Evaluación genética, evaluación genómica y búsqueda de regiones del genoma en ganado Blanco Orejinegro asociadas a características productivas

dc.contributor.advisorGonzález Herrera, Luis Gabrielspa
dc.contributor.advisorLópez Herrera, Albeirospa
dc.contributor.authorLondoño Gil, Marisolspa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellínspa
dc.contributor.researchgroupBiodiversidad y Génetica Molecular \'BIOGEM\'spa
dc.date.accessioned2020-08-24T21:07:22Zspa
dc.date.available2020-08-24T21:07:22Zspa
dc.date.issued2020-07-23spa
dc.description.abstractStudying the traits involved in the growth of Blanco Orejinegro (BON) cattle and the environmental and genetic factors that are responsible for their variation is of great importance to stimulate its breeding. The aim of this work was to evaluate the genetic and genomic component of the Colombian Creole BON, using single nucleotide markers (SNPs) and to identify genomic regions associated with productive traits. A phenotypic, genetic and genomic analysis was performed. Genealogy information of 7799 animals was used, 3218, 2264, 496, 2287, 325 and 408 phenotypic records of growth traits birth weight (BW), weaning weight ( WW), yearling weight (TW), average daily gain at weaning (ADG), time to reach 120 kg (T120) of living weight and time to reach 60% of adult weight (T60%), respectively; and genotype information of 439 animals for 107999 SNPs. The fixed effects of calving number, contemporary group, sex and age at weighing and the random effects animal and matern (except PA and T60) were included. Conventional genetic evaluations were performed trough animal models uni and bivariates. The genomic evaluation also included the genomic information. The genomic association studies were performed using a Bayes Cπ. The means (± SD) found were for BW 31.8 ± 3.5 kg, WW 201.9 ± 34.2 kg at 265.9 ± 30.6 days, YW 230.5 ± 37.3 kg at 360.6 ± 16.7 days, AVD 0.645 ± 0.14 kg/day, T120 136.4 ± 27.4 days and T60% 541.1 ± 262.5 days. Low and medium direct and maternal heritability values were obtained, being 0.22 and 0.14 (BW), 0.20 and 0.15 (WW), 0.17, and 0.25 (ADG), 0.26 and 0.16 (T120), and direct heritability values of 0.20 (YW) and 0.44 (T60%). High and positive direct genetic correlations were observed between BW, WW, YW and ADG (0.84 to 0.99); high and negative (-0.66 to -1) between T20 with the traits BW, WW, YW and ADG; moderate to low and negative between T60% with BW, WW, YW and ADG (-0.02 to -0.51) and high and positive between T60% and T120 (0.60). When the genetic evaluation with the genomic one was compared, it was found that for most of the traits the ssGBLUP methodology increased between 0.01 and 0.22 the direct heritability estimate, while the maternal heritability estimate varied between -0.01 and 0.09 points difference. For most of the estimates obtained using genomics, an increase of between 0.01 and 0.11 points was observed in the accuracy of the estimated breeding values (EBVs) except for the maternal WW (-0.01) and maternal T120 (-0.17). The Pearson and Spearman correlations between the EBVs varied between 0.77 and 0.96, a large amount being greater than 0.90. Genomic associations showed different signals with effect on growth traits within genomic regions containing genes that are part of important biological processes and QTL, especially in BTA1, BTA2, BTA3, BTA6, BTA7, BTA10 and BTA14. Two regions were also identified, one region within BTA1 and the other in BTA3 with big effect on 4 of the 6 traits under analysis, evidencing the existing genetic correlation between growth traits. QTLs were identified associated with residual feed intake and with different growth traits in other breeds. These results show that some environmental factors affect growth in BON population and reveal that a substantial proportion of the variation in growth traits of Colombian BON cattle is associated with the direct additive genetic effect with the maternal genetic effect (except for YW and T60%) and that these traits can respond appropriately to selection processes. These results also indicate that there are no large deviations between the two methodologies in the calculation of the parameters and breeding values and will improve our biological, genetic and phenotypic understanding of growth in creole BON cattle from Colombia.spa
dc.description.abstractEstudiar las características involucradas en el crecimiento de ganado Blanco Orejinegro (BON) y los factores ambientales y genéticos que son responsables de su variación es de gran importancia para estimular la cría de esta raza. El objetivo de este trabajo fue evaluar genética y genómicamente la raza Criolla Colombiana BON, e identificar regiones del genoma asociadas a características productivas. Para ello se realizó un análisis fenotípico, genético y genómico. Se utilizó información genealógica de 7799 animales, registros de 3218, 2264, 496, 2287, 325 y 408 animales para las características de crecimiento peso al nacimiento (PN), peso al destete (PD), peso al año (PA), ganancia diaria de peso entre el nacimiento y el destete (GDP), tiempo para alcanzar 120 kg (T120) de peso vivo y tiempo para alcanzar 60% de peso adulto (T60%), respectivamente; e información genotípica de 439 animales para 107.999 SNPs. Fueron incluidos los efectos fijos de número de parto, grupo contemporáneo, sexo, edad al pesaje y época y los efectos aleatorios animal y madre (excepto PA y T60). Una evaluación genética tradicional fue llevada a cabo a través de un modelo animal univariado y bivariado. La evaluación genómica se realizó a través de un modelo animal univariado que incluía información de genotipos. El análisis de asociación se realizó a través del método Bayes Cπ. Las medias fenotípicas (± DS) fueron para PN 31,8 ± 3,5 kg, PD 201,9 ± 34,2 kg a los 265,9 ± 30,6 días, PA 230,5 ± 37,3 kg a los 360,6 ± 16,7 días, GDP 0,645 ± 0,14 kg/día, T120 136,4 ± 27,4 días y T60% 541,1 ± 262,5 días. Se obtuvieron valores de heredabilidad directa y materna de bajos a medios, siendo de 0,22 y 0,14 (PN), 0,20 y 0,15 (PD), 0,17, y 0,25 (GDP), 0,26 y 0,16 (T120), y valores de heredabilidad directa de 0,20 (PA) y 0,44 (T60%). Fueron observadas correlaciones genéticas directas altas y positivas entre PN, PD, PA y GDP (entre 0,84 a 0,99); altas y negativas (entre -0,66 a -1) entre T20 con las características PN, PD, PA y GDP; moderadas a bajas y negativas entre T60% con PN, PD, PA, GDP (variando entre -0,02 a -0,51) y alta y positiva entre T60% y T120 (0,60). Al comparar la evaluación genética con la genómica se encontró que para la mayoría de las características la metodología ssGBLUP incrementó entre el 0,01 y 0,22 la estimativa de heredabilidad directa, mientras que para la heredabilidad materna la estimativa varió entre -0,01 y 0,09 puntos de diferencia. Para la mayoría de las estimativas obtenidas con utilización de información genómica, se observó un incremento entre 0,01 y 0,11 puntos en la precisión de los valores genéticos excepto para la característica PD materno (-0,01) y T120 materno (-0,17). Las correlaciones de Pearson y Spearman entre los valores genéticos variaron entre 0,77 y 0,96, siendo la mayoría superiores a 0,90. Los análisis de asociación genómica mostraron diferentes señales con alta probabilidad de tener efecto sobre las características de crecimiento de ganado BON del trópico colombiano. Procesos biológicos y QTL previamente reportados se asociaron estas características, en especial en los BTA1, BTA2, BTA3, BTA6, BTA7, BTA10 y BTA14. Se identificaron además dos regiones, una región dentro del BTA1 y otra en el BTA3 con gran efecto sobre 4 de las 6 características en análisis, evidenciando la correlación genética existente entre las características. En estas regiones se identificaron QTLs asociados por otros investigadores al consumo de alimento residual y a diferentes características de crecimiento en otras razas de ganado. Estos resultados muestran que algunos factores ambientales afectan el crecimiento en la población BON y revelan que una proporción sustancial de la variación de las características de crecimiento de ganado BON de Colombia, está asociada con el efecto genético aditivo directo y otro gran porcentaje está asociado al efecto genético materno (excepto para PA y T60%) y que estos rasgos, pueden responder adecuadamente a procesos de selección. Estos resultados también indican que no hay grandes desvíos entre las dos metodologías en el cálculo de los parámetros y valores genéticos y mejorarán nuestra comprensión biológica, genética y fenotípica del crecimiento en ganado criollo BON de Colombia.spa
dc.description.degreelevelMaestríaspa
dc.description.projectCONOCIENDO NUESTROS RECURSOS CRIOLLOS: ANÁLISIS GENÓMICO Y BUSQUEDA DE REGIONES DEL GENOMA ASOCIADAS A CARACTERÍSTICAS PRODUCTIVAS, REPRODUCTIVAS Y DE SALUD EN GANADO BLANCO OREJINEGRO (BON)spa
dc.description.sponsorshipMincienciasspa
dc.format.extent191spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78201
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de biocienciasspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnologíaspa
dc.relation.referencesAmaral, R. dos S., Carneiro, P. L. S., Martins Filho, R., Ambrosini, D. P., & Malhado, C. H. M. (2014). Tendências, parâmetros fenotípicos e genéticos de características de crescimento em bovinos Nelore mocho do Nordeste brasileiro. Revista Brasileira de Saúde e Produção Animal, 15(2), 261–271. https://doi.org/10.1590/S1519-99402014000200003spa
dc.relation.referencesAnzola, H. J. (2005). Conservación y utilización de las razas bovinas criollas y colombianas para el desarrollo rural sostenible. Archivos de Zootecnia, 54(206–207), 141–144. Recuperado de https://www.redalyc.org/articulo.oa?id=495/49520704spa
dc.relation.referencesArboleda, O. (1979). Correlaciones entre pesos vivos y medidas corporales del ganado Blanco Orejinegro a diferentes edades. Revista Facultad Nacional de Agronomía, 32(2), 27–42.spa
dc.relation.referencesBedoya, G., Carvajal, L. G., Moreno, F. L., Davies, S., Derr, J., Ossa, J., & Ruiz, A. (2001). Estructura molecular y poblacional del ganado criollo Colombiano (GCC). Revista Colombiana de Ciencias Pecuarias, 14(2), 109–120.spa
dc.relation.referencesCañas, J. J., Ramírez, J., Arboleda, O., Ochoa, J., Vergara, O., & Cerón, M. (2008). Estimación de parámetros genéticos para peso al destete en ganado blanco orejinegro (BON) en el noroccidente colombiano. Revista MVZ Córdoba, 13(1), 1138–1145. https://doi.org/10.21897/RMVZ.405spa
dc.relation.referencesConceição, F. M., Ferraz Filho, P. B., Silva, L. O. C. da, Bragança, V. L. C., & Souza, J. C. (2005). Fatoes ambientais que influenciam o peso à desmama, ano e sobreano em bovinos da raça Nelore Mocha, no Sudoeste de Mato Grosso do Sul - Brasil. Archives of Veterinary Science, 10(2), 157–165.spa
dc.relation.referencesCorporación Autónoma Regional de las cuencas de los ríos Negro y Nare (CORNARE); Universidad de Medellín. (2006). Actualización del plan de ordenamiento y manejo integral de la cuenca cuervos , en el municipio de San Rafael Antioquia. Recuperado de https://www.cornare.gov.co/POMCAS/Documentos/Cuervos.pdf con acceso (27/12/2018)spa
dc.relation.referencesCorrea, E. D., Martínez, R., & Echeverri, J. (2011). Caracterización Productiva De Una Población De Bovinos Blanco Orejinegro (Bon) En Siete Hatos Colombianos. Actas iberoamericas de conservacion animal, 1(2011), 434–436.spa
dc.relation.referencesDelgado Huertas, H., Rangel, J. A., & Silva Parra, A. (2018). Caracterización De La Fertilidad Química De Los Suelos En Sistemas Productivos De La Altillanura Plana, Meta, Colombia. Luna Azul, (46), 54–69. https://doi.org/10.17151/luaz.2018.46.5spa
dc.relation.referencesDominguez Viveros, J., Urbina-Valenzuela, A. R., Palacios-Espinoza, A., Callejas-Juárez, N., Ortega-Gutiérrez, J. Á., Espinoza-Villavicencio, J. L., … Rodríguez-Castro, M. (2017). Caracterización del crecimiento de bovinos cebú en pruebas de comportamiento en pastoreo. Ecosistemas y Recursos Agropecuarios, 4(11), 341–348. https://doi.org/10.19136/era.a4n11.1149spa
dc.relation.referencesDonoghue, K. A., Bird-Gardiner, T., Arthur, P. F., Herd, R. M., & Hegarty§, R. F. (2016). Genetic and phenotypic variance and covariance components for methane emission and postweaning traits in Angus cattle. American Society Of Animal Science, 94(4), 1438–1445. https://doi.org/10.2527/jas.2015-0065spa
dc.relation.referencesErnandes, J., Sousa, R. De, Filho, R. M., Maria, S., & Oliveira, P. De. (2003). Influência dos fatores de ambiente no desempenho ponderal de bovinos da raça Nelore no Estado do Ceará Influence of environment factors on ponderal performance of Nelore cattle in state of Ceará , Brazil. Revista Ciencia Agronomica, 34(2), 133–138. https://doi.org/10.1021/ja056469hspa
dc.relation.referencesEvangelista, A. F., & de Sousa Júnior, S. C. (2017). Avaliação de características de crescimento de bovinos nelore no norte do Brasil (Vol. 01). Universidade Federal do Piauí – (UFPI).spa
dc.relation.referencesFAO Organización de las Naciones Unidas para la Alimentación y la Agricultura. (2018). Sistema de Información sobre la Diversidad de los Animales Domésticos (DAD-IS): Blanco Orejinegro / Colombia (Cattle). Recuperado 14 de febrero de 2019, de Blanco Orejinegro / Colombia (Cattle) website: http://www.fao.org/dad-is/es/spa
dc.relation.referencesGallego, J. L., Martínez, R. A., & Moreno, F. L. (2006). Índice de consanguinidad y caracterización fenotípica y genética de la raza bovina criolla Blanco Orejinegro. Corpoica Ciencia y Tecnologia Agropecuaria, 7(1), 16–24.spa
dc.relation.referencesGarnero, A. del V, Gunski, R. J. B., Schwengber, E. B., & R, L. (2001). Comparación entre criterios de selección para características de crecimiento correlacionados con edad al primer parto en la raza Nelore. Livestock Research for Rural Development, 13(2). Recuperado de http://www.lrrd.org/lrrd13/2/garn132.htmspa
dc.relation.referencesGrajales, H., Hernández, A., & Prieto, E. (2019). Edad y peso a la pubertad y su relación con la eficiencia reproductiva de grupos raciales bovinos en el trópico colombiano. Recuperado 11 de julio de 2019, de Livestock Research for Rural Development website: http://www.lrrd.org/lrrd18/10/graj18139.htmspa
dc.relation.referencesHenrique, C., Malhado, M., Filho, R. M., Nonato, R., Lôbo, B., Facó, O., … Maria, S. (2005). Tendências Genéticas para Características Relacionadas à Velocidade de Crescimento em Bovinos Nelore na Região Nordeste do Brasil. Revista Brasileira de Zootecnia, 34(1), 60–65.spa
dc.relation.referencesHernández-Hernández, N., Martínez-González, J., Parra-racamonte, G., Ibarra-Hinojosa, M., Briones-Encinia, F., Saldaña-Campos, P., & Ortega-Rivas, E. (2015). Non-genetic effects on growth characteristics of Brahman cattle. Revista MVZ Córdoba, 20(1), 4427–4435. https://doi.org/10.21897/rmvz.72spa
dc.relation.referencesInstituto Geográfico Agustín Codazzi (IGAC) (2007). Estudio general de suelos y zonificación de tierras Departamento de Antioquia. Ed. Imprenta Nacional de Colombia Bogotá. p. 615-617spa
dc.relation.referencesJahuey-Martínez, F.J., Parra-Bracamonte, G.M., Sifuentes-Rincón, A.M., Martínez-González, J.C., Gondro, C., García-Pérez, C.A., López-Bustamante, L.A., (2016). Genomewide association analysis of growth traits in charolais beef cattle. J. Anim. Sci. 94, 4570–4582. https://doi.org/10.2527/jas.2016-0359spa
dc.relation.referencesLenth, R. V. (2016). Least-Squares Means: The R Package lsmeans. Journal of Statistical Software, 69(1), 1–33. https://doi.org/10.18637/jss.v069.i01spa
dc.relation.referencesLópez, A., Saldarriaga, O. A., Arango, A. E., Fabio, N., Olivera, M., Bedoya, G., & Ossa, J. E. (2001). Ganado Blanco Orejinegro (BON): Una alternativa para la producción en Colombia. Revista Colombiana de Ciencias Pecuarias, 14(2), 121–128. Recuperado de http://rccp.udea.edu.co/index.php/ojs/article/view/40spa
dc.relation.referencesManuel, M., Cavani, L., Millen, D. D., Andrighetto, C., Lupatini, G. C., & Fonseca, R. da. (2019). Estimation of genetic parameters for weight traits and Kleiber Index in a Brahman cattle population. Scientia Agricola, 76(6), 459–462. https://doi.org/10.1590/1678-992x-2018-0062spa
dc.relation.referencesMarcondes, C. R., Bergmann, J. A. G., Eler, J. P., Ferraz, J. B. S., Pereira, J. C. C., & Penna, V. M. (2000). Análise de alguns critérios de seleção para características de crescimento na raça Nelore. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 52(1), 83–89. https://doi.org/10.1590/S0102-09352000000100018spa
dc.relation.referencesMartínez Correal, G. (2010). Plan Nacional de acción para la conservación, mejoramiento y utilización sostenible de los recursos genéticos animales de Colombia: informe final/Recurso electrónico. (Primera Ed; FAO, Ed.). Bogotá D.C, Colombia.: Procesos Digitales Ltda.spa
dc.relation.referencesMartínez, G., Torres, J., Guio, P., & Ballesteros, H. (2015). Utilización de toros criollos y su efecto en rasgos de reproducción y crecimiento, en un sistema de cría en la Orinoquía colombiana. Actas Iberoamericanas de Conservación Animal, 5(2015), 44–50. Recuperado de https://www.google.com.co/webhp?sourceid=chrome-instant&rlz=1C1AVNG_enCO629CO629&ion=1&espv=2&es_th=1&ie=UTF-8#spa
dc.relation.referencesMartínez, R, Llinás, A. P., & M.-Rocha, J. F. (2013). Genetic variability in Blanco Orejinegro breed cattle populations in Colombia. Genetics and Molecular Research, 12(2), 1083–1094. https://doi.org/10.4238/2013.April.10.4spa
dc.relation.referencesMartínez, Rodrigo;, Vásquez, R., & Gallego, J. L. (2012). Eficiencia productiva de la raza BON en el trópico colombiano. En Corpoica (Primera ed, Vol. 1). Bogotá D.C (Cundinamarca): © Corporación Colombiana de Investigación Agropecuaria, Corpoica, C.I. Tibaitatá.spa
dc.relation.referencesMartins, G. A., Martins Filho, R., Lima, F. de A. M., & Lôbo, R. N. B. (2000). Influência de fatores genéticos e de meio sobre o crescimento de bovinos da raça Nelore no Estado do Maranhão. Revista Brasileira de Zootecnia, 29(1), 103–107. https://doi.org/10.1590/S1516-35982000000100014spa
dc.relation.referencesMascioli, A. dos S., Alencar, M. M. de, Barbosa, P. F., Oliviera, M. C. de S., & Novaes, A. P. de. (1996). Influência de fatores de meio sobre pesos de animais da raca canchim. Revista Brasileira de Zootecnia, 25(5), 853–865.spa
dc.relation.referencesMontes-V, D., Vergara-G, O., Prieto-M, E., & Barragán-H, W. (2009). Estimación de la repetibilidad y factores que afectan el peso al nacer y al destete en ganado bovino cebú brahman. Revista Colombiana de Ciencia Animal - RECIA, 1(1), 19. https://doi.org/10.24188/recia.v1.n1.2009.405spa
dc.relation.referencesMontes, D., Vergara, O., Prieto, E., & Rodríguez, A. (2008). Estimación de los parámetros genéticos para el peso al nacer y al destete en ganado bovino de la raza brahman. Revista MVZ Córdoba, 13(1), 1184–1191. https://doi.org/10.21897/rmvz.409spa
dc.relation.referencesMoreira, H. L., Canova, E. B., Munari, D. P., Bezerra, L. A. F., Lôbo, R. B., & Paz, C. C. P. (2015). Parâmetros genéticos para período de gestação e características de crescimento pré e pós desmame em bovinos Nelore. Boletim de Indústria Animal, 72(2), 130–135. https://doi.org/10.17523/bia.v72n2p130spa
dc.relation.referencesOssa, G., Abuabara, Y., Pérez García, J. E., & Martínez, G. (2011). El ganado criollo colombiano Costeño con Cuernos (CCC). Animal Genetic Resources, 48, 101–107. https://doi.org/10.1017/S2078633611000014spa
dc.relation.referencesOssa, Gustavo, & Suárez, M. (2004). Efectos del medio y la herencia sobre el peso al destete de terneros de la raza romosinuano. MVZ-Córdoba, 10(2), 673–683. Recuperado de https://www.redalyc.org/articulo.oa?id=693/69310209spa
dc.relation.referencesR Core Team. (2019). R: A Language and Environment for Statistical Computing. Recuperado de https://www.r-project.orgspa
dc.relation.referencesRamírez-Toro E J, Ocampo-Gallego R J, Burgos-Paz W O, Elzo M A, M.-S. R. A. y C.-M. M. F. (2019). Estimación poligénica y genómico-poligénica para características de crecimiento en ganado Blanco Orejinegro (BON). Livestock Research for Rural Development, 31(3). Recuperado de http://www.lrrd.org/lrrd31/3/ceron31030.htmlspa
dc.relation.referencesRamírez, E., Cerón-Muñoz, M., Herrera, A. C., Vergara, O. D., Arboleda, E. M., & Restrepo, L. F. (2009). Crecimiento de hembras cruzadas en el trópico colombiano. Revista Colombiana de Ciencias Pecuarias, 22, 642–647. Recuperado de http://rccp.udea.edu.cospa
dc.relation.referencesRocha, J. L., Pimenta Filho, E. C., Ribeiro, M. N., & Martins Filho, R. (2003). Efeitos Ambientais e Genéticos sobre o Ganho em Peso Diário de Bovinos Nelore no Estado da Paraíba. Revista Brasileira de Zootecnia, 32(2), 325–330. https://doi.org/10.1590/S1516-35982003000200010spa
dc.relation.referencesSouza, J. C., Malhado, C. H. M., Silva, L. O. C. da, & Ferraz Filho, P. B. (2002). Efeito do ambiente sobre o peso de bovinos da raça Guzerá no estado de São Paulo. Archives of Veterinary Science, 7(1), 57–63.spa
dc.relation.referencesZhang, W., Li, J., Guo, Y., Zhang, L., Xu, L., Gao, X., … Chen, Y. (2016). Multi-strategy genome-wide association studies identify the DCAF16-NCAPG region as a susceptibility locus for average daily gain in cattle. Scientific Reports, 6(November), 1–11. https://doi.org/10.1038/srep38073spa
dc.relation.referencesAgudelo, D., Cerón, M., & Restrepo, L. (2008). Modelación de las funciones de crecimiento aplicadas a la producción animal. Revista Colombiana de Ciencias Pecuarias, 21(1), 39–58.spa
dc.relation.referencesAguilar, I., Misztal, I., Johnson, D. L., Legarra, A., Tsuruta, S., & Lawlor, T. J. (2010). Hot topic : A unified approach to utilize phenotypic , full pedigree , and genomic information for genetic evaluation of Holstein final score. Journal of Dairy Science, 93(2), 743–752. https://doi.org/10.3168/jds.2009-2730spa
dc.relation.referencesÁngel-Marín, P. A., Cardona-Cadavid, H., & Cerón-Muñoz, M. F. (2013). Genómica en la producción animal. Revista Colombiana de Ciencia Animal - RECIA, 5(2), 497. https://doi.org/10.24188/recia.v5.n2.2013.460spa
dc.relation.referencesArboleda, J. J. (2003). Resistencia natural del ganado BON a la brucelosis y fiebre aftosa. En: Contribución a la preservación y propagación del ganado criollo colombiano, ed. Biogénesis, Medellín, p 93-99spa
dc.relation.referencesBallent, M., Landi, H. G., Bilbao, G., & Dick, A. (2003). Pubertad, Peso Vivo Y Desarrollo Corporal En Diferentes Biotipos Bovinos Productores De Leche: Una Actualización Bibliográfica. Itea, 99(2), 130–138.spa
dc.relation.referencesBrowning, B. L., & Browning, S. R. (2009). A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. American Journal of Human Genetics, 84(2), 210–223. https://doi.org/10.1016/j.ajhg.2009.01.005spa
dc.relation.referencesBuzanskas, M. E., Grossi, D. A., Ventura, R. V., Schenkel, F. S., Sargolzaei, M., Meirelles, S. L. C., … Munari, D. P. (2014). Genome-wide association for growth traits in canchim beef cattle. PLoS ONE, 9(4). https://doi.org/10.1371/journal.pone.0094802spa
dc.relation.referencesCarignano, H., Roldan, D. L., Beribe, M. J., Raschia, M. A., Amadio, A., Nani, J. P., … Miretti, M. M. (2018). Genome-wide scan for commons SNPs affecting bovine leukemia virus infection level in dairy cattle. BMC Genomics, 19(1), 1–15. https://doi.org/10.1186/s12864-018-4523-2spa
dc.relation.referencesCENSAT Agua Viva. (2014). Ganadería insustentable en Colombia: Un Estudio Inicial. Recuperado de http://www.globalforestcoalition.net/wp-content/uploads/2010/11/informe-ganaderia-R2-Censat-Julio-2014.pdfspa
dc.relation.referencesChud, T. C. S., Caetano, S. L., Buzanskas, M. E., Grossi, D. A., Guidolin, D. G. F., Nascimento, G. B., … Munari, D. P. (2014). Genetic analysis for gestation length, birth weight, weaning weight, and accumulated productivity in Nellore beef cattle. Livestock Science, 170, 16–21. https://doi.org/10.1016/j.livsci.2014.09.024spa
dc.relation.referencesCole, J. B., Vanraden, P. M., Connell, J. R. O., Tassell, C. P. Van, Sonstegard, T. S., & Schnabel, R. D. (2009). Distribution and location of genetic effects for dairy traits. Journal of Dairy Science, 92(6), 2931–2946. https://doi.org/10.3168/jds.2008-1762spa
dc.relation.referencesCrawford, A. M. (2001). A Review of QTL experiment in sheep. Proc. Assoc. Advmt. Breed. Genet., 14, 33–38.spa
dc.relation.referencesCuenca, N., Chavarro, F., & Díaz, O. (2008). El Sector De Ganadería Bovina En Colombia. Aplicación De Modelos De Series De Tiempo Al Inventario Ganadero. Revista de la Facultad de Ciencias Económicas, 16(1), 165–177.spa
dc.relation.referencesDANE, D. A. N. de E. (2016). Encuesta Nacional Agropecuaria ENA-2016. Boletin tecnico comunicación informativa (DANE), (1), 1–24. Recuperado de http://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/encuesta-nacional-agropecuaria-enaspa
dc.relation.referencesDelgado, J. V., Molina, A., Camacho2, M. ., & Rodero, A. (1995). EVOLUCION DE LA METODOLOGIA DE LA MEJORA GENETICA EN EL VACUNO DE CARNE. Archivos de Zootecnia, 44, 111–121.spa
dc.relation.referencesDruet, T., Schrooten, C., & de Roos, A. P. W. (2010). Imputation of genotypes from different single nucleotide polymorphism panels in dairy cattle. Journal of Dairy Science, 93(11), 5443–5454. https://doi.org/10.3168/jds.2010-3255spa
dc.relation.referencesElsik, C. G., Tellam, R. L., Worley, K. C., Gibbs, R. A., Muzny, D. M., Weinstock, G. M., … Zhao, F.-Q. (2009). The Genome Sequence of Taurine Cattle: A Window to Ruminant Biology and Evolution. Science, 324(5926), 522–528. https://doi.org/10.1126/science.1169588spa
dc.relation.referencesFEDEGAN Federación Colombiana De Ganaderos. (2018). Indicadores Económicos sector ganadero. Recuperado 14 de febrero de 2019, de https://www.fedegan.org.co/estadisticas/indicadores-economicosspa
dc.relation.referencesFEDEGAN Federación Colombiana De Ganaderos. (2019). Estadísticas de FEDEGAN. Recuperado 12 de marzo de 2020, de https://www.fedegan.org.co/estadisticasspa
dc.relation.referencesFernando, R., & Grossman, M. (1989). Marker assisted selection using best linear unbiased prediction. Genetics Selection Evolution, 21(4), 467. https://doi.org/10.1186/1297-9686-21-4-467spa
dc.relation.referencesFisher, R. A. (1918). The correlation between Relatives on the Supposition of Mendelian Inheritance. Transations of the Royal Society of Edinburg, 52(1918), 399–433.spa
dc.relation.referencesFISHER, R. A. (1936). the Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics, 7(2), 179–188. https://doi.org/10.1111/j.1469-1809.1936.tb02137.xspa
dc.relation.referencesFondo Nacional del Ganado. (2020). Balance y perspectivas del sector ganadero colombiano. En Fng. Recuperado de https://www.fedegan.org.co/estadisticas/documentos-de-estadisticaspa
dc.relation.referencesGeorges, M., Nielsen, D., Mackinnon, M., Mishra, A., Okimoto, R., Pasquino, A. T., … Hoeschele, I. (1995). Mapping Quantitative Trait Loci Controlling Milk Production in Dairy Cattle by Exploiting Progeny Testing. Genetics Society of America, 139(February), 907–920.spa
dc.relation.referencesGoddard, M. E., Hayes, B. J., & Meuwissen, T. H. E. (2011). Genomic selection in livestock populations. Genet. Res., Camb., (2010), 413–421. https://doi.org/10.1017/S0016672310000613spa
dc.relation.referencesGranja, S., Cerquera, G. J., & Fernandez, B. O. (2012). Factores nutricionales que interfieren en el desempeño reproductivo de la hembra bovina. Revista Colombiana de Ciencia Animal - RECIA, 4(2), 458. https://doi.org/10.24188/recia.v4.n2.2012.227spa
dc.relation.referencesHabier, D., Fernando, R. L., Kizilkaya, K., & Garrick, D. J. (2011). Extension of the bayesian alphabet for genomic selection. BMC Bioinformatics, 12(186), 1–12. https://doi.org/10.1186/1471-2105-12-186spa
dc.relation.referencesHartley, H. O., & Rao, J. N. K. (2014). Maximum-Likelihood Estimation for the Mixed Analysis of Variance Model. Biometrika, 54(1), 93. https://doi.org/10.2307/2333854spa
dc.relation.referencesHarvey, W. (1960). Least squares of data with unequal subclass numbers. (1 ed; USDA, Ed.). Washington: National Agricultural Library.spa
dc.relation.referencesHayes, B J, Bowman, P. J., Chamberlain, A. J., & Goddard, M. E. (2009). Invited review : Genomic selection in dairy cattle : Progress and challenges. Journal of Dairy Science, 92(2), 433–443. https://doi.org/10.3168/jds.2008-1646spa
dc.relation.referencesHayes, Benjamin J. (2007). QTL Mapping, MAS, and Genomic Selection. A short-course. Iowa State University, 1(1), 118.spa
dc.relation.referencesHazel, L. N. (1943). The genetic basis for constructing selection indexes. Iowa State College, (November), 476–490.spa
dc.relation.referencesHenderson, C R. (1953). Estimation of Variance and Covariance Components. Biometrics, 9(2), 226–252.spa
dc.relation.referencesHenderson, C R. (1963). Selection Index and Expected Genetic Advance. Statical Genetics And Plant Breeding, 141–163.spa
dc.relation.referencesHenderson, C R. (1973). Sire evaluation and genetic trends. Journal of Animal Acience, 1973(1), 10–41.spa
dc.relation.referencesHenderson, C R. (1976). A Simple Method for Computing the Inverse of a Numerator Relationship Matrix Used in Prediction of Breeding Values. Biometrics, 32(1), 69–83.spa
dc.relation.referencesHenderson, C R, & Quaas, R. L. (1976). Multiple trait evaluation using relatives’ records. Journal of Animal Acience, 43(6), 1188–1197.spa
dc.relation.referencesHenderson, Charles R. (1984). Applications of Linear Models in Animal Breeding (1a ed.). Guelph: Guelph University.spa
dc.relation.referencesHickey, J. M., Kinghorn, B. P., Tier, B., Van Der Werf, J. H., & Cleveland, M. A. (2012). A phasing and imputation method for pedigreed populations that results in a single-stage genomic evaluation. Genetics Selection Evolution, 44(1), 1–11. https://doi.org/10.1186/1297-9686-44-9spa
dc.relation.referencesHowie, B. N., Donnelly, P., & Marchini, J. (2009). A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genetics, 5(6). https://doi.org/10.1371/journal.pgen.1000529spa
dc.relation.referencesICA Instituto Colombianao Agropecuario. (2019). Censo Pecuario Nacional año 2019. Recuperado 11 de marzo de 2020, de Proyectos Estratégicos Sistema de Autorización: Laboratorios y Organismos de Inspección website: https://www.ica.gov.co/areas/pecuaria/servicios/epidemiologia-veterinaria/censos-2016/censo-2018spa
dc.relation.referencesKahi, A. K., Rewe, T. O., & Kosgey, I. S. (2005). Sustainable community- based organizations for the genetic improvement of livestock in developing countries. AGRICULTURE, 34(4), 261–270.spa
dc.relation.referencesKizilkaya, K., Fernando, R. L., & Garrick, D. J. (2010). Genomic prediction of simulated multibreed and purebred performance using observed fifty thousand single nucleotide polymorphism gentotypes. Journal of Animal Acience, 88(2), 544–551. https://doi.org/10.2527/jas.2009-2064spa
dc.relation.referencesLegarra, A., Robert-Granié, C., Croiseau, P., Guillaume, F., & Fritz, S. (2010). Improved Lasso for genomic selection. Genetics Research, 93(01), 77–87. https://doi.org/10.1017/s0016672310000534spa
dc.relation.referencesLegarra, Andres, Lourenco, D. A. L., & Vitezica, Z. G. (2018). Bases for Genomic Prediction. Short course, 1(1), 1–141. Recuperado de https://linkinghub.elsevier.com/retrieve/pii/S1063458404000718spa
dc.relation.referencesLi, Y., Willer, C., Sanna, S., & Abecasis, G. (2009). Genotype Imputation. Annual Review of Genomics and Human Genetics, 10(1), 387–406. https://doi.org/10.1146/annurev.genom.9.081307.164242spa
dc.relation.referencesLópez, A., Ruiz, S. J., Góez, Y. P., Zapata, W., Velilla, P. A, Arango, A. E. & Inchima, S. (2009). Apoptosis as pathogenic mechanism of infection with vesicular stomatitis virus. Evidence in primary bovine fibroblast cultures. Biocell 33(2): 121–132.spa
dc.relation.referencesLópez, A., Salazar, A., Restrepo, G., Zuluaga, F., & Ossa, J. (2002). Resistencia natural, in vitro, a los virus de estomatitis vesicular y de rinotraqueitis infecciosa en ganado Blanco Orejinegro. Revista Colombiana de Ciencias Pecuarias, 15(1), 100–106.spa
dc.relation.referencesLush, J L. (1935). The inheritance of productivity in farm livestock Pt. V. Discussion of preceding contributions. Emp. J. Exp. Agric, 3, 25–30.spa
dc.relation.referencesLush, Jay L. (1947). Family Merit and Individual Merit as Bases for Selection. Part I. The American Naturalist, 81(799), 241–261. https://doi.org/10.1086/681988spa
dc.relation.referencesMa, P., Brøndum, R. F., Zhang, Q., Lund, M. S., & Su, G. (2013). Comparison of different methods for imputing genome-wide marker genotypes in Swedish and Finnish Red Cattle. Journal of Dairy Science, 96(7), 4666–4677. https://doi.org/10.3168/jds.2012-6316spa
dc.relation.referencesMarchini, J., & Howie, B. (2010). Genotype imputation for genome-wide association studies. Nature Reviews Genetics, 11(7), 499–511. https://doi.org/10.1038/nrg2796spa
dc.relation.referencesMarestone, B. S., De Souza Dantas Muniz, C. A., De Azambuja Ribeiro, E. L., & Simonelli, S. M. (2019). Environmental effects on pre-weaning traits in Santa Gertrudis cattle. Semina:Ciencias Agrarias, 40(3), 1297–1306. https://doi.org/10.5433/1679-0359.2019v40n3p1297spa
dc.relation.referencesMartínez, R., R. Toro, F. Montoya, M. Burbano, J. Tobón, J. G. y F. A. (2005). Caracterización del locus BOLA-DRB3 en Ganado Criollo Colombiano y asociación con resistencia a enfermedades. Archivos de Zootecnia, 54(206–207), 349–356.spa
dc.relation.referencesMartínez, G. (1992). El ganado criollo colombiano Blanco Orejinegro (BON). Boletin de Información Sobre Recursos Genéticos Animales. FAO, 31–39. Recuperado de ftp://ftp.fao.org/docrep/fao/012/u8030t/u8030t01.pdfspa
dc.relation.referencesMartínez, R., Toro, R., Montoya, F., Burbano, M., Tobón, J., Gallego, J., & Ariza, F. (2005). Evaluación genética para resistencia a brucelosis en ganado ciollo colombiano BON. Archivos de Zootecnia, 54, 333–340.spa
dc.relation.referencesMatukumalli, L. K., Lawley, C. T., Schnabel, R. D., Taylor, J. F., Allan, M. F., Heaton, M. P., … Van Tassell, C. P. (2009). Development and Characterization of a High Density SNP Genotyping Assay for Cattle. PLoS ONE, 4(4). https://doi.org/10.1371/journal.pone.0005350spa
dc.relation.referencesMeredith, B. K., Kearney, F. J., Finlay, E. K., Bradley, D. G., Fahey, A. G., Berry, D. P., & Lynn, D. J. (2012). Genome-wide associations for milk production and somatic cell score in Holstein-Friesian cattle in Ireland. BMC Genetics, 13(1), 21. https://doi.org/10.1186/1471-2156-13-21spa
dc.relation.referencesMeuwissen, T. H. E., Hayes, B. J., & Goddard, M. E. (2001). Prediction of total genetic value using genome-wide dense marker maps. Genetics, 157(4), 1819–1829. https://doi.org/11290733spa
dc.relation.referencesMinisterio de Agricultira y Desarrollo Rural, M. (2003). Situación de los recursos zoogenéticos en Colombia. (1a ed.; MADR, CORPOICA, UN, ACP, FENAVI, FAO, … INPA., Eds.). Bogotá D.C, Colombia.spa
dc.relation.referencesOlsen, H. G., Knutsen, T. M., Kohler, A., Svendsen, M., Gidskehaug, L., Grove, H., … Lien, S. (2017). Genome-wide association mapping for milk fat composition and fine mapping of a QTL for de novo synthesis of milk fatty acids on bovine chromosome 13. Genetics Selection Evolution, 49(1), 1–13. https://doi.org/10.1186/s12711-017-0294-5spa
dc.relation.referencesPark, T., & Casella, G. (2008). The Bayesian Lasso. Journal of the American Statistical Association, 103(482), 681–686. https://doi.org/10.1198/016214508000000337spa
dc.relation.referencesPatterson, H. D., & Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal. Biometrika, 58(3), 545–554. https://doi.org/10.1093/biomet/58.3.545spa
dc.relation.referencesPérez O’Brien, A. M., Mészáros, G., Utsunomiya, Y. T., Sonstegard, T. S., Garcia, J. F., Van Tassell, C. P., … Sölkner, J. (2014). Linkage disequilibrium levels in Bos indicus and Bos taurus cattle using medium and high density SNP chip data and different minor allele frequency distributions. Livestock Science, 166(1), 121–132. https://doi.org/10.1016/j.livsci.2014.05.007spa
dc.relation.referencesRao, D. P., & Edwards, L. L. (1971). On the Diffusion Model o f Mao and Toor A n Experimental Investigation of a Porous Medium Model with Nonuniform Pores. AlChE Journal, 17(5), 2–3.spa
dc.relation.referencesRincón, J., & Quintero, J. (2015). Comparación de modelos no lineales para describir el crecimiento en ganado Blanco Orejinegro (BON). Revista CES Medicina Veterinaria y Zootecnia, 10(1), 31–37.spa
dc.relation.referencesRuiz, S.J., Ossa, J.E., Barrera, J., Rugeles, M.T. & López-H, A. (2015). Bovine Fibroblasts Response to Foot-and-Mouth Disease Virus: Influence of Integrins and Soluble Factors in Resistance. Journal of Veterinary Science & Technology, 06(02): 1-6.spa
dc.relation.referencesSargolzaei, M., Chesnais, J. P., & Schenkel, F. S. (2014). A new approach for efficient genotype imputation using information from relatives. BMC Genomics, 15(1). https://doi.org/10.1186/1471-2164-15-478spa
dc.relation.referencesSchaeffer, L. R. (2006). Strategy for applying genome-wide selection in dairy cattle. Journal of Animal Breeding and Genetics, 123(4), 218–223. https://doi.org/10.1111/j.1439-0388.2006.00595.xspa
dc.relation.referencesSchefers, J. M., & Weigel, K. A. (2012). Genomic selection in dairy cattle: Integration of DNA testing into breeding programs. Animal Frontiers, 2(1), 4–9. https://doi.org/10.2527/af.2011-0032spa
dc.relation.referencesSimianer, H., & Bieber, A. (2014). Genomic breeding programs – a large step forward for low-input dairy cattle breeding? Recuperado 13 de enero de 2019, de LowiInputBreeds Technical Note website: ww.LowInputBreeds.orgspa
dc.relation.referencesSmith, H. F. (1936). A discrimant function for plant selection. Annals of Eugenics, 7, 240–250. https://doi.org/10.1111/j.1469-1809.1936.tb02143.xspa
dc.relation.referencesTirados, S. P. F. (2001). La mejora genética animal en la segunda mitad del siglo XX. Archivos De Zootecnia, 50, 517–546.spa
dc.relation.referencesVanRaden, P.M., Van Tassell, C. P., Wiggans, G. R., Sonstegard, T. S., Schnabel, R. D., Taylor, J. F., & Schenkel, F. S. (2009). Invited Review: Reliability of genomic predictions for North American Holstein bulls. Journal of Dairy Science, 92(1), 16–24. https://doi.org/10.3168/jds.2008-1514spa
dc.relation.referencesVanRaden, Paul M, O’Connell, J. R., Wiggans, G. R., & Weigel, K. A. (2011). Genomic evaluations with many more genotypes. Genetics Selection Evolution, 43(1), 1–11. https://doi.org/10.1186/1297-9686-43-10spa
dc.relation.referencesVisscher, P. M., Moser, G., Wray, N. R., Hayes, B. J., Goddard, M. E., & Lee, S. H. (2015). Simultaneous Discovery, Estimation and Prediction Analysis of Complex Traits Using a Bayesian Mixture Model. PLOS Genetics, 11(4), e1004969. https://doi.org/10.1371/journal.pgen.1004969spa
dc.relation.referencesWiggans, G.R., Sonstegard, T. S., VanRaden, P. M., Matukumalli, L. K., Schnabel, R. D., Taylor, J. F., … Van Tassell, C. P. (2009). Selection of single-nucleotide polymorphisms and quality of genotypes used in genomic evaluation of dairy cattle in the United States and Canada. Journal of Dairy Science, 92(7), 3431–3436. https://doi.org/10.3168/jds.2008-1758spa
dc.relation.referencesWiggans, George R., Cole, J. B., Van Tassell, C. P., VanRaden, P. M., Ruiz-López, F. J., & García-Ruiz, A. (2016). Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection. Proceedings of the National Academy of Sciences, 113(28), E3995–E4004. https://doi.org/10.1073/pnas.1519061113spa
dc.relation.referencesZaabza, H. Ben, Gara, A. Ben, & Rekik, B. (2017). Bayesian Modeling in Genetics and Genomics. En Bayesian Inference (pp. 207–220). https://doi.org/10.5772/intechopen.70167spa
dc.relation.referencesZhan, B., Fadista, J., Thomsen, B., Hedegaard, J., Panitz, F., & Bendixen, C. (2011). Global assessment of genomic variation in cattle by genome resequencing and high-throughput genotyping. BMC Genomics, 12(557), 1–20. https://doi.org/10.1186/1471-2164-12-557spa
dc.relation.referencesZhang, W., Li, J., Guo, Y., Zhang, L., Xu, L., Gao, X., … Chen, Y. (2016a). Multi-strategy genome-wide association studies identify the DCAF16-NCAPG region as a susceptibility locus for average daily gain in cattle. Scientific Reports, 6(November), 1–11. https://doi.org/10.1038/srep38073spa
dc.relation.referencesZhang, X., Lourenco, D., Legarra, A., Misztal, I., & Aguilar, I. (2016b). Weighting Strategies for Single-Step Genomic BLUP: An Iterative Approach for Accurate Calculation of GEBV and GWAS. Frontiers in Genetics, 7(August), 1–14. https://doi.org/10.3389/fgene.2016.00151spa
dc.relation.referencesZhang, Z., Ober, U., Erbe, M., Zhang, H., Gao, N., He, J., … Simianer, H. (2014). Improving the accuracy of whole genome prediction for complex traits using the results of genome wide association studies. PLoS ONE, 9(3), 1–12. https://doi.org/10.1371/journal.pone.0093017spa
dc.relation.referencesAlbuquerque, L. G., & Meyer, K. (2001). Estimates of covariance functions for growth from birth to 630 days of age in Nelore cattle. Journal of Animal Science, 79(11), 2776–2789. https://doi.org/10.2527/2001.79112776xspa
dc.relation.referencesAraújo Martins, G., Martins Filho, R., Lima, F. de A. M., & Lôbo, R. N. B. (2000). Influência de fatores genéticos e de meio sobre o crescimento de bovinos da raça Nelore no Estado do Maranhão. Revista Brasileira de Zootecnia, 29(1), 103–107. https://doi.org/10.1590/S1516-35982000000100014spa
dc.relation.referencesBolivar, D., Ramirez, E., Vergara, O., Restrepo, L., Arboleda, E., Cerón, M. (2010). Parámetros genéticos para el control del peso al nacimiento en bovinos de carne : cruzados en el trópico bajo colombiano. Rev. Lasallista Investig. 6, 14–23. https://doi.org/10.1109/MICRO.2000.898073spa
dc.relation.referencesDe Souza, J. C., Gonçalves de Resende, M. P., Campos da Silva, L. O., Falci Mota, M., Freitas, J. A., Gondo, A., & Rosana, M. da S. (2018). Parâmetros e tendências genéticas para peso ao sobreano de animais Nelore criados no estado do Paraná, Brasil. Revista Colombiana de Ciencia Animal - RECIA, 10(1), 68. https://doi.org/10.24188/recia.v10.n1.2018.632spa
dc.relation.referencesGarnero, A. del V., Barbosa, R., Framartino, L. A., & Nunes de Oliveira, H. (2001). Comparação entre Alguns Critérios de Seleção para Crescimento na Raça Nelore. Revista Brasilera de Zootecnia, 30(3), 714–718.spa
dc.relation.referencesGonçalves, F. M., Pires, A. V., Pereira, I. G., Garcia, D. A., Farah, M. M., Meira, C. T., & Cruz, V. A. R. (2011). Avaliação genética para peso corporal em um rebanho Nelore. Arquivo Brasileiro de Medicina Veterinaria e Zootecnia, 63(1), 158–164. https://doi.org/10.1590/S0102-09352011000100024spa
dc.relation.referencesKoetz Júnior, C., Roso, V. M., Claus, L. A. M., Oliveira, R. P. L. de, Fávaro, P. da C., Borges, M. H. F., … Ribeiro, E. L. de A. (2017). Genetic trends for mature body weight, visual scores, and growth traits in Nellore cattle. Ciência Rural, 47(3), 1–6. https://doi.org/10.1590/0103-8478cr20151506spa
dc.relation.referencesKoetz Junior, C., Roso, V. M., Fávaro, P. da C., Pereira, G. R., Borges, M. H. F., Barca Junior, F. A., … Ribeiro, E. L. de A. (2019). Heritability estimation and genetic correlations for mature weight, visual scores, and growth traits in Nellore cattle. Revista Brasileira de Zootecnia, 48(0). https://doi.org/10.1590/rbz4820170246spa
dc.relation.referencesMartínez, R.A., Dassonneville, R., Bejarano, D., Jimenez, A., Even, G., Mészáros, G., & Sölkner, J. (2016). Direct and maternal genetic effects on growth, reproduction, and ultrasound traits in zebu Brahman cattle in Colombia1. Journal of Animal Science, 94(7), 2761–2769. https://doi.org/10.2527/jas.2016-0453spa
dc.relation.referencesMartínez, R.A, Pérez, J. E., & Herazo, T. (2006). Estimation of genetic parameters and variance components for growth traits in Costeño Con Cuernos cattle in Colombian humid tropic. 8th World Congress on Genetics Applied to Livestock Production, August 13-18, 2006, Belo Horizonte, MG, Brasil, 94–100. Belo Horizonte, MG, Brasil ESTIMATION.spa
dc.relation.referencesMartínez Rocha, R. E., Ramírez Valverde, R., Núñez Domínguez, R., & García Muñiz, J. G. (2018). Parámetros y tendencias genéticas de variables de crecimiento para bovinos Romosinuano en México. Nova Scientia, 10(2), 310–325. https://doi.org/10.21640/ns.v10i21.1595spa
dc.relation.referencesMartínez, Rodrigo, Onofre, G., & Polanco, N. (2009). Parámetros genéticos y tendencias para características de crecimiento en el ganado criollo sanmartinero en los Llanos Orientales de Colombia. Corpoica Ciencia y Tecnología Agropecuaria, 10(2), 196–204. https://doi.org/10.21930/rcta.vol10_num2_art:142spa
dc.relation.referencesMeyer, K. (1992). Bias and sampling covariances of estimates of variance components due to maternal effects. Genetics Selection Evolution, 24(6), 487. https://doi.org/10.1186/1297-9686-24-6-487spa
dc.relation.referencesMeyer, Karin. (2007). WOMBAT: a tool for mixed model analyses in quantitative genetics by restricted maximum likelihood (REML). Journal of Zhejiang University. Science. B., 8(11), 815–821. https://doi.org/10.1631/jzus.2007.B0815spa
dc.relation.referencesMontes, D., Vergara, O., Prieto, E., & Rodríguez, A. (2008). Estimación de los parámetros genéticos para el peso al nacer y al destete en ganado bovino de la raza brahman. Revista MVZ Córdoba, 13(1), 1184–1191. https://doi.org/10.21897/rmvz.409spa
dc.relation.referencesOrtiz Peña, C.D., Carvalheiro, R., De Queiroz, S.A., Fries, L.A., 2004. Comparison of selection criteria for pre-weaning growth traits of Nelore cattle. Livest. Prod. Sci. 86, 163–167. https://doi.org/10.1016/S0301-6226(03)00164-7spa
dc.relation.referencesOssa Saraz, G. A., Narváez Pérez, H. J., Noriega Márquez, J. G., Pérez Garcia, J. E., & Vergara Garay, O. D. (2014). Parámetros y tendencias genéticas para características de crecimiento en una población de ganado criollo Romosinuano. Livestock Research for Rural Development, 26(10). Recuperado de http://www.lrrd.org/lrrd26/10/ossa26191.htmlspa
dc.relation.referencesPérez García, J. E., Mitat, A., Ossa Saraz, G. A., Simanca, J. C., & Vergara Garay, O. D. (2015). Componentes de covarianza y parámetros genéticos para características de crecimiento en una población de ganado Costeño con Cuernos en Colombia Covariance components and genetic parameters for growth traits in a population of " Coastal Costeño con Cuernos. Livestock Research for Rural Development, 21(1), 1–10. Recuperado de https://www.researchgate.net/publication/270581782%0AComponentesspa
dc.relation.referencesQuijano, J. H., & Echeverri-Zuluaga, J. jul. (2015). Genética cuantitativa aplicada al mejoramiento animal (1a ed.). Medellín, Colombia: Universidad Nacional de Colombia.spa
dc.relation.referencesQuintero, J.C., Triana, J.G., Quijano, J.H., Arboleda, E., (2007). Influencia de la inclusión del efecto materno en la estimación de parámetros genéticos del peso al destete en un hato de ganado de carne. Rev. Colomb. Ciencias Pecu. 20(2), 117–123.spa
dc.relation.referencesRamírez, E., Cerón-Muñoz, M., Herrera, A. C., Vergara, O. D., Arboleda, E. M., & Restrepo, L. F. (2009). Crecimiento de hembras cruzadas en el trópico colombiano. Revista Colombiana de Ciencias Pecuarias, 22, 642–647. Recuperado de http://rccp.udea.edu.cospa
dc.relation.referencesRocha, J. L., Pimenta Filho, E. C., Ribeiro, M. N., & Martins Filho, R. (2003). Efeitos Ambientais e Genéticos sobre o Ganho em Peso Diário de Bovinos Nelore no Estado da Paraíba. Revista Brasileira de Zootecnia, 32(2), 325–330. https://doi.org/10.1590/S1516-35982003000200010spa
dc.relation.referencesSchmidek A, Rodrigues Paranhos M, Zerlotti Mercadante ME, Macedo de Toledo L, Gonçalves Cyrillo J, & Branco RH. (2013). Genetic and non-genetic effects on calf vigor at birth and preweaning mortality in nellore calves. Revista Brasileira de Zootecnia, 42(6), 421–427. https://doi.org/10.1590/S1516-35982013000600006spa
dc.relation.referencesSantana, B. F., da Fonseca, R., Manuel, M., Mamani, G. C. M., Eler, J. P., & Ferraz, J. B. S. (2017). Viabilidade do uso de características “dias para um peso específico” em programas de melhoramento genético de bovinos da raça Nelore. Revista Brasileira de Saude e Producao Animal, 18(2), 260–268. https://doi.org/10.1590/S1519-99402017000200005spa
dc.relation.referencesSarmiento, R. M., & Garcia, J. P. (2007). Estimation of genetic parameters and variance components for growth traits in Romosinuano cattle in the Colombian humid tropics. Genetics and Molecular Research, 6(3), 482–491.spa
dc.relation.referencesSilva, M.H.M.A. da, Malhado, C.H.M., Kern, E.L., Daltro, D. dos S., Cobuci, J.A., Carneiro, P.L.S., (2019). Inbreeding depression in Holstein cattle in Brazil. Rev. Bras. Zootec. 48, e20170212. https://doi.org/10.1590/rbz4820170212spa
dc.relation.referencesTeixeira, B. B., Mota, R. R., Lôbo, R. B., Da Silva, L. P., Carneiro, A. P. S., Da Silva, F. G., … E Silva, F. F. (2018). Genetic evaluation of growth traits in Nellore cattle through multi-trait and random regression models. Czech Journal of Animal Science, 63(6), 212–221. https://doi.org/10.17221/21/2017-CJASspa
dc.relation.referencesVargas, C. A., Elzo, M. A., Chase, C. C., Chenoweth, P. J., & Olson, T. A. (1998). Estimation of Genetic Parameters for Scrotal Circumference, Age at Puberty in Heifers, and Hip Height in Brahman Cattle. Journal of Animal Science, 76(10), 2536–2541. https://doi.org/10.2527/1998.76102536xspa
dc.relation.referencesVergara, O. D., Ceron-Muñoz, M. F., Arboleda, E. M., Orozco, Y., & Ossa, G. A. (2009). Direct genetic, maternal genetic, and heterozygosity effects on weaning weight in a Colombian multibreed beef cattle population. Journal of Animal Science, 87(2), 516–521. https://doi.org/10.2527/jas.2007-0636spa
dc.relation.referencesVergara, O. D., Elzo, M. a., Ceron-Muñoz, M. F., & Arboleda, E. M. (2009). Weaning weight and post-weaning gain genetic parameters and genetic trends in a Blanco Orejinegro-Romosinuano-Angus-Zebu multibreed cattle population in Colombia. Livestock Science, 124(1–3), 156–162. https://doi.org/10.1016/j.livsci.2009.01.00spa
dc.relation.referencesBernardes, P. A., Nascimento, G. B. do, Savegnago, R. P., Buzanskas, M. E., Watanabe, R. N., de Almeida Regitano, L. C., … Munari, D. P. (2019). Evaluation of imputation accuracy using the combination of two high-density panels in Nelore beef cattle. Scientific Reports, 9(1), 17920. https://doi.org/10.1038/s41598-019-54382-wspa
dc.relation.referencesBradford, H. L., Masuda, Y., Cole, J. B., Misztal, I., & VanRaden, P. M. (2019). Modeling pedigree accuracy and uncertain parentage in single-step genomic evaluations of simulated and US Holstein datasets. Journal of Dairy Science, 102(3), 2308–2318. https://doi.org/10.3168/jds.2018-15419spa
dc.relation.referencesCarvalheiro, R., Boison, S. A., Neves, H. H. R., Sargolzaei, M., Schenkel, F. S., Utsunomiya, Y. T., … Garcia, J. F. (2014). Accuracy of genotype imputation in Nelore cattle. Genetics Selection Evolution, 46(1), 1–11. https://doi.org/10.1186/s12711-014-0069-1spa
dc.relation.referencesCroué, I., & Ducrocq, V. (2017). Genomic and single-step evaluations of carcass traits of young bulls in dual-purpose cattle. Journal of Animal Breeding and Genetics, 134(4), 300–307. https://doi.org/10.1111/jbg.12261spa
dc.relation.referencesElzo, M. A., Mateescu, R. G., Johnson, D. D., Scheffler, T. L., Scheffler, J. M., Carr, C., … Driver, J. D. (2017). Genomic-polygenic and polygenic predictions for nine ultrasound and carcass traits in Angus-Brahman multibreed cattle using three sets of genotypes. Livestock Science, 202(November 2016), 58–66. https://doi.org/10.1016/j.livsci.2017.05.027spa
dc.relation.referencesForni, S., Aguilar, I., & Misztal, I. (2011). Different genomic relationship matrices for single-step analysis using phenotypic, pedigree and genomic information. Genetics Selection Evolution, 43(1), 1–7. https://doi.org/10.1186/1297-9686-43-1spa
dc.relation.referencesFragomeni, B. O., Lourenco, D. A. L., Tsuruta, S., Masuda, Y., Aguilar, I., Legarra, A., … Misztal, I. (2015). Hot topic: Use of genomic recursions in single-step genomic best linear unbiased predictor (BLUP) with a large number of genotypes. Journal of Dairy Science, 98(6), 4090–4094. https://doi.org/10.3168/jds.2014-9125spa
dc.relation.referencesGerstmayr, S. (1992). Impact of the data structure on the reliability of the estimated genetic parameters in an animal model with maternal effects. Journal of Animal Breeding and Genetics, 109(1–6), 321–336. https://doi.org/10.1111/j.1439-0388.1992.tb00412.xspa
dc.relation.referencesGuarini, A. R., Lourenco, D. A. L., Brito, L. F., Sargolzaei, M., Baes, C. F., Miglior, F., … Schenkel, F. S. (2018). Comparison of genomic predictions for lowly heritable traits using multi-step and single-step genomic best linear unbiased predictor in Holstein cattle. Journal of Dairy Science, 101(9), 8076–8086. https://doi.org/10.3168/jds.2017-14193spa
dc.relation.referencesHayes, B J, Bowman, P. J., Chamberlain, A. J., & Goddard, M. E. (2009). Invited review : Genomic selection in dairy cattle : Progress and challenges. Journal of Dairy Science, 92(2), 433–443. https://doi.org/10.3168/jds.2008-1646spa
dc.relation.referencesHayes, Ben J., Bowman, P. J., Chamberlain, A. C., Verbyla, K., & Goddard, M. E. (2009). Accuracy of genomic breeding values in multi-breed dairy cattle populations. Genetics Selection Evolution, 41(1), 1–9. https://doi.org/10.1186/1297-9686-41-51spa
dc.relation.referencesLegarra, A., Christensen, O. F., Aguilar, I., & Misztal, I. (2014). Single Step, a general approach for genomic selection. Livestock Science, 166(August 2014), 54–65. https://doi.org/10.1016/j.livsci.2014.04.029spa
dc.relation.referencesLourenco, D. A. L., Misztal, I., Wang, H., Aguilar, I., Tsuruta, S., & Bertrand, J. K. (2013). Prediction accuracy for a simulated maternally affected trait of beef cattle using different genomic evaluation models 1. J. Anim. Sci, 91, 4090–4098. https://doi.org/10.2527/jas2012-5826spa
dc.relation.referencesLourenco, D. A. L., Tsuruta, S., Fragomeni, B. O., Masuda, Y., Aguilar, I., Legarra, A., … Misztal, I. (2015). Genetic evaluation using single-step genomic best linear unbiased predictor in American Angus. Journal of Animal Science, 93(6), 2653–2662. https://doi.org/10.2527/jas.2014-8836spa
dc.relation.referencesMa, P., Brøndum, R. F., Zhang, Q., Lund, M. S., & Su, G. (2013). Comparison of different methods for imputing genome-wide marker genotypes in Swedish and Finnish Red Cattle. Journal of Dairy Science, 96(7), 4666–4677. https://doi.org/10.3168/jds.2012-6316spa
dc.relation.referencesCorpoica, C.I. Tibaitatá. Martínez, Rodrigo, Bejarano, D., Gómez, Y., Dasoneville, R., Jiménez, A., Even, G., … Mészáros, G. (2017). Genome-wide association study for birth, weaning and yearling weight in Colombian Brahman cattle. Genetics and Molecular Biology, 40(2), 453–459. https://doi.org/10.1590/1678-4685-GMB-2016-0017spa
dc.relation.referencesMasuda, Y., VanRaden, P. M., Misztal, I., & Lawlor, T. J. (2018). Differing genetic trend estimates from traditional and genomic evaluations of genotyped animals as evidence of preselection bias in US Holsteins. Journal of Dairy Science, 101(6), 5194–5206. https://doi.org/10.3168/jds.2017-13310spa
dc.relation.referencesMisztal I, Bradford HL, Lourenco, DAL, Tsuruta S, Masuda Y, Legarra A. (2017). Studies on inflation of GEBV in single-step GBLUP for type. Interbull Bull 51:38-42.spa
dc.relation.referencesMisztal, I., Legarra, A., & Aguilar, I. (2009). Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. Journal of Dairy Science, 92(9), 4648–4655. https://doi.org/10.3168/jds.2009-2064spa
dc.relation.referencesMisztal, P. I. (2016). Genomic analyses with emphasis on single-step. Condensed notes for short-course taught in 2015 in Poznan, Poland, 1–17.spa
dc.relation.referencesMrode, R. ., & Thompson, R. (2005). Linear Models for the Prediction of Animal Breeding Values (2a ed.; R. A. Mrode, ed.). Trowbridge.: CABI Publishing.spa
dc.relation.referencesNeogen GeneSeek Operations. (2018). GeneSeek Genomic Profiler Bovine 50K. 0–3. Recuperado de www.neogen.comspa
dc.relation.referencesNiño, C. A. M., Elzo, M. A., Perdomo, C. M., & Rodriguez, A. J. (2012). Genetic parameters and breeding values for live weight using random regression models in a bos taurus-bos indicus multibreed cattle population in Colombia. Revista Colombiana de Ciencias Pecuarias, 25(4), 548–565.spa
dc.relation.referencesOnogi, A., Ogino, A., Komatsu, T., Shoji, N., Simizu, K., Kurogi, K., … Iwata, H. (2014). Genomic prediction in Japanese Black cattle: Application of a single-step approach to beef cattle. Journal of Animal Science, 92(5), 1931–1938. https://doi.org/10.2527/jas.2014-7168spa
dc.relation.referencesPurcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, Maller J, Sklar P, de Bakker PI, Daly MJ, Sham PC, (2007). PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559-75. https://doi.org/10.1086/519795. Epub 2007 Jul 25. PMID: 17701901; PMCID: PMC1950838.spa
dc.relation.referencesReimann, F. A., Boligon, A. A., Campos, G. S., Cardoso, L. L., Junqueira, V. S., & Cardoso, F. F. (2018). Genetic parameters and accuracy of traditional and genomic breeding values for eye pigmentation, hair coat and breed standard in Hereford and Braford cattle. Livestock Science, 213(February), 44–50. https://doi.org/10.1016/j.livsci.2018.04.007spa
dc.relation.referencesRolf, M. M., Garrick, D. J., Fountain, T., Ramey, H. R., Weaber, R. L., Decker, J. E., … Taylor, J. F. (2015). Comparison of Bayesian models to estimate direct genomic values in multi-breed commercial beef cattle. Genetics, selection, evolution : GSE, 47. https://doi.org/10.1186/s12711-015-0106-8spa
dc.relation.referencesSchaeffer, L. R. (2006). Strategy for applying genome wide selection in dairy cattle. Journal of Animal Breeding and Genetics, 123(4), 218–223.spa
dc.relation.referencesSchefers, J. M., & Weigel, K. A. (2012). Genomic selection in dairy cattle: Integration of DNA testing into breeding programs. Animal Frontiers, 2(1), 4–9. https://doi.org/10.2527/af.2011-0032spa
dc.relation.referencesVanRaden, P. M. (2008). Efficient methods to compute genomic predictions. Journal of Dairy Science, 91(11), 4414–4423. https://doi.org/10.3168/jds.2007-0980spa
dc.relation.referencesWiggans, G. R., Cole, J. B., Van Tassell, C. P., VanRaden, P. M., Ruiz-López, F. J., & García-Ruiz, A. (2016). Changes in genetic selection differentials and generation intervals in US Holstein dairy cattle as a result of genomic selection. Proceedings of the National Academy of Sciences, 113(28), E3995–E4004. https://doi.org/10.1073/pnas.1519061113spa
dc.relation.referencesYoung AI (2019) Solving the missing heritability problem. PLoS Genet 15:1–7. https://doi.org/10.1371/journal.pgen.1008222spa
dc.relation.referencesZambrano, J. C., Echeverri Zuluaga, J. J., & López Herrera, A. (2019). Evaluación genómica en ganado Holstein Colombiano, usando genotipos imputados a densidad media. Revista MVZ Córdoba, 24(2), 7248–7255. https://doi.org/10.21897/rmvz.1704spa
dc.relation.referencesZambrano, J., Rincón, J., López-herrera, A., & Echeverri-Zuluaga, J. J. (2015). Estimation and comparison of conventional and genomic breeding values in Holstein cattle of Antioquia , Colombia. Revista MVZ Cordoba, 20(3), 4739–4753.spa
dc.relation.referencesAshwell, M. S., Heyen, D. W., Weller, J. I., Ron, M., Sonstegard, T. S., Van Tassell, C. P., & Lewin, H. A. (2005). Detection of quantitative trait loci influencing conformation traits and calving ease in Holstein-Friesian cattle. Journal of Dairy Science, 88(11), 4111–4119. https://doi.org/10.3168/jds.S0022-0302(05)73095-2spa
dc.relation.referencesCampos, G. S., Reimann, F. A., Junqueira, V. S., Braccini, J., Cardoso, L. L., Sollero, B. P., … Zootecnia, D. De. (2018). Tag-SNP selection using Bayesian genome-wide association study for growth and adaptation traits in Hereford and Braford cattle. Proceedings of the World Congress on Genetics Applied to Livestock Production. Volume Electronic Poster Session - Methods and Tools - Prediction 2, (November), 484. https://doi.org/10.1111/jbg.12458spa
dc.relation.referencesCarreño, L. O. D., da Conceição Pessoa, M., Espigolan, R., Takada, L., Bresolin, T., Cavani, L., … da Fonseca, R. (2019). Genome Association Study for Visual Scores in Nellore Cattle Measured at Weaning. BMC Genomics, 20(1), 1–9. https://doi.org/10.1186/s12864-019-5520-9spa
dc.relation.referencesCarvalho, F. E., Espigolan, R., Berton, M. P., Neto, J. B. S., Silva, R. P., Grigoletto, L., … Baldi, F. (2020). Genome-wide association study and predictive ability for growth traits in Nellore cattle. Livestock Science, 231(November 2019), 103861. https://doi.org/10.1016/j.livsci.2019.103861spa
dc.relation.referencesCarvalho, M. E., Baldi, F. S., Alexandre, P. A., Santana, M. H. A., Ventura, R. V., Bueno, R. S., … Ferraz, J. B. S. (2019). Genomic regions and genes associated with carcass quality in Nelore cattle. Genetics and Molecular Research, 18(1), 1–15. https://doi.org/10.4238/gmr18226spa
dc.relation.referencesCasas, E., Shackelford, S. D., Keele, J. W., Koohmaraie, M., Smith, T. P. L., & Stone, R. T. (2003). Detection of quantitative trait loci for growth and carcass composition in cattle. Journal of Animal Science, 81(12), 2976–2983. https://doi.org/10.2527/2003.81122976xspa
dc.relation.referencesCasas, E., Shackelford, S. D., Keele, J. W., Stone, R. T., Kappes, S. M., & Koohmaraie, M. (2000). Quantitative trait loci affecting growth and carcass composition of cattle segregating alternate forms of myostatin. Journal of Animal Science, 78(3), 560–569. https://doi.org/10.2527/2000.783560xspa
dc.relation.referencesDe Las Heras-Saldana, S., Clark, S. A., Duijvesteijn, N., Gondro, C., Van Der Werf, J. H. J., & Chen, Y. (2019). Combining information from genome-wide association and multi-tissue gene expression studies to elucidate factors underlying genetic variation for residual feed intake in Australian Angus cattle. BMC Genomics, 20(1), 1–16. https://doi.org/10.1186/s12864-019-6270-4spa
dc.relation.referencesFernández, J. C., Pérez, J. E., Herrera, N., Martínez, R., Bejarano, D., & Rocha, J. F. (2019). Genomic association study for age at first calving and calving interval in Romosinuano and Costeño con Cuernos cattle. Genetics and Molecular Research, 18(2), 1–13. https://doi.org/10.4238/gmr18258spa
dc.relation.referencesFortes, M. R. S., Li, Y., Collis, E., Zhang, Y., & Hawken, R. J. (2013). The IGF1 pathway genes and their association with age of puberty in cattle. Animal Genetics, 44(1), 91–95. https://doi.org/10.1111/j.1365-2052.2012.02367.xspa
dc.relation.referencesGan, Q. F., Li, Y. R., Liu, Q. H., Lund, M., Su, G. S., & Liang, X. W. (2019). Genome-wide association studies for the concentrations of insulin, triiodothyronine, and thyroxine in Chinese Holstein cattle. Tropical Animal Health and Production, 4. https://doi.org/10.1007/s11250-019-02170-zspa
dc.relation.referencesGarrick, D. J., Taylor, J. F., & Fernando, R. L. (2009). Deregressing estimated breeding values and weighting information for genomic regression analyses. Genetics Selection Evolution, 41(1), 1–8. https://doi.org/10.1186/1297-9686-41-55spa
dc.relation.referencesGuarini, A. R., Lourenco, D. A. L., Brito, L. F., Sargolzaei, M., Baes, C. F., Miglior, F., … Schenkel, F. S. (2018). Comparison of genomic predictions for lowly heritable traits using multi-step and single-step genomic best linear unbiased predictor in Holstein cattle. Journal of Dairy Science, 101(9), 8076–8086. https://doi.org/10.3168/jds.2017-14193spa
dc.relation.referencesGutiérrez-Gil, B., Wiener, P., Nute, G. R., Burton, D., Gill, J. L., Wood, J. D., & Williams, J. L. (2008). Detection of quantitative trait loci for meat quality traits in cattle. Animal Genetics, 39(1), 51–61. https://doi.org/10.1111/j.1365-2052.2007.01682.xspa
dc.relation.referencesHan, B., Yuan, Y., Shi, L., Li, Y., Liu, L., & Sun, D. (2019). Identification of single nucleotide polymorphisms of PIK3R1 and DUSP1 genes and their genetic associations with milk production traits in dairy cows. Journal of Animal Science and Biotechnology, 10(1), 1–11. https://doi.org/10.1186/s40104-019-0392-zspa
dc.relation.referencesHayes, B., & Goddard, M. (2010). Genome-wide association and genomic selection in animal breeding. Genome, 53(11), 876–883. https://doi.org/10.1139/G10-076spa
dc.relation.referencesHöglund, J. K., Buitenhuis, A. J., Guldbrandtsen, B., Su, G., Thomsen, B., & Lund, M. S. (2009). Overlapping chromosomal regions for fertility traits and production traits in the Danish Holstein population. Journal of Dairy Science, 92(11), 5712–5719. https://doi.org/10.3168/jds.2008-1964spa
dc.relation.referencesHöglund, Johanna K., Guldbrandtsen, B., Lund, M. S., & Sahana, G. (2012). Analyzes of genome-wide association follow-up study for calving traits in dairy cattle. BMC Genetics, 13. https://doi.org/10.1186/1471-2156-13-71spa
dc.relation.referencesHollmann, A. K., Bleyer, M., Tipold, A., Neßler, J. N., Wemheuer, W. E., Schütz, E., & Brenig, B. (2017). A genome-wide association study reveals a locus for bilateral iridal hypopigmentation in Holstein Friesian cattle. BMC Genetics, 18(1), 1–8. https://doi.org/10.1186/s12863-017-0496-4spa
dc.relation.referencesHu, Z. L., Park, C. A., Wu, X. L., & Reecy, J. M. (2013). Animal QTLdb: An improved database tool for livestock animal QTL/association data dissemination in the post-genome era. Nucleic Acids Research, 41(D1), 871–879. https://doi.org/10.1093/nar/gks1150spa
dc.relation.referencesHuang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Research, 37(1), 1–13. https://doi.org/10.1093/nar/gkn923spa
dc.relation.referencesIgoshin, A. V., Yudin, N. S., Belonogova, N. M., & Larkin, D. M. (2019). Genome-wide association study for body weight in cattle populations from Siberia. Animal Genetics, 50(3), 250–253. https://doi.org/10.1111/age.12786spa
dc.relation.referencesImumorin, I. G., Kim, E. H., Lee, Y. M., De Koning, D. J., van Arendonk, J. A., De Donato, M., … Kim, J. J. (2011). Genome scan for parent-of-origin QTL effects on bovine growth and carcass traits. Frontiers in Genetics, 2(JULY), 1–13. https://doi.org/10.3389/fgene.2011.00044spa
dc.relation.referencesJiang, Z., Michal, J. J., Chen, J., Daniels, T. F., Kunej, T., Garcia, M. D., … MacNeil, M. D. (2009). Discovery of novel genetic networks associated with 19 economically important traits in beef cattle. International Journal of Biological Sciences, 5(6), 528–542. https://doi.org/10.7150/ijbs.5.528spa
dc.relation.referencesKim, J. J., Farnir, F., Savell, J., & Taylor, J. F. (2003). Detection of quantitative trait loci for growth and beef carcass fatness traits in a cross between Bos taurus (Angus) and Bos indicus (Brahman) cattle. Journal of Animal Science, 81(8), 1933–1942. https://doi.org/10.2527/2003.8181933xspa
dc.relation.referencesKneeland, J., Li, C., Basarabt, J., Snelling, W. M., Benkel, B., Murdoch, B., … Moore, S. S. (2004). Identification and fine mapping of quantitative trait loci for growth traits on bovine chromosomes 2, 6, 14, 19, 21, and 23 within one commercial line of Bos taurus. Journal of Animal Science, 82(12), 3405–3414. https://doi.org/10.2527/2004.82123405xspa
dc.relation.referencesLegarra, A., Ricard, A., & Filangi, O. (2016). GS3 Genomic Selection - Gibbs Sampling - Gauss Seidel (pp. 1–25). pp. 1–25.spa
dc.relation.referencesLemos, M. V. A., Chiaia, H. L. J., Berton, M. P., Feitosa, F. L. B., Aboujaoud, C., Camargo, G. M. F., … Baldi, F. (2016). Genome-wide association between single nucleotide polymorphisms with beef fatty acid profile in Nellore cattle using the single step procedure. BMC Genomics, 17(1), 1–16. https://doi.org/10.1186/s12864-016-2511-yspa
dc.relation.referencesLópez, A., Saldarriaga, O. A., Arango, A. E., Fabio, N., Olivera, M., Bedoya, G., & Ossa, J. E. (2001). Ganado Blanco Orejinegro (BON): Una alternativa para la producción en Colombia. Revista Colombiana de Ciencias Pecuarias, 14(2), 121–128. Retrieved from http://rccp.udea.edu.co/index.php/ojs/article/view/40spa
dc.relation.referencesLourenco, D. A. L., Misztal, I., Wang, H., Aguilar, I., Tsuruta, S., & Bertrand, J. K. (2013). Prediction accuracy for a simulated maternally affected trait of beef cattle using different genomic evaluation models1. Journal of Animal Science, 91(9), 4090–4098. https://doi.org/10.2527/jas.2012-5826spa
dc.relation.referencesLu, Y., Vandehaar, M. J., Spurlock, D. M., Weigel, K. A., Armentano, L. E., Connor, E. E., … Tempelman, R. J. (2018). Genome-wide association analyses based on a multiple-trait approach for modeling feed efficiency. Journal of Dairy Science, 101(4), 3140–3154. https://doi.org/10.3168/jds.2017-13364spa
dc.relation.referencesMai, M. D., Rychtářová, J., Zink, V., Lassen, J., & Guldbrandtsen, B. (2010). Quantitative trait loci for milk production and functional traits in two Danish Cattle breeds. Journal of Animal Breeding and Genetics, 127(6), 469–473. https://doi.org/10.1111/j.1439-0388.2010.00869.xspa
dc.relation.referencesMaltecca, C., Weigel, K. A., Khatib, H., Cowan, M., & Bagnato, A. (2009). Whole-genome scan for quantitative trait loci associated with birth weight, gestation length and passive immune transfer in a Holstein x Jersey crossbred population. Animal Genetics, 40(1), 27–34. https://doi.org/10.1111/j.1365-2052.2008.01793.xspa
dc.relation.referencesMarete, A., Lund, M. S., Boichard, D., & Ramayo-Caldas, Y. (2018). A system-based analysis of the genetic determinism of udder conformation and health phenotypes across three French dairy cattle breeds. PLoS ONE, 13(7), 1–17. https://doi.org/10.1371/journal.pone.0199931spa
dc.relation.referencesMartínez, R., Bejarano, D., Gómez, Y., Martínez, F., Ramírez, J., Gallego, J., & Abuabara., Y. (2014). Genome-wide association studies for growth traits in Colombian Creole cattle using a single-step genomic best linear unbiased prediction (gBLUP). In Proceedings, 10th World Congress of Genetics Applied to Livestock Production (pp. 1–3).spa
dc.relation.referencesMartínez, R., Gómez, Y., & Martínez-Roch, J. F. (2014). Genome-wide association study on growth traits in Colombian creole breeds and crossbreeds with Zebu cattle. Genetics and Molecular Research, 13(3), 6420–6432. https://doi.org/10.4238/2014.August.25.5spa
dc.relation.referencesMcClure, M. C., Morsci, N. S., Schnabel, R. D., Kim, J. W., Yao, P., Rolf, M. M., … Taylor, J. F. (2010). A genome scan for quantitative trait loci influencing carcass, post-natal growth and reproductive traits in commercial Angus cattle. Animal Genetics, 41(6), 597–607. https://doi.org/10.1111/j.1365-2052.2010.02063.xspa
dc.relation.referencesMcLaren, W., Gil, L., Hunt, S. E., Riat, H. S., Ritchie, G. R. S., Thormann, A., … Cunningham, F. (2016). The Ensembl Variant Effect Predictor. Genome Biology, 17(1), 1–14. https://doi.org/10.1186/s13059-016-0974-4spa
dc.relation.referencesMichenet, A., Barbat, M., Saintilan, R., Venot, E., & Phocas, F. (2016). Detection of quantitative trait loci for maternal traits using high-density genotypes of Blonde d’Aquitaine beef cattle. BMC Genetics, 17(1), 1–13. https://doi.org/10.1186/s12863-016-0397-yspa
dc.relation.referencesMisztal, I., Legarra, A., & Aguilar, I. (2009). Computing procedures for genetic evaluation including phenotypic, full pedigree, and genomic information. Journal of Dairy Science, 92(9), 4648–4655. https://doi.org/10.3168/jds.2009-2064spa
dc.relation.referencesMoreira, H. L., Canova, E. B., Munari, D. P., Bezerra, L. A. F., Lôbo, R. B., & Paz, C. C. P. (2015). Parâmetros genéticos para período de gestação e características de crescimento pré e pós desmame em bovinos Nelore. Boletim de Indústria Animal, 72(2), 130–135. https://doi.org/10.17523/bia.v72n2p130spa
dc.relation.referencesNayeri, S., Sargolzaei, M., Abo-Ismail, M. K., May, N., Miller, S. P., Schenkel, F., … Stothard, P. (2016). Genome-wide association for milk production and female fertility traits in Canadian dairy Holstein cattle. BMC Genetics, 17(1), 1–11. https://doi.org/10.1186/s12863-016-0386-1spa
dc.relation.referencesOliveira Júnior, G. A., Perez, B. C., Cole, J. B., Santana, M. H. A., Silveira, J., Mazzoni, G., … Ferraz, J. B. S. (2017). Genomic study and medical subject headings enrichment analysis of early pregnancy rate and antral follicle numbers in Nelore heifers. Journal of Animal Science, 95(11), 4796–4812. https://doi.org/10.2527/jas2017.1752spa
dc.relation.referencesPeters, S. O., Kizilkaya, K., Garrick, D. J., Fernando, R. L., Reecy, J. M., Weaber, R. L., … Thomas, M. G. (2012). Bayesian genome-wide association analysis of growth and yearling ultrasound measures of carcass traits in brangus heifers. Journal of Animal Science, 90(10), 3398–3409. https://doi.org/10.2527/jas.2011-4507spa
dc.relation.referencesRincón, J. C., Herrera, A. L., & Zuluaga, J. J. E. (2018). Genome-wide association study using the Bayes C method for important traits in dairy yield in Colombian Holstein cattle. Acta Scientiarum - Animal Sciences, 40, 1–12. https://doi.org/10.4025/actascianimsci.v40i1.39015spa
dc.relation.referencesSaatchi, M., Beever, J. E., Decker, J. E., Faulkner, D. B., Freetly, H. C., Hansen, S. L., … Taylor, J. F. (2014a). QTLs associated with dry matter intake, metabolic mid-test weight, growth and feed efficiency have little overlap across 4 beef cattle studies. BMC Genomics, 15(1), 1–14. https://doi.org/10.1186/1471-2164-15-1004spa
dc.relation.referencesSaatchi, M., Schnabel, R. D., Taylor, J. F., & Garrick, D. J. (2014b). Large-effect pleiotropic or closely linked QTL segregate within and across ten US cattle breeds. BMC Genomics, 15(1). https://doi.org/10.1186/1471-2164-15-442spa
dc.relation.referencesSeabury, C. M., Oldeschulte, D. L., Saatchi, M., Beever, J. E., Decker, J. E., Halley, Y. A., … Taylor, J. F. (2017). Genome-wide association study for feed efficiency and growth traits in U.S. beef cattle. BMC Genomics, 18(1), 1–25. https://doi.org/10.1186/s12864-017-3754-yspa
dc.relation.referencesSherman, E. L., Nkrumah, J. D., Li, C., Bartusiak, R., Murdoch, B., & Moore, S. S. (2009). Fine mapping quantitative trait loci for feed intake and feed efficiency in beef cattle. Journal of Animal Science, 87(1), 37–45. https://doi.org/10.2527/jas.2008-0876spa
dc.relation.referencesSmith, B. J. (2007). boa: An R package for MCMC output convergence assessment and posterior inference. Journal of Statistical Software, 21(11), 1–37. https://doi.org/10.18637/jss.v021.i11spa
dc.relation.referencesStafuzza, N. B., Costa e Silva, E. V. da, Silva, R. M. de O., Costa Filho, L. C. C. da, Barbosa, F. B., Macedo, G. G., … Baldi, F. (2019). Genome-wide association study for age at puberty in young Nelore bulls. Journal of Animal Breeding and Genetics, (August), 1–11. https://doi.org/10.1111/jbg.12438spa
dc.relation.referencesTakasuga, A., Watanabe, T., Mizoguchi, Y., Hirano, T., Ihara, N., Takano, A., … Sugimoto, Y. (2007). Identification of bovine QTL for growth and carcass traits in Japanese Black cattle by replication and identical-by-descent mapping. Mammalian Genome, 18(2), 125–136. https://doi.org/10.1007/s00335-006-0096-5spa
dc.relation.referencesTerakado, A. P. N., Costa, R. B., De Camargo, G. M. F., Irano, N., Bresolin, T., Takada, L., … De Albuquerque, L. G. (2018). Genome-wide association study for growth traits in Nelore cattle. Animal, 12(7), 1358–1362. https://doi.org/10.1017/S1751731117003068spa
dc.relation.referencesWeng, Z., Su, H., Saatchi, M., Lee, J., Thomas, M. G., Dunkelberger, J. R., & Garrick, D. J. (2016). Genome-wide association study of growth and body composition traits in Brangus beef cattle. Livestock Science, 183, 4–11. https://doi.org/10.1016/j.livsci.2015.11.011spa
dc.relation.referencesZhang, Z., Kargo, M., Liu, A., Thomasen, J. R., Pan, Y., & Su, G. (2019). Genotype-by-environment interaction of fertility traits in Danish Holstein cattle using a single-step genomic reaction norm model. Heredity, 123(2), 202–214. https://doi.org/10.1038/s41437-019-0192-4spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.proposalCreole cattleeng
dc.subject.proposalGanado criollospa
dc.subject.proposalgenesspa
dc.subject.proposalgeneseng
dc.subject.proposalheredabilidadspa
dc.subject.proposalgenetic meriteng
dc.subject.proposalheritabilityeng
dc.subject.proposalmérito genéticospa
dc.subject.proposalQTLspa
dc.subject.proposalQTLeng
dc.titleEvaluación genética, evaluación genómica y búsqueda de regiones del genoma en ganado Blanco Orejinegro asociadas a características productivasspa
dc.title.alternativeGenetic evaluation, genomic evaluation and search for regions in the genome of Blanco Orejinegro cattle associated with productive traitsspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1035831972.2020.pdf
Tamaño:
1.56 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: