Desarrollo de nanopartículas híbridas polímero – lípido con potencial aplicación en el tratamiento de la dermatitis alérgica de contacto

dc.contributor.advisorMora Huertas, Claudia Elizabethspa
dc.contributor.authorMartínez Muñoz, Oscar Ivánspa
dc.date.accessioned2025-04-29T13:03:10Z
dc.date.available2025-04-29T13:03:10Z
dc.date.issued2024
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLas nanopartículas híbridas polímero – lípido (HPLNP) son sistemas transportadores de sustancias activas que han demostrado resultados prometedores en el ámbito farmacéutico gracias a su tamaño y composición. Como un aporte a la investigación en este campo la presente investigación aborda dos estrategias para la preparación de HPLNP empleando la técnica de nanoprecipitación, en las que se incorpora furoato de mometasona, un corticosteroide útil para el tratamiento de patologías cutáneas como la dermatitis alérgica de contacto. La primera estrategia para la preparación de las HPLNP es a partir de un polímero y un lípido; en la segunda estrategia, se trabaja con un polímero y un fosfolípido modificado. En los dos casos se obtienen partículas con tamaños entre 150 y 250 nm, PDI menores a 0.2, potenciales Z entre -10 y - 40 mV y eficiencias de encapsulación superiores al 95 %. La liberación del activo ocurre a los 15 min en un medio adicionado de un agente solubilizante y las dispersiones acuosas mantienen su estabilidad física durante 60 días de almacenamiento en condiciones de envejecimiento natural y 30 días en envejecimiento acelerado según las condiciones para la zona IVb estipuladas por la OMS. Los sistemas nanoparticulados se caracterizan por FTIR, DSC, XRD y TEM observándose que las HPLNP presentan una estructura predominantemente amorfa sin que se detecten incompatibilidades físicas o químicas relevantes. En conjunto, los resultados de esta investigación constituyen la fase preliminar para el desarrollo de nanopartículas que aporten valor agregado a los productos de administración tópica actualmente disponibles en el mercado a base de furoato de mometasona para los que se han evidenciado dificultades en la adherencia a la terapia debido a la necesidad de reaplicaciones y a la generación de eventos adversos (Texto tomado de la fuente).spa
dc.description.abstractHybrid polymer-lipid nanoparticles (HPLNP) are promising drug carriers due to their size and composition. As a contribution in this field, this work addresses two strategies to prepare this kind of particles using the nanoprecipitation technique, wherein mometasone furoate is incorporated. This is a corticosteroid useful to treat skin pathologies such as allergic contact dermatitis. The first strategy to preparing HPLNP is by using a polymer and a lipid; in the second one, a polymer and a modified phospholipid are employed. In both cases, particles with sizes ranging between 150 and 250 nm, PDI less than 0.2, Z potentials between -10 and - 40 mV, and encapsulation efficiencies greater than 95 % are obtained. The release of the active ingredient occurs after 15 min in an aqueous medium added with a solubilizing agent. The nanoparticle dispersions keep stable for 60 days of storage under natural aging conditions and 30 days under accelerated aging. The nanoparticulate systems are characterized by FTIR, DSC, XRD and TEM. Overall, the obtained results are a preliminary phase to the develop nanoparticles providing added value to the topical products currently available on the market based on mometasone furoate, which evidence difficulties in the therapy adherence because of re-application is needed and adverse events are generated.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Farmacéuticasspa
dc.description.researchareaFarmacotecniaspa
dc.description.sponsorship“Investigación Desarrollo, innovación y transferencia de conocimiento para el procesamiento de la semilla de Sacha Inchi en productos de valor agregado, como estrategia para mejorar la productividad del sector agroindustrial de la Región Cundinamarca”. BPIN 2020000100169. Regalías. Código Hermes: 45756"spa
dc.format.extentxxiv, 230 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88134
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias Farmacéuticasspa
dc.relation.referencesAbdali, S., Yu, J. 2021. Occupational dermatoses related to personal protective equipment used during the COVID-19 pandemic. Dermatol. Clin. 39, 555-568. doi:10.1016/j.det.2021.05.009spa
dc.relation.referencesAerts, O., Dendooven, E., Foubert, K., Stappers, S., Ulicki, M., Lambert, J. 2020. Surgical mask dermatitis caused by formaldehyde (releasers) during the COVID ‐19 pandemic. Contact Derm. 83, 172-173. doi:10.1111/cod.13626spa
dc.relation.referencesBabino, G., Argenziano, G., Balato, A. 2022. Impact in contact dermatitis during and after SARS‐CoV2 pandemic. Curr. Treat. Options Allergy. 9, 19-26. doi:10.1007/s40521-022- 00298-2spa
dc.relation.referencesBothra, A., Das, S., Singh, M., Pawar, M., Maheswari, A. 2020. Retroauricular dermatitis with vehement use of ear loop face masks during COVID19 pandemic. J. Eur. Acad. Dermatol. Venereol. 34, e549-e552. doi:10.1111/jdv.16692spa
dc.relation.referencesCoondoo, A., Phiske, M., Verma, S., Lahiri, K. 2014. Side-effects of topical steroids: A long overdue revisit. Indian Dermatol. Online J. 5, 416. doi:10.4103/2229-5178.142483spa
dc.relation.referencesGuillet, G., Guillet, M.H., Dagregorio, G. 2005. Allergic contact dermatitis from natural rubber latex in atopic dermatitis and the risk of later Type I allergy. Contact Dermatitis. 53, 46-51. doi:10.1111/j.0105-1873.2005.00634.xspa
dc.relation.referencesGottlöber, P., Gall, H., Uwe-Peter, R. 2001. Allergic contact dermatitis from natural latex. Am. J. of Contact Dermat. 12, 135-138. doi:10.1053/ajcd.2001.20114spa
dc.relation.referencesJensen, L. B., Magnussson, E., Gunnarsson, L., Vermehren, C., Nielsen, H. M., Petersson, K. 2010. Corticosteroid solubility and lipid polarity control release from solid lipid nanoparticles. Int. J. Pharm. 390, 53-60. doi:10.1016/j.ijpharm.2009.10.022spa
dc.relation.referencesJohansen, J.D., Mahler, V., Lepoittevin, J-P., Frosch, P.J. (Eds). Contact dermatitis. 2021. Sixth ed. Springer. Switzerland, pp. 13-78.spa
dc.relation.referencesKao, J.S., Fluhr, J.W., Man, MQ., Fowler, A.J., Hachem, J.P., Crumrine, D., Ahn, S.K., Brown, B.E., Elias, P.M., Feingold, K.R. 2003. Short-term glucocorticoid treatment compromises both permeability barrier homeostasis and stratum corneum integrity: Inhibition of epidermal lipid synthesis accounts for functional abnormalities. J. Invest. Dermatol. 120, 456-464. doi:10.1046/j.1523-1747.2003.12053spa
dc.relation.referencesLázaro, A., Moreno-García, F. 2010. Corticosteroides tópicos. Inf. Ter. Sist. Nac. Salud. 34; 83-88.spa
dc.relation.referencesLong, H., Zhao, H., Chen, A., Yao, Z., Cheng, B., Lu, Q. 2020. Protecting medical staff from skin injury/disease caused by personal protective equipment during epidemic period of COVID‐19: experience from China. J. Eur. Acad. Dermatol. Venereol. 34, 919-921. doi:10.1111/jdv.16388spa
dc.relation.referencesMartínez-Muñoz, O.I., Ospina-Giraldo, L.F., Mora-Huertas, C.E., 2020. Nanoprecipitation: Applications for entrapping active molecules of interest in pharmaceutics, in: Abu-Thabit, N. (Ed.). Nano- and Microencapsulation techniques and applications. IntechOpen. London, pp. 101-135. doi:10.5772/ intechopen.93338spa
dc.relation.referencesNassau, S., Fonacier, L. 2019. Allergic contact dermatitis. Med. Clin. North Am. 104, 61- 76. doi:10.1016/j.mcna.2019.08.012spa
dc.relation.referencesPatel, N.U., D’Ambra, V., Feldman, S.R. 2017. Increasing adherence with topical agents for atopic dermatitis. Am. J. Clin. Dermatol. 18, 323-332. doi:10.1007/s40257-017-0261-5spa
dc.relation.referencesSchoepe, S., Schacke, H., May, E., Asadullah, K. 2006. Glucocorticoid therapy-induced skin atrophy. Exp. Dermatol. 15, 406-420. doi:10.1111/j.0906-6705.2006.00435spa
dc.relation.referencesTier, H.L., Balogh, E.A., Bashyam, A.M., Fleischer, A.B., Spergel, J.M., Masicampo, E.J., Kammrath, L.K., Strowd, L.C., Feldman, S.R. 2021. Tolerability of and adherence to topical treatments in atopic dermatitis: A narrative Review. Dermatol Ther. 11, 415-431. doi:10.1007/s13555-021-00500-4spa
dc.relation.referencesXie, Z., Yang, Y., Zhang, H. 2020. Mask‐induced contact dermatitis in handling COVID ‐19 outbreak. Contact Derm. 83, 166-167. doi:10.1111/cod.13599spa
dc.relation.referencesAbd, E., Roberts, M.S., Grice, J.E. 2016. A comparison of the penetration and permeation of caffeine into and through human epidermis after application in various vesicle formulations. Skin Pharmacol. Physiol. 29, 24-30. doi:10.1159/000441040spa
dc.relation.referencesAbdo, J.M., Sopko, N.A., Milner, S.M. 2020. The applied anatomy of human skin: A model for regeneration. Wound Med. 28, 100179. doi:10.1016/j.wndm.2020.100179spa
dc.relation.referencesAfshar, Z.M., Babazadeh A., Hasanpour, A., Barary, M., Sayad, B., Janbakhsh, A., Aryanian, Z., Ebrahimpour, S. 2021. Dermatological manifestations associated with COVID-19: A comprehensive review of the current knowledge. J. Med. Virol. 93, 5756- 5767. doi: 10.1002/jmv.27187spa
dc.relation.referencesAhmaditabar, P., Momtazi-Borojeni, A.A., Rezayan, A.H., Mahmoodi, M., Sahebkar, A., Mellat, M. 2017. Enhanced entrapment and improved in vitro controlled release of N-Acetyl Cysteine in hybrid PLGA/lecithin nanoparticles prepared using a nanoprecipitation/self- assembly method. J. Cell. Biochem. 118, 4203-4209. doi:10.1002/jcb.26070spa
dc.relation.referencesÁlvarez-Román, R., Naik, A., Kalia, Y.N., Guy, R.H., Fessi, H. 2004. Enhancement of topical delivery from biodegradable nanoparticles. Pharm. Res. 21, 1818-1825. doi:10.1023/b:pham.0000045235.86197spa
dc.relation.referencesBeck-Broichsitter, M. 2016. Stability-limit “Ouzo region” boundaries for poly (lactide- co - glycolide) nanoparticles prepared by nanoprecipitation. Int. J. Pharm. 511, 262-266. doi:10.1016/j.ijpharm.2016.07.010spa
dc.relation.referencesBeiu, C., Mihai, M., Popa, L., Cima, L., Popescu, M.N. 2020. Frequent hand washing for COVID‐19 prevention can cause hand dermatitis: Management tips. Cureus. 12, e7506. doi: 10.7759/cureus.7506spa
dc.relation.referencesBenson, H.A.E., Watkinson, A.C. (Eds.). 2012. Transdermal and Topical Drug Delivery. Principles and Practice. Wiley. New Jersey, pp. 3-22.spa
dc.relation.referencesBrar, K.K. 2020. A review of contact dermatitis. Ann. Allergy Asthma Immunol. 126, 32-39. doi:10.1016/j.anai.2020.10.003spa
dc.relation.referencesCaniga, M., Cabal, A., Mehta, K., Ross, D.S., Gil, M.A., Woodhouse, J.D., Eckman, J., Naber, J.R., Callahan, M.K., Goncalves, L., Hill, S.E., Mcleod, R.L., McIntosh, F., Freke, M.C., Visser, S.A.G., Johnson, N., Salmon, M., Cicmil, M. 2016. Preclinical experimental and mathematical approaches for assessing effective doses of inhaled drugs, using mometasone to support human dose predictions. J. Aerosol. Med. Pulm. Drug Deliv. 29, 362-377. doi:10.1089/jamp.2015.1253spa
dc.relation.referencesChambers, E.S., Vukmanovic‐Stejic, M. 2019. Skin barrier immunity and ageing. immunology. 160, 116-125. doi:10.1111/imm.13152spa
dc.relation.referencesChen, X., Carillo, M., Haltiwanger, R.C., Bradley, P. 2005. Solid state characterization of mometasone furoate anhydrous and monohydrate forms. J. Pharm. Sci. 94, 2496-2509. doi:10.1002/jps.20470spa
dc.relation.referencesCrim, C. 2001. A review of the pharmacology and pharmacokinetics of inhaled fluticasone propionate and mometasone furoate. Clin. Ther. 23, 1339-1354. doi:10.1016/s0149- 2918(01)80113-2spa
dc.relation.referencesD’Addio, S.M., Prud’homme, R.K. 2011. Controlling drug nanoparticle formation by rapid precipitation. Adv. Drug Deliv. Rev, 63, 417-426. doi:10.1016/j.addr.2011.04.005spa
dc.relation.referencesDas, L., Kaurav, M., Pandey, R.S. 2019. Phospholipid-polymer hybrid nanoparticles mediated transfollicular delivery of Quercetin: prospective implement for the treatment of androgenic alopecia. Drug Dev. Ind. Pharm. 45, 1654-1663. doi:10.1080/03639045.2019.1652635spa
dc.relation.referencesDavea, V., Taka, K., Sohgauraa, A., Guptaa, A., Sadhub, V. Reddy, K.R. 2019. Lipid- polymer hybrid nanoparticles: Synthesis strategies and biomedical applications. J. Microbiol. Methods. 160, 130-142. doi:10.1016/j.mimet.2019.03.017spa
dc.relation.referencesDu, M., Ouyang, Y., Meng, F., Zhang, X., Ma, Q., Zhuang, Y., Liu, H., Pang, M., Cai, T., Cai, Y. 2019. Polymer-lipid hybrid nanoparticles: A novel drug delivery system for enhancing the activity of Psoralen against breast cancer. Int. J. Pharm. 561, 274-282. doi:10.1016/j.ijpharm.2019.03.006spa
dc.relation.referencesEroğlu, İ., Azizoğlu, E., Özyazıcı, M., Nenni, M., Gürer Orhan, H., Özbal, S., Tekmen, I., Ertam, I., Unal, I., Özer, Ö. 2014. Effective topical delivery systems for corticosteroids: dermatological and histological evaluations. Drug Deliv. 1-12. doi:10.3109/10717544.2014.960981spa
dc.relation.referencesFenart, L., Casanova, A., Dehouck, B., Duhem, C., Slupek, S., Cecchelli, R., Betbeder. 1999. Evaluation of effect of charge and lipid coating on ability of 60 nm nanoparticles to cross an in vitro model of the blood-brain barrier. J. Pharmacol. Exp. Ther. 291, 1017-1022.spa
dc.relation.referencesGalindo-Rodríguez, S.A., Puel, F., Briançon, S., Allémann, E., Doelker, E., Fessi, H. 2005. Comparative scale-up of three methods for producing ibuprofen-loaded nanoparticles. Eur. J. Pharm. Sci. 25, 357-367. doi:10.1016/j.ejps.2005.03.013spa
dc.relation.referencesGanachaud, F., Katz, J.L. 2005. Nanoparticles and nanocapsules created using the ouzo effect: Spontaneous emulsification as an alternative to ultrasonic and high-shear devices. ChemPhysChem. 6, 209-216. doi:10.1002/cphc.200400527spa
dc.relation.referencesGoossens, A., Aerts, O. 2022. Contact allergy to and allergic contact dermatitis from formaldehyde and formaldehyde releasers: A clinical review and update. Contact Dermatitis. 87, 20-27. doi:10.1111/cod.14089spa
dc.relation.referencesGutfreund, K., Bienias, W., Szewczyk, A., Kaszuba, A. 2013. Topical calcineurin inhibitors in dermatology. Part I: Properties, method and effectiveness of drug use. Postepy Dermatol. Alergol. 3, 165-169. doi:10.5114/pdia.2013.35619spa
dc.relation.referencesGutiérrez-Castañeda, L.D., Jaimes, Á.O., Sánchez Bottomley, W. 2017. Epidemiología de la dermatitis de contacto: pruebas epicutáneas estándar en el Instituto Nacional de Dermatología de Colombia. Piel. 32, 390-395. doi:10.1016/j.piel.2017.01.011spa
dc.relation.referencesHadinoto, K., Sundaresan, A., Cheow, W.S. 2013. Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: A review. Eur. J. Pharm. Biopharm. 85, 427- 443. doi:10.1016/j.ejpb.2013.07.002spa
dc.relation.referencesHerman, A., Aerts, O., de Montjoye, L., Tromme, I., Goossens, A., Baeck, M. 2018. Isothiazolinone derivatives and allergic contact dermatitis: a review and update. J. Eur. Acad. Dermatol. Venereol. 33, 267-276. doi:10.1111/jdv.15267spa
dc.relation.referencesHochhaus, G. 2008. Pharmacokinetic/pharmacodynamic profile of mometasone furoate nasal spray: Potential effects on clinical safety and efficacy. Clin. Ther. 30, 1-13. doi:10.1016/j.clinthera.2008.01.005spa
dc.relation.referencesHøybye, S., Møller, S.B., De Chunha Bang, F. 1991. Continuous and intermittent treatment of atopic dermatitis in adults with mometasone furoate versus hydrocortisone 17-butyrate. Curr. Ther. Res. 50, 67-72.spa
dc.relation.referencesKazem, S., Linssen, E.C., Gibbs, S. 2019. Skin metabolism phase I and phase II enzymes in native and reconstructed human skin: a short review. Drug Discov. Today, 24, 1899- 1910. doi:10.1016/j.drudis.2019.06.002spa
dc.relation.referencesJohansen, J.D., Mahler, V., Lepoittevin, J-P., Frosch, P.J. (Eds). Contact dermatitis. 2021. Sixth ed. Springer. Switzerland, pp. 95-138.spa
dc.relation.referencesJung, S., Otberg, N., Thiede, G., Richter, H., Sterry, W., Panzner, S., Lademann, J. 2006. Innovative liposomes as a transfollicular drug delivery system: penetration into porcine hair follicles. J. Invest. Dermatol. 126, 1728-1732. doi:10.1038/sj.jid.5700323spa
dc.relation.referencesKorting, H.C., Schöllmann, C., Willers, C., Wigger-Alberti, W. 2012. Bioavailability, antipsoriatic efficacy and tolerability of a new light cream with mometasone furoate 0.1%. Skin Pharmacol. Physiol. 25, 133-141. doi:10.1159/000335656spa
dc.relation.referencesKrishnamurthy, S., Vaiyapuri, R., Zhang, L., Chan, J.M. 2015. Lipid-coated polymeric nanoparticles for cancer drug delivery. Biomater. Sci. 3, 923-936. doi:10.1039/c4bm00427bspa
dc.relation.referencesLandsteiner, K., Chase, M.W. 1939. Studies on the sensitization of animals with simple chemical compounds: vi. Experiments on the sensitization of guinea pigs to poison ivy. J. Exp. Med. 69, 767-784. doi:10.1084/jem.69.6.767spa
dc.relation.referencesLewallen, R., Clark, A., Feldman, S.R. (Eds). 2015. Clinical handbook of contact dermatitis. Diagnosis and management by body region. CRC Press. Boca Raton, pp. 1-5.spa
dc.relation.referencesLisi, P., Stingeni, L., Cristaudo, A., Foti, C., Pigatto, P., Gola, M., Schena, D., Corazza, M., Bianchi, L. 2014. Clinical and epidemiological features of textile contact dermatitis: an Italian multicentre study. Contact Derm. 70, 344-350. doi:10.1111/cod.12179spa
dc.relation.referencesLong, H., Zhao, H., Chen, A., Yao, Z., Cheng, B., Lu, Q. 2020. Protecting medical staff from skin injury/disease caused by personal protective equipment during epidemic period of COVID‐19: experience from China. J. Eur. Acad. Dermatol. Venereol. 34, 919-921. doi:10.1111/jdv.16388spa
dc.relation.referencesMarchesi, E., Rozzoni, M., Pini, P. 1994. Comparative study of mometasone furoate and betamethasone dipropionate in the treatment of atopic dermatitis. G. Ital. Dermatol. Venereol. 129, 10-12.spa
dc.relation.referencesMartínez-Rivas, C. J., Tarhini, M., Badri, W., Miladi, K., Greige-Gerges, H., Nazari, Q.A., Galindo Rodríguez, S.A., Álvarez Román, R., Fessi, H., Elaissari, A. 2017. Nanoprecipitation process: From encapsulation to drug delivery. Int. J. Pharm. 532, 66-81. doi:10.1016/j.ijpharm.2017.08.064spa
dc.relation.referencesMcGowan, M.A., Scheman, A., Jacob, S.E. 2017. Propylene glycol in contact dermatitis. Dermatitis. 29, 6-12. doi:10.1097/der.0000000000000307spa
dc.relation.referencesMerck Sharp and Dohme Corp. Highlights of prescribing information. Elocom® (mometasone furoate) lotion, 0.1 % for topical use. 2018. USA. Disponible: chrome- extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.accessdata.fda.gov/drugsatfda _docs/label/2018/019796s029lbl.pdfspa
dc.relation.referencesMiller, S.D., Butler, L.D., Cleveland, R.P., Moorhead, J.W., Claman, H.N., Chiller, J.C. 1983. T-cell responses induced by the parenteral injection of antigen-modified syngeneic cells. Cell. Immunol. 82, 378-393. doi:10.1016/0008-8749(83)90171-5spa
dc.relation.referencesMinigh J. 2008. Mometasone furoate, in Enna, S.J., Bylund, D.B. (Eds). xPharm: The comprehensive pharmacology reference. Elsevier. Amsterdam, pp.1-5. doi:10.1016/b978- 008055232-3.62206-8spa
dc.relation.referencesMiri, V., Jangde, R.K., Singh, D., Suresh, P.K. 2023. Lipid-polymer hybrid nanoparticles for topical drug delivery system. J. Drug Deliv. Ther. 13, 113-120. doi:10.22270/jddt.v13i4.5789spa
dc.relation.referencesMolin, S., Abeck, D., Guilabert, A., Bellosta, M. 2013. Mometasone furoate: a well- established topical corticosteroid now with improved galenic formulations. J. Clin. Exp. Dermatol. Res. 4, 1000184. doi:10.4172/2155-9554.1000184spa
dc.relation.referencesMora-Huertas, C.E., Fessi, H., Elaissari, A. 2011. Influence of process and formulation parameters on the formation of submicron particles by solvent displacement and emulsification–diffusion methods: Critical comparison. Adv. Colloid Interface Sci. 163, 90-122. doi:10.1016/j.cis.2011.02.005spa
dc.relation.referencesMortz, C.G., Andersen, K.E. 2008. New aspects in allergic contact dermatitis. Curr. Opin. Allergy Clin. Immunol. 8, 428-432. doi:10.1097/aci.0b013e32830d84spa
dc.relation.referencesNaňka, O., Elišková, M., Eliška, O., Karlova, U. 2009. Přehled anatomie: Čtvrtéí, doplněné a přepracované vydání. Galen. Pragaspa
dc.relation.referencesMieszawska, A.J., Gianella, A., Cormode, D.P., Zhao, Y., Meijerink, A., Langer, R., Farokhzad, O.C., Fayad, Z.A., Mulder, W.J.M. 2012. Engineering of lipid-coated PLGA nanoparticles with a tunable payload of diagnostically active nanocrystals for medical imaging. Chem. Commun. 48, 5835-5837. doi: 10.1039/c2cc32149aspa
dc.relation.referencesMusmade, B.D., Sawant, A.V., Kulkarni, S.V., Nage, S.D., Bhope, S.G., Padmanabhan, S., Lohar, K.S. 2022. Method development, validation and estimation of relative response factor for the quantitation of known impurities in mometasone furoate nasal spray dosage form by RP-HPLC with UV/PDA detector. Pharm. Chem. J. 56, 53-544. doi:10.1007/s11094-022-02672-5spa
dc.relation.referencesOtberg, N., Richter, H., Schaefer, H., Blume-Peytavi, U., Sterry, W., Lademann, J. 2004. Variations of hair follicle size and distribution in different body sites. J. Invest. Dermatol. 122, 14-19. doi:10.1046/j.0022-202x.2003.22110spa
dc.relation.referencesÖzkaya, E., Pehlivan, G., Babuna Kobaner G. 2022. Sorbitan sesquioleate: A rare contact allergen that is also an important indicator of allergic contact dermatitis from cross reacting compounds as well as for false-positive fragrance allergy. Clin. Exp. Dermatol. 47, 1291- 1297. doi:10.1111/ced.15158spa
dc.relation.referencesPrakash, A., Benfield, P. 1998. Topical Mometasone. Drugs. 55, 145-163. doi:10.2165/00003495-199855010-00009spa
dc.relation.referencesPyo, S.M., Maibach, H.I. 2019. Skin metabolism: Relevance of skin enzymes for rational drug design. Skin Pharmacol. Physiol. 32, 283-293. doi:10.1159/000501732spa
dc.relation.referencesQuintanar-Guerrero, D., Allémann, E., Fessi, H., Doelker, E. 1998. Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Dev. Ind. Pharm. 24, 1113-1128. doi:10.3109/03639049809108571spa
dc.relation.referencesRafanelli, A., Rafanelli, S., Stanganelli, I., Marchesi, E. 1993. Mometasone furoate in the treatment of atopic dermatitis in children. J. Eur. Acad. Dermatol. Venereol. 2, 225-230. doi:10.1111/j.1468-3083.1993.tb00040spa
dc.relation.referencesRajka, G., Avrach, W., Gärtner, L., Overgaard-Petersen, H. 1993. Mometasone furoate 0.1 % fatty cream once daily versus betamethasone valerate 0.1 % cream twice daily in the treatment of patients with atopic and allergic contact dermatitis. Curr. Ther. Res. Clin. Exp. 54, 23-29. doi:10.1016/s0011-393x0580614-9spa
dc.relation.referencesRanade, V.V. 1991. Drug delivery systems. 6. Transdermal drug delivery. J Clin. Pharmacol. 31, 401-418. doi:10.1002/j.1552-4604.1991.tb01895spa
dc.relation.referencesRundle, C.W., Presley, C.L., Militello, M., Barber, C., Powell, D.L., Jacob S.E., Atwater, A. R., Watsky, K.L., Yu, J., Dunnick C.A. 2020. Hand hygiene during COVID-19: Recommendations from the American Contact Dermatitis Society. J. Am. Acad. Dermatol. 83, 1730-1737. doi:10.1016/j.jaad.2020.07.057spa
dc.relation.referencesSahasranaman, S., Issar, M., G. Tóth, G., Horváth, Gy., Hochhaus, G. 2004. Characterization of degradation products of mometasone furoate. Pharmazie. 59, 367-373.spa
dc.relation.referencesSahasranaman, S., Issar, M., Hochhaus, G. 2005. Metabolism of mometasone furoate and biological activity of the metabolites. Drug Metab. Dispos. 34, 225-233. doi:10.1124/dmd.105.005702spa
dc.relation.referencesSaint-Mezard, P., Krasteva, M., Berard, F., Dubois, B., Kaiserlian, D., Nicolas, J.F. 2004. Allergic Contact Dermatitis in Bos, J.D. (Ed). Skin immune system. Cutaneous immunology and clinical immunodermatology. Third. ed. CRC Press. Boca Ratón, pp. 593-613. doi:10.1201/b14248-37spa
dc.relation.referencesSenyigit, T., Ozer, O. 2012. Corticosteroids for skin delivery: challenges and new formulation opportunities, in Qian, X. (Ed). Glucocorticoids - New recognition of our familiar friend. IntechOpen. London, pp. 595-612. doi:10.5772/2915spa
dc.relation.referencesShah, S., Famta, P., Raghuvanshi, R.S., Singh, S.B., Srivastava, S. 2022. Lipid polymer hybrid nanocarriers: Insights into synthesis aspects, characterization, release mechanisms, surface functionalization and potential implications. Colloids Interface Sci. Commun. 46, 100570. doi:10.1016/j.colcom.2021.100570spa
dc.relation.referencesShao, M., Hussain, Z., Thu, H.E., Khan, S., Katas, H., Ahmed, T.A., Tripathy, M., Leng, J., Qin, H.Li., Bukhari, S.N.A. 2016. Drug nanocarrier, the future of atopic diseases: Advanced drug delivery systems and smart management of disease. Colloids Surf. B. 147, 475-491. doi:10.1016/j.colsurfb.2016.08.027spa
dc.relation.referencesSchering Corporation. USA. Highlights of prescribing information; Asmanex Twisthaler (mometasone furoate inhalation powder). 2008. Disponible: chrome- extension://efaidnbmnnnibpcajpcglclefindmkaj/https://s3-us-west- 2.amazonaws.com/drugbank/fda_labels/DB14512.pdf?1554757819spa
dc.relation.referencesSilverberg, J.I., Patel, N., Warshaw, E.M., DeKoven, J.G, Atwater, A.R., Belsito, D.V., Dunnick, C.A., Houle, M.C., Reeder, M.J., Maibach, H.I., Zug, K.A., Taylor, J.S., Sasseville, D., Fransway, A.F., DeLeo, V.A., Pratt, M.D., Fowler Jr, J.F., Zirwas, M.J. 2022. Lanolin allergic reactions: North American Contact Dermatitis Group Experience, 2001 to 2018. Dermatitis. 33, 193-199. doi:10.1097/DER0000000000000871spa
dc.relation.referencesSivadasan, D., Sultan M.H., Madkhali, O., Almoshari, Y., Thangavel, N. 2021. Polymeric lipid hybrid nanoparticles (PLNs) as emerging drug delivery platform - A comprehensive review of their properties, preparation methods, and therapeutic applications. Pharmaceutics. 13, 1291. doi:10.3390/pharmaceutics13081291spa
dc.relation.referencesSpada, F., Barnes, T.M., Greive, K.A. 2018. Comparative safety and efficacy of topical mometasone furoate with other topical corticosteroids. Aust. J. Dermatol. 59, 168-174. doi:10.1111/ajd.12762spa
dc.relation.referencesStenton, J., Dahlin, J., Antelmi, A., Bruze, M., Svedman, C., Zimerson, E., Hamnerius, N., Pontén, A., Isaksson, M. 2020. Patch testing with a textile dye mix with and without Disperse Orange 3. Contact Dermatitis. 1-4. doi:10.1111/cod.13660spa
dc.relation.referencesTahir, N., Madni, A., Balasubramanian, V., Rehman, M., Correia, A., Kashif, P.M., Mäkilä, E., Salonen, J., Santos H.A. 2017. Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications. Int. J. Pharm. 533, 156-168. doi:10.1016/j.ijpharm.2017.09.061spa
dc.relation.referencesTeng, X.W., Cutler, D.C., Davies, N.M. 2003. Degradation kinetics of mometasone furoate in aqueous systems. Int. J. Pharm. 259, 129-141. doi:10.1016/s0378-5173(03)00226-6spa
dc.relation.referencesThevenot, J., Troutier, A.-L., David, L., Delair, T., Ladavière, C. 2007. Steric stabilization of lipid/polymer particle assemblies by poly(ethylene glycol)-lipids. Biomacromolecules. 8, 3651–3660. doi:10.1021/bm700753qspa
dc.relation.referencesUchechi, O., Ogbonna, J.D.N., Attama, A.A. 2014. Nanoparticles for dermal and transdermal drug delivery, in Sezer, A.D. (Ed). Application of nanotechnology in drug delivery. IntechOpen. London, pp. 193-235. doi:10.5772/58672spa
dc.relation.referencesUnited States Pharmacopeial Convention. Farmacopea de los Estados Unidos de América: USP-NF 2024. Rockville.spa
dc.relation.referencesVaidya, S., Ziegler, D., Tanase, A.M., Malmqvist, U., Kanniess, F., Hederer, B., Hosoe, M. 2021. Pharmacokinetics of mometasone furoate delivered via two dry powder inhalers. Pulm. Pharmacol. Ther. 70, 102019. doi:10.1016/j.pupt.2021.102019spa
dc.relation.referencesValotis, A., Högger, P., Neukam, K., Elert, O. 2004. Human receptor kinetics, tissue binding affinity, and stability of mometasone furoate. J. Pharm. Sci. 93, 1337-1350. doi:10.1002/jps.20049spa
dc.relation.referencesVitale, S.A., Katz, J.L. 2003. Liquid droplet dispersions formed by homogeneous liquid−liquid nucleation: “The Ouzo Effect.” Langmuir. 19, 4105-4110. doi:10.1021/la026842spa
dc.relation.referencesWilke, K., Wepf, R., Keil, F.J., Wittern, K-P., Wenck, H., Biel, S.S. 2005. Are sweat glands an alternate penetration pathway? Understanding the morphological complexity of the axillary sweat gland apparatus. Skin Pharmacol. Physiol. 19, 38-49. doi:10.1159/000089142spa
dc.relation.referencesXie, Z., Yang, Y., Zhang, H. 2020. Mask‐induced contact dermatitis in handling COVID ‐19 outbreak. Contact Derm. 83, 166-167. doi:10.1111/cod.13599spa
dc.relation.referencesYan, Y., Chen, H., Chen, L., Cheng, B., Diao, P., Dong, L., Li, H. 2020. Consensus of chinese experts on protection of skin and mucous membrane barrier for healthcare workers fighting against coronavirus disease 2019. Dermatologic Therapy. 33, e13310. doi:10.1111/dth.13310spa
dc.relation.referencesYin, J., Hou, Y., Song, X., Wang, P., Li, Y. 2019. Cholate-modified polymer-lipid hybrid nanoparticles for oral delivery of quercetin to potentiate the antileukemic effect. Int. J. Nanomedicine. 14, 4045-4057. doi:10.2147/ijn.s210057spa
dc.relation.referencesYousef, H., Alhajj, M., Sharma, S. 2022. Anatomy, skin (integument), epidermis. USA. Disponible en: StatPearls https://www.ncbi.nlm.nih.gov/books/NBK470464/spa
dc.relation.referencesYu, YQ., Yang, X., Wu, XF., Fan. Y.B. 2021. Enhancing permeation of drug molecules across the skin via delivery in nanocarriers: Novel strategies for effective transdermal applications. Front. Bioeng. Biotechnol. 9, 646554. doi: 10.3389/fbioe.2021.646554spa
dc.relation.referencesZeeuwen, P. 2004. Epidermal differentiation: The role of proteases and their inhibitors. Eur. J. Cell Biol. 83, 761-773. doi:10.1078/0171-9335-00388spa
dc.relation.referencesZhang, L., Chan, J.M., Gu, F.X., Rhee, J.W., Wang, A.Z., Radovic-Moreno, A.F., Alexis, A., Langer, R., Farokhzad, O.C. 2008. Self-assembled lipid - polymer hybrid nanoparticles: a robust drug delivery platform. ACS nano. 2, 1696-1702. doi:10.1021/nn800275rspa
dc.relation.referencesZhang, Z., Tsai, P-C., Ramezanli, T., Michniak-Kohn, B.B. 2013. Polymeric nanoparticles- based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5, 205-218. doi:10.1002/wnan.1211spa
dc.relation.referencesAbstiens, K., Goepferich, A.M. 2018. Microfluidic manufacturing improves polydispersity of multicomponent polymeric nanoparticles. J. Drug Deliv. Sci. Technol. 49, 433-439. doi:10.1016/j.jddst.2018.12.009spa
dc.relation.referencesAlsaidan, O.A., Elmowafy, M., Shalaby, K., Alzarea, S.I., Massoud, D., Kassem, A.M., Ibrahim, M.F. 2023. Hydrocortisone-loaded lipid−polymer hybrid nanoparticles for controlled topical delivery: formulation design optimization and in vitro and in vivo appraisal. ACS Omega 19, 18714-18725. doi:18714-18725. 10.1021/acsomega.3c00638spa
dc.relation.referencesAlshamsan, A. 2014. Nanoprecipitation is more efficient than emulsion solvent evaporation method to encapsulate cucurbitacin I in PLGA nanoparticles. Saudi Pharm. J. 22, 219-222. doi: 10.1016/j.jsps.2013.12.002spa
dc.relation.referencesAnwer, K., Ali, E.A., Iqbal, M., Ahmed, M.M., Aldawsar, M.F., Al Saqr, A., Ansari, M.N., Aboudzadeh, M.A. 2022. Development of sustained release baricitinib loaded lipid-polymer hybrid nanoparticles with improved oral bioavailability. Molecules. 27, 168. doi:10.3390/molecules27010168spa
dc.relation.referencesArruda, D.C., Lachagès, A.M., Demory, H., Escriou, G., Lai-Kuen, R., Dugas, P.Y., Hoffmann, C., Bessoles, S., Sarrabayrouse, G., Malachias, A., Finet, S., Gastelois, P.L., de Almeida Macedo, W.A., Cunha Jr, A.S., Bigey, P., Escriou, V. 2022. Spheroplexes: Hybrid PLGA- cationic lipid nanoparticles, for in vitro and oral delivery of siRNA. J. Control Release. 350, 228-243. doi:10.1016/j.jconrel.2022.08.030spa
dc.relation.referencesBahrami, M.A., Farhadian, N. 2019. Experimental study and mathematical modeling for encapsulation of fentanyl citrate drug in nanostructured lipid carrier. J. Biomol. Struct. Dyn. 38, 1263-1271. doi:10.1080/07391102.2019.1599732spa
dc.relation.referencesBarton, A.F.M. 1991. Handbook of solubility parameters and other cohesion parameters. Second ed. CRC Press. Boca Ratón.spa
dc.relation.referencesBian, X., Liang, S., John, J., Hsiao, C.H., Wei, X., Liang, D., Xie, H. 2013. Development of PLGA-based itraconazole injectable nanospheres for sustained release. Int. J. Nanomedicine. 8, 4521-4531. doi: 10.2147/IJN.S54040spa
dc.relation.referencesCalegari-Lino, R., Matos de Carvalho, S., Montanheiro-Noronha, C., Sganzerla, W.G., Gonçalves da Rosa, C., Ramos-Nunes, M., Manique-Barreto, P.L. 2020. Development and characterization of poly-ε-caprolactone nanocapsules containing β-carotene using the nanoprecipitation method and optimized by response surface methodology. Braz. Arch. Biol. Technol. 63, 20190184. doi:10.1590/1678-4324-2020190184spa
dc.relation.referencesChaudhari, S., Kwon, Y., Shon, M. 2019. Pervaporation dehydration of azeotropic water/acetonitrile mixture using high water affinity PVA-PVAm blended membrane. Bull. Korean Chem. Soc. 1-10. doi:10.1002/bkcs.11668spa
dc.relation.referencesChoi, M.J., Maibach, H.I. 2005. Liposomes and niosomes as topical drug delivery systems. Skin Pharmacol. Physiol. 18, 209–219. doi:10.1159/000086666spa
dc.relation.referencesCheow, W.S., Hadinoto, K. 2011. Factors affecting drug encapsulation and stability of lipid– polymer hybrid nanoparticles. Colloids Surf. B. 85, 214-220. doi:10.1016/j.colsurfb.2011.02.033spa
dc.relation.referencesDanaei, M., Dehghankhold, M., Ataei, S., Hasanzadeh Davarani, F., Javanmard, R., Dokhani, A., Khorasani, S., Mozafari, M. 2018. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 10, 1-17. doi:10.3390/pharmaceutics10020057spa
dc.relation.referencesDave, V., Yadav, R.B., Kushwaha, K., Yadav, S., Sharma, S., Agrawal, U. 2017. Lipid-polymer hybrid nanoparticles: Development & statistical optimization of norfloxacin for topical drug delivery system. Bioactive Materials. 2, 269-280. doi:10.1016/j.bioactmat.2017.07spa
dc.relation.referencesDehaini, D., Fang, R.H., Luk, B.T., Pang, Z., Hu, C.M.J., Kroll, A.V., Yu, C.L, Gao, W., Zhang, L. 2016. Ultra-small lipid–polymer hybrid nanoparticles for tumor-penetrating drug delivery. Nanoscale. 8, 14411-14419. doi:10.1039/c6nr04091hspa
dc.relation.referencesDevi, R., Agarwal, S. 2019. Some multifunctional lipid excipients and their pharmaceutical applications. Int. J. Pharm. Pharm. Sci. 11, 1-7. doi:10.22159/ijpps.2019v11i9.34194spa
dc.relation.referencesDoktorovova, S., Souto, E.B., Silva, A.M. 2017. Hansen solubility parameters (HSP) for prescreening formulation of solid lipid nanoparticles (SLN): in vitro testing of curcumin-loaded SLN in MCF-7 and BT-474 cell lines. Pharm Dev Technol. 23, 96- 105. doi:10.1080/10837450.2017.1384491spa
dc.relation.referencesDonga, Y., Ng W.K., Shen, S., Kim, S., Tan, R.B.H. 2012. Solid lipid nanoparticles: Continuous and potential large-scale nanoprecipitation production in static mixers. Colloids Surf. B. 94, 68-72. doi: 10.1016/j.colsurfb.2012.01.018spa
dc.relation.referencesDu, M., Ouyang, Y., Meng, F., Zhang, X., Ma, Q., Zhuang, Y., Liu, H., Pang, M., Cai, T., Cai, Y. 2019. Polymer-lipid hybrid nanoparticles: A novel drug delivery system for enhancing the activity of Psoralen against breast cancer. Int. J. Pharm. 561, 274-282. doi:10.1016/j.ijpharm.2019.03.006spa
dc.relation.referencesElkasabgy, N.A., Salama, A., Salama, A.H. 2023. Exploring the effect of intramuscularly injected polymer/lipid hybrid nanoparticles loaded with quetiapine fumarate on the behavioral and neurological changes in cuprizone-induced schizophrenia in mice. J. Drug. Deliv. Sci. Technol. 79, 104064. doi:10.1016/j.jddst.2022.104064spa
dc.relation.referencesFang, R.H., Aryal, S., Hu, C.M.J., Zhang, L. 2010. Quick synthesis of lipid−polymer hybrid nanoparticles with low polydispersity using a single-step sonication method. Langmuir, 26, 16958-16962. doi:10.1021/la103576aspa
dc.relation.referencesFessi, H., Puisieux, F., Devissaguet, J.P. 1988. Procédé de préparation de systèmes colloïdaux dispersibles d’une substance sous forme de nanocapsules. European Patent. 274961 A1spa
dc.relation.referencesGhasemiyeh, P., Mohammadi-Samani, S. 2020. Potential of nanoparticles as permeation enhancers and targeted delivery options for skin: advantages and disadvantages. Drug Des. Devel. Ther. 14, 3271-3289. doi:10.2147/dddt.s264648spa
dc.relation.referencesGodara, S., Lather, V., Kirthanashri, V.S., Awasthi, R., Pandita, D. 2020. Lipid-PLGA hybrid nanoparticles of paclitaxel: Preparation, characterization, in vitro and in vivo evaluation. Mater. Sci. Eng. C. 109, 110576. doi:10.1016/j.msec.2019.110576spa
dc.relation.referencesGordillo-Galeano A. 2020. Efecto de las propiedades estructurales de la partícula sobre la liberación de moléculas encapsuladas en sistemas lipídicos coloidales. Tesis de Doctorado en Ciencias Farmacéuticas. Universidad Nacional de Colombia. Repositorio Institucional – Universidad Nacional de Colombia.spa
dc.relation.referencesGordillo-Galeano, A., Mora-Huertas, C.E. 2021. Hydrodynamic diameter and zeta potential of nanostructured lipid carriers: Emphasizing some parameters for correct measurements. Colloids Surf. A Physicochem. Eng. Asp. 620, 126610. doi:10.1016/j.colsurfa.2021.126610spa
dc.relation.referencesGrüne, L., Bunjes, H. 2020. Self-dispersing formulations for the delivery of poorly soluble drugs – miscibility of phosphatidylcholines with oils and fats. Eur. J. Pharm. Biopharm. 151, 209-219. doi:10.1016/j.ejpb.2020.04.013spa
dc.relation.referencesGüçlü-Üstündağ, Ö., Temelli, F. 2005. Solubility behavior of ternary systems of lipids, cosolvents and supercritical carbon dioxide and processing aspects. J. Supercrit. Fluids. 36, 1-15. doi:10.1016/j.supflu.2005.03.002spa
dc.relation.referencesGuo, P., Buttaro, B.A., Xue, H.Y., Tran, N.T., Wong, H.L. 2020. Lipid-polymer hybrid nanoparticles carrying linezolid improve treatment of methicillin-resistant Staphylococcus aureus (MRSA) harbored inside bone cells and biofilms. Eur. J. Pharm. Biopharm. 151, 189- 198. doi:10.1016/j.ejpb.2020.04.010spa
dc.relation.referencesGumustas, M., Sengel-Turk, C.T., Gumustas, A., Ozkan, S.A., Uslu, B. 2017. Effect of polymer-based nanoparticles on the assay of antimicrobial drug delivery systems. multifunctional systems for combined delivery, in: Grumezescu, A.M (Ed.), Multifunctional systems for combined delivery, Biosensing and Diagnostics. Elsevier. Cambridge, pp. 67-108. doi:10.1016/b978-0-323-52725-5.00005-8spa
dc.relation.referencesHan, FY., Liu, Y., Kumar, V., Xu, W., Yang, G., Zhao, C.X., Woodruff, T.M., Whittaker, A.K., Smith, M.T. 2020. Sustained-release ketamine-loaded nanoparticles fabricated by sequential nanoprecipitation. Int. J. Pharm. 581, 119291. doi:10.1016/j.ijpharm.2020.119291spa
dc.relation.referencesHu, F., Zhang, Y., Du, Y., Yuan, H. 2008. Nimodipine loaded lipid nanospheres prepared by solvent diffusion method in a drug saturated aqueous system. Int. J. Pharm. 348, 146-152. doi:10.1016/j.ijpharm.2007.07.02spa
dc.relation.referencesHubbard, M.A., Mccaulley, J.A., Holcomb, D.R. 2001. Método de apresto de articulos de poliolefina para revestimiento. España. ES2214626T3.spa
dc.relation.referencesInternational Council for Harmonization of Technical requirements for Pharmaceuticals for Human use. Committee for Medicinal Products for Human Use Impurities: Guideline for residual solvents Q3C (R9). 2024spa
dc.relation.referencesIshak, R.A.H., Mostafa, N.M., Kamel, A.O. 2017. Stealth lipid polymer hybrid nanoparticles loaded with rutin for effective brain delivery – comparative study with the gold standard (Tween 80): optimization, characterization and biodistribution. Drug Deliv. 24, 1874-1890. doi:10.1080/10717544.2017.1410263spa
dc.relation.referencesJadon, R.S., Sharma, M. 2019. Docetaxel-loaded lipid-polymer hybrid nanoparticles for breast cancer therapeutics. J. Drug Deliv. Sci. Technol. 51, 475-484. doi:10.1016/j.jddst.2019.03.039spa
dc.relation.referencesJohansen, J.D., Mahler, V., Lepoittevin, J-P., Frosch, P.J. (Eds). Contact dermatitis. 2021. Sixth ed. Springer. Switzerland, pp. 95-120.spa
dc.relation.referencesKang, D.H., Zeng, Y., Tewari, M., Kim, J. 2022. Highly sensitive and quantitative bio detection with lipid-polymer hybrid nanoparticles having organic room-temperature phosphorescence. Biosens. Bioelectron. 199, 113889. doi:10.1016/j.bios.2021.113889spa
dc.relation.referencesKelidari, H.R., Saeedi, M., Akbari, J., Morteza-Semnani, K., Gill, P., Valizadeh, H., Nokhodchi, A. 2015. Formulation optimization and in vitro skin penetration of spironolactone loaded solid lipid nanoparticles. Colloids Surf. B. 128, 473-479. doi:10.1016/j.colsurfb.2015.02.046spa
dc.relation.referencesKhan, S., Aamir, M.N., Madni, A., Jan, N., Khan, Arshad., Jabar, A., Shah, H., Rahim, M.A., Ali, A. 2021. Lipid poly (ɛ-caprolactone) hybrid nanoparticles of 5-fluorouracil for sustained release and enhanced anticancer efficacy. Life Sci. 284, 119909. doi:10.1016/j.lfs.2021.119909spa
dc.relation.referencesKhater, S.E., El-khouly, A., Abdel-Bar, H.M., Al-Mahallawi, A.M., Ghb, D.M. 2021. Fluoxetine hydrochloride loaded lipid polymer hybrid nanoparticles showed possible efficiency against SARS-CoV-2 infection. Int. J. Pharm. 607, 121023. doi:10.1016/j.ijpharm.2021.121023spa
dc.relation.referencesKitak, T., Dumičić, A., Planinšek, O., Šibanc, R., Srčič, S. 2015. Determination of solubility parameters of ibuprofen and ibuprofen lysinate. Molecules. 20, 21549-21568. doi:10.3390/molecules201219777spa
dc.relation.referencesLiu, H., Zhuang, Y., Wang, P., Zou, T., Lan, M., Li, L., Liu, F., Cai, T., Cai, Y. 2021. Polymeric lipid hybrid nanoparticles as a delivery system enhance the antitumor effect of emodin in vitro and in vivo. J. Pharm. Sci. 110, 2986-2996. doi:10.1016/j.xphs.2021.04.006spa
dc.relation.referencesLiu, J., Cheng, H., Han, L., Qiang, Z., Zhang, X., Gao, W., Zhao, K., Song, Y. 2018. Synergistic combination therapy of lung cancer using paclitaxel- and triptolide-coloaded lipid–polymer hybrid nanoparticles. Drug Des. Devel. Ther. 12, 3199-3209. doi:10.2147/dddt.s172199spa
dc.relation.referencesLiu, M., Gao, T., Jiang, L., Li, S., Shi, B., Li, F. 2023. Enhancing the biopharmaceutical attributes of atorvastatin calcium using polymeric and lipid-polymer hybrid nanoparticles: An approach for atherosclerosis treatment. Biomed. Pharmacother. 159, 114261. doi:10.1016/j.biopha.2023.114261spa
dc.relation.referencesLiu, X., Shen, B., Shen, C., Zhong, R., Wang, X., Yuan, H. 2018. Nanoparticle-loaded gels for topical delivery of nitrofurazone: Effect of particle size on skin permeation and retention. J Drug Deliv Sci Technol. 45, 367-372. doi:10.1016/j.jddst.2018.04.005spa
dc.relation.referencesLiu, X., Zhao Q. 2019. Long-term anesthetic analgesic effects: Comparison of tetracaine loaded polymeric nanoparticles, solid lipid nanoparticles, and nanostructured lipid carriers in vitro and in vivo. Biomed. Pharmacother. 117, 109057. doi: 10.1016/j.biopha.2019.109057spa
dc.relation.referencesMakoni, P.A., Ranchhod, J., WaKasongo, K., Khamanga, S.M., Walker, R.B. 2020. The use of quantitative analysis and hansen solubility parameter predictions for the selection of excipients for lipid nanocarriers to be loaded with water soluble and insoluble compounds. Saudi Pharm J. 28, 308-315. doi:10.1016/j.jsps.2020.01.010spa
dc.relation.referencesMandal, B., Mittal, N.K., Balabathula, P., Thoma, L. A., Wood, G.C. 2016. Development and in vitro evaluation of core–shell type lipid–polymer hybrid nanoparticles for the delivery of erlotinib in non-small cell lung cancer. Eur. J. Pharm. Sci. 81, 162-171. doi:10.1016/j.ejps.2015.10.021spa
dc.relation.referencesMartínez-Muñoz, O.I., Mora-Huertas, C.E. 2022. Nanoprecipitation technology to prepare carrier systems of interest in pharmaceutics: An overview of patenting. Int. J. Pharm. 614, 121440. doi:10.1016/j.ijpharm.2021.121440spa
dc.relation.referencesMocan, L., Xayprasith-Mays, S., Orza, A. 2017. Novel method for preparing pH dependent ultra small polymeric nanoparticles for topical and/or transdermal delivery. US Patent. 2017/0182472 A1.spa
dc.relation.referencesMoghimi, S.M., Hunter, A.C., Murray, C. 2001. Long-Circulating and target-specific nanoparticles: Theory to practice. Pharmacol. Rev. 53, 283-318.spa
dc.relation.referencesMusmade, B.D., Sawant, A.V., Kulkarni, S.V., Nage, S.D., Bhope, S.G., Padmanabhan, S., Lohar, K.S. 2022. Method development, validation and estimation of relative response factor for the quantitation of known impurities in mometasone furoate nasal spray dosage form by RP-HPLC with UV/PDA detector. Pharm. Chem. J. 56, 53-544. doi:10.1007/s11094-022- 02672-5spa
dc.relation.referencesMeyer, R.A., Hussmann, G.P., Peterson, N.C., Santos, J.L., Tuesca, A.D. 2022. A scalable and robust cationic lipid/polymer hybrid nanoparticle platform for mRNA delivery. Int. J. Pharm. 611, 121314. doi:10.1016/j.ijpharm.2021.121314spa
dc.relation.referencesMohammad-Beigi, H., Shojaosadati, S.A., Morshedi, D., Mirzazadeh, N., Arpanaei, A. 2016. The effects of organic solvents on the physicochemical properties of human serum albumin nanoparticles. Iran J. Biotechnol. 14, 45–50. doi:10.15171/ijb.1168spa
dc.relation.referencesMora-Huertas, C.E., Garrigues, O., Fessi, H., Elaissari, A. 2012. Nanocapsules prepared via nanoprecipitation and emulsification–diffusion methods: Comparative study. Eur. J. Pharm. Biopharm. 80, 235-239. doi:10.1016/j.ejpb.2011.09.013spa
dc.relation.referencesMukherjee, A., Waters, A.K., Kalyan, P., Achrol, A.S., Kesari, S., Yenugonda, V.M. 2019. Lipid–polymer hybrid nanoparticles as a next-generation drug delivery platform: state of the art, emerging technologies, and perspectives. Int. J. Nanomedicine. 14, 1937- 1952. doi:10.2147/ijn.s198353spa
dc.relation.referencesNakamura, D., Hirano, M., Ohta, R. 2017. Nontoxic organic solvents identified using an a priori approach with Hansen solubility parameters. Chem. Comm. 53, 4096- 4099. doi:10.1039/c7cc01434spa
dc.relation.referencesNational Center for Biotechnology Information. 2023. PubChem Compound Summary for CID 11148, Trimyristin. Consultado en abril 31, 2023 en https://pubchem.ncbi.nlm.nih.gov/compound/Trimyristin.spa
dc.relation.referencesOlbrich, C., Schöler, N., Tabatt, K., Kayser, O., Müller, R.H. 2004. Cytotoxicity studies of Dynasan 114 solid lipid nanoparticles (SLN) on RAW 264.7 macrophages-impact of phagocytosis on viability and cytokine production. J. Pharm. Pharmacol. 56, 883-891. doi:10.1211/0022357023754spa
dc.relation.referencesPatel, G., Thakur, N.S., Kushwah, V., Patil, M.D., Nile, S.H., Jain, S., Kai, G., Banerjee, U.C. 2019. Mycophenolate co-administration with quercetin via lipid-polymer hybrid nanoparticles for enhanced breast cancer management. Nanomedicine: Nanotechnology, Biology and Medicine. 24, 102147. doi:10.1016/j.nano.2019.102147spa
dc.relation.referencesPatel, J-K., Pathak, Y-V. (Eds) 2021. Emerging technologies for nanoparticle manufacturing. Springer Nature. Switzerland, pp 25-36.spa
dc.relation.referencesPivetta, T.P., Simões, S., Araújo, M.M., Carvalho, T., Arruda, C., Marcato, P.D. 2018. Development of nanoparticles from natural lipids for topical delivery of thymol: Investigation of its anti-inflammatory properties. Colloids Surf. B. 164, 281–290. doi:10.1016/j.colsurfb.2018.01.05spa
dc.relation.referencesPopov, A., Schopf, L., Bourassa, J., Chen, H.B. 2016. Enhanced pulmonary delivery of fluticasone propionate in rodents by mucus-penetrating nanoparticles. Int. J. Pharm. 502, 188-197. doi: 10.1016/j.ijpharm.2016.02.031spa
dc.relation.referencesRahdar, A., Sargazi, S., Barani, M., Shahraki, S., Sabir, F., Aboudzadeh, M.A. 2021. Lignin- stabilized doxorubicin microemulsions: Synthesis, physical characterization, and in vitro assessments. Polymers. 13, 641. doi:10.3390/polym13040641spa
dc.relation.referencesRaina, H., Kaur, S., Jindal, A.B. 2017. Development of efavirenz loaded solid lipid nanoparticles: Risk assessment, quality-by-design (QbD) based optimization and physicochemical characterization. J. Drug Deliv. Sci. Technol. 39, 180-191. doi:10.1016/j.jddst.2017.02.013spa
dc.relation.referencesReddy, M.S.B., Ponnamma, D., Choudhary, R., Sadasivuni, K.K. 2021. A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers. 13, 1105. doi:10.3390/polym13071105spa
dc.relation.referencesRiadi, Y., Afzal, O., Geesi, M.H., Almalki, W.H., Singh, T. 2023. Baicalin-loaded lipid–polymer hybrid nanoparticles inhibiting the proliferation of human colon cancer: Pharmacokinetics and in vivo evaluation. Polymers. 15, 598. doi:10.3390/polym15030598spa
dc.relation.referencesRowe, R.C., Sheskey, P.J., Quinn, M.E. (Eds). 2009. Handbook of Pharmaceutical Excipients. Sixth ed. Pharmaceutical Press. American Pharmacists Association. London.spa
dc.relation.referencesSahle, F. F., Gerecke, C., Kleuser, B., Bodmeier, R. 2017. Formulation and comparative in vitro evaluation of various dexamethasone-loaded pH-sensitive polymeric nanoparticles intended for dermal applications. Int. J. Pharm. 516, 21-31. doi:10.1016/j.ijpharm.2016.11.029spa
dc.relation.referencesSanthanes, D., Wilkins, A., Zhang, H., Aitken, R.J., Liang, M. 2022. Microfluidic formulation of lipid/polymer hybrid nanoparticles for plasmid DNA (pDNA) delivery. Int. J. Pharm. 627, 122223. doi:10.1016/j.ijpharm.2022.122223spa
dc.relation.referencesSchwarz, J.C., Baisaeng, N., Hoppel, M., Löw, M., Keck, C. M., Valenta, C. 2013. Ultra-small NLC for improved dermal delivery of coenyzme Q10. Int. J. Pharm. 447, 213-217. doi:10.1016/j.ijpharm.2013.02.037spa
dc.relation.referencesStetefeld, J., McKenna, S.A., Patel, T.R. 2016. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys. Rev. 8, 409-427. doi:10.1007/s12551-016- 0218-6spa
dc.relation.referencesSuksiriworapong, J., Rungvimolsin, T., A-gomol, A., Junyaprasert, V.B., Chantasart, D. 2013. Development and characterization of lyophilized diazepam-loaded polymeric micelles. AAPS PharmSciTech. 15, 52-64. doi:10.1208/s12249-013-0032-4spa
dc.relation.referencesTahir, N., Madni, A., Li, W., Correia, A., Khan, M.M., Rahim, M.A., Santo, H.A. 2020. Microfluidic fabrication and characterization of sorafenib-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery. Int. J. Pharm. 581, 119275. doi:10.1016/j.ijpharm.2020.119275spa
dc.relation.referencesTiwari, S., Mall, C., Solanki, P.P. 2020. CMC studies of CTAB, SLS & tween 80 by spectral and conductivity methodology to explore its potential in photogalvanic cell. Surf. Interfaces. 18, 100427. doi:10.1016/j.surfin.2019.100427spa
dc.relation.referencesTorres-Flores, G., Türeli-Nazende, G., Akif-Emre, T. 2019. Preparation of fenofibrate loaded Eudragit L100 nanoparticles by nanoprecipitation method. Mater. Today: Proc. 13, 428-435. doi:10.1016/j.matpr.2019.03.176spa
dc.relation.referencesTurk, C.T.S., Oz, U.C., Serim, T.M., Hascicek, C. 2013. Formulation and optimization of nonionic surfactants emulsified nimesulide-loaded PLGA-based nanoparticles by design of experiments. AAPS PharmSciTech. 15, 161-176. doi:10.1208/s12249-013-0048-9spa
dc.relation.referencesvan Krevelen, D.W., Te Nijenhuis, K. 2009. Properties of polymers. Their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Fourth ed. Elsevier. Slovenia, pp. 189-227.spa
dc.relation.referencesWoodruff, M.A., Hutmacher, D.W. 2010. The return of a forgotten polymer-polycaprolactone in the 21st century. Prog. Polym. Sci. 35, 1217-1256. doi:10.1016/j.progpolymsci.2010.0spa
dc.relation.referencesXu, S., Wang, H. 2006. Separation of tetrahydrofuran–water azeotropic mixture by batch extractive distillation process. Chem. Eng. Res. Des. 84, 478-482. doi:10.1205/cherd05050spa
dc.relation.referencesYan, J., Guo, J., Wang, Y., Xing, X., Zhang, X., Zhang, G., Dong, Z. 2022. Acute myocardial infarction therapy using calycosin and tanshinone co-loaded mitochondria targeted lipid- polymer hybrid nano-system: Preparation, characterization, and anti myocardial infarction activity assessment, Biomed. Pharmacother. 155, 113650. doi:10.1016/j.biopha.2022.113650spa
dc.relation.referencesZhang, X., Yang, L., Zhang, C., Liu, D., Meng, S., Zhang, W., Meng, S. 2019. Effect of polymer permeability and solvent removal rate on in situ forming implants: drug burst release and microstructure. Pharmaceutics. 11, 520. doi:10.3390/pharmaceutics11100520spa
dc.relation.referencesZheng, D., Giljohann, D.A., Chen, D.L., Massich, M.D., Wang, X-Q., Iordanov, H., Mirkin, C.A., Paller, A.S. 2012. Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc. Natl. Acad. Sci. 109, 11975-11980. doi:10.1073/pnas.1118425109spa
dc.relation.referencesZhang, Z., Tsai, P-C., Ramezanli, T., Michniak-Kohn, B.B. 2013. Polymeric nanoparticles- based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 5, 205-218. doi:10.1002/wnan.1211spa
dc.relation.referencesZhu, B., Zhang, H., Yu, L. 2017. Novel transferrin modified and doxorubicin loaded Pluronic 85/lipid-polymeric nanoparticles for the treatment of leukemia: In vitro and in vivo therapeutic effect evaluation. Biomed. Pharmacother. 86, 547-554. doi:10.1016/j.biopha.2016.11.121spa
dc.relation.referencesAbd-Allah, H., Abdel-Aziz, R. T.A., Nasr, M. 2020. Chitosan nanoparticles making their way to clinical practice: A feasibility study on their topical use for acne treatment. Int. J. Biol. Macromol. 1, 262-270. doi: 10.1016/j.ijbiomac.2020.04.040spa
dc.relation.referencesAbdelkader, H., Longman, M.R., Alany, R.G., Pierscionek, B. 2016. Phytosome-hyaluronic acid systems for ocular delivery of L-carnosine. 14, 2815-2827. doi: 10.2147/IJN.S104774spa
dc.relation.referencesAdrar, N., Bahadori, F., Ceylan, F.D., Topçu, G., Bedjou, F., Capanoglu, E. 2021. Stability evaluation of interdigitated liposomes prepared with a combination of 1,2‐distearoyl‐sn‐ glycero‐3‐phosphocholine and 1,2‐dilauroyl‐sn‐glycero‐3‐phosphocholine. J. Chem. Technol. Biotechnol. 96, 2537-2546. doi:10.1002/jctb.6793spa
dc.relation.referencesAustin, R.J.H., Maschera, B., Walker, A., Fairbairn, L., Meldrum, E., Farrow, S.N., Uings, I. J. 2002. Mometasone furoate is a less specific glucocorticoid than fluticasone propionate. Eur. Respir. J. 206, 1386-1392. doi:10.1183/09031936.02.02472001spa
dc.relation.referencesBachhav, S.S., Dighe, V.D., Kotak, D., Devarajan, P.V. 2017. Rifampicin lipid-polymer hybrid nanoparticles (Lipomer) for enhanced Peyer’s patch uptake. Int. J. Pharm. 532, 612- 622. doi:10.1016/j.ijpharm.2017.09.040spa
dc.relation.referencesBaena Aristizábal, C.M. 2015. Vectorización del extracto de Physialis peruviana L. en nuevos sistemas de liberación de uso farmacéutico. Tesis de Doctorado en Ciencias Farmacéuticas. Universidad Nacional de Colombia. Repositorio Institucional – Universidad Nacional de Colombia.spa
dc.relation.referencesBalu, R., Kumar, T.S.S., Ramalingam, M., Ramakrishna, S. 2011. Electrospun polycaprolactone/poly(1,4-butylene adipate-co-polycaprolactam) blends: potential biodegradable scaffold for bone tissue regeneration. J. Biomater. Tissue Eng. 1, 30-39. doi:10.1166/jbt.2011.1004spa
dc.relation.referencesBunjes, H., Westesen, K., Koch, M.H.J. 1996. Crystallization tendency and polymorphic transitions in triglyceride nanoparticles. Int. J. Pharm. 129, 159-173. doi:10.1016/0378- 5173(95)04286-5spa
dc.relation.referencesCho, E.C., Cho, K., Ahn, J.K., Kim, J., Chang, I.S. 2006. Effect of particle size, composition, and thermal treatment on the crystalline structure of polycaprolactone nanoparticles. Biomacromolecules. 7, 1679-1685. doi:10.1021/bm050883sspa
dc.relation.referencesDel Ángel-Sánchez, K., Borbolla-Torres, C.I., Palacios-Pineda, L.M., Ulloa-Castillo, N.A., Elías-Zúñiga, A. 2019. Development, fabrication, and characterization of composite polycaprolactone membranes reinforced with TiO2 nanoparticles. Polymers. 11, 1955. doi:10.3390/polym11121955spa
dc.relation.referencesDesai, P.R., Marepally, S., Patel, A.R., Voshavar, C., Chaudhuri, A., Singh, M. 2013. Topical delivery of anti-TNFα siRNA and capsaicin via novel lipid-polymer hybrid nanoparticles efficiently inhibits skin inflammation in vivo. J. Control. Release. 170, 51-63. doi:10.1016/j.jconrel.2013.04.021spa
dc.relation.referencesDuggirala, N.K., Sonje, J., Yuan, X., Shalaev, E., Suryanarayanan, R. 2021. Phase behavior of poloxamer 188 in frozen aqueous solutions – Influence of processing conditions and cosolutes. Int. J. Pharm. 20, 121145. doi.org/10.1016/j.ijpharm.2021.121145spa
dc.relation.referencesElazazy, M.S., Issa, A.A., Al-Mashreky, M., Al-Sulaiti, M., Al-Saad, K. 2018. Application of fractional factorial design for green synthesis of cyano-modified silica nanoparticles: Chemometrics and multifarious response optimization. Adv. Powder. Technol. 29, 1204- 1215. doi:10.1016/j.apt.2018.02.012spa
dc.relation.referencesFadaie, M., Mirzaei, E. 2018. Nanofibrillated chitosan/polycaprolactone bionanocomposite scaffold with improved tensile strength and cellular behavior. Nanomed. J. 5, 77-89. doi: 10.22038/nmj.2018.005.004spa
dc.relation.referencesFang, J-Y., Fang, C-L., Liu, C-H., Su, Y-H. 2008. Lipid nanoparticles as vehicles for topical psoralen delivery: Solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur. J. Pharm Biopharm. 70, 633-640. doi:10.1016/j.ejpb.2008.05.008spa
dc.relation.referencesFar, J., Abdel-Haq, M., Gruber, M., Abu Ammar, A. 2020. Developing biodegradable nanoparticles loaded with mometasone furoate for potential nasal drug delivery. ACS Omega. 5, 7432-7439. doi:10.1021/acsomega.0c00111spa
dc.relation.referencesFetisov, G. V. 2020. X-ray diffraction methods for structural diagnostics of materials: progress and achievements. Phys.-Uspekhi. 63, 2-32. doi:10.3367/ufne.2018.10.038435spa
dc.relation.referencesGarg, N.K., Singh, B., Sharma, G., Kushwah, V., Tyagi, R.K., Jain, S., Prakash, K.O. 2015. Development and characterization of single step self-assembled lipid polymer hybrid nanoparticles for effective delivery of methotrexate. RSC Adv. 5, 62989-62999. doi:10.1039/C5RA12459Jspa
dc.relation.referencesGöke, K., Roese, E., Arnold, A., Kuntsche, J., Bunjes, H. 2016. Control over particle size distribution by autoclaving poloxamer-stabilized trimyristin nanodispersions. Mol. Pharm. 13, 3187-3195. doi:10.1021/acs.molpharmaceut.6b0spa
dc.relation.referencesHsu, M.N., Luo, R., Kwek, K.Z., Por, Y.C., Zhang, Y., Chen, C.H. 2015. Sustained release of hydrophobic drugs by the microfluidic assembly of multistage microgel/poly (lactic-co- glycolic acid) nanoparticle composites. Biomicrofluidics. 9, 052601. doi:10.1063/1.4916230spa
dc.relation.referencesJenning, V., Gysler, A., Schäfer-Korting, M., Gohla, S.H. 2000. Vitamin A loaded solid lipid nanoparticles for topical use: Occlusive properties and drug targeting to the upper skin. Eur. J. Pharm. Biopharm. 49, 211-218. doi:10.1016/s0939-6411(99)00075-2spa
dc.relation.referencesKamaly, N., Xiao, Z., Valencia, P., Radovic-Moreno, A.F., Farokhzad, O.C. 2012. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev. 41, 2971-3010. doi:10.1039/c2cs15344kspa
dc.relation.referencesKollamaram, G., Williams, G.R. 2021. The effect of the composition of polysorbate 80 grades on their physicochemical properties. J. Excipients and Food Chem. 12, 32-40.spa
dc.relation.referencesKumar, N., Nautiyal, U. 2017. A review article on lyophilization techniques used in pharmaceutical. manufacturing. Int. J. Pharm. Med. Res. 5, 478-484.spa
dc.relation.referencesMartínez-Rodríguez. L.I. 2014. Estudio de la encapsulación de quercetina en partículas sólidas lipídicas preparadas por la técnica de emulsificación difusión. Trabajo de grado de pregrado en Farmacia – Universidad Nacional de Colombiaspa
dc.relation.referencesMahmood, S., Kiong, K.C., Tham, C.S., Chien, T.C., Hilles, A.R., Venugopal, J.R. 2020. PEGylated lipid polymeric nanoparticle–encapsulated acyclovir for in vitro controlled release and ex vivo gut sac permeation. AAPS PharmSciTech. 21, 285. doi:10.1208/s12249-020-01810-0spa
dc.relation.referencesMehta, A.B., Nadkarni, N.J, Patil, S.P., Godse, K.V., Gautam, M., Agarwal, S. 2016. Topical corticosteroids in dermatology. Indian J. Dermatol. Venereol. Leprol. 82, 371-378. doi:10.4103/0378-6323.178903spa
dc.relation.referencesMisery, L. 2012. Why is there poor adherence to topical corticosteroid therapy in atopic dermatitis?, Rev. Dermatol. 7, 5-7. doi:10.1586/edm.11.77spa
dc.relation.referencesMontgomery. D.C. 2013. Design and analysis of experiments. Eighth ed. Wiley. New York, pp. 320-322.spa
dc.relation.referencesMoreno de Araujo, M., Borgheti-Cardoso, L.N., Garcia-Praça, F., Marcato, P.D., Brada- Bentley, M.V.L. 2023. Solid lipid-polymer hybrid nanoplatform for topical delivery of siRNA: In vitro biological activity and permeation studies. J. Funct. Biomater. 14, 374. doi: 10.3390/jfb14070374spa
dc.relation.referencesMorris. K.R., Knipp, G.T., Serajuddin, A.T.M. 1992. Structural properties of polyethylene glycol - polysorbate 80 mixture, a solid dispersion vehicle. J. Pharm. Sci. 81, 1185-1188. doi:10.1002/jps.2600811212spa
dc.relation.referencesNanaki, S., Eleftheriou, R.M., Barmpalexis, P., Kostoglou, M., Karavas, E., Bikiaris, D. 2019. Evaluation of dissolution enhancement of aprepitant drug in ternary pharmaceutical solid dispersions with Soluplus® and poloxamer 188 prepared by melt mixing. Sci. 1, 48. doi:10.3390/sci1020048spa
dc.relation.referencesNekkanti, V., Venkateshwarlu, V., Pillai, R. 2012. Preparation, characterization and in vivo evaluation of raloxifene hydrochloride solid lipid nanoparticles. Pharm. Nanotechnol. 1, 68- 77. doi:10.2174/2211738511301010068spa
dc.relation.referencesNic Dhonncha, E., O’Connor, C., O’Connell, G., Quinlan, C., Roche, L., Murphy, M. 2021. Adherence to treatment with prescribed topical corticosteroid therapy and potential barriers to adherence among women with vulvar lichen sclerosus: a prospective cross‐sectional study. Clin. Exp. Dermatol. 46, 734-735. doi:10.1111/ced.14527spa
dc.relation.referencesNilsson, E.J., Lind, T.K., Scherer, D., Skansberger, T., Mortensen, K., Engblom, J., Kocherbitov, V. 2020. Mechanisms of crystallisation in polysorbates and sorbitan esters. CrystEngComm. 22, 3840-3853. doi:10.1039/d0ce00236dspa
dc.relation.referencesOrellana-Vázquez, K.C. 2018. Estudio de la degradabilidad del PCL (Policaprolactona) dosificado con la lignina extraída de la fibra de banano. Trabajo de grado. Universidad Politécnica Salesiana. Cuenca.spa
dc.relation.referencesOurique, A.F., Contri, R.V., Guterres, S.S., Beck, R.C.R., Pohlmann, A.R., Melero, A., Schaefer, U.F. 2012. Set-up of a method using LC-UV to assay mometasone furoate in pharmaceutical dosage forms. Quím. Nova. 35, 818-821. doi:10.1590/s0100- 40422012000400030spa
dc.relation.referencesPapakostas, D., Rancan, F., Sterry, W., Blume-Peytavi, U., Vogt, A. 2011. Nanoparticles in dermatology. Arch. Dermatol. Res. 303, 533–550. doi:10.1007/s00403-011-1163-7spa
dc.relation.referencesParmar, K., Patel, H. 2023. Dacarbazine-loaded lipid polymer hybrid nanoparticles for management of skin melanoma: Optimization and anticancer studies. BioNanoScience. 13, 1102269. doi: 10.1007/s12668-023-01236-5spa
dc.relation.referencesPople, P.V., Singh, K.K. 2006. Development and evaluation of topical formulation containing solid lipid nanoparticles of vitamin A. AAPS PharmSciTech, 7, 63-69. doi:10.1208/pt070491spa
dc.relation.referencesPramod, K., Suneesh, C.V., Shanavas, S., Ansari, S.H., Ali, J. 2015. Unveiling the compatibility of eugenol with formulation excipients by systematic drug-excipient compatibility studies. J. Anal. Sci. Technol. 6, 2-14. doi:10.1186/s40543-015-0073-2spa
dc.relation.referencesPukale, S.S., Sharma, S., Dalela, M., Singh, Singh, A.K., Mohanty, S., Mittal, A., Chitkara, D. 2020. Multi-component clobetasol-loaded monolithic lipid-polymer hybrid nanoparticles ameliorate imiquimod-induced psoriasis-like skin inflammation in Swiss albino. Acta Biomater. 115, 393-409. doi: https://doi.org/10.1016/j.actbio.2020.08.020spa
dc.relation.referencesRabha, B., Bharadwaj, K.K., Baishya, D., Sarkar, T., Edinur, H.A., Pati, S. 2021. Synthesis and characterization of diosgenin encapsulated poly-ε-caprolactone-pluronic nanoparticles and its effect on brain cancer cells. Polymers. 13, 1322. doi:10.3390/polym13081322spa
dc.relation.referencesRampado, R., Peer, D. 2023. Design of experiments in the optimization of nanoparticle- based drug delivery systems. J. Control. Release. 358, 398-419. doi:10.1016/j.jconrel.2023.05.001spa
dc.relation.referencesSalgado, A.C.G.B., da Silva, A.M.N.N., Machado, M.C.J.C., Duarte, M.A. da S.C., Ribeiro, H.M. de O.M. 2010. Development, stability and in vitro permeation studies of gels containing mometasone furoate for the treatment of dermatitis of the scalp. Brazilian J. Pharm. Sci. 46, 109-114. doi:10.1590/s1984-82502010000100012spa
dc.relation.referencesSharma, A., Jain, C.P., Tanwar, Y.S. 2013. Preparation and characterization of solid dispersions of carvedilol with poloxamer 188. J. Chil. Chem. Soc. 58, 1553-1557. doi:10.4067/s0717-97072013000100012spa
dc.relation.referencesShinde, G., Desai, P., Shelke, S., Patel, R., Bangale, G., Kulkarni, D. 2020. Mometasone furoate loaded aspasomal gel for topical treatment of psoriasis: formulation, optimization, in vitro and in vivo performance. J. Dermatolog. Treat. 33, 885-896. doi:10.1080/09546634.2020.1789043spa
dc.relation.referencesShoormeij, Z., Taheri, A., Homayouni, A. 2017. Preparation and physicochemical characterization of meloxicam orally fast disintegration tablet using its solid dispersion. Braz. J. Pharm. Sci. 53, e00176. doi:10.1590/s2175-97902017000400176spa
dc.relation.referencesSigma -Aldrich. Policaprolactona. https://www.sigmaaldrich.com/CO/es/search/policaprolactona?focus=products&page=1&p erpage=30&sort=relevance&term=policaprolactona&type=product. Consultado: 02-01- 2024spa
dc.relation.referencesSigma -Aldrich. Poly(D,L-lactide-co-glycolide). https://www.sigmaaldrich.com/CO/es/product/sigma/p2191. Consultado: 02-01-2024spa
dc.relation.referencesTahir, N., Madni, A., Balasubramanian, V., Rehman, M., Correia, A., Kashif, P.M., Mäkilä, E., Salonen, J., Santos H.A. 2017. Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications. Int. J. Pharm. 533, 156-168. doi:10.1016/j.ijpharm.2017.09.061spa
dc.relation.referencesTavares Luiz, M., Santos Rosa Viegas, J., Palma Abriata, J., Viegas, F., Testa Moura de Carvalho Vicentini, F., Lopes Badra Bentley, M.V., Chorilli, M., Maldonado Marchetti, J., Tapia-Blácido, D.R. 2021. Design of experiments (DOE) to develop and to optimize nanoparticles as drug delivery systems. Eur. J. Pharm. Biopharm. 165, 127-148. doi:10.1016/j.ejpb.2021.05.011spa
dc.relation.referencesThanki, K., Zeng, X., Justesen, S., Tejlmann, S., Falkenberg, E., Van Driessche, E., Nielsen, H.M., Franzyk, H., Foged, C. 2017. Engineering of small interfering RNA-loaded lipidoid-poly (DL -lactic-co-glycolic acid) hybrid nanoparticles for highly efficient and safe gene silencing: A quality by design-based approach. Eur. J. Pharm. Biopharm, 120, 22-33. doi:10.1016/j.ejpb.2017.07.014spa
dc.relation.referencesToll, R., Jacobi, U., Richter, H., Lademann, J., Schaefer, H., Blume-Peytavi, U. 2004. Penetration profile of microspheres in follicular targeting of terminal hair follicles. J. Invest. Dermatol. 123, 168-176. doi:10.1111/j.0022-202x.2004.22717spa
dc.relation.referencesWHO Expert Committee on Specification for Pharmaceutical Preparations. Stability testing of active pharmaceutical ingredients and finished pharmaceutical products. Annex 2. 2009. Forty-third report. World Health Organization. Geneve. Switzerland.spa
dc.relation.referencesXie, Y., Li, G., Yuan, X., Cai, Z., Rong, R. 2009. Preparation and in vitro evaluation of solid dispersions of total flavones of Hippophae rhamnoides L. AAPS PharmSciTech. 10, 631- 640. doi:10.1208/s12249-009-9246-xspa
dc.relation.referencesYang, Q., Owusu-Ababio, G. 2000. Biodegradable progesterone microsphere delivery system for osteoporosis therapy. Drug Dev. Ind. Pharm. 26, 61-70. doi:10.1081/DDC- 100100328spa
dc.relation.referencesYalcin, T.E., Ilbasmis-Tamer, S., Takka, S. 2018. Development and characterization of gemcitabine hydrochloride loaded lipid polymer hybrid nanoparticles (LPHNs) using central composite design. Int. J. Pharm. 548, 255-262. doi:10.1016/j.ijpharm.2018.06.063spa
dc.relation.referencesZheng, M., Gong, P., Zheng, C., Zhao, P., Luo, Z., Ma, Y., Cai, L. 2015. Lipid-polymer nanoparticles for folate-receptor targeting delivery of doxorubicin. J. Nanosci. Nanotechnol. 15, 4792-4798. doi:10.1166/jnn.2015.9604spa
dc.relation.referencesZhu, J.J., Tang, C.H., Luo, F.C., Yin, S.W., Yang, X.Q. 2022. Topical application of zein- silk sericin nanoparticles loaded with curcumin for improved therapy of dermatitis. Mater. Today Chem. 24, 100802. doi:10.1016/j.mtchem.2022.100802spa
dc.relation.referencesAina, A., Gupta, M., Boukari, Y., Morris, A., Billa, N., Doughty, S. 2015. Monitoring model drug microencapsulation in PLGA scaffolds using X-ray powder diffraction. Saudi Pharm. J. 24, 227–231. doi:10.1016/j.jsps.2015.03.015spa
dc.relation.referencesAshok, B., Arleth, L., Hjelm, R.P., Rubinstein, I., Önyüksel, H. 2004. In vitro characterization of PEGylated phospholipid micelles for improved drug solubilization: Effects of PEG chain length and PC incorporation. J. Pharm. Sci. 93, 2476–2487. doi:10.1002/jps.20150spa
dc.relation.referencesChan, J.M., Zhang, L., Yuet, K.P., Liao, G., Rhee, J-W., Langer, R., Farokhzad, O.C. 2009. PLGA–lecithin–PEG core–shell nanoparticles for controlled drug delivery. Biomaterials. 30, 1627–1634. doi:10.1016/j.biomaterials.2008.12.013spa
dc.relation.referencesClawson, C., Ton, L., Aryal, S., Fu, V., Esener, S., Zhang, L. 2011. Synthesis and characterization of lipid–polymer hybrid nanoparticles with pH-triggered poly(ethylene glycol) shedding. Langmuir. 27, 10556–10561. doi:10.1021/la202123espa
dc.relation.referencesCoêlho Rios Silva, A.T., Oliveira-Cardoso, B.C., Scarpelli Ribeiro, M.E., Souza-Freitas, R.F., Sousa, R.G. 2015. Synthesis, characterization, and study of PLGA copolymer in vitro degradation. J. Biomater. Nanobiotechnol. 6, 8-19. doi:10.4236/jbnb.2015.61002spa
dc.relation.referencesDos Santos-Ferreira, D., Dornelas-Faria, S., Caldeira de Araújo, S., Lopes, C.S., Teixeira, A.M., Magalhães-Paniago, R., De Souza-Filho, J.D., De Jesus-Pinto, B.L., Oliveira, A.R., Guimarães, P.C., Miranda, L.A., Ferreira, R.J.A., Oliveira, M.C. 2016. Development of a bone-targeted pH-sensitive liposomal formulation containing doxorubicin: physicochemical characterization, cytotoxicity, and biodistribution evaluation in a mouse model of bone metastasis. Int. J. Nanomed. 11, 3737–3751. doi:10.2147/ijn.s109966spa
dc.relation.referencesGadzinowski, M., Slomkowski, S., Elaissari, A., Pichot, C. 2000. Phase transfer and characterization of poly(epsilon-caprolactone) and poly(L-lactide) microspheres. Biomater. Sci. Polym. Ed. 11, 459-480. doi: 10.1163/156856200743814spa
dc.relation.referencesGarcía‐García, P., Briffault, E., Landin, M., Evora, C., Diaz‐Rodríguez, P., Delgado, A. 2021. Tailor‐made oligonucleotide‐loaded lipid‐polymer nanosystems designed for bone gene therapy. Drug Deliv. Transl. Res. 11, 598–607. doi:10.1007/s13346-021-00926-spa
dc.relation.referencesGuo, F., Shang, J., Zhao, H., Lai, K., Li, Y., Fan, Z., Hou, Z., Su, G. 2017. Cube-shaped theranostic paclitaxel prodrug nanocrystals with surface functionalization of SPC and MPEG-DSPE for imaging and chemotherapy. Colloids Surf. B: Biointerfaces. 160, 649– 660. doi:10.1016/j.colsurfb.2017.10.01spa
dc.relation.referencesHigashi, K., Mibu, F., Saito, K., Limwikrant, W., Yamamoto, K., Moribe, K. 2017. Composition-dependent structural changes and antitumor activity of ASC-DP/DSPE-PEG nanoparticles. Eur. J. Pharm. Sci. 99, 24–31. doi:10.1016/j.ejps.2016.11.029spa
dc.relation.referencesKamel, A.O., Awad, G.A.S., Geneidi, A.S., Mortada, N.D. 2009. Preparation of intravenous stealthy acyclovir nanoparticles with increased mean residence time. AAPS PharmSciTech. 10, 1427–1436. doi:10.1208/s12249-009-9342spa
dc.relation.referencesLiu, J., Lee, H., Allen, C. 2006. Formulation of drugs in block copolymer micelles: Drug loading and release. Curr. Pharm. Des. 12, 4685–4701. doi:10.2174/138161206779026263spa
dc.relation.referencesLiu, Y., Ghassemi, A.H., Hennink, W.E., Schwendeman, S.P. 2012. The microclimate pH in poly(d,l-lactide-co-hydroxymethyl glycolide) microspheres during biodegradation. Biomaterials. 33, 7584–7593. doi:10.1016/j.biomaterialsspa
dc.relation.referencesMasoudipour, E., Kashanian, S., Azandaryani, A.H., Omidfar, K., Bazyar, E. 2017. Surfactant effects on the particle size, zeta potential, and stability of starch nanoparticles and their use in a pH-responsive manner. Cellulose. 24, 4217–4234. doi:10.1007/s10570- 017-1426-3spa
dc.relation.referencesMora-Huertas, C.E., Couenne, F., Fessi, H., Elaissari, A. 2012. Electrokinetic properties of poly-ε-caprolactone-based nanoparticles prepared by nanoprecipitation and emulsification-diffusion methods: A comparative study. J. Nanopart. Res. 14, 876. doi:10.1007/s11051- 012-0876-7spa
dc.relation.referencesTahir, N., Madni, A., Correia, A., Rehman, M., Balasubramanian, V., Khan, M.M., Santos, H.A. 2019. Lipid-polymer hybrid nanoparticles for controlled delivery of hydrophilic and lipophilic doxorubicin for breast cancer therapy. Int. J. Nanomedicine. 14, 4961–4974. doi:10.2147/ijn.s209325spa
dc.relation.referencesViitala, L., Pajari, S., Gentile, L., Määttä, J., Gubitosi, M., Deska, J., Sammalkorpi, M., Olsson, U., Murtomäki, L. 2019. Shape and phase transitions in a PEGylated phospholipid system. Langmuir. 35, 3999-4010. doi:10.1021/acs.langmuir.8b03829spa
dc.relation.referencesWu, X.Y. 2016. Strategies for optimizing polymer-lipid hybrid nanoparticle-mediated drug delivery. Expert Opin. Drug Deliv. 13, 609–612. doi:10.1517/17425247.2016.116566 Zeeuwen, P. 2004. Epidermal differentiation: The role of proteases and their inhibitors. Eur. J. Cell Biol. 83, 761–773. doi:10.1078/0171-9335-00388spa
dc.relation.referencesZhang, Z., Wang, X., Zhu, R., Wang, Y., Li, B., Ma, Y., Yin, Y. 2016. Synthesis and characterization of serial random and block-copolymers based on lactide and glycolide. Polym. Sci. Ser. B. 58, 720–729. doi:10.1134/s1560090416060191spa
dc.relation.referencesZheng, M., Gong, P., Zheng, C., Zhao, P., Luo, Z., Ma, Y., Cai, L. 2015. Lipid-polymer nanoparticles for folate-receptor targeting delivery of doxorubicin. J. Nanosci. Nanotechnol. 15, 4792–4798. doi:10.1166/jnn.2015.9604spa
dc.relation.referencesBaez, M.E., Zincker, J. 1999. Parámetro de calidad analítica de un método de determinación multiresiduos de plaguicidas por HPLC-DAD. Bol. Soc. Chil. Quím. 3, 357- 366. doi:10.4067/S0366-16441999000300013spa
dc.relation.referencesBlessy, M., Patel, R.D., Prajapati, P.N., Agrawal, Y.K. 2014. Development of forced degradation and stability indicating studies of drugs - A review. J. Pharm. Anal. 4, 159–165. doi:10.1016/j.jpha.2013.09.003spa
dc.relation.referencesDe Zan, M.M. 2011. Utilización de quimiometría para mejorar el rendimiento de la cromatografía líquida de alta resolución. Universidad Nacional del Litoral Facultad de Bioquímica y Ciencias Biológicas.spa
dc.relation.referencesInternational Conference of Harmonisation ICH. Q2 (R2). Validation of Analytical Procedures: Text and Methodology Guidance for Industry., 2023.spa
dc.relation.referencesMagnusson, B., Örnemark, U. (Eds.). 2014. Eurachem Guide: The fitness for purpose of analytical methods – A laboratory guide to method validation and related topics. Second ed. Disponible: www.eurachem.org.spa
dc.relation.referencesSandoval, S. 2010. Validación de métodos y determinación de la incertidumbre de la medición: “Aspectos generales sobre la validación de métodos” Instituto de Salud Pública de Chile.spa
dc.relation.referencesNgwa, G. 2010. Forced degradation studies. Forced degradation as an integral part of HPLC stability-indicating method development. Drug Deliv. Technol. 5, 56-59. Disponible en: https://studylib.net/doc/18112713/forced-degradation-as-an-integral-part-of-hplc- stabilityspa
dc.relation.referencesOMS Serie de Informes Técnicos, No. 902, 2002. Informe 36, Anexo 3. Buenas prácticas para Laboratorios Nacionales de Control Farmacéuticospa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.lembNANOPARTICULASspa
dc.subject.lembNanoparticleseng
dc.subject.lembMEZCLA (INGENIERIA QUIMICA)spa
dc.subject.lembMixingeng
dc.subject.lembENFERMEDADES DE LA PIELspa
dc.subject.lembSkin diseaseseng
dc.subject.lembDERMATITIS POR CONTACTOspa
dc.subject.lembContact dermatitiseng
dc.subject.lembALERGIAspa
dc.subject.lembAllergyeng
dc.subject.lembPOLIMEROS CONDUCTORESspa
dc.subject.lembConducting Polymerseng
dc.subject.lembLIPIDOSspa
dc.subject.lembLipidseng
dc.subject.proposalNanopartículas híbridas polímero – lípidospa
dc.subject.proposalNanoprecipitaciónspa
dc.subject.proposalDermatitis alérgica de contactospa
dc.subject.proposalFuroato de mometasonaspa
dc.subject.proposalPolymer–lipid hybrid nanoparticleseng
dc.subject.proposalNanoprecipitationeng
dc.subject.proposalAllergic contact dermatitiseng
dc.subject.proposalMometasone furoateeng
dc.titleDesarrollo de nanopartículas híbridas polímero – lípido con potencial aplicación en el tratamiento de la dermatitis alérgica de contactospa
dc.title.translatedDevelopment of hybrid polymer-lipid nanoparticles with application in the treatment of allergic contact dermatitiseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentDataPaperspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80773797-2025..pdf
Tamaño:
4.29 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Farmacéuticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: