dc.relation.referencesRahman, Z., Zidan, A.S., Khan, M.A., 2010. Non-destructive methods of characterization of risperidone solid lipid nanoparticles. Eur. J. Pharm. Biopharm. 76, 127–37. doi:10.1016/j.ejpb.2010.05.003spa
dc.relation.referencesRao, M.P., Manjunath, K., Bhagawati, S.T., Thippeswamy, B.S., 2014. Bixin loaded solid lipid nanoparticles for enhanced hepatoprotection. Preparation, characterisation and in vivo evaluation. Int. J. Pharm. 473, 485–92. doi:10.1016/j.ijpharm.2014.07.027spa
dc.relation.referencesRasmussen, N., 1993. Facts, artifacts, and mesosomes: Practicing epistemology with the electron microscope. Stud. Hist. Philos. Sci. Part A 24, 227–265. doi:10.1016/0039-3681(93)90047-Nspa
dc.relation.referencesRibeiro, A.P.B., Masuchi, M.H., Miyasaki, E.K., Domingues, M.A.F., Stroppa, V.L.Z., de Oliveira, G.M., Kieckbusch, T.G., Paula, A., Ribeiro, B., Masuchi, M.H., Miyasaki, E.K., 2015. Crystallization modifiers in lipid systems. J. Food Sci. Technol. 52, 3925–3946. doi:10.1007/s13197-014-1587-0spa
dc.relation.referencesRosenblatt, K.M., Bunjes, H., 2009. Poly(vinyl alcohol) as emulsifier stabilizes solid triglyceride drug carrier nanoparticles in the α-modification. Mol. Pharm. 6, 105–120. doi:10.1021/mp8000759spa
dc.relation.referencesRosenblatt, K.M., Douroumis, D., Bunjes, H., 2007. Drug release from differently structured monoolein/poloxamer nanodispersions studied with differential pulse polarography and ultrafiltration at low pressure. J. Pharm. Sci. 96, 1564–1575. doi:10.1002/jps.20808spa
dc.relation.referencesRoss, S., Long, R.F., 1969. Electrophoresis as method of investigating electric double layer. Ind. Eng. Chem. 61, 58–71. doi:10.1021/ie50718a007spa
dc.relation.referencesRowe, R.C., Sheskey, P.J., Quinn, M.E. (Eds.), 2009. Handbook of Pharmaceutical Excipients, Sixth. ed. Pharmaceutical Press, American Pharmacists Association, London.spa
dc.relation.referencesSadeghpour, A., Parada, M.L., Vieira, J., Povey, M., Rappolt, M., 2018. Global Small-Angle X-ray Scattering data analysis of triacylglycerols in the molten state (Part I). J. Phys. Chem. B 122, 10320–10329. doi:10.1021/acs.jpcb.8b06704spa
dc.relation.referencesSaeidpour, S., Lohan, S.B., Solik, A., Paul, V., Bodmeier, R., Zoubari, G., Bittl, R., Meinke, M.C., Teutloff, C., 2017. Drug distribution in nanostructured lipid particles. Eur. J. Pharm. Biopharm. 110, 19–23. doi:10.1016/j.ejpb.2016.10.008spa
dc.relation.referencesSalatin, S., Maleki Dizaj, S., Yari Khosroushahi, A., 2015. Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol. Int. 39, 881–890. doi:10.1002/cbin.10459spa
dc.relation.referencesSalminen, H., Gömmel, C., Leuenberger, B.H., Weiss, J., 2016. Influence of encapsulated functional lipids on crystal structure and chemical stability in solid lipid nanoparticles: Towards bioactive-based design of delivery systems. Food Chem. 190, 928–937. doi:10.1016/j.foodchem.2015.06.054spa
dc.relation.referencesSalminen, H., Helgason, T., Aulbach, S., Kristinsson, B., Kristbergsson, K., Weiss, J., 2014. Influence of co-surfactants on crystallization and stability of solid lipid nanoparticles. J. Colloid Interface Sci. 426, 256–263. doi:10.1016/j.jcis.2014.04.009spa
dc.relation.referencesSanna, V., Caria, G., Mariani, A., 2010. Effect of lipid nanoparticles containing fatty alcohols having different chain length on the ex vivo skin permeability of econazole nitrate. Powder Technol. 201, 32–36. doi:10.1016/j.powtec.2010.02.035spa
dc.relation.referencesSarpietro, M.G., Accolla, M.L., Puglisi, G., Castelli, F., Montenegro, L., 2014. Idebenone loaded solid lipid nanoparticles: Calorimetric studies on surfactant and drug loading effects. Int. J. Pharm. 471, 69–74. doi:10.1016/j.ijpharm.2014.05.019spa
dc.relation.referencesSato, K., 2001. Crystallization behaviour of fats and lipids — a review. Chem. Eng. Sci. 56, 2255–2265. doi:10.1016/S0009-2509(00)00458-9spa
dc.relation.referencesSato, K., Ueno, S., 2005. Polymorphism in fats and oils, en: Shahidi, F. (Ed.), Bailey’s Industrial Oil and Fat Products. John Wiley & Sons, Inc., Hoboken, New Jersey, pp. 77–120. doi:10.1002/047167849X.bio020spa
dc.relation.referencesSaupe, A., Gordon, K.C., Rades, T., 2006. Structural investigations on nanoemulsions, solid lipid nanoparticles and nanostructured lipid carriers by cryo-field emission scanning electron microscopy and Raman spectroscopy. Int. J. Pharm. 314, 56–62. doi:10.1016/j.ijpharm.2006.01.022spa
dc.relation.referencesSaupe, A., Wissing, S.A., Lenk, A., Schmidt, C., Müller, R.H., 2005. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) - Structural investigations on two different carrier systems. Biomed. Mater. Eng. 15, 393–402.spa
dc.relation.referencesScatchard, G., 1949. The attractions of proteins for small molecules and ions. Ann. N. Y. Acad. Sci. 51, 660–672. doi:10.1111/j.1749-6632.1949.tb27297.xspa
dc.relation.referencesSchmiele, M., Busch, S., Morhenn, H., Schindler, T., Schmutzler, T., Schweins, R., Lindner, P., Boesecke, P., Westermann, M., Steiniger, F., Funari, S.S., Unruh, T., 2016. Structural characterization of lecithin-stabilized tetracosane lipid nanoparticles. Part I: emulsions. J. Phys. Chem. B 120, 5505–5512. doi:10.1021/acs.jpcb.6b02519spa
dc.relation.referencesSchmolka, I.R., 1977. A review of block polymer surfactants. J. Am. Oil Chem. Soc. 54, 110–116. doi:10.1007/BF02894385spa
dc.relation.referencesSchoenitz, M., Joseph, S., Nitz, A., Bunjes, H., Scholl, S., 2013. Controlled polymorphic transformation of continuously crystallized solid lipid nanoparticles in a microstructured device: A feasibility study. Eur. J. Pharm. Biopharm. 86, 324–331. doi:10.1016/j.ejpb.2013.08.009spa
dc.relation.referencesSchöler, N., Olbrich, C., Tabatt, K., Müller, R.H., Hahn, H., Liesenfeld, O., 2001. Surfactant, but not the size of solid lipid nanoparticles (SLN) influences viability and cytokine production of macrophages. Int. J. Pharm. 221, 57–67. doi:10.1016/S0378-5173(01)00660-3spa
dc.relation.referencesSchubert, M.A., 2003. Solvent injection as a new approach for manufacturing lipid nanoparticles – evaluation of the method and process parameters. Eur. J. Pharm. Biopharm. 55, 125–131. doi:10.1016/S0939-6411(02)00130-3spa
dc.relation.referencesSchubert, M.A., Schicke, B.C., Müller-Goymann, C.C., 2005. Thermal analysis of the crystallization and melting behavior of lipid matrices and lipid nanoparticles containing high amounts of lecithin. Int. J. Pharm. 298, 242–254. doi:10.1016/j.ijpharm.2005.04.014spa
dc.relation.referencesSchwarz, C., Mehnert, W., 1997. Freeze-drying of drug-free and drug-loaded solid lipid nanoparticles (SLN). Int. J. Pharm. 157, 171–179. doi:10.1016/S0378-5173(97)00222-6spa
dc.relation.referencesSeetapan, N., Bejrapha, P., Srinuanchai, W., Ruktanonchai, U.R., 2010. Rheological and morphological characterizations on physical stability of gamma-oryzanol-loaded solid lipid nanoparticles (SLNs). Micron 41, 51–58. doi:10.1016/j.micron.2009.08.003spa
dc.relation.referencesSeverino, P., Pinho, S.C., Souto, E.B., Santana, M.H.A., 2011a. Polymorphism, crystallinity and hydrophilic-lipophilic balance of stearic acid and stearic acid-capric/caprylic triglyceride matrices for production of stable nanoparticles. Colloids Surfaces B Biointerfaces 86, 125–130. doi:10.1016/j.colsurfb.2011.03.029spa
dc.relation.referencesSeverino, P., Pinho, S.C., Souto, E.B., Santana, M.H.A., 2011b. Crystallinity of Dynasan®114 and Dynasan®118 matrices for the production of stable Miglyol®-loaded nanoparticles. J. Therm. Anal. Calorim. 108, 101–108. doi:10.1007/s10973-011-1613-7spa
dc.relation.referencesShah, B., Khunt, D., Bhatt, H., Misra, M., Padh, H., 2015. Application of quality by design approach for intranasal delivery of rivastigmine loaded solid lipid nanoparticles: Effect on formulation and characterization parameters. Eur. J. Pharm. Sci. 78, 54–66. doi:10.1016/j.ejps.2015.07.002spa
dc.relation.referencesShah, M., Pathak, K., 2010. Development and statistical optimization of solid lipid nanoparticles of simvastatin by using 2(3) full-factorial design. AAPS PharmSciTech 11, 489–496. doi:10.1208/s12249-010-9414-zspa
dc.relation.referencesShah, R.M., Bryant, G., Taylor, M., Eldridge, D.S., Palombo, E.A., Harding, I.H., 2016. Structure of solid lipid nanoparticles produced by a microwave-assisted microemulsion technique. RSC Adv. 6, 36803–36810. doi:10.1039/C6RA02020Hspa
dc.relation.referencesShah, R.M., Malherbe, F., Eldridge, D., Palombo, E.A., Harding, I.H., 2014. Physicochemical characterization of solid lipid nanoparticles (SLNs) prepared by a novel microemulsion technique. J. Colloid Interface Sci. 428, 286–294. doi:10.1016/j.jcis.2014.04.057spa
dc.relation.referencesSharma, S.D., Kitano, H., Sagara, K., 2004. Phase change materials for low temperature solar thermal applications. Res. Reports Fac. Eng. Mie Univ. 29, 31–64. doi:10.2174/1876387101004010042spa
dc.relation.referencesShegokar, R., Singh, K.K., Müller, R.H., 2011. Production & stability of stavudine solid lipid nanoparticles - From lab to industrial scale. Int. J. Pharm. 416, 461–470. doi:10.1016/j.ijpharm.2010.08.014spa
dc.relation.referencesShen, J., Sun, M., Ping, Q., Ying, Z., Liu, W., 2010. Incorporation of liquid lipid in lipid nanoparticles for ocular drug delivery enhancement. Nanotechnology 21, 025101. doi:10.1088/0957-4484/21/2/025101spa
dc.relation.referencesShen, S., Wu, Y., Liu, Y., Wu, D., 2017. High drug-loading nanomedicines: Progress, current status, and prospects. Int. J. Nanomedicine 12, 4085–4109. doi:10.2147/IJN.S132780spa
dc.relation.referencesShi, F., Zhao, J.-H., Liu, Y., Wang, Z., Zhang, Y.-T., Feng, N.-P., 2012. Preparation and characterization of solid lipid nanoparticles loaded with frankincense and myrrh oil. Int. J. Nanomedicine 62, 2033. doi:10.2147/IJN.S30085spa
dc.relation.referencesShidhaye, S.S., Vaidya, R., Sutar, S., Patwardhan, A., Kadam, V.J., 2008. Solid lipid nanoparticles and nanostructured lipid carriers – Innovative generations of solid lipid carriers. Curr. Drug Deliv. 5, 324–331.spa
dc.relation.referencesSiddiqui, A., Alayoubi, A., Nazzal, S., 2014. The effect of emulsifying wax on the physical properties of CTAB-based solid lipid nanoparticles (SLN). Pharm. Dev. Technol. 19, 125–8. doi:10.3109/10837450.2012.751401spa
dc.relation.referencesSiddiqui, A., Gupta, V., Liu, Y.Y., Nazzal, S., 2012. Doxorubicin and MBO-asGCS oligonucleotide loaded lipid nanoparticles overcome multidrug resistance in adriamycin resistant ovarian cancer cells (NCI/ADR-RES). Int. J. Pharm. 431, 222–9. doi:10.1016/j.ijpharm.2012.04.050spa
dc.relation.referencesSiekmann, B., Westesen, K., 1994. Thermoanalysis of the recrystallization process of melt-homogenized glyceride nanoparticles. Colloids Surfaces B Biointerfaces 3, 159–175. doi:10.1016/0927-7765(94)80063-4spa
dc.relation.referencesSilva, A.C., González-Mira, E., García, M.L., Egea, M.A., Fonseca, J., Silva, R., Santos, D., Souto, E.B., Ferreira, D., 2011. Preparation, characterization and biocompatibility studies on risperidone-loaded solid lipid nanoparticles (SLN): High pressure homogenization versus ultrasound. Colloids Surfaces B Biointerfaces 86, 158–165. doi:10.1016/j.colsurfb.2011.03.035spa
dc.relation.referencesSimoneau, C., McCarthy, M.J., Reid, D.S., German, J.B., 1993. Influence of triglyceride composition on crystallization kinetics of model emulsions. J. Food Eng. 19, 365–387. doi:10.1016/0260-8774(93)90026-Gspa
dc.relation.referencesSivaramakrishnan, R., Kankate, L., Niehus, H., Kramer, K.D., 2005. Parelectric spectroscopy of drug-carrier-systems—distribution of carrier masses or activation energies. Biophys. Chem. 114, 221–228. doi:10.1016/j.bpc.2004.12.007spa
dc.relation.referencesSivaramakrishnan, R., Nakamura, C., Mehnert, W., Korting, H.C., Kramer, K.D., Schäfer-Korting, M., 2004. Glucocorticoid entrapment into lipid carriers — characterisation by parelectric spectroscopy and influence on dermal uptake. J. Control. Release 97, 493–502. doi:10.1016/j.jconrel.2004.04.001spa
dc.relation.referencesSjöström, B., Kaplun, A., Talmon, Y., Cabane, B., 1995. Structures of nanoparticles prepared from oil-in-water emulsions. Pharm. Res. 12, 39–48. doi:10.1023/A:1016278302046spa
dc.relation.referencesSmith, M.C., Crist, R.M., Clogston, J.D., McNeil, S.E., 2017. Zeta potential: A case study of cationic, anionic, and neutral liposomes. Anal. Bioanal. Chem. 409, 5779–5787. doi:10.1007/s00216-017-0527-zspa
dc.relation.referencesSoares, S., Fonte, P., Costa, A., Andrade, J., Seabra, V., Ferreira, D., Reis, S., Sarmento, B., 2013. Effect of freeze-drying, cryoprotectants and storage conditions on the stability of secondary structure of insulin-loaded solid lipid nanoparticles. Int. J. Pharm. 456, 370–381. doi:10.1016/j.ijpharm.2013.08.076spa
dc.relation.referencesSolans, C., Izquierdo, P., Nolla, J., Azemar, N., Garcia-Celma, M., 2005. Nano-emulsions. Curr. Opin. Colloid Interface Sci. 10, 102–110. doi:10.1016/j.cocis.2005.06.004spa
dc.relation.referencesSolans, C., Solé, I., 2012. Nano-emulsions: Formation by low-energy methods. Curr. Opin. Colloid Interface Sci. 17, 246–254. doi:10.1016/j.cocis.2012.07.003spa
dc.relation.referencesSoni, M.G., Carabin, I.G., Burdock, G.A., 2005. Safety assessment of esters of p-hydroxybenzoic acid (parabens). Food Chem. Toxicol. 43, 985–1015. doi:10.1016/j.fct.2005.01.020spa
dc.relation.referencesSonoda, T., Takata, Y., Ueno, S., Sato, K., 2006. Effects of emulsifiers on crystallization behavior of lipid crystals in nanometer-size oil-in-water emulsion droplets. Cryst. Growth Des. 6, 306–312. doi:10.1021/cg050045hspa
dc.relation.referencesSouto, E.B., Anselmi, C., Centini, M., Müller, R.H., 2005. Preparation and characterization of n-dodecyl-ferulate-loaded solid lipid nanoparticles (SLN®). Int. J. Pharm. 295, 261–8. doi:10.1016/j.ijpharm.2005.02.005spa
dc.relation.referencesSouto, E.B., Wissing, S.A., Barbosa, C.M., Müller, R.H., 2004. Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int. J. Pharm. 278, 71–77. doi:10.1016/j.ijpharm.2004.02.032spa
dc.relation.referencesStenkamp, V.S., Berg, J.C., 1997. The role of long tails in steric stabilization and hydrodynamic layer thickness. Langmuir 13, 3827–3832. doi:10.1021/la970173aspa
dc.relation.referencesSubramanian, N., Murthy, R.S.R., 2004. Use of electrolyte induced flocculation technique for an in vitro steric stability study of steric stabilized liposome formulations. Pharmazie 59, 74–6. doi:10.1242/jeb.089763spa
dc.relation.referencesSum, A.K., Biddy, M.J., de Pablo, J.J., Tupy, M.J., 2003. Predictive molecular model for the thermodynamic and transport properties of triacylglycerols. J. Phys. Chem. B 107, 14443–14451. doi:10.1021/jp035906gspa
dc.relation.referencesSweetman, S.C. (Ed.), 2009. Martindale. The Complete Drug Reference, 36a ed. Pharmaceutical Press, American Pharmacists Association, London.spa
dc.relation.referencesSznitowska, M., Gajewska, M., Janicki, S., Radwanska, A., Lukowski, G., 2001. Bioavailability of diazepam from aqueous-organic solution, submicron emulsion and solid lipid nanoparticles after rectal administration in rabbits. Eur. J. Pharm. Biopharm. 52, 159–163. doi:10.1016/S0939-6411(01)00157-6spa
dc.relation.referencesTadros, T., 2009. Polymeric surfactants in disperse systems. Adv. Colloid Interface Sci. 147–148, 281–299. doi:10.1016/j.cis.2008.10.005spa
dc.relation.referencesTakeuchi, M., Ueno, S., Sato, K., 2003. Synchrotron radiation SAXS/WAXS study of polymorph-dependent phase behavior of binary mixtures of saturated monoacid triacylglycerols. Cryst. Growth Des. 3, 369–374. doi:10.1021/cg025594rspa
dc.relation.referencesTamjidi, F., Shahedi, M., Varshosaz, J., Nasirpour, A., 2013. Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innov. Food Sci. Emerg. Technol. 19, 29–43. doi:10.1016/j.ifset.2013.03.002spa
dc.relation.referencesTan, S.W., Billa, N., 2014. Lipid effects on expulsion rate of amphotericin B from solid lipid nanoparticles. AAPS PharmSciTech 15, 287–95. doi:10.1208/s12249-013-0056-9spa
dc.relation.referencesTan, S.W., Billa, N., Roberts, C.R., Burley, J.C., 2010. Surfactant effects on the physical characteristics of Amphotericin B-containing nanostructured lipid carriers. Colloids Surfaces A Physicochem. Eng. Asp. 372, 73–79. doi:10.1016/j.colsurfa.2010.09.030spa
dc.relation.referencesTanaka, M., Saito, H., Arimoto, I., Nakano, M., Handa, T., 2003. Evidence for interpenetration of core triglycerides into surface phospholipid monolayers in lipid emulsions. Langmuir 19, 5192–5196. doi:10.1021/la026897qspa
dc.relation.referencesTeeranachaideekul, V., Boonme, P., Souto, E.B., Müller, R.H., Junyaprasert, V.B., 2008. Influence of oil content on physicochemical properties and skin distribution of Nile red-loaded NLC. J. Control. Release 128, 134–141. doi:10.1016/j.jconrel.2008.02.011spa
dc.relation.referencesTikekar, R. V., Nitin, N., 2012. Distribution of encapsulated materials in colloidal particles and its impact on oxidative stability of encapsulated materials. Langmuir 28, 9233–9243. doi:10.1021/la301435kspa
dc.relation.referencesTiwari, R., Pathak, K., 2011. Nanostructured lipid carrier versus solid lipid nanoparticles of simvastatin: Comparative analysis of characteristics, pharmacokinetics and tissue uptake. Int. J. Pharm. 415, 232–243. doi:10.1016/j.ijpharm.2011.05.044spa
dc.relation.referencesTorrecilla, J., del Pozo-Rodríguez, A., Apaolaza, P.S., Solinís, M.Á., Rodríguez-Gascón, A., 2015. Solid lipid nanoparticles as non-viral vector for the treatment of chronic hepatitis C by RNA interference. Int. J. Pharm. 479, 181–188. doi:10.1016/j.ijpharm.2014.12.047spa
dc.relation.referencesTosta, F.V., Andrade, L.M., Mendes, L.P., Anjos, J.L. V., Alonso, A., Marreto, R.N., Lima, E.M., Taveira, S.F., 2014. Paclitaxel-loaded lipid nanoparticles for topical application: The influence of oil content on lipid dynamic behavior, stability, and drug skin penetration. J. Nanoparticle Res. 16, 1–12. doi:10.1007/s11051-014-2782-7spa
dc.relation.referencesTran, T., Rousseau, D., 2016. Influence of shear on fat crystallization. Food Res. Int. 81, 157–162. doi:10.1016/j.foodres.2015.12.022spa
dc.relation.referencesTrotta, M., Debernardi, F., Caputo, O., 2003. Preparation of solid lipid nanoparticles by a solvent emulsification-diffusion technique. Int. J. Pharm. 257, 153–160. doi:10.1016/S0378-5173(03)00135-2spa
dc.relation.referencesTrujillo, C.C., Wright, A.J., 2010. Properties and stability of solid lipid particle dispersions based on canola stearin and poloxamer 188. J. Am. Oil Chem. Soc. 87, 715–730. doi:10.1007/s11746-010-1553-6spa
dc.relation.referencesTrzaskus, K.W., Zdeb, A., de Vos, W.M., Kemperman, A., Nijmeijer, K., 2016. Fouling behavior during microfiltration of silica nanoparticles and polymeric stabilizers. J. Memb. Sci. 505, 205–215. doi:10.1016/j.memsci.2016.01.032spa
dc.relation.referencesTscharnuter, W., 2000. Photon correlation spectroscopy in particle sizing, en: Encyclopedia of analytical chemistry. John Wiley & Sons, Ltd, Chichester, UK. doi:10.1002/9780470027318.a1512spa
dc.relation.referencesUnruh, Tobias, Bunjes, H., Westesen, K., Koch, M.H.J., 2002. Observation of Size-Dependent Melting in Lipid Nanoparticles. J. Phys. Chem. B 103, 10373–10377. doi:10.1021/jp9912612spa
dc.relation.referencesUnruh, T., Westesen, K., Bösecke, P., Lindner, P., Koch, M.H.J., 2002. Self-assembly of triglyceride nanocrystals in suspension. Langmuir 18, 1796–1800. doi:10.1021/la0110601spa
dc.relation.referencesUrbán-Morlán, Z., Ganem-Rondero, A., Melgoza-Contreras, L.M., Escobar-Chávez, J.J., Nava-Arzaluz, M.G., Quintanar-Guerrero, D., 2010. Preparation and characterization of solid lipid nanoparticles containing cyclosporine by the emulsification-diffusion method. Int. J. Nanomedicine 5, 611–620. doi:10.2147/IJN.S12125spa
dc.relation.referencesUskoković, V., 2012. Dynamic light scattering based microelectrophoresis: Main prospects and limitations. J. Dispers. Sci. Technol. 33, 1762–1786. doi:10.1080/01932691.2011.625523spa
dc.relation.referencesVaghasiya, H., Kumar, A., Sawant, K., 2013. Development of solid lipid nanoparticles based controlled release system for topical delivery of terbinafine hydrochloride. Eur. J. Pharm. Sci. 49, 311–322. doi:10.1016/j.ejps.2013.03.013spa
dc.relation.referencesValdes-Aguilera, O., Neckers, D.C., 1989. Aggregation phenomena in xanthene dyes. Acc. Chem. Res. 22, 171–177. doi:10.1021/ar00161a002spa
dc.relation.referencesValdes-Aguilera, O., Neckers, D.C., 1988. Rose bengal ethyl ester aggregation in aqueous solution. J. Phys. Chem. 92, 4286–4289. doi:10.1021/j100326a010spa
dc.relation.referencesvan Oss, C.J., 2008a. Stability versus flocculation of aqueous particle suspensions, en: Hubbard, A. (Ed.), Interface Science and Technology. Academic Press, London, pp. 113–130. doi:10.1016/S1573-4285(08)00208-1spa
dc.relation.referencesvan Oss, C.J., 2008b. The interfacial tension/free energy of interaction between water and two different condensed-phase entities, i, immersed in water, w, en: Hubberd, A. (Ed.), Interface Science and Technology. Academic Press, London, pp. 73–84. doi:10.1016/S1573-4285(08)00206-8spa
dc.relation.referencesvan Oss, C.J., 2008c. Influence of the pH and the ionic strength of water on contact angles measured with drops of aqueous solutions on electrically charged, amphoteric and uncharged surfaces, en: Hubberd, A. (Ed.), Interface Science and Technology. Academic Press, London, pp. 161–166. doi:10.1016/S1573-4285(08)00212-3spa
dc.relation.referencesvan Oss, C.J., 2008d. General and historical introduction, en: Hubberd, A. (Ed.), Interface Science and Technology. Academic Press, London, pp. 1–9. doi:10.1016/S1573-4285(08)00201-9spa
dc.relation.referencesVandita, K., Shashi, B., Santosh, K.G., Pal, K.I., 2012. Enhanced apoptotic effect of curcumin loaded solid lipid nanoparticles. Mol. Pharm. 9, 3411–3421. doi:10.1021/mp300209kspa
dc.relation.referencesVarache, M., Ciancone, M., Couffin, A.-C., 2020. Optimization of a solid-phase extraction procedure for the analysis of drug-loaded lipid nanoparticles and its application to the determination of leakage and release profiles. J. Pharm. Sci. doi:10.1016/j.xphs.2020.05.003spa
dc.relation.referencesVarshosaz, J., Eskandari, S., Tabbakhian, M., 2012. Freeze-drying of nanostructure lipid carriers by different carbohydrate polymers used as cryoprotectants. Carbohydr. Polym. 88, 1157–1163. doi:10.1016/j.carbpol.2012.01.051spa
dc.relation.referencesVarshosaz, J., Minayian, M., Moazen, E., 2010. Enhancement of oral bioavailability of pentoxifylline by solid lipid nanoparticles. J. Liposome Res. 20, 115–123. doi:10.3109/08982100903161456spa
dc.relation.referencesVenkateswarlu, V., Manjunath, K., 2004. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J. Control. Release 95, 627–638. doi:10.1016/j.jconrel.2004.01.005spa
dc.relation.referencesVerwey, E.J.., Overbeek, J.T.., 1955. Theory of the stability of lyophobic colloids. J. Colloid Sci. 10, 224–225. doi:10.1016/0095-8522(55)90030-1spa
dc.relation.referencesVideira, M., Almeida, A.J., Fabra, À., 2012. Preclinical evaluation of a pulmonary delivered paclitaxel-loaded lipid nanocarrier antitumor effect. Nanomedicine Nanotechnology, Biol. Med. 8, 1208–1215. doi:10.1016/j.nano.2011.12.007spa
dc.relation.referencesVideira, M.A., Arranja, A.G., Gouveia, L.F., 2013. Experimental design towards an optimal lipid nanosystem : A new opportunity for paclitaxel-based therapeutics. Eur. J. Pharm. Sci. 49, 302–310. doi:10.1016/j.ejps.2013.03.005spa
dc.relation.referencesVieira, A.C.C., Chaves, L.L., Pinheiro, S., Pinto, S., Pinheiro, M., Lima, S.C., Ferreira, D., Sarmento, B., Reis, S., 2018. Mucoadhesive chitosan-coated solid lipid nanoparticles for better management of tuberculosis. Int. J. Pharm. 536, 478–485. doi:10.1016/j.ijpharm.2017.11.071spa
dc.relation.referencesVighi, E., Ruozi, B., Montanari, M., Battini, R., Leo, E., 2007. Re-dispersible cationic solid lipid nanoparticles (SLNs) freeze-dried without cryoprotectors: Characterization and ability to bind the pEGFP-plasmid. Eur. J. Pharm. Biopharm. 67, 320–328. doi:10.1016/j.ejpb.2007.02.006spa
dc.relation.referencesVijayan, N., Babu, R.R., Gunasekaran, M., Gopalakrishnan, R., Ramasamy, P., 2003. Growth, optical, thermal and mechanical studies of methyl 4-hydroxybenzoate single crystals. J. Cryst. Growth 256, 174–182. doi:10.1016/S0022-0248(03)01343-5spa
dc.relation.referencesVitorino, C., Carvalho, F.A., Almeida, A.J., Sousa, J.J., Pais, A.A., 2011. The size of solid lipid nanoparticles: An interpretation from experimental design. Colloids Surfaces B Biointerfaces 84, 117–130. doi:10.1016/j.colsurfb.2010.12.024spa
dc.relation.referencesVivek, K., Reddy, H., Murthy, R.S.R., 2007. Investigations of the effect of the lipid matrix on drug entrapment, in vitro release, and physical stability of olanzapine-loaded solid lipid nanoparticles. AAPS PharmSciTech 8, E83. doi:10.1208/pt0804083spa
dc.relation.referencesWang, J.J., Liu, K.S., Sung, K.C., Tsai, C.Y., Fang, J.Y., 2009. Lipid nanoparticles with different oil/fatty ester ratios as carriers of buprenorphine and its prodrugs for injection. Eur. J. Pharm. Sci. 38, 138–146. doi:10.1016/j.ejps.2009.06.008spa
dc.relation.referencesWang, S., Sun, M., Ping, Q., 2008. Enhancing effect of Labrafac Lipophile WL 1349 on oral bioavailability of hydroxysafflor yellow A in rats. Int. J. Pharm. 358, 198–204. doi:10.1016/j.ijpharm.2008.03.006spa
dc.relation.referencesWang, Y., Zhang, H., Hao, J., Li, B., Li, M., Xiuwen, W., 2015. Lung cancer combination therapy: Co-delivery of paclitaxel and doxorubicin by nanostructured lipid carriers for synergistic effect. Drug Deliv. 7544, 1–6. doi:10.3109/10717544.2015.1055619spa
dc.relation.referencesWashington, C., 1990. Drug release from microdisperse systems: a critical review. Int. J. Pharm. 58, 1–12. doi:10.1016/0378-5173(90)90280-Hspa
dc.relation.referencesWasutrasawat, P., Al-Obaidi, H., Gaisford, S., Lawrence, M.J., Warisnoicharoen, W., 2013. Drug solubilisation in lipid nanoparticles containing high melting point triglycerides. Eur. J. Pharm. Biopharm. 85, 365–371. doi:10.1016/j.ejpb.2013.04.020spa
dc.relation.referencesWeber, S., Zimmer, A., Pardeike, J., 2014. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for pulmonary application: A review of the state of the art. Eur. J. Pharm. Biopharm. 86, 7–22. doi:10.1016/j.ejpb.2013.08.013spa
dc.relation.referencesWelch, D., Lettinga, M.P., Ripoll, M., Dogic, Z., Vliegenthart, G.A., 2015. Trains, tails and loops of partially adsorbed semi-flexible filaments. Soft Matter 11, 7507–7514. doi:10.1039/C5SM01457Cspa
dc.relation.referencesWestesen, K., Bunjes, H., 1995. Do nanoparticles prepared from lipids solid at room temperature always possess a solid lipid matrix? Int. J. Pharm. 115, 129–131. doi:10.1016/0378-5173(94)00347-8spa
dc.relation.referencesWestesen, K., Bunjes, H., Koch, M.H.J., 1997. Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J. Control. Release 48, 223–236. doi:10.1016/S0168-3659(97)00046-1spa
dc.relation.referencesWestesen, K., Siekmann, B., 1997. Investigation of the gel formation of phospholipid-stabilized solid lipid nanoparticles. Int. J. Pharm. 151, 35–45.spa
dc.relation.referencesWestesen, K., Siekmann, B., Koch, M.H.J., 1993. Investigations on the physical state of lipid nanoparticles by synchrotron radiation X-ray diffraction. Int. J. Pharm. 93, 189–199. doi:10.1016/0378-5173(93)90177-Hspa
dc.relation.referencesWeyenberg, W., Filev, P., Van den Plas, D., Vandervoort, J., De Smet, K., Sollie, P., Ludwig, A., 2007. Cytotoxicity of submicron emulsions and solid lipid nanoparticles for dermal application. Int. J. Pharm. 337, 291–298. doi:10.1016/j.ijpharm.2006.12.045spa
dc.relation.referencesWissing, S.A., Müller, R.H., Manthei, L., Mayer, C., 2004. Structural characterization of Q10-loaded solid lipid nanoparticles by NMR spectroscopy. Pharm. Res. 21, 400–405.spa
dc.relation.referencesXiao, Y., Wiesner, M.R., 2012. Characterization of surface hydrophobicity of engineered nanoparticles. J. Hazard. Mater. 215–216, 146–151. doi:10.1016/j.jhazmat.2012.02.043spa
dc.relation.referencesXu, W., Lee, M.-K., 2015. Development and evaluation of lipid nanoparticles for paclitaxel delivery: a comparison between solid lipid nanoparticles and nanostructured lipid carriers. J. Pharm. Investig. 45, 675–680. doi:10.1007/s40005-015-0224-xspa
dc.relation.referencesXu, Z., Chen, L., Gu, W., Gao, Y., Lin, L., Zhang, Z., Xi, Y., Li, Y., 2009. The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials 30, 226–232. doi:10.1016/j.biomaterials.2008.09.014spa
dc.relation.referencesXue, H.Y., Wong, H.L., 2011. Tailoring nanostructured solid-lipid carriers for time-controlled intracellular siRNA kinetics to sustain RNAi-mediated chemosensitization. Biomaterials 32, 2662–72. doi:10.1016/j.biomaterials.2010.12.029spa
dc.relation.referencesYang, L., Alexandridis, P., 2000. Physicochemical aspects of drug delivery and release from polymer-based colloids. Curr. Opin. Colloid Interface Sci. 5, 132–143. doi:10.1016/S1359-0294(00)00046-7spa
dc.relation.referencesYang, X., Li, Y., Li, M., Zhang, L., Feng, L., Zhang, N., 2013. Hyaluronic acid-coated nanostructured lipid carriers for targeting paclitaxel to cancer. Cancer Lett. 334, 338–345. doi:10.1016/j.canlet.2012.07.002spa
dc.relation.referencesYang, Y., Corona, A., Schubert, B., Reeder, R., Henson, M.A., 2014. The effect of oil type on the aggregation stability of nanostructured lipid carriers. J. Colloid Interface Sci. 418, 261–272. doi:10.1016/j.jcis.2013.12.024spa
dc.relation.referencesYasir, M., Sara, U.V.S., 2013. Preparation and optimization of haloperidol loaded solid lipid nanoparticles by Box–Behnken design. J. Pharm. Res. 7, 551–558. doi:10.1016/j.jopr.2013.05.022spa
dc.relation.referencesYasir, M., Vir, U., Sara, S., Sara, U.V.S., 2014. Solid lipid nanoparticles for nose to brain delivery of haloperidol : In vitro drug release and pharmacokinetics evaluation. Acta Pharm. Sin. B 4, 454–463. doi:10.1016/j.apsb.2014.10.005spa
dc.relation.referencesYi, J., Lam, T.I., Yokoyama, W., Cheng, L.W., Zhong, F., 2014. Cellular uptake of β-carotene from protein stabilized solid lipid nanoparticles prepared by homogenization-evaporation method. J. Agric. Food Chem. 62, 1096–1104. doi:10.1021/jf404073cspa
dc.relation.referencesYu, Y.H., Kim, E., Park, D.E., Shim, G., Lee, S., Kim, Y.B., Kim, C.-W., Oh, Y.-K., 2012. Cationic solid lipid nanoparticles for co-delivery of paclitaxel and siRNA. Eur. J. Pharm. Biopharm. 80, 268–73. doi:10.1016/j.ejpb.2011.11.002spa
dc.relation.referencesYuan, H., Chen, J., Du, Y.Z., Hu, F.Q., Zeng, S., Zhao, H.L., 2007. Studies on oral absorption of stearic acid SLN by a novel fluorometric method. Colloids Surfaces B Biointerfaces 58, 157–64. doi:10.1016/j.colsurfb.2007.03.002spa
dc.relation.referencesYuan, H., Miao, J., Du, Y.-Z., You, J., Hu, F.-Q., Zeng, S., 2008. Cellular uptake of solid lipid nanoparticles and cytotoxicity of encapsulated paclitaxel in A549 cancer cells. Int. J. Pharm. 348, 137–145. doi:10.1016/j.ijpharm.2007.07.012spa
dc.relation.referencesYucel, U., Elias, R.J., Coupland, J.N., 2013. Effect of liquid oil on the distribution and reactivity of a hydrophobic solute in solid lipid nanoparticles. JAOCS, J. Am. Oil Chem. Soc. 90, 819–824. doi:10.1007/s11746-013-2228-xspa
dc.relation.referencesZambrano-Zaragoza, M.L., Mercado-Silva, E., Ramirez-Zamorano, P., Cornejo-Villegas, M.A., Gutiérrez-Cortez, E., Quintanar-Guerrero, D., 2013. Use of solid lipid nanoparticles (SLNs) in edible coatings to increase guava (Psidium guajava L.) shelf-life. Food Res. Int. 51, 946–953. doi:10.1016/j.foodres.2013.02.012spa
dc.relation.referencesZhang, J., Nie, S., Wang, S., 2013. Nanoencapsulation enhances epigallocatechin-3-gallate stability and its antiatherogenic bioactivities in macrophages. J. Agric. Food Chem. 61, 9200–9209. doi:10.1021/jf4023004spa
dc.relation.referencesZhang, J., Smith, E., 2011. Percutaneous permeation of betamethasone 17-valerate incorporated in lipid nanoparticles. J. Pharm. Sci. 100, 896–903. doi:10.1002/jps.22329spa
dc.relation.referencesZhang, L., Hayes, D.G., Chen, G., Zhong, Q., 2013. Transparent dispersions of milk-fat-based nanostructured lipid carriers for delivery of β-carotene. J. Agric. Food Chem. 61, 9435–9443. doi:10.1021/jf403512cspa
dc.relation.referencesZhang, Z., Feng, S.S., 2006. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials 27, 4025–4033. doi:10.1016/j.biomaterials.2006.03.006spa
dc.relation.referencesZhao, J.-C., 2007. The role of phase transformation kinetics in phase diagram determination and assessment, en: Zhao, J.-C. (Ed.), Methods for Phase Diagram Determination. Elsevier, Oxford, pp. 22–50. doi:10.1016/B978-008044629-5/50002-1spa
dc.relation.referencesZhao, S., Yang, X., Garamus, V.M., Handge, U.A., Bérengère, L., Zhao, L., Salamon, G., Willumeit, R., Zou, A., Fan, S., 2014. Mixture of Nonionic/Ionic Surfactants for the Formulation of Nanostructured Lipid Carriers: Effects on Physical Properties. Langmuir 30, 6920–6928. doi:10.1021/la501141mspa
dc.relation.referencesZheng, M., Falkeborg, M., Zheng, Y., Yang, T., Xu, X., 2013. Formulation and characterization of nanostructured lipid carriers containing a mixed lipids core. Colloids Surfaces A Physicochem. Eng. Asp. 430, 76–84. doi:10.1016/j.colsurfa.2013.03.070spa
dc.relation.referencesZhong, Q., Zhang, L., 2019. Nanoparticles fabricated from bulk solid lipids: Preparation, properties, and potential food applications. Adv. Colloid Interface Sci. 273, 102033. doi:10.1016/j.cis.2019.102033spa
dc.relation.referencesZoubari, G., Staufenbiel, S., Volz, P., Alexiev, U., Bodmeier, R., 2017. Effect of drug solubility and lipid carrier on drug release from lipid nanoparticles for dermal delivery. Eur. J. Pharm. Biopharm. 110, 39–46. doi:10.1016/j.ejpb.2016.10.021spa
dc.relation.referenceszur Mühlen, A., Schwarz, C., Mehnert, W., 1998. Solid lipid nanoparticles (SLN) for controlled drug delivery-drug release and release mechanism. Eur. J. Pharm. Biopharm. 45, 149–155. doi:10.1016/S0939-6411(97)00150-1spa
dc.relation.referenceszur Mühlen, A., zur Mühlen, E., Niehus, H., Mehnert, W., 1996. Atomic force microscopy studies of solid lipid nanoparticles. Pharm. Res. 13, 1411–6. doi:10.1023/A:1016042504830spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.proposalPortadores lipídicos coloidalesspa
dc.subject.proposalColloid lipid carrierseng
dc.subject.proposalNanoemulsionesspa
dc.subject.proposalNanoemulsionseng
dc.subject.proposalStructural organizationeng
dc.subject.proposalOrganización estructuralspa
dc.subject.proposalcomportamiento de liberaciónspa
dc.subject.proposalDrug release behavioreng
dc.subject.proposalDrug incorporationeng
dc.subject.proposalLocalización del fármacospa
dc.subject.proposalLipid nanoparticleseng
dc.subject.proposalNanopartículas lipídicasspa
dc.titleEfecto de las propiedades estructurales de la partícula sobre la liberación de moléculas encapsuladas en sistemas lipídicos coloidalesspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80769820.2020.pdf
Tamaño:
13.32 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: