Producción y caracterización de un material compuesto a base de partículas de magnetita y matrices de caucho nitrilo butadieno

dc.contributor.advisorLandínez Téllez, David Arseniospa
dc.contributor.advisorRamos Barrado, José Ramónspa
dc.contributor.authorGarzón Posada, Andrés Orlandospa
dc.contributor.researchgroupGrupo de Física de Nuevos Materialesspa
dc.date.accessioned2020-08-19T05:03:08Zspa
dc.date.available2020-08-19T05:03:08Zspa
dc.date.issued2019-06-24spa
dc.description.abstractEste trabajo describe la fabricación de compuestos conformados a partir de matrices de nitrilo butadieno reforzadas con partículas de magnetita sintética o mineral en diferentes cantidades. Para después, estudiar sus propiedades morfológicas, estructurales, térmicas, eléctricas, magnéticas y de blindaje electromagnético. Materiales compuestos de esta clase son empleados en la producción de componentes electrónicos, polímeros con memoria de forma, y fundamentalmente para la producción de atenuadores de radiación electromagnética en aplicaciones de defensa militar pasiva, construcción de edificios, barcos, aviones y otros vehículos de transporte. Los compuestos se fabricaron empleando el método de estado fundido. Los refuerzos de magnetita mineral o sintética, según el caso, fueron adicionados en diferentes proporciones 5, 10, 20, 30 y 40 phr. Se utilizó una prensa vulcanizadora con el fin de curar los compuestos y moldearlos según la geometría requerida. El estudio de las propiedades de los materiales fabricados se llevó a cabo a través de difracción de rayos X (DRX), microscopía electrónica FESEM-FIB, espectroscopía fotoelectrónica de rayos X (XPS), análisis termogravimétrico (TGA), calorimetría diferencial de barrido (DSC), espectroscopía Raman, resistividad superficial, estudios de magnetización en función de la temperatura y el campo aplicado, así como estudios de blindaje electromagnético. La información obtenida de la caracterización DRX permite establecer la transición estructural amorfo-cristalina que experimentan los compuestos al incrementarse la cantidad de magnetita adicionada en la matriz de caucho nitrilo butadieno. El análisis morfológico llevado a cabo por medio de la microscopía electrónica permite establecer las diferencias de aspecto y forma de los refuerzos. Estas diferencias repercuten en la dispersión de los precursores al interior de la matriz y consecuentemente afectan las propiedades de los compuestos. A través de la espectroscopía Raman se estudió los cambios estructurales en los compuestos debido a las interacciones entre los refuerzos y las cadenas poliméricas de la matriz. Con la técnica XPS se ejecutó el análisis elemental de los precursores y los compuestos, pero sobre todo fue empleada para identificar las posibles interacciones en la interfaz matriz-refuerzo o entre los diferentes elementos que componen los materiales. Dichas interacciones tienen su origen en la reactividad superficial de la magnetita. El análisis térmico de los diferentes materiales compuestos a partir de las técnicas TGA y DSC, permitió identificar como la estabilidad térmica aumenta y la temperatura de transición vítrea de los materiales pasa a menores temperaturas al ser mayores las cantidades de magnetita adicionadas. Las medidas de resistividad eléctrica permitieron observar una reducción en la resistividad superficial de los materiales con 20 phr de magnetita de hasta dos órdenes de magnitud, respecto a los materiales con menor contenido de ferrita. Las propiedades de apantallamiento electromagnético fueron evaluadas en la banda X de frecuencia (8-12 GHz) y banda K (18-27 GHz), observándose atenuaciones superiores a los 34 dB para los compuestos con mayor cantidad de magnetita. Finalmente, las propiedades magnéticas de los compuestos muestran como la magnetización de saturación y de remanecía, al igual que la susceptibilidad y la permeabilidad magnética son dependientes de la cantidad de magnetita adicionada en la matriz. Siendo en todos los casos estas variables superiores en los materiales constituidos por magnetita artificial, debido a su mejor dispersión y homogeneidad al interior de la matriz de caucho.spa
dc.description.abstractThis work describes the production of a composite material made up of from a nitrile butadiene matrix reinforced with particles of synthetic or mineral magnetite in different quantities, in order to evaluate its structural, morphological, thermal, electrical, magnetic and electromagnetic shielding properties. Composite materials of this type are used for electronic components manufacturing, shape memory polymers and especially for the production of electromagnetic shielding materials in passive military defense applications, building construction, ships, airplanes and other vehicles. Composite materials were manufactured following the melt mixing method. Magnetite reinforcements fillers were added in different ratios 5, 10, 20, 30 and 40 phr. Composite materials with natural magnetite and synthetic magnetite have been considered separately. After the composites production, a vulcanizing press machine was used in order to cure the samples according to the required geometry. Composites characterization was carried out through X-ray diffraction studies, field emission scanning electron microscopy, Raman spectroscopy, X-ray photoelectronic spectroscopy, differential scanning calorimetry, thermogravimetric analysis, resistivity, magnetization and electromagnetic shielding studies. The results obtained by DRX show an amorphous-crystalline structural transition between the samples with the increase in the magnetite filler added to the butadiene nitrile rubber matrix. The morphological analysis allows to establish the differences in size and shape between both kinds of magnetite fillers (synthetic and mineral). These differences influence its dispersion within the matrix and consequently affect the composite properties. Structural changes in the composites due to the interactions between fillers and the polymeric chains of the matrix were studied through Raman spectroscopy. X-ray photoelectronic spectroscopy (XPS) was used for the elemental analysis of the composites and reagents. Also, with this technique it was possible to the identify the possible interactions in the matrix-reinforcement interface or between the fillers. These interactions were created due to the high surface reactivity of magnetite. The composites thermal analysis was carried out through thermogravimetry studies and differential scanning calorimetry; both techniques allowed to identify how the thermal stability increases and the glass transition temperature moves towards lower temperatures as the magnetite within the matrix increases. The electrical resistivity measurements show a drop in the surface resistivity of the samples of up to three orders of magnitude in the composites reinforced with 20 phr of synthetic magnetite and two orders of magnitude in the composites reinforced with 20 phr of mineral magnetite. The analysis of the magnetic properties of the composites show how the saturation magnetization, remanence magnetization, susceptibility and permeability are directly related with the amount of magnetite within the matrix. The composites reinforced with artificial magnetite has better magnetic properties due to its better dispersion and homogeneity. The electromagnetic shielding properties were evaluated in the X band of frequency (8-12 GHz) and K band (18-27 GHz). It is possible to identify in the composites with the highest amounts of magnetite attenuations greater than 34 dB.spa
dc.description.additionalLínea de Investigación: Nuevos materiales: Materiales Compuestos de Matriz Poliméricaspa
dc.description.degreelevelDoctoradospa
dc.format.extent186spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78083
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.programBogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materialesspa
dc.relation.references[1.] Ghosh P, Chakrabarti A. Conducting carbon black filled EPDM vulcanizates: assessment of dependence of physical and mechanical properties and conducting character on variation of filler loading. European Polymer Journal. 1 de mayo de 2000;36(5):1043-54.spa
dc.relation.references[2.] Madani M. Conducting carbon black filled NR/ IIR blend vulcanizates: Assessment of the dependence of physical and mechanical properties and electromagnetic interference shielding on variation of filler loading. J Polym Res. 4 de abril de 2009;17(1):53-62.spa
dc.relation.references[3.] Ling Q, Sun J, Zhao Q, Zhou Q. Effects of Carbon Black Content on Microwave Absorbing and Mechanical Properties of Linear Low-Density Polyethylene/Ethylene-Octene Copolymer/Calcium Carbonate Composites. Polymer-Plastics Technology and Engineering. 6 de enero de 2011;50(1):89-94.spa
dc.relation.references[4.] Al-Saleh MH, Sundararaj U. Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon. junio de 2009;47(7):1738-46.spa
dc.relation.references[5.] Makled MH, Matsui T, Tsuda H, Mabuchi H, El-Mansy MK, Morii K. Magnetic and dynamic mechanical properties of barium ferrite–natural rubber composites. Journal of Materials Processing Technology. marzo de 2005;160(2):229-33.spa
dc.relation.references[6.] Vinayasree S, Soloman M, Sunny V, Mohanan P, Kurian P, Anantharaman M. A microwave absorber based on strontium ferrite–carbon black–nitrile rubber for S and X-band applications. Composites Science and Technology. 18 de junio de 2013; 82:69-75.spa
dc.relation.references[7.] Bellucci FS, Lobato de Almeida FC, Lima Nobre MA, Rodríguez-Pérez MA, Paschoalini AT, Job AE. Magnetic properties of vulcanized natural rubber nanocomposites as a function of the concentration, size and shape of the magnetic fillers. Composites Part B: Engineering. febrero de 2016; 85:196-206.spa
dc.relation.references[8.] Sunny V, Kurian P, Mohanan P, Joy PA, Anantharaman MR. A flexible microwave absorber based on nickel ferrite nanocomposite. Journal of Alloys and Compounds. 7 de enero de 2010;489(1):297-303.spa
dc.relation.references[9.] Weidenfeller B, Höfer M, Schilling F. Thermal and electrical properties of magnetite filled polymers. Composites Part A: Applied Science and Manufacturing. 1 de agosto de 2002;33(8):1041-53.spa
dc.relation.references[10.] Razzaq MY, Anhalt M, Frormann L, Weidenfeller B. Mechanical spectroscopy of magnetite filled polyurethane shape memory polymers. Materials Science and Engineering: A. 15 de diciembre de 2007;471(1–2):57-62.spa
dc.relation.references[11.] Bibliotecas DN de, Garzón Posada AO. Repositorio institucional UN [Internet] [masters]. Universidad Nacional de Colombia; 2015 [citado 19 de mayo de 2016]. Disponible en: http://www.bdigital.unal.edu.co/48467/.spa
dc.relation.references[12.] Al-Saleh MH, Sundararaj U. Electrically conductive carbon nanofiber/polyethylene composite: effect of melt mixing conditions. Polym Adv Technol. 1 de febrero de 2011;22(2):246-53.spa
dc.relation.references[13.] Fan Z, Luo G, Zhang Z, Zhou L, Wei F. Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites. Materials Science and Engineering: B. 2006;132(1):85–89.spa
dc.relation.references[14.] Micheli D, Apollo C, Pastore R, Bueno Morles R, Laurenzi S, Marchetti M. Nanostructured composite materials for electromagnetic interference shielding applications. Acta Astronautica. noviembre de 2011;69(9–10):747-57.spa
dc.relation.references[15.] Kong I, Hj Ahmad S, Hj Abdullah M, Hui D, Nazlim Yusoff A, Puryanti D. Magnetic and microwave absorbing properties of magnetite–thermoplastic natural rubber nanocomposites. Journal of Magnetism and Magnetic Materials. noviembre de 2010;322(21):3401-9.spa
dc.relation.references[16.] Ramajo LA, Cristóbal AA, Botta PM, Porto López JM, Reboredo MM, Castro MS. Dielectric and magnetic response of Fe3O4/epoxy composites. Composites Part A: Applied Science and manufacturing. abril de 2009;40(4):388-93.spa
dc.relation.references[17.] Mazo-zuluaga j. una mirada al estudio y las aplicaciones tecnológicas y biomédicas de la magnetita (a look at the study and the technological and biomedical applications of magnetite). Revista EIA. 7 de noviembre de 2013;8(16):207-23.spa
dc.relation.references[18.] Xu J, Yang H, Fu W, Du K, Sui Y, Chen J, et al. Preparation and magnetic properties of magnetite nanoparticles by sol–gel method. Journal of Magnetism and Magnetic Materials. febrero de 2007;309(2):307-11.spa
dc.relation.references[19.] Lemine OM, Omri K, Zhang B, El Mir L, Sajieddine M, Alyamani A, et al. Sol–gel synthesis of 8 nm magnetite (Fe3O4) nanoparticles and their magnetic properties. Superlattices and Microstructures. octubre de 2012;52(4):793-9.spa
dc.relation.references[20.] Picasso G, Vega J, Uzuriaga R, Ruiz GP. Preparación de nanopartículas de magnetita por los métodos sol-gel y precipitación: estudio de la composición química y estructura. Revista de la Sociedad Química del Perú. julio de 2012;78(3):170-82.spa
dc.relation.references[21.] Ong HT, Julkapli NM, Hamid SBA, Boondamnoen O, Tai MF. Effect of magnetic and thermal properties of iron oxide nanoparticles (IONs) in nitrile butadiene rubber (NBR) latex. Journal of Magnetism and Magnetic Materials. 1 de diciembre de 2015; 395:173-9.spa
dc.relation.references[22.] Panwar V, Sachdev VK, Mehra RM. Insulator conductor transition in low-density polyethylene–graphite composites. European Polymer Journal. febrero de 2007;43(2):573-85.spa
dc.relation.references[23.] Wang F, Hong RY, Feng WG, Badami D, Zeng K. Electrical and mechanical properties of ABS/EPDM composites filled with carbon black. Materials Letters. 15 de junio de 2014; 125:48-50.spa
dc.relation.references[24.] Sahoo BP, Naskar K, Tripathy DK. Conductive carbon black-filled ethylene acrylic elastomer vulcanizates: physico-mechanical, thermal, and electrical properties. J Mater Sci. 3 de noviembre de 2011;47(5):2421-33.spa
dc.relation.references[25.] Tan WL, Abu Bakar M. Synthesis, characterization and impedance spectroscopy study of magnetite/epoxidized natural rubber nanocomposites. Journal of Alloys and Compounds. 5 de junio de 2013; 561:40-7.spa
dc.relation.references[26.] Petcharoen K, Sirivat A. Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Materials Science and Engineering: B. 25 de marzo de 2012;177(5):421-7.spa
dc.relation.references[27.] Otake T, Wesolowski DJ, Anovitz LM, Allard LF, Ohmoto H. Mechanisms of iron oxide transformations in hydrothermal systems. Geochimica et Cosmochimica Acta. noviembre de 2010;74(21):6141-56.spa
dc.relation.references[28.] Radu T, Iacovita C, Benea D, Turcu R. X-Ray Photoelectron Spectroscopic Characterization of Iron Oxide Nanoparticles. Applied Surface Science. mayo de 2017; 405:337-43.spa
dc.relation.references[29.] Roca AG, Gutiérrez L, Gavilán H, Fortes Brollo ME, Veintemillas-Verdaguer S, Morales M del P. Design strategies for shape-controlled magnetic iron oxide nanoparticles. Advanced Drug Delivery Reviews. enero de 2019; 138:68-104.spa
dc.relation.references[30.] Cui H, Liu Y, Ren W. Structure switch between α-Fe2O3, γ-Fe2O3 and Fe3O4 during the large scale and low temperature sol–gel synthesis of nearly monodispersed iron oxide nanoparticles. Advanced Powder Technology. enero de 2013;24(1):93-7.spa
dc.relation.references[31.] Shokrollahi H. A review of the magnetic properties, synthesis methods and applications of maghemite. Journal of Magnetism and Magnetic Materials. marzo de 2017; 426:74-81.spa
dc.relation.references[32.] Can MM, Coşkun M, Fırat T. A comparative study of nanosized iron oxide particles; magnetite (Fe3O4), maghemite (γ-Fe2O3) and hematite (α-Fe2O3), using ferromagnetic resonance. Journal of Alloys and Compounds. noviembre de 2012; 542:241-7.spa
dc.relation.references[33.] Bohra M, Agarwal N, Singh V. A Short Review on Verwey Transition in Nanostructured Fe 3 O 4 Materials. Journal of Nanomaterials. 25 de marzo de 2019; 2019:1-18.spa
dc.relation.references[34.] Wang X, Liao Y, Zhang D, Wen T, Zhong Z. A review of Fe3O4 thin films: Synthesis, modification and applications. Journal of Materials Science & Technology. agosto de 2018;34(8):1259-72.spa
dc.relation.references[35.] Bohra M, Prasad S, Venketaramani N, Kumar N, Sahoo SC, Krishnan R. Magnetic properties of magnetite thin films close to the Verwey transition. Journal of Magnetism and Magnetic Materials. noviembre de 2009;321(22):3738-41.spa
dc.relation.references[36.] Salazar-Camacho C, Villalobos M, Rivas-Sánchez M de la L, Arenas-Alatorre J, Alcaraz-Cienfuegos J, Gutiérrez-Ruiz ME. Characterization and surface reactivity of natural and synthetic magnetites. Chemical Geology. junio de 2013;347:233-45.spa
dc.relation.references[37.] de Mendonça ESDT, de Faria ACB, Dias SCL, Aragón FFH, Mantilla JC, Coaquira JAH, et al. Effects of silica coating on the magnetic properties of magnetite nanoparticles. Surfaces and Interfaces. marzo de 2019; 14:34-43.spa
dc.relation.references[38.] Oliveira PN, Bini RD, Dias GS, Alcouffe P, Santos IA, David L, et al. Magnetite nanoparticles with controlled sizes via thermal degradation of optimized PVA/Fe(III) complexes. Journal of Magnetism and Magnetic Materials. agosto de 2018; 460:381-90.spa
dc.relation.references[39.] Introduction to Plastics and Elastomers. En: Chemical Resistance of Thermoplastics [Internet]. Oxford: William Andrew Publishing; 2012 [citado 26 de febrero de 2017]. p. xxi-xxxiv. (Plastics Design Library). Disponible en: http://www.sciencedirect.com/science/article/pii/B9781455778966000595.spa
dc.relation.references[40.] Cheremisinoff NP, Cheremisinoff PN. Elastomer Technology Handbook. CRC Press; 1993. 1138 p.spa
dc.relation.references[41.] Garzón Posada AO, Landínez Téllez DA, Roa Rojas J, Ramos Barrado J. Materiales compuestos de matriz polimérica usados para el blindaje de interferencia electromagnética. Ciencia e Ingeniería Neogranadina. 18 de enero de 2017;27(1):5-26.spa
dc.relation.references[42.] El-Nashar DE, Ahmed NM, Agami WR. The effect of new ferrite/kaolin pigment on the properties of acrylonitrile–butadiene rubber composites. Materials & Design. diciembre de 2013; 52:108-17.spa
dc.relation.references[43.] Maroufkhani M, Katbab A, Liu W, Zhang J. Polylactide (PLA) and acrylonitrile butadiene rubber (NBR) blends: The effect of ACN content on morphology, compatibility and mechanical properties. Polymer. abril de 2017; 115:37-44.spa
dc.relation.references[44.] Callister, W. D. Materials Science and Engineering: An Introduction. New York: John Wiley & Sons. 2007;721.spa
dc.relation.references[45.] Grazulis, D., et al. Crystallography open database - an open-access collection of crystal structures. J. Appl. Cryst, 2009;42: 726-729.spa
dc.relation.references[46.] Colonia R. Sintesis y Caracterización de nanopartículas de ZnO2 y su actividad antimicrobiana. 2013 [citado 26 de noviembre de 2019]; Disponible en: http://rgdoi.net/10.13140/2.1.2582.7201.spa
dc.relation.references[47.] Guerra SM. Microscopia Electrónica De Transmisión Y Difracción De Electrones De Polímeros. :13.spa
dc.relation.references[48.] Parikh SJ, Goyne KW, Margenot AJ, Mukome FND, Calderón FJ. Soil Chemical Insights Provided through Vibrational Spectroscopy. En: Advances in Agronomy [Internet]. Elsevier; 2014 [citado 26 de noviembre de 2019]. p. 1-148. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/B9780128001325000018.spa
dc.relation.references[49.] Suriñach S, Baro MD, Bordas S, Clavaguera N, Clavaguera-Mora MT. La calorimetría diferencial de barrido y su aplicación a la Ciencia de Materiales. 1992;31(1):8.spa
dc.relation.references[50.] Smits F.M, Measurement of Sheet Resisitivities with the Four-Point Probe, The Bell System Technical Journal. 1958; 37:711-718.spa
dc.relation.references[51.] Sebastian M. Dielectric Materials for Wireless Communication. Amsterdam: Elsevier; 2008.spa
dc.relation.references[52.] Chen L, Neo CP, Ong CK, Varadan V, Varadan VK. Microwave Electronicas: Measurement and Materials Characterization. Chichester: Wiley; 2004.spa
dc.relation.references[53.] Rydholm T. Measurement of complex permittivity and permeability trough a cavity perturbation method [Tesis]. [Gotemburgo]: Chalmers University of Technology: 2015.spa
dc.relation.references[54.] Liu X, Ma Y, Zhang Q, Zheng Z, Wang L-S, Peng D-L. Facile synthesis of Fe 3 O 4 /C composites for broadband microwave absorption properties. Applied Surface Science. julio de 2018; 445:82-8.spa
dc.relation.references[55.] Jiang N-N, Yang Y, Zhang Y-X, Zhou J-P, Liu P, Deng C-Y. Influence of zinc concentration on structure, complex permittivity and permeability of Ni–Zn ferrites at high frequency. Journal of Magnetism and Magnetic Materials. marzo de 2016; 401:370-7.spa
dc.relation.references[56.] Hotta M, Hayashi M, Lanagan M, Agrawal D, Nagata K. Complex Permittivity of Graphite, Carbon Black and Coal Powders in the Ranges of X-band Frequencies (8.2 to 12.4 GHz) and between 1 and 10 GHz. ISIJ International. 1 de enero de 2011; 51:1766-72.spa
dc.relation.references[57.] Al-Saleh MH, Sundararaj U. Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon. junio de 2009;47(7):1738-46.spa
dc.relation.references[58.] Chung DDL. Electromagnetic interference shielding effectiveness of carbon materials. Carbon. febrero de 2001;39(2):279-85.spa
dc.relation.references[59.] Thomassin J-M, Jérôme C, Pardoen T, Bailly C, Huynen I, Detrembleur C. Polymer/carbon-based composites as electromagnetic interference (EMI) shielding materials. Materials Science and Engineering: R: Reports. julio de 2013;74(7):211-32.spa
dc.relation.references[60.] Al-Saleh MH, Gelves GA, Sundararaj U. Carbon nanofiber/polyethylene nanocomposite: Processing behavior, microstructure and electrical properties. Materials & Design. diciembre de 2013; 52:128-33.spa
dc.relation.references[61.] Micheli D, Vricella A, Pastore R, Delfini A, Giusti A, Albano M, et al. Ballistic and electromagnetic shielding behaviour of multifunctional Kevlar fiber reinforced epoxy composites modified by carbon nanotubes. Carbon. 1 de agosto de 2016; 104:141-56.spa
dc.relation.references[62.] Saini P, Choudhary V, Singh BP, Mathur RB, Dhawan SK. Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding. Materials Chemistry and Physics. 15 de febrero de 2009;113(2):919-26.spa
dc.relation.references[63.] Ohlan A, Singh K, Chandra A, Dhawan SK. Microwave absorption properties of conducting polymer composite with barium ferrite nanoparticles in 12.4–18GHz. Applied Physics Letters. 4 de agosto de 2008;93(5):053114.spa
dc.relation.references[64.] Quantum Design. Vibrating simple magnetometer (VSM) option: User´s Manual; 2011.spa
dc.relation.references[65.] Tadic M, Trpkov D, Kopanja L, Vojnovic S, Panjan M. Hydrothermal synthesis of hematite (α-Fe2O3) nanoparticle forms: Synthesis conditions, structure, particle shape analysis, cytotoxicity and magnetic properties. Journal of Alloys and Compounds. 5 de julio de 2019; 792:599-609.spa
dc.relation.references[66.] Can MM, Coşkun M, Fırat T. A comparative study of nanosized iron oxide particles; magnetite (Fe3O4), maghemite (γ-Fe2O3) and hematite (α-Fe2O3), using ferromagnetic resonance. Journal of Alloys and Compounds. noviembre de 2012; 542:241-7.spa
dc.relation.references[67.] Mücke A, Raphael Cabral A. Redox and nonredox reactions of magnetite and hematite in rocks. Chemie der Erde - Geochemistry. 20 de julio de 2005;65(3):271-8.spa
dc.relation.references[68.] Otake T, Wesolowski DJ, Anovitz LM, Allard LF, Ohmoto H. Experimental evidence for non-redox transformations between magnetite and hematite under H2-rich hydrothermal conditions. Earth and Planetary Science Letters. 15 de mayo de 2007;257(1–2):60-70.spa
dc.relation.references[69.] Mazo-Zuluaga J, Barrero CA, Diaz-Terán J, Jerez A, Restrepo J, Morales AL. Revista Colombiana De Física, Vol. 33, No. 2. 200. 2001;33(2):4.spa
dc.relation.references[70.] Finck N, Radulescu L, Schild D, Rothmeier M, Huber F, Lützenkirchen J, et al. XAS signatures of Am(III) adsorbed onto magnetite and maghemite. J Phys: Conf Ser. mayo de 2016; 712:012085.spa
dc.relation.references[71.] Mazrouaa AM, Mohamed MG, Fekry M. Physical and magnetic properties of iron oxide nanoparticles with different molar ratio of ferrous and ferric. Egyptian Journal of Petroleum. marzo de 2019; S1110062118303726.spa
dc.relation.references[72.] Grau-Crespo R, Al-Baitai AY, Saadoune I, De Leeuw NH. Vacancy ordering and electronic structure of γ - Fe 2 O 3 (maghemite): a theoretical investigation. J Phys: Condens Matter. 30 de junio de 2010;22(25):255401.spa
dc.relation.references[73.] Khan US, Amanullah, Manan A, Khan N, Mahmood A, Rahim A. Transformation mechanism of magnetite nanoparticles. Materials Science-Poland. 1 de junio de 2015;33(2):278-85.spa
dc.relation.references[74.] Brahma P, Dutta S, Dutta D, Banerjee S, Ghosh A, Chakravorty D. Electrical properties of nanocrystalline magnetite with large non-stoichiometry, near Verwey transition. Journal of Magnetism and Magnetic Materials. abril de 2009;321(8):1045-51.spa
dc.relation.references[75.] Schimanke G, Martin M. In situ XRD study of the phase transition of nanocrystalline maghemite (g-Fe2O3) to hematite (a-Fe2O3). Solid State Ionics. 2000;6.spa
dc.relation.references[76.] Jaramillo-Tabares BE, Isaza FJ, Torresi SIC de. Stabilization of polyaniline by the incorporation of magnetite nanoparticles. Materials Chemistry and Physics. febrero de 2012;132(2-3):529-33.spa
dc.relation.references[77.] Mejia-Santillan ME, Pariona N, Bravo-C. J, Herrera-Trejo M, Montejo-Alvaro F, Zarate A, et al. Physical and arsenic adsorption properties of maghemite and magnetite sub-microparticles. Journal of Magnetism and Magnetic Materials. abril de 2018; 451:594-601.spa
dc.relation.references[78.] Darezereshki E, khodadadi Darban A, Abdollahy M, jamshidi A. Synthesis of magnetite nanoparticles from iron ore tailings using a novel reduction-precipitation method. Journal of Alloys and Compounds. junio de 2018; 749:336-43.spa
dc.relation.references[79.] Castaño JG, Arroyave C. La funcionalidad de los óxidos de hierro. REVMETAL. 30 de junio de 1998;34(3):274-80.spa
dc.relation.references[80.] Marchegiani G, Imperatori P, Mari A, Pilloni L, Chiolerio A, Allia P, et al. Sonochemical synthesis of versatile hydrophilic magnetite nanoparticles. Ultrasonics Sonochemistry. julio de 2012;19(4):877-82.spa
dc.relation.references[81.] Guivar JAR, Sanches EA, Bruns F, Sadrollahi E, Morales M, López EO, et al. Vacancy ordered γ-Fe2O3 nanoparticles functionalized with nanohydroxyapatite: XRD, FTIR, TEM, XPS and Mössbauer studies. En 2016.spa
dc.relation.references[82.] Quan Y, Liu Q, Zhang S, Zhang S. Comparison of the morphology, chemical composition and microstructure of cryptocrystalline graphite and carbon black. Applied Surface Science. julio de 2018; 445:335-41.spa
dc.relation.references[83.] Tai FC, Wei C, Chang SH, Chen WS. Raman and X-ray diffraction analysis on unburned carbon powder refined from fly ash. Journal of Raman Spectroscopy. septiembre de 2010;41(9):933-7spa
dc.relation.references[84.] Popova AN. Crystallographic analysis of graphite by X-Ray diffraction. Coke and Chemistry. septiembre de 2017;60(9):361-5.spa
dc.relation.references[85.] Barnakov ChN, Khokhlova GP, Popova AN, Sozinov SA, Ismagilov ZR. XRD Characterization of the Structure of Graphites and Carbon Materials Obtained by the Low-Temperature Graphitization of Coal Tar Pitch. Eurasian Chemico-Technological Journal. 11 de marzo de 2015;17(2):87.spa
dc.relation.references[86.] Liu X, Guo H, Xie Q, Luo Q, Wang L-S, Peng D-L. Enhanced microwave absorption properties in GHz range of Fe3O4/C composite materials. Journal of Alloys and Compounds. noviembre de 2015; 649:537-43.spa
dc.relation.references[87.] Flaifel MH, Ahmad SH, Abdullah MH, Al-Asbahi BA. NiZn ferrite filled thermoplastic natural rubber nanocomposites: Effect of low temperature on their magnetic behaviour. Cryogenics. octubre de 2012;52(10):523-9.spa
dc.relation.references[88.] Zhu Y-F, Zhang L, Natsuki T, Fu Y-Q, Ni Q-Q. Synthesis of hollow poly(aniline-co-pyrrole)–Fe3O4 composite nanospheres and their microwave absorption behavior. Synthetic Metals. marzo de 2012;162(3-4):337-43.spa
dc.relation.references[89.] Garzón AO, Landínez DA, Roa-Rojas J, Fajardo-Tolosa FE, Peña-Rodríguez G, Parra-Vargas CA. Producción y caracterización estructural, eléctrica y magnética de un material compuesto a base de magnetita pulverizada y polietileno de alta densidad. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 30 de junio de 2017;41(159):154-67.spa
dc.relation.references[90.] Zang L, Chen D, Cai Z, Peng J, Zhu M. Preparation and damping properties of an organic–inorganic hybrid material based on nitrile rubber. Composites Part B: Engineering. marzo de 2018; 137:217-24.spa
dc.relation.references[91.] Rambo MKD, Ferreira MMC. Determination of Cellulose Crystallinity of Banana Residues Using Near Infrared Spectroscopy and Multivariate Analysis. Journal of the Brazilian Chemical Society [Internet]. 2015 [citado 29 de abril de 2019]; Disponible en: http://www.gnresearch.org/doi/10.5935/0103-5053.20150118spa
dc.relation.references[92.] Gomes AC de O, Soares BG, Oliveira MG, Machado JC, Windmöller D, Paranhos CM. Characterization of crystalline structure and free volume of polyamide 6/nitrile rubber elastomer thermoplastic vulcanizates: Effect of the processing additives. J Appl Polym Sci. 20 de diciembre de 2017;134(48):45576.spa
dc.relation.references[93.] Medrano JJA, Aragón FFH, Leon-Felix L, Coaquira JAH, Rodríguez AFR, Faria FSEDV, et al. Evidence of particle-particle interaction quenching in nanocomposite based on oleic acid-coated Fe 3 O 4 nanoparticles after over-coating with essential oil extracted from Croton cajucara Benth. Journal of Magnetism and Magnetic Materials. noviembre de 2018; 466:359-67.spa
dc.relation.references[94.] Dzarova A, Royer F, Timko M, Jamon D, Kopcansky P, Kovac J, et al. Magneto-optical study of magnetite nanoparticles prepared by chemical and biomineralization process. Journal of Magnetism and Magnetic Materials. junio de 2011;323(11):1453-9.spa
dc.relation.references[95.] Martinez L, Leinen D, Martín F, Gabas M, Ramos-Barrado JR, Quagliata E, et al. Electrochemical Growth of Diverse Iron Oxide (Fe3O4, ␣-FeOOH, and ␥-FeOOH) Thin Films by Electrodeposition Potential Tuning. Journal of The Electrochemical Society. :8.spa
dc.relation.references[96.] McKenna KP, Hofer F, Gilks D, Lazarov VK, Chen C, Wang Z, et al. Atomic-scale structure and properties of highly stable antiphase boundary defects in Fe3O4. Nat Commun. diciembre de 2014;5(1):5740.spa
dc.relation.references[97.] Ungár T, Gubicza J, Tichy G, Pantea C, Zerda TW. Size and shape of crystallites and internal stresses in carbon blacks. Composites Part A: Applied Science and Manufacturing. abril de 2005;36(4):431-6.spa
dc.relation.references[98.] Ebner E, Burow D, Panke J, Börger A, Feldhoff A, Atanassova P, et al. Carbon blacks for lead-acid batteries in micro-hybrid applications – Studied by transmission electron microscopy and Raman spectroscopy. Journal of Power Sources. enero de 2013; 222:554-60.spa
dc.relation.references[99.] Zhu L, Lu Y, Wang Y, Zhang L, Wang W. Preparation and characterization of dopamine-decorated hydrophilic carbon black. Applied Surface Science. mayo de 2012;258(14):5387-93.spa
dc.relation.references[100.] Larouche N, Stansfield BL. Classifying nanostructured carbons using graphitic indices derived from Raman spectra. Carbon. marzo de 2010;48(3):620-9.spa
dc.relation.references[101.] Hoinkis E, Lima EBF, Schubert-Bischoff P. A Study of Carbon Black Corax N330 with Small-Angle Scattering of Neutrons and X-rays. Langmuir. septiembre de 2004;20(20):8823-30.spa
dc.relation.references[102.] Kohls DJ, Beaucage G. Rational design of reinforced rubber. Current Opinion in Solid State and Materials Science. 2002;6(3):183–194.spa
dc.relation.references[103.] Buzmakov, V.M., Pshenichnikov, A.FOn the structure of microaggregates in magnetite colloids. Journal of Colloid and Interface Science.1996 (182): 63–70.spa
dc.relation.references[104.] Bokobza L, Bruneel J-L, Couzi M. Raman spectroscopic investigation of carbon-based materials and their composites. Comparison between carbon nanotubes and carbon black. Chemical Physics Letters. diciembre de 2013; 590:153-9.spa
dc.relation.references[105.] Fröhlich J, Niedermeier W, Luginsland H-D. The effect of filler–filler and filler–elastomer interaction on rubber reinforcement. Composites Part A: Applied Science and Manufacturing. 1 de abril de 2005;36(4):449-60.spa
dc.relation.references[106.] Jovanović V, Samaržija-Jovanović S, Budinski-Simendić J, Marković G, Marinović-Cincović M. Composites based on carbon black reinforced NBR/EPDM rubber blends. Composites Part B: Engineering. febrero de 2013;45(1):333-40.spa
dc.relation.references[107.] Donnet JB, Vidal A. Carbon black: Surface properties and interactions with elastomers. En: Pharmacy/Thermomechanics/Elastomers/Telechelics [Internet]. Springer, Berlin, Heidelberg; 1986 [citado 6 de julio de 2018]. p. 103-27. (Advances in Polymer Science). Disponible en: http://link.springer.com/chapter/10.1007/3-540-15830-8_3spa
dc.relation.references[108.] Dutta NK, Roy Choudhury N, Haidar B, Vidal A, Donnet JB, Delmotte L, et al. High-Resolution Solid State NMR Investigation of the Filler-Rubber Interaction: Part III. Investigation on the Structure and Formation Mechanism of Carbon Gel in the Carbon Black-Filled Styrene—Butadiene Rubber. Rubber Chemistry and Technology. 1 de mayo de 2001;74(2):260-80.spa
dc.relation.references[109.] Bandyopadhyay S, De PP, Tripathy DK, De SK. Influence of surface oxidation of carbon black on its interaction with nitrile rubbers. Polymer. enero de 1996;37(2):353-7.spa
dc.relation.references[110.] Ren G, Wang X, Zhang Z, Zhong B, Yang L, Yang X. Characterization and synthesis of nanometer magnetite black pigment from titanium slag by microwave-assisted reduction method. Dyes and Pigments. diciembre de 2017; 147:24-30.spa
dc.relation.references[111.] Slavov L, Abrashev MV, Merodiiska T, Gelev Ch, Vandenberghe RE, Markova-Deneva I, et al. Raman spectroscopy investigation of magnetite nanoparticles in ferrofluids. Journal of Magnetism and Magnetic Materials. julio de 2010;322(14):1904-11.spa
dc.relation.references[112.] Letti CJ, Paterno LG, Pereira-da-Silva MA, Morais PC, Soler MAG. The role of polymer films on the oxidation of magnetite nanoparticles. Journal of Solid State Chemistry. febrero de 2017; 246:57-64.spa
dc.relation.references[113.] Li Y-S, Church JS, Woodhead AL. Infrared and Raman spectroscopic studies on iron oxide magnetic nano-particles and their surface modifications. Journal of Magnetism and Magnetic Materials. abril de 2012;324(8):1543-50.spa
dc.relation.references[114.] Guo C, Hu Y, Qian H, Ning J, Xu S. Magnetite (Fe3O4) tetrakaidecahedral microcrystals: Synthesis, characterization, and micro-Raman study. Materials Characterization. enero de 2011;62(1):148-51.spa
dc.relation.references[115.] Taksapattanakul K, Tulyapitak T, Phinyocheep P, Ruamcharoen P, Ruamcharoen J, Lagarde F, et al. Raman investigation of thermoplastic vulcanizates based on hydrogenated natural rubber/polypropylene blends. Polymer Testing. febrero de 2017; 57:107-14.spa
dc.relation.references[116.] Tuinstra F, Koenig JL. Raman Spectrum of Graphite. The Journal of Chemical Physics. agosto de 1970;53(3):1126-30.spa
dc.relation.references[117.] Ferrari AC, Robertson J. Interpretation of Raman spectra of disordered and amorphous carbon. Physical Review B. 15 de mayo de 2000;61(20):14095-107.spa
dc.relation.references[118.] Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon. julio de 2005;43(8):1731-42.spa
dc.relation.references[119.] Beyssac O, Goffé B, Petitet J-P, Froigneux E, Moreau M, Rouzaud J-N. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. agosto de 2003;59(10):2267-76.spa
dc.relation.references[120.] Brolly C, Parnell J, Bowden S. Raman spectroscopy: Caution when interpreting organic carbon from oxidising environments. Planetary and Space Science. febrero de 2016; 121:53-9.spa
dc.relation.references[121.] Maya MG, George SC, Jose T, Kailas L, Thomas S. Development of a flexible and conductive elastomeric composite based on chloroprene rubber. Polymer Testing. febrero de 2018; 65:256-63.spa
dc.relation.references[122.] Couzi M, Bruneel J-L, Talaga D, Bokobza L. A multi wavelength Raman scattering study of defective graphitic carbon materials: The first order Raman spectra revisited. Carbon. octubre de 2016; 107:388-94.spa
dc.relation.references[123.] Sze S. Raman spectroscopic characterization of carbonaceous aerosols. Atmospheric Environment. 2001;35(3):561-8.spa
dc.relation.references[124.] Pawlyta M, Rouzaud J-N, Duber S. Raman microspectroscopy characterization of carbon blacks: Spectral analysis and structural information. Carbon. abril de 2015; 84:479-90.spa
dc.relation.references[125.] Jawhari T, Roid A, Casado J. Raman spectroscopic characterization of some commercially available carbon black materials. Carbon. 1995;33(11):1561-5.spa
dc.relation.references[126.] Cuesta A, Dhamelincourt P, Laureyns J, Martínez-Alonso A, Tascón JMD. Raman microprobe studies on carbon materials. Carbon. 1 de enero de 1994;32(8):1523-32.spa
dc.relation.references[127.] del Corro E, Taravillo M, González J, Baonza VG. Raman characterization of carbon materials under non-hydrostatic conditions. Carbon. marzo de 2011;49(3):973-9.spa
dc.relation.references[128.] Grosvenor AP, Kobe BA, Biesinger MC, McIntyre NS. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surface and Interface Analysis. diciembre de 2004;36(12):1564-74.spa
dc.relation.references[129.] Yamashita T, Hayes P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Applied Surface Science. febrero de 2008;254(8):2441-9.spa
dc.relation.references[130.] Jha DK, Shameem M, Patel AB, Kostka A, Schneider P, Erbe A, et al. Simple synthesis of superparamagnetic magnetite nanoparticles as highly efficient contrast agent. Materials Letters. marzo de 2013; 95:186-9.spa
dc.relation.references[131.] Wang Z, Zhu H, Wang X, Yang F, Yang X. One-pot green synthesis of biocompatible arginine-stabilized magnetic nanoparticles. Nanotechnology. 18 de noviembre de 2009;20(46):465606.spa
dc.relation.references[132.] Qi Z, Joshi TP, Liu R, Liu H, Qu J. Synthesis of Ce(III)-doped Fe 3 O 4 magnetic particles for efficient removal of antimony from aqueous solution. Journal of Hazardous Materials. mayo de 2017; 329:193-204.spa
dc.relation.references[133.] Ivashchenko O, Lewandowski M, Peplińska B, Jarek M, Nowaczyk G, Wiesner M, et al. Synthesis and characterization of magnetite/silver/antibiotic nanocomposites for targeted antimicrobial therapy. Materials Science and Engineering: C. octubre de 2015; 55:343-59.spa
dc.relation.references[134.] Suendorf M, Schemme T, Thomas A, Wollschläger J, Kuepper K. Link between local iron coordination, Fe 2p XPS core level line shape and Mg segregation into thin magnetite films grown on MgO(001). arXiv:150107443 [cond-mat] [Internet]. 29 de enero de 2015 [citado 15 de mayo de 2019]; Disponible en: http://arxiv.org/abs/1501.07443.spa
dc.relation.references[135.] McIntyre NS, Zetaruk DG. X-ray photoelectron spectroscopic studies of iron oxides. Analytical Chemistry. septiembre de 1977;49(11):1521-9.spa
dc.relation.references[136.] Sathish S, Balakumar S. Influence of physicochemical interactions of capping agent on magnetic properties of magnetite nanoparticles. Materials Chemistry and Physics. abril de 2016; 173:364-71.spa
dc.relation.references[137.] Missana T, García-Gutiérrez M, Fernńdez V. Uranium (VI) sorption on colloidal magnetite under anoxic environment: experimental study and surface complexation modelling. Geochimica et Cosmochimica Acta. julio de 2003;67(14):2543-50.spa
dc.relation.references[138.] Zhang W, Stolojan V, Silva SRaviP, Wu CW. Raman, EELS and XPS studies of maghemite decorated multi-walled carbon nanotubes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. marzo de 2014; 121:715-8.spa
dc.relation.references[139.] Omran M, Fabritius T, Elmahdy AM, Abdel-Khalek NA, El-Aref M, Elmanawi AE-H. XPS and FTIR spectroscopic study on microwave treated high phosphorus iron ore. Applied Surface Science. agosto de 2015; 345:127-40.spa
dc.relation.references[140.] Moulder JF, Stickle WF, Sobol PE, Bomben KD, Chastain J, King Jr. RC, et al., editores. Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. Eden Prairie, Minn.: Physical Electronics; 1995. 261 p.spa
dc.relation.references[141.] Brundle CR, Chuang TJ, Wandelt K. Core and valence level photoemission studies of iron oxide surfaces and the oxidation of iron. Surface Science. 1 de noviembre de 1977; 68:459-68.spa
dc.relation.references[142.] Wang X, Liu Y, Arandiyan H, Yang H, Bai L, Mujtaba J, et al. Uniform Fe3O4 microflowers hierarchical structures assembled with porous nanoplates as superior anode materials for lithium-ion batteries. Applied Surface Science. diciembre de 2016; 389:240-6.spa
dc.relation.references[143.] Tipsawat P, Wongpratat U, Phumying S, Chanlek N, Chokprasombat K, Maensiri S. Magnetite (Fe 3 O 4 ) nanoparticles: Synthesis, characterization and electrochemical properties. Applied Surface Science. julio de 2018; 446:287-92.spa
dc.relation.references[144.] Orion Engineered Carbons | Leading producer of carbon black [Internet]. [citado 27 de noviembre de 2019]. Disponible en: http://www.orioncarbons.com/index_en.phpspa
dc.relation.references[145.] Peciulyte L, Rutkaite R, Zemaitaitis A, Ignatova M, Rashkov I, Manolova N. Thermal imidization peculiarities of electrospun BPDA-PDA/ODA copolyamic acid nanofibers. Macromolecular Research. abril de 2013;21(4):419-26.spa
dc.relation.references[146.] Zhang L, Wang Y, Peng B, Yu W, Wang H, Wang T, et al. Preparation of a macroscopic, robust carbon-fiber monolith from filamentous fungi and its application in Li–S batteries. Green Chemistry. 30 de junio de 2014;16(8):3926.spa
dc.relation.references[147.] Gupta RP, Sen SK. Calculation of multiplet structure of core $p$ -vacancy levels. II. Phys Rev B. 1 de julio de 1975;12(1):15-9.spa
dc.relation.references[148.] Hernández M, Bernal M del M, Verdejo R, Ezquerra TA, López-Manchado MA. Overall performance of natural rubber/graphene nanocomposites. Composites Science and Technology. noviembre de 2012; 73:40-6.spa
dc.relation.references[149.] Zhu L, Lu Y, Wang Y, Zhang L, Wang W. Preparation and characterization of dopamine-decorated hydrophilic carbon black. Applied Surface Science. mayo de 2012;258(14):5387-93.spa
dc.relation.references[150.] Andreoli E, Barron A. CO2 Adsorption by para-Nitroaniline Sulfuric Acid-Derived Porous Carbon Foam. C. 21 de diciembre de 2016;2(4):25.spa
dc.relation.references[151.] Silva WM, Ribeiro H, Seara LM, Calado HDR, Ferlauto AS, Paniago RM, et al. Surface properties of oxidized and aminated multi-walled carbon nanotubes. Journal of the Brazilian Chemical Society. junio de 2012;23(6):1078-86.spa
dc.relation.references[152.] Biedermann LB, Bolen ML, Capano MA, Zemlyanov D, Reifenberger RG. Insights into few-layer epitaxial graphene growth on 4 H -SiC ( 000 1 ¯ ) substrates from STM studies. Physical Review B [Internet]. 6 de marzo de 2009 [citado 19 de julio de 2018];79(12). Disponible en: https://link.aps.org/doi/10.1103/PhysRevB.79.125411.spa
dc.relation.references[153.] Liu J, Li X, Xu L, Zhang P. Investigation of aging behavior and mechanism of nitrile-butadiene rubber (NBR) in the accelerated thermal aging environment. Polymer Testing. septiembre de 2016; 54:59-66.spa
dc.relation.references[154.] Wang Q, Liu Q, Wang Z-C, Liu H-P, Bai J-R, Ye J-B. Characterization of organic nitrogen and sulfur in the oil shale kerogens. Fuel Processing Technology. junio de 2017; 160:170-7.spa
dc.relation.references[155.] Xing Z, Ju Z, Zhao Y, Wan J, Zhu Y, Qiang Y, et al. One-pot hydrothermal synthesis of Nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Scientific Reports [Internet]. septiembre de 2016 [citado 17 de julio de 2018];6(1). Disponible en: http://www.nature.com/articles/srep26146.spa
dc.relation.references[156.] Chen Y, Liu Q, Wang J. Highly Porous Nitrogen-Doped Carbon Nanofibers as Efficient Metal-Free Catalysts toward the Electrocatalytic Oxygen Reduction Reaction. Nano Advances. 1 de septiembre de 2016;79-89.spa
dc.relation.references[157.] Choi S-S. Difference in bound rubber formation of silica and carbon black with styrene-butadiene rubber. Polymers for Advanced Technologies. 6 de julio de 2018;13(6):466-74.spa
dc.relation.references[158.] Chan M, Lau K, Wong TT, Cardona F. Interfacial bonding characteristic of nanoclay/polymer composites. Applied Surface Science. 1 de noviembre de 2011;258(2):860-4.spa
dc.relation.references[159.] Liu M, Zhou M, Yang H, Zhao Y, Hu Y. A cost-effective polyurethane based activated carbon sponge anode for high-performance microbial fuel cells. RSC Advances. 2015;5(102):84269-75.spa
dc.relation.references[160.] Lee D, Kwon O-S, Ho Song S. Tailoring the performance of magnetic elastomers containing Fe 2 O 3 decorated carbon nanofiber. RSC Advances. 2017;7(72):45595-600.spa
dc.relation.references[161.] Liang X, Hart C, Pang Q, Garsuch A, Weiss T, Nazar LF. A highly efficient polysulfide mediator for lithium–sulfur batteries. Nature Communications. 6 de enero de 2015; 6:5682.spa
dc.relation.references[162.] Wu J, Xing W, Huang G, Li H, Tang M, Wu S, et al. Vulcanization kinetics of graphene/natural rubber nanocomposites. Polymer. junio de 2013;54(13):3314-23.spa
dc.relation.references[163.] Wu K-H, Wang D-W, Zeng Q, Li Y, Gentle IR. Solution phase synthesis of halogenated graphene and the electrocatalytic activity for oxygen reduction reaction. Chinese Journal of Catalysis. junio de 2014;35(6):884-90.spa
dc.relation.references[164.] Descostes M, Mercier F, Thromat N, Beaucaire C, Gautier-Soyer M. Use of XPS in the determination of chemical environment and oxidation state of iron and sulfur samples: constitution of a data basis in binding energies for Fe and S reference compounds and applications to the evidence of surface species of an oxidized pyrite in a carbonate medium. Applied Surface Science. octubre de 2000;165(4):288-302.spa
dc.relation.references[165.] Brion D. Etude par spectroscopie de photoelectrons de la degradation superficielle de FeS2, CuFeS2, ZnS et PbS a l’air et dans l’eau. Applications of Surface Science. junio de 1980;5(2):133-52.spa
dc.relation.references[166.] Siriwardane RV, Cook JM. Interactions of SO2 with sodium deposited on silica. Journal of Colloid and Interface Science. 1 de diciembre de 1985;108(2):414-22.spa
dc.relation.references[167.] Lindberg BJ, Hamrin K, Johansson G, Gelius U, Fahlman A, Nordling C, et al. Molecular Spectroscopy by Means of ESCA II. Sulfur compounds. Correlation of electron binding energy with structure. Physica Scripta. 1 de mayo de 1970; 1:286-98.spa
dc.relation.references[168.] Laajalehto K, Kartio I, Nowak P. XPS study of clean metal sulfide surfaces. Applied Surface Science. 1 de septiembre de 1994;81(1):11-5.spa
dc.relation.references[169.] Panzmer G, Egert B. The bonding state of sulfur segregated to α-iron surfaces and on iron sulfide surfaces studied by XPS, AES and ELS. Surface Science. 1 de septiembre de 1984;144(2):651-64.spa
dc.relation.references[170.] Sathish S, Balakumar S. Influence of physicochemical interactions of capping agent on magnetic properties of magnetite nanoparticles. Materials Chemistry and Physics. abril de 2016; 173:364-71.spa
dc.relation.references[171.] Mansour C, Berger G, Fédoroff M, Lefèvre G, Pages A, Pavageau EM, et al. Influence of temperature and reducing conditions on the sorption of sulfate on magnetite. Journal of Colloid and Interface Science. diciembre de 2010;352(2):476-82.spa
dc.relation.references[172.] Jolsterå R, Gunneriusson L, Holmgren A. Surface complexation modeling of Fe3O4-H+ and Mg(II) sorption onto maghemite and magnetite. J Colloid Interface Sci. noviembre de 2012;386(1):260-7.spa
dc.relation.references[173.] Noval VE, Ochoa Puentes C, Carriazo JG, Noval VE, Ochoa Puentes C, Carriazo JG. Magnetite (Fe 3 O 4 ): An inorganic structure with many applications for heterogeneous catalysis. Revista Colombiana de Química. abril de 2017;46(1):42-59.spa
dc.relation.references[174.] Gorski CA, Nurmi JT, Tratnyek PG, Hofstetter TB, Scherer MM. Redox Behavior of Magnetite: Implications for Contaminant Reduction. Environmental Science & Technology. enero de 2010;44(1):55-60.spa
dc.relation.references[175.] Dor AA. Iron oxide sorbents for sulfur oxides [Internet]. 1977 [citado 17 de agosto de 2018]. Disponible en: https://patents.google.com/patent/US4010239/enspa
dc.relation.references[176.] Singh VK, Shukla A, Patra MK, Saini L, Jani RK, Vadera SR, et al. Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite. Carbon. mayo de 2012;50(6):2202-8.spa
dc.relation.references[177.] Tayyebi A, Moradi S, Azizi F, Outokesh M, Shadanfar K, Mousavi SS. Fabrication of new magnetite-graphene nanocomposite and comparison of its laser-hyperthermia properties with conventionally prepared magnetite-graphene hybrid. Materials Science and Engineering: C. junio de 2017; 75:572-81.spa
dc.relation.references[178.] Xu T, Jia Z, Luo Y, Jia D, Peng Z. Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites. Applied Surface Science. 15 de febrero de 2015; 328:306-13.spa
dc.relation.references[179.] Rubab Z, Afzal A, Siddiqi HM, Saeed S. Preparation, Characterization, and Enhanced Thermal and Mechanical Properties of Epoxy-Titania Composites. The Scientific World Journal. 2014; 2014:1-7.spa
dc.relation.references[180.] Zhang S, Li Y, Peng L, Li Q, Chen S, Hou K. Synthesis and characterization of novel waterborne polyurethane nanocomposites with magnetic and electrical properties. Composites Part A: Applied Science and Manufacturing. diciembre de 2013; 55:94-101.spa
dc.relation.references[181.] Omnès B, Thuillier S, Pilvin P, Grohens Y, Gillet S. Effective properties of carbon black filled natural rubber: Experiments and modeling. Composites Part A: Applied Science and Manufacturing. julio de 2008;39(7):1141-9.spa
dc.relation.references[182.] Al-Ghamdi AA, Al-Hartomy OA, Al-Solamy FR, Dishovsky N, Malinova P, Atanasova G, et al. Conductive carbon black/magnetite hybrid fillers in microwave absorbing composites based on natural rubber. Composites Part B: Engineering. 1 de julio de 2016; 96:231-41.spa
dc.relation.references[183.] Cornell RM, Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses. John Wiley & Sons; 2003. 714 p.spa
dc.relation.references[184.] Cuenca JA, Thomas ELH, Mandal S, Morgan DJ, Lloret F, Araujo D, et al. Microwave Permittivity of Trace sp 2 Carbon Impurities in Sub-Micron Diamond Powders. ACS Omega. 28 de febrero de 2018;3(2):2183-92.spa
dc.relation.references[185.] Keysight Technologies: Basics of measuring the dielectric properties of materials: Keysight; 2017: 34 p.spa
dc.relation.references[186.] Zhai Y, Zhang Y, Ren W. Electromagnetic characteristic and microwave absorbing performance of different carbon-based hydrogenated acrylonitrile–butadiene rubber composites. Materials Chemistry and Physics. marzo de 2012;133(1):176-81.spa
dc.relation.references[187.] Belaabed B, Wojkiewicz JL, Lamouri S, El Kamchi N, Lasri T. Synthesis and characterization of hybrid conducting composites based on polyaniline/magnetite fillers with improved microwave absorption properties. Journal of Alloys and Compounds. 25 de junio de 2012; 527:137-44.spa
dc.relation.references[188.] Wu KH, Ting TH, Wang GP, Ho WD, Shih CC. Effect of carbon black content on electrical and microwave absorbing properties of polyaniline/carbon black nanocomposites. Polymer Degradation and Stability. febrero de 2008;93(2):483-8.spa
dc.relation.references[189.] Jazirehpour M, Seyyed Ebrahimi SA. Effect of aspect ratio on dielectric, magnetic, percolative and microwave absorption properties of magnetite nanoparticles. Journal of Alloys and Compounds. 25 de julio de 2015; 638:188-96.spa
dc.relation.references[190.] Bayat M, Yang H, Ko FK, Michelson D, Mei A. Electromagnetic interference shielding effectiveness of hybrid multifunctional Fe3O4/carbon nanofiber composite. Polymer. 12 de febrero de 2014;55(3):936-43.spa
dc.relation.references[191.] Phang SW, Tadokoro M, Watanabe J, Kuramoto N. Microwave absorption behaviors of polyaniline nanocomposites containing TiO2 nanoparticles. Current Applied Physics. mayo de 2008;8(3–4):391-4.spa
dc.relation.references[192.] Singh AP, Mishra M, Hashim DP, Narayanan TN, Hahm MG, Kumar P, et al. Probing the engineered sandwich network of vertically aligned carbon nanotube–reduced graphene oxide composites for high performance electromagnetic interference shielding applications. Carbon. abril de 2015; 85:79-88.spa
dc.relation.references[193.] Zhang Y, Zhang J, Yuan L, Li G, Zhang X, Yue Z, et al. Synthesis and microwave magnetic properties of magnetite nanowire arrays in polycarbonate templates. Ceramics International. agosto de 2017;43: S403-6.spa
dc.relation.references[194.] Ghasemi A, Hossienpour A, Morisako A, Saatchi A, Salehi M. Electromagnetic properties and microwave absorbing characteristics of doped barium hexaferrite. Journal of Magnetism and Magnetic Materials. julio de 2006;302(2):429-35.spa
dc.relation.references[195.] Kaur P, Bahel S, Narang SB. Broad-band microwave absorption of Sr 0.85 La 0.15 (MnZr) x Fe 12-2x O 19 hexagonal ferrite in 18–40 GHz frequency range. Journal of Magnetism and Magnetic Materials. agosto de 2018; 460:489-94.spa
dc.relation.references[196.] Markham, D. Shielding: quantifying the shielding requirements for portable electronic design and providing new solutions by using a combination of materials and design. Materials & Design. 1999; 21:45–50.spa
dc.relation.references[197.] Yang S, Lozano K, Lomeli A, Foltz HD, Jones R. Electromagnetic interference shielding effectiveness of carbon nanofiber/LCP composites. Composites Part A: Applied Science and Manufacturing. mayo de 2005;36(5):691-7.spa
dc.relation.references[198.] Huang J.C. EMI shielding plastics – a review. Advanced Polymer Technology. 1995;14: 137–50spa
dc.relation.references[199.] Zhao Q, Li G-L, Ning Y-F, Zhou T, Mei Y, Guo Z-Z, et al. Rapid magnetic solid-phase extraction based on magnetic graphitized carbon black for the determination of 1-naphthol and 2-naphthol in urine. Microchemical Journal. junio de 2019; 147:67-74.spa
dc.relation.references[200.] Zulfiqar, Rahman MU, Usman M, Hasanain SK, Zia-ur-Rahman, Ullah A, et al. Static magnetic properties of Maghemite nanoparticles. Journal of the Korean Physical Society. diciembre de 2014;65(11):1925-9.spa
dc.relation.references[201.] Biju CS, Raja DH, Padiyan DP. Glycine assisted hydrothermal synthesis of α-Fe 2 O 3 nanoparticles and its size dependent properties. Chemical Physics Letters. agosto de 2014;610-611:103-7.spa
dc.relation.references[202.] Liu Q, Yu Y, Muxworthy AR, Roberts AP. Effects of internal stress on remanence intensity jumps across the Verwey transition for multi-domain magnetite. Physics of the Earth and Planetary Interiors. agosto de 2008;169(1-4):100-7.spa
dc.relation.references[203.] Ozdemir O, Dunlop DJ. Thermoremanence and stable memory of single-domain hematites. Geophysical research letters. 2002:29 (18).spa
dc.relation.references[204.] Petcharoen K, Sirivat A. Magneto-electro-responsive material based on magnetite nanoparticles/polyurethane composites. Materials Science and Engineering: C. abril de 2016; 61:312-23.spa
dc.relation.references[205.] Gu L, He X, Wu Z. Mesoporous Fe3O4/hydroxyapatite composite for targeted drug delivery. Materials Research Bulletin. 1 de noviembre de 2014; 59:65–68.spa
dc.relation.references[206.] Barbera GL, Capriotti AL, Cavaliere C, Foglia P, Montone CM, Chiozzi RZ, et al. A Rapid Magnetic Solid Phase Extraction Method Followed by Liquid Chromatography-Tandem Mass Spectrometry Analysis for the Determination of Mycotoxins in Cereals. Toxins (Basel). 21 de 2017;9(4).spa
dc.relation.references[207.] Pisane KL, Despeaux EC, Seehra MS. Magnetic relaxation and correlating effective magnetic moment with particle size distribution in maghemite nanoparticles. Journal of Magnetism and Magnetic Materials. junio de 2015; 384:148-54.spa
dc.relation.references[208.] Nikiforov VN, Koksharov YuA, Polyakov SN, Malakho AP, Volkov AV, Moskvina MA, et al. Magnetism and Verwey transition in magnetite nanoparticles in thin polymer film. Journal of Alloys and Compounds. agosto de 2013; 569:58-61.spa
dc.relation.references[209.] Thomas T, Kanoth BP, Nijas CM, Joy PA, Joseph JM, Kuthirummal N, et al. Preparation and characterization of flexible ferromagnetic nanocomposites for microwave applications. Materials Science and Engineering: B. octubre de 2015; 200:40-9.spa
dc.relation.references[210.] Mokhtar N, Abdullah MH, Ahmad S. Structural and magnetic properties of type-M barium ferrite-Thermoplastic natural rubber nanocomposites. Sains Malaysiana. 1 de septiembre de 2012; 41:1125-31.spa
dc.relation.references[211.] Guo Z, Park S, Hahn HT, Wei S, Moldovan M, Karki AB, et al. Magnetic and electromagnetic evaluation of the magnetic nanoparticle filled polyurethane nanocomposites. Journal of Applied Physics. 1 de mayo de 2007;101(9):09M511.spa
dc.relation.references[212.] Yang T-I, Brown RNC, Kempel LC, Kofinas P. Magneto-dielectric properties of polymer– nanocomposites. Journal of Magnetism and Magnetic Materials. noviembre de 2008;320(21):2714-20.spa
dc.relation.references[213.] Mandel K, Hutter F, Gellermann C, Sextl G. Stabilisation effects of superparamagnetic nanoparticles on clustering in nanocomposite microparticles and on magnetic behaviour. Journal of Magnetism and Magnetic Materials. abril de 2013; 331:269-75.spa
dc.relation.references[214.] Jackson M, Moskowitz B, Bowles J. Visiting Fellow’s Report 2 Summer School for Rock Magnetism 4. :12.spa
dc.relation.references[215.] de la Venta J, Erekhinsky M, Wang S, West KG, Morales R, Schuller IK. Exchange bias induced by the Fe 3 O 4 Verwey transition. Phys Rev B. 25 de abril de 2012;85(13):134447.spa
dc.relation.references[216.] Bohra M, Sahoo SC. Large magnetocaloric effect at Verwey point in nanocrystalline Fe 3 O 4 thin films. Journal of Alloys and Compounds. marzo de 2017; 699:1118-21.spa
dc.relation.references[217.] Edelman IS, Ivanova OS, Petrakovskaja EA, Velikanov DA, Tarasov IA, Zubavichus YV, et al. Formation, characterization and magnetic properties of maghemite γ-Fe2O3 nanoparticles in borate glasses. Journal of Alloys and Compounds. marzo de 2015; 624:60-7.spa
dc.relation.references[218.] Mercante LA, Melo WWM, Granada M, Troiani HE, Macedo WAA, Ardison JD, et al. Magnetic properties of nanoscale crystalline maghemite obtained by a new synthetic route. Journal of Magnetism and Magnetic Materials. 1 de septiembre de 2012;324(19):3029-33.spa
dc.relation.references[219.] Prozorov R, Prozorov T, Mallapragada SK, Narasimhan B, Williams TJ, Bazylinski DA. Magnetic irreversibility and the Verwey transition in nanocrystalline bacterial magnetite. Phys Rev B. 3 de agosto de 2007;76(5):054406.spa
dc.relation.references[220.] Veverka P, Pashchenko M, Kubíčková L, Kuličková J, Jirák Z, Havelek R, et al. Rod-like particles of silica-coated maghemite: Synthesis via akaganeite, characterization and biological properties. Journal of Magnetism and Magnetic Materials. abril de 2019; 476:149-56.spa
dc.relation.references[221.] Fellenz NA, Pérez De Berti IO, Soldati AL, Stewart SJ, Marchetti SG, Bengoa JF. Changes on structural and magnetic properties of maghemite nanoparticles during their coverage with MCM-41. Ceramics International. diciembre de 2015;41(10):15057-66.spa
dc.relation.references[222.] Kusigerski V, Illes E, Blanusa J, Gyergyek S, Boskovic M, Perovic M, et al. Magnetic properties and heating efficacy of magnesium doped magnetite nanoparticles obtained by co-precipitation method. Journal of Magnetism and Magnetic Materials. abril de 2019; 475:470-8.spa
dc.relation.references[223.] Barrera G, Sciancalepore C, Messori M, Allia P, Tiberto P, Bondioli F. Magnetite-epoxy nanocomposites obtained by the reactive suspension method: Microstructural, thermo-mechanical and magnetic properties. European Polymer Journal. septiembre de 2017; 94:354-65.spa
dc.relation.references[224.] Singh S, Tovstolytkin A, Lotey GS. Magnetic properties of superparamagnetic β-NaFeO 2 nanoparticles. Journal of Magnetism and Magnetic Materials. julio de 2018; 458:62-5.spa
dc.relation.references[225.] Strobel R, Pratsinis SE. Direct synthesis of maghemite, magnetite and wustite nanoparticles by flame spray pyrolysis. Advanced Powder Technology. marzo de 2009;20(2):190-4.spa
dc.relation.references[226.] Lyubutin IS, Lin C-R, Tseng Y-T, Spivakov A, Baskakov AO, Starchikov SS, et al. Structural and magnetic evolution of FexOy@carbon core-shell nanoparticles synthesized by a one-step thermal pyrolysis. Materials Characterization. abril de 2019; 150:213-9.spa
dc.relation.references[227.] Brito EL, Gomes DN, Plá Cid CC, de Araújo JCR, Bohn F, Streck L, et al. Superparamagnetic magnetite/IPEC particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects. enero de 2019; 560:376-83.spa
dc.relation.references[228.] Mitra A, Mohapatra J, Meena SS, Tomy CV, Aslam M. Verwey Transition in Ultrasmall-Sized Octahedral Fe 3 O 4 Nanoparticles. J Phys Chem C. 21 de agosto de 2014;118(33):19356-62.spa
dc.relation.references[229.] Tabis W, Tarnawski Z, Kakol Z, Król G, Kołodziejczyk A, Kozłowski A, et al. Magnetic and structural studies of magnetite at the Verwey transition. Journal of Alloys and Compounds. 1 de septiembre de 2007; 442:203-5.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc621 - Física aplicadaspa
dc.subject.ddc629 - Otras ramas de la ingenieríaspa
dc.subject.ddc624 - Ingeniería civilspa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.proposalmagnetitaspa
dc.subject.proposalcompositeseng
dc.subject.proposalmagnetiteeng
dc.subject.proposalferritasspa
dc.subject.proposalferriteseng
dc.subject.proposalinterfaz matriz-refuerzospa
dc.subject.proposalcomposite interfaceeng
dc.subject.proposalcompuestosspa
dc.subject.proposalelectromagnetic shieldingeng
dc.subject.proposalblindaje electromagnéticospa
dc.titleProducción y caracterización de un material compuesto a base de partículas de magnetita y matrices de caucho nitrilo butadienospa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1014190059.2020.pdf
Tamaño:
9.04 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: