Causalidad de Granger entre iliquidez y volatilidad en el mercado financiero colombiano

dc.contributor.advisorSosa Martínez, Juan Camilo
dc.contributor.authorRivera Briceño, Andrés Felipe
dc.coverage.countryColombia
dc.date.accessioned2025-09-15T13:23:43Z
dc.date.available2025-09-15T13:23:43Z
dc.date.issued2025
dc.descriptionilustraciones (principalmente a color), diagramasspa
dc.description.abstractEn la teoría, se postula una relación causal entre la volatilidad del precio de un activo y su iliquidez en el mercado. En este contexto, se plantea la hipótesis de que una de estas variables podría mejorar el pronóstico de la otra al incluirla en un conjunto de variables predictoras. Es decir, una de ellas podría causar la otra según el concepto de Granger, lo que sería relevante para gestionar el riesgo de una cartera de inversión. Esta idea ha motivado diversos estudios, principalmente en mercados financieros desarrollados. Sin embargo, las conclusiones de estos estudios son divergentes debido a la complejidad y particularidades de cada mercado. Esto presenta un desafío para la gestión de riesgos de activos financieros en Colombia, ya que se asume que el comportamiento de estas variables se replica en este mercado, que difiere de los mercados estudiados en la literatura. En el presente documento se prueba la existencia y la dirección de la relación ‘‘causal’’ en el sentido de Granger entre iliquidez y volatilidad en el mercado financiero colombiano por medio de metodologías tradicionales de series de tiempo, tales como la prueba de causalidad de Granger, y metodologías aplicadas del campo de redes neuronales y aprendizaje automático como la prueba de Wilcoxon sobre los errores de predicción, penalizaciones aplicadas a modelos Long-Short Term Memory y Multi Layer Perceptron, y Granger-Causal Attentive Mixture of Experts. (Texto tomado de la fuente)spa
dc.description.abstractIn theory, there is a postulated causal relationship between the price volatility of an asset and its illiquidity in the market. In this context, the hypothesis is raised that one of these variables could enhance the forecast of the other by including it in a set of predictor variables. That is, one of them could cause the other according to the Granger concept, which would be relevant for managing the risk of an investment portfolio. This idea has motivated various studies, mainly in developed financial markets. However, the conclusions of these studies diverge due to the complexity and particularities of each market. This presents a challenge for the risk management of financial assets in Colombia, as it is assumed that the behavior of these variables is replicated in this market, which differs from the markets studied in the literature. In this document, the existence and direction of the ‘‘causal’’ relationship between liquidity and volatility in the Colombian financial market is tested by using traditional time series methodologies, such as the Granger causality test, as well as methodologies applied from the field of neural networks and machine learning, such as the Wilcoxon test, penalties applied to LSTM and MLP models, and Granger-Causal Attentive Mixtures of Expertseng
dc.description.curricularareaEstadística.Sede Bogotá
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Estadística
dc.format.extentx, 62 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88757
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadística
dc.relation.referencesAggarwal, C. C.: , 2023; Neural Networks and Deep Learning: A Textbook; Springer; 2a edición; ISBN 3031296419; 9783031296413; URL libgen.li/file.php?md5=8555f371ebf8121f150a3653ee998e39
dc.relation.referencesAmihud, Y.: , 2002; Illiquidity and stock returns: cross-section and time-series effects; Journal of financial markets; 5 (1): 31--56
dc.relation.referencesAmihud, Y. & Mendelson, H.: , 1986; Asset pricing and the bid-ask spread; Journal of Financial Economics; 17 (2): 223--249; doi:https://doi.org/10.1016/0304-405X(86)90065-6; URL https://www.sciencedirect.com/science/article/pii/0304405X86900656.
dc.relation.referencesAncona, N.; Marinazzo, D. & Stramaglia, S.: , 2004; Radial basis function approach to nonlinear granger causality of time series; Phys. Rev. E; 70: 056221; doi:10.1103/PhysRevE.70.056221; URL https://link.aps.org/doi/10.1103/PhysRevE.70.056221
dc.relation.referencesBali, T. G.; Peng, L.; Shen, Y. & Tang, Y.: , 2014; Liquidity shocks and stock market reactions; The Review of Financial Studies; 27 (5): 1434--1485.
dc.relation.referencesBędowska-Sójka, B. & Kliber, A.: , 2019; The causality between liquidity and volatility in the polish stock market; Finance Research Letters; 30: 110--115.
dc.relation.referencesBekaert, G.; Harvey, C. R. & Lundblad, C.: , 2007; Liquidity and expected returns: Lessons from emerging markets; The review of financial studies; 20 (6): 1783--1831.
dc.relation.referencesBillings, S. & Chen, S.: , 1996; The determination of multivariable nonlinear models for dynamic systems using neural networks.
dc.relation.referencesBillings, S. A.: , 1980; Identification of nonlinear systems--a survey; en IEE Proceedings D (Control Theory and Applications), tomo 127; IET; págs. 272--285.
dc.relation.referencesBillings, S. A.: , 2013; Nonlinear system identification: NARMAX methods in the time, frequency, and spatio-temporal domains; John Wiley & Sons.
dc.relation.referencesBloomberg: , 2024; Datos históricos bloomberg; Terminal de Bloomberg; recuperado el 31 de enero de 2024
dc.relation.referencesBodie, Z.; Kane, A. & Marcus, A. J.: , 2011; Investments; McGraw-hill.
dc.relation.referencesBonferroni, C.: , 1936; Teoria statistica delle classi e calcolo delle probabilita; Pubblicazioni del R istituto superiore di scienze economiche e commericiali di firenze; 8: 3--62
dc.relation.referencesBrooks, C.: , 2019; Introductory econometrics for finance; Cambridge university press.
dc.relation.referencesBryson, A. E.: , 1961; A gradient method for optimizing multi-stage allocation processes; en Proc. Harvard Univ. Symposium on digital computers and their applications, tomo 72; pág. 22.
dc.relation.referencesBVC: , 2023; Sitio oficial de la bolsa de valores de colombia; URL https://www.bvc.com.co/.
dc.relation.referencesCampbell, J. Y.; Lo, A. W.; MacKinlay, A. C. & Whitelaw, R. F.: , 1998; The econometrics of financial markets; Macroeconomic Dynamics; 2 (4): 559--562.
dc.relation.referencesCho, K.; Van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H. & Bengio, Y.: , 2014; Learning phrase representations using rnn encoder-decoder for statistical machine translation; arXiv preprint arXiv:1406.1078.
dc.relation.referencesChordia, T.; Roll, R. & Subrahmanyam, A.: , 2000; Commonality in liquidity; Journal of financial economics; 56 (1): 3--28.
dc.relation.referencesChowdhary, K. R.: , 2020; Natural Language Processing; Springer India, New Delhi; ISBN 978-81-322-3972-7; págs. 603--649; doi:10.1007/978-81-322-3972-7_19; URL https://doi.org/10.1007/978-81-322-3972-7_19.
dc.relation.referencesChu, S. R.; Shoureshi, R. & Tenorio, M.: , 1990; Neural networks for system identification; IEEE Control systems magazine; 10 (3): 31--35.
dc.relation.referencesChung, K. H.&Zhang, H.:,2014; A simple approximation of intraday spreads using daily data; Journal of Financial Markets; 17: 94- 120; doi:https://doi.org/10.1016/j.finmar.2013.02.004; URL https://www.sciencedirect.com/science/article/pii/S138641811300013X.
dc.relation.referencesCohen, J.: , 1988; Statistical power analysis forthe behavioural sciences; Baskı, Hillsdale NJ
dc.relation.referencesCohen, K. J.; Ness Jr, W. L.; Okuda, H.; Schwartz, R. A. & Whitcomb, D. K.: , 1976; The determinants of common stock returns volatility: An international comparison; The Journal of Finance; 31 (2): 733--740.
dc.relation.referencesCorwin, S. A. & Schultz, P.: , 2012; A simple way to estimate bid-ask spreads from daily high and low prices; The journal of finance; 67 (2): 719--760.
dc.relation.referencesCórdoba García, A. E.; Burbano Agredo, J. E. et al.: , 2018; Análisis de la noticia del Acuerdo de Paz en los rendimientos del índice accionario; Tesis Doctoral; Universidad EAFIT.
dc.relation.referencesDANE: , 2015; Boletín de exportaciones, diciembre de 2015; Archivo PDF; URL https://www.dane.gov.co/files/investigaciones/ boletines/exportaciones/bol_exp_dic15.pdf.
dc.relation.referencesEkman, M.: , 2021; Learning deep learning: Theory and practice of neural networks, computer vision, natural language processing, and transformers using TensorFlow; Addison-Wesley Professional.
dc.relation.referencesEnders, W.: , 2015; Applied econometric time series fourth edition; New York (US): University of Alabama: 30.
dc.relation.referencesEpps, T. W. & Epps, M. L.: , 1976; The stochastic dependence of security price changes and transaction volumes: Implications for the mixture-of-distributions hypothesis; Econometrica; 44 (2): 305--321; URL http://www.jstor.org/stable/1912726.
dc.relation.referencesFisher, R. A.: , 1992; Statistical Methods for Research Workers; Springer New York, New York, NY; ISBN 978-1-4612-4380-9; págs. 66--70; doi:10.1007/978-1-4612-4380-9_6; URL https://doi.org/10.1007/978-1-4612-4380-9_6.
dc.relation.referencesFong, K. Y.; Holden, C. W. & Tobek, O.: , 2018; Are volatility over volume liquidity proxies useful for global or us research?; Kelley School of Business Research Paper; (17-49).
dc.relation.referencesGençay, R.; Dacorogna, M.; Muller, U. A.; Pictet, O. & Olsen, R.: , 2001; An introduction to high-frequency finance; Elsevier.
dc.relation.referencesGéron, A.: , 2022; Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow; .O’Reilly Media, Inc."
dc.relation.referencesGold, N.; Wang, Q.; Cao, M. & Huang, H.: , 2017; Liquidity and volatility commonality in the canadian stock market; Mathematics in-Industry Case Studies; 8 (1): 1--20.
dc.relation.referencesGranger, C. W.: , 1969; Investigating causal relations by econometric models and cross-spectral methods; Econometrica: journal of the Econometric Society: 424--438.
dc.relation.referencesHamilton, J. D.: , 1994; Time series analysis; Princeton university press.
dc.relation.referencesHarris, L.: , 2003; Trading and exchanges: Market microstructure for practitioners; OUP USA
dc.relation.referencesHautsch, N. & Jeleskovic, V.: , 2008; High-frequency volatility and liquidity; SFB 649 Discussion Paper 2008,047; Humboldt University of Berlin, Collaborative Research Center 649- Economic Risk; Berlin.
dc.relation.referencesHaykin, S.: , 1998; Neural networks: a comprehensive foundation; Prentice Hall PTR
dc.relation.referencesHiemstra, C. & Jones, J. D.: , 1994; Testing for linear and nonlinear granger causality in the stock price-volume relation; The Journal of Finance; 49 (5): 1639--1664.
dc.relation.referencesHochreiter, S. & Schmidhuber, J.: , 1997; Long short-term memory; Neural computation; 9 (8): 1735--1780
dc.relation.referencesHorn, R. A. & Johnson, C. R.: , 2012; Matrix analysis; Cambridge university press
dc.relation.referencesHorvath, S.; Sultan, M. S. & Ombao, H.: , 2022; Granger causality using neural networks; arXiv preprint arXiv:2208.03703.
dc.relation.referencesHull, J. C.: , 2017; Options, Futures, and Other Derivatives; Pearson; 10a edición; ISBN 013447208X,9780134472089; URL http://gen.lib.rus.ec/book/index.php?md5=9aa03c67e8aeca6814258c7f8f07f9de.
dc.relation.referencesHull, J. C. & Basu, S.: , 2016; Options, futures, and other derivatives; Pearson Education India.
dc.relation.referencesJacobs, R. A.; Jordan, M. I.; Nowlan, S. J. & Hinton, G. E.: , 1991; Adaptive mixtures of local experts; Neural computation; 3 (1): 79--87.
dc.relation.referencesJayant V Deshpande, Uttara Naik-Nimbalkar, I. D.: , 2017; Nonparametric Statistics: Theory and Methods; World Scientific Pu blishing Co; ISBN 9789814663571,9814663573; URL http://gen.lib.rus.ec/book/index.php?md5=2150ae74e02ec015f70bd83d31907487
dc.relation.referencesJohnson, Richard A;Wichern, D. W.: , 2013; Applied Multivariate Statistical Analysis; Pearson Education Limited; pearson new international ed of 6th revised ed edición; ISBN 1292024941,9781292024943; URL http://gen.lib.rus.ec/book/index.php?md5= B478397BAF32F6CD46DAED9460A6E166.
dc.relation.referencesJordan, M. I. & Jacobs, R. A.: , 1994; Hierarchical mixtures of experts and the em algorithm; Neural computation; 6 (2): 181--214.
dc.relation.referencesKirchgässner, G.; Wolters, J. & Hassler, U.: , 2012; Introduction to modern time series analysis; Springer Science & Business Media.
dc.relation.referencesKullback, S.: , 1997; Information theory and statistics; Courier Corporation.
dc.relation.referencesLjung, G. M. & Box, G. E.: , 1978; On a measure of lack of fit in time series models; Biometrika; 65 (2): 297--303.
dc.relation.referencesMarkowitz, H.: , 1952; Portfolio selection*; The Journal of Finance; 7 (1): 77--91; doi:https://doi.org/10.1111/j.1540-6261.1952. tb01525.x; URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-6261.1952.tb01525.x.
dc.relation.referencesMasoudnia, S. & Ebrahimpour, R.: , 2014; Mixture of experts: a literature survey; Artificial Intelligence Review; 42: 275--293.
dc.relation.referencesMike, S. & Farmer, J. D.: , 2008; An empirical behavioral model of liquidity and volatility; Journal of Economic Dynamics and Control; 32 (1): 200--234; doi:https://doi.org/10.1016/j.jedc.2007.01.025; URL https://www.sciencedirect.com/science/article/pii/ S0165188907000450; applications of statistical physics in economics and finance.
dc.relation.referencesMitchell, T. M.: , 1997; Machine learning; tomo 1; McGraw-hill New York
dc.relation.referencesNair, V. & Hinton, G. E.: , 2010; Rectified linear units improve restricted boltzmann machines; en Proceedings of the 27th international conference on machine learning (ICML-10); págs. 807--814.
dc.relation.referencesOlah, C.: , 2015; Understanding LSTM networks; https://colah.github.io/posts/2015-08-Understanding-LSTMs/.
dc.relation.referencesOng, M. A.: , 2015; An information theoretic analysis of stock returns, volatility and trading volumes; Applied Economics; 47 (36): 3891--3906.
dc.relation.referencesPastor, L. & Veronesi, P.: , 2012; Uncertainty about government policy and stock prices; The journal of Finance; 67 (4): 1219--1264.
dc.relation.referencesPatton, A. J.: , 2011; Volatility forecast comparison using imperfect volatility proxies; Journal of Econometrics; 160 (1): 246--256; doi: https://doi.org/10.1016/j.jeconom.2010.03.034; URL https://www.sciencedirect.com/science/article/pii/S030440761000076X; reali zed Volatility.
dc.relation.referencesPena, D.: , 2001; A course in time series analysis
dc.relation.referencesPérez Muñoz, D. & Ausique Chacón, J. F.: , 2018; Elecciones con tensiones: Impacto de las elecciones presidenciales en colombia en el índice bursátil.
dc.relation.referencesRestrepo Encizo, L. P. & Castro Echavarría, C.: , 2019; Impacto de la inversión extranjera con los acuerdos de paz en colombia.
dc.relation.referencesRosoł, M.; Młyńczak, M. & Cybulski, G.: , 2022; Granger causality test with nonlinear neural-network-based methods: Python package and simulation study; Computer Methods and Programs in Biomedicine; 216: 106669.
dc.relation.referencesRuiz Dorado, A. A.; Mosquera Oviedo, J. et al.: , 2021; Análisis y consecuencias de la volatilidad de la trm y el colcap en el mercado financiero colombiano entre 2019 y 2020
dc.relation.referencesSarr, A. & Lybek, T.: , 2002; Measuring liquidity in financial markets.
dc.relation.referencesSchwab, P.; Miladinovic, D. & Karlen, W.: , 2019; Granger-causal attentive mixtures of experts: Learning important features with neural networks; en Proceedings of the AAAI Conference on Artificial Intelligence, tomo 33; págs. 4846--4853.
dc.relation.referencesShumway, R. H. & Stoffer, D. S.: , 2000; Time series analysis and its applications; tomo 3; Springer
dc.relation.referencesTank, A.; Covert, I.; Foti, N.; Shojaie, A. & Fox, E. B.: , 2021; Neural granger causality; IEEE Transactions on Pattern Analysis and Machine Intelligence; 44 (8): 4267--4279.
dc.relation.referencesTao, Y.; Ma, L.; Zhang, W.; Liu, J.; Liu, W. & Du, Q.: , 2018; Hierarchical attention-based recurrent highway networks for time series prediction; CoRR; abs/1806.00685; URL http://arxiv.org/abs/1806.00685.
dc.relation.referencesToda, H. Y. & Yamamoto, T.: , 1995; Statistical inference in vector autoregressions with possibly integrated processes; Journal of econometrics; 66 (1-2): 225--250.
dc.relation.referencesWald, A.: , 1943; Tests of statistical hypotheses concerning several parameters when the number of bservations is large; Transactions of the American Mathematical society; 54 (3): 426--482
dc.relation.referencesWeber, P. & Rosenow, B.: , 2006; Large stock price changes: volume or liquidity?; Quantitative finance; 6 (1): 7--14
dc.relation.referencesWei, W. W.: , 2018; Multivariate time series analysis and applications; John Wiley & Sons.
dc.relation.referencesWerbos, P.: , 1974; Beyond regression: New tools for prediction and analysis in the behavioral sciences; PhD thesis, Committee on Applied Mathematics, Harvard University, Cambridge, MA.
dc.relation.referencesWilcoxon, F.: , 1945; Individual comparisons by ranking methods. biometrics., 1, 80--83
dc.relation.referencesWilmott, P.: , 2013; Paul Wilmott introduces quantitative finance; John Wiley & Sons.
dc.relation.referencesWilson, D. J.: , 2019; The harmonic mean p-value for combining dependent tests; Proceedings of the National Academy of Sciences; 116 (4): 1195--1200.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.bneEstadística económicaspa
dc.subject.bneEconomic statisticseng
dc.subject.bneIncertidumbre (Estadística)spa
dc.subject.bneUncertaintyeng
dc.subject.bneToma de decisiones (Estadística)spa
dc.subject.bneStatistical decisioneng
dc.subject.bneRiesgo financiero -- Métodos estadísticosspa
dc.subject.bneFinancial risk -- Statistical methodseng
dc.subject.bneRiesgo (Economía) -- Modelos matemáticosspa
dc.subject.bneRisk -- Mathematical modelseng
dc.subject.bneSeries temporalesspa
dc.subject.bneTime-series analysiseng
dc.subject.bneVariaciones estacionales (Economía) -- Métodos estadísticosspa
dc.subject.bneSeasonal variations (Economics) -- Statistical methodseng
dc.subject.bneLiquidez bancaria -- Modelos econométricosspa
dc.subject.bneLiquidity (Economics) -- Econometric modelseng
dc.subject.bneMachine learningeng
dc.subject.ddc330 - Economía::332 - Economía financiera
dc.subject.ddc510 - Matemáticas::518 - Análisis numérico
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
dc.subject.otherCausalidad de Grangerspa
dc.subject.otherMercado financiero -- Métodos estadísticosspa
dc.subject.otherFinancial markets -- Statistical methodseng
dc.subject.otherAprendizaje automático (Inteligencia artificial)spa
dc.subject.proposalCausalidad de Grangerspa
dc.subject.proposalVolatilidadspa
dc.subject.proposalIliquidezspa
dc.subject.proposalSeries de tiempospa
dc.subject.proposalRedes neuronalesspa
dc.subject.proposalAprendizaje de máquinaspa
dc.subject.proposalMercados financierosspa
dc.subject.proposalGranger causalityeng
dc.subject.proposalVolatilityeng
dc.subject.proposalIliquidityeng
dc.subject.proposalTime serieseng
dc.subject.proposalNeural networkseng
dc.subject.proposalMachine Learningeng
dc.subject.proposalFinancial marketseng
dc.subject.unamPrueba de hipótesis estadísticaspa
dc.subject.unamStatistical hypothesis testingeng
dc.subject.wikidataGranger causalityeng
dc.titleCausalidad de Granger entre iliquidez y volatilidad en el mercado financiero colombianospa
dc.title.translatedGranger causality between illiquidity and volatility in the colombian financial marketeng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentAdministradores
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1075689914.2025.pdf
Tamaño:
2.05 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: