Production networks and volatility in the colombian manufacturing industry

dc.contributor.advisorHoyos Gómez, Nancy Milenaspa
dc.contributor.authorTaborda Martínez, Jenniferspa
dc.date.accessioned2021-10-21T15:29:20Z
dc.date.available2021-10-21T15:29:20Z
dc.date.issued2021-10-08
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractOutput volatility is a useful indicator to assess the stability growth, investment, and employment of any economy. Previous research has shown that an input-output structure dominated by few sectors, enables the transmission of sector-level shocks via central activities to the rest of the economy, amplifying the effect of microeconomic shocks into aggregate output volatility. This paper studies the structure of the industrial input-output network in Colombia between 1982 and 2012 to understand its role as a source of industrial output volatility. We build a series of unique input-output networks at the product level, based on industrial survey data on production at the plant level for Colombia. The richness of the data allows us to study the structural properties of the network by characterizing the distribution of first- and second-order degree sequences. The impact of the intersectoral network in the propagation of sector-level shocks into output volatility in the manufacturing industry is quite central. The input-output industrial network in Colombia is composed of few very central inputs providers connected among them and many other products with smaller importance as input suppliers. Such heterogeneous structure amplifies the impact of the intersectoral network on output volatility 3.3 times on average, versus the impact that a balanced structure would have on aggregate volatility.eng
dc.description.abstractLa volatilidad del producto es un indicador de la estabilidad de crecimiento, de la inversión y del empleo en una economía. Trabajos anteriores han mostrado que redes insumo-producto compuestas por algunos productos muy conectados y muchos otros con pocas conexiones entre sí, permiten la transmisión de choques sectoriales al resto de la economía, precisamente mediante la transferencia del choque entre cadenas de productos centrales que a la vez están conectados unos a otros, amplificando la magnitud del choque inicial y generando volatilidad agregada. Este artículo estudia la estructura de la red insumo-producto para Colombia entre 1982 y 2012, para entender su papel en la generación de volatilidad agregada del producto industrial. Para ello, se construyen una serie de redes insumo-producto a nivel de bienes, basadas en datos de la Encuesta Anual Manufacturera a nivel de establecimiento. La riqueza de los datos permite estudiar las propiedades estructurales de la red, mediante la caracterización de las secuencias de primer y segundo orden de la centralidad de los productos en la red. Se observa que la red de insumo-producto en la industria manufacturera en Colombia está compuesta por algunos pocos productos centrales que proveen de insumos a muchos sectores y que se encuentran conectados entre sí, y muchos otros productos que tienen una importancia menor en la provisión de insumos. Este tipo de estructura heterogénea tiene un impacto en la generación de volatilidad agregada que es 3,3 veces mayor al impacto que tendría una red insumo-producto en la cual la participación de todos los sectores es homogénea. En conclusión, la red intersectorial tiene un papel muy importante en la propagación de choques sectoriales y en consecuencia en la generación de volatilidad del PIB industrial. (Texto tomado de la fuente).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Económicasspa
dc.description.notesIncluye anexosspa
dc.format.extentxiii, 51 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80592
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentEscuela de Economíaspa
dc.publisher.facultyFacultad de Ciencias Económicasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Económicas - Maestría en Ciencias Económicasspa
dc.relation.referencesAcemoglu, D., Carvalho, V. M., Ozdaglar, A., & Tahbaz-Salehi, A. (2012). The Network Origins of Aggregate Fluctuations. Econometrica, 80(5), 1977–2016. https://doi.org/10.3982/ECTA9623spa
dc.relation.referencesAcemoglu, D., Ozdaglar, A., & Tahbaz-Salehi, A. (2017). Microeconomic Origins of Macroeconomic Tail Risks. American Economic Review, 107(1), 54–108. https://doi.org/10.1257/aer.20151086spa
dc.relation.referencesAizenman, Joshua, & Marion, N. (1999). Volatility and Investment: Interpreting Evidence from Developing Countries. Economica, 66(262), 157–1179. https://doi.org/10.1111/1468-0335.00163spa
dc.relation.referencesAizenman, Joshua, & Pinto, B. (2005). Managing Economic Volatility and Crises (Joshua Aizenman & B. Pinto (eds.)). Cambridge University Press. https://doi.org/10.1017/CBO9780511510755spa
dc.relation.referencesAtalay, E. (2017). How Important Are Sectoral Shocks? American Economic Journal: Macroeconomics, 9(4), 254–280. https://doi.org/10.1257/mac.20160353spa
dc.relation.referencesBadinger, H. (2010). Output volatility and economic growth. Economics Letters, 106(1), 15–18.spa
dc.relation.referencesBaldwin, R., & Weder di Mauro, B. (2020). Economics in the Time of COVID-19 (VoxEU.org (ed.)). CEPR Press.spa
dc.relation.referencesBlöchl, F., Theis, F. J., Vega-Redondo, F., & Fisher, E. O. (2011). Vertex centralities in input-output networks reveal the structure of modern economies. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 83(4 Pt 2), 046127. http://www.ncbi.nlm.nih.gov/pubmed/21599260spa
dc.relation.referencesBreen, R., & Garcia-Penalosa, C. (2005). Income Inequality and Macroeconomic Volatility: An Empirical Investigation. Review of Development Economics, 9(3), 380–398. https://doi.org/10.1111/j.1467-9361.2005.00283.xspa
dc.relation.referencesCalderon, C., & Yeyati, E. L. (2009). Zooming in : from aggregate volatility to income distribution. April. http://documents.worldbank.org/curated/en/2009/04/10421833/zooming-aggregate-volatility-income-distributionspa
dc.relation.referencesCarvalho, V. M., & Tahbaz-Salehi, A. (2019). Production Networks: A Primer. In Annual Review of Economics (Vol. 11, Issue 1). https://doi.org/10.1146/annurev-economics-080218-030212spa
dc.relation.referencesClauset, A., Shalizi, C. R., & Newman, M. E. J. (2007). Power-law distributions in empirical data. https://doi.org/10.1137/070710111spa
dc.relation.referencesClauset, A., Young, M., & Gleditsch, K. S. (2007). On the Frequency of Severe Terrorist Events. Journal of Conflict Resolution, 51(1), 58–87. https://doi.org/10.1177/0022002706296157spa
dc.relation.referencesdel Rio-Chanona, R. M., Mealy, P., Pichler, A., Lafond, F., & Farmer J., D. (2020). Supply and demand shocks in the COVID-19 pandemic: An industry and occupation perspective. Covid Economics, 1(6), 65–103.spa
dc.relation.referencesGabaix, B. Y. X., Basu, S., Bénabou, R., Blanchard, O., Caballero, R., Canning, D., Caplin, A., Chaney, T., Chari, V. V, Christiano, L., Comin, D., Davis, D., Durlauf, S.,spa
dc.relation.referencesEdmans, A., Eichenbaum, M., Engel, E., & Fernald, J. (2011). The Granular Origins of Aggregate Fluctuations. Econometrica, 79(3), 733–772. https://doi.org/10.3982/ECTA8769spa
dc.relation.referencesGillespie, C. S. (2015). Fitting heavy tailed distributions: The powerlaw package. Journal of Statistical Software, 64(2), 1–16. https://doi.org/10.18637/jss.v064.i02spa
dc.relation.referencesGonçalves, J., Matsushita, R., & Da Silva, S. (2020). The asymmetric Brazilian input–output network. Journal of Economic Studies. https://doi.org/10.1108/JES-05-2020-0225spa
dc.relation.referencesHakura, D. (2007). Output Volatility and Large Output Drops in Emerging Market and Developing Countries. IMF Working Papers, 07(114), 1. https://doi.org/10.5089/9781451866780.001spa
dc.relation.referencesJaimovich, N., Pruitt, S., & Siu, H. E. (2013). The Demand for Youth: Explaining Age Differences in the Volatility of Hours. American Economic Review, 103(7), 3022–3044. https://doi.org/10.1257/aer.103.7.3022spa
dc.relation.referencesJoya, O., & Rougier, E. (2019). Do (all) sectoral shocks lead to aggregate volatility? Empirics from a production network perspective. European Economic Review, 113, 77–107. https://doi.org/10.1016/j.euroecorev.2019.01.004spa
dc.relation.referencesLaursen, T., & Mahajan, S. (2005). Volatility, income distribution and poverty. In J. Aizenman & B. Pinto (Eds.), Managing Economic Volatility and Crises: A Practitioner’s Guide. (pp. 101–136). Cambridge University Press.spa
dc.relation.referencesLong, J. B., & Plosser, C. (1983). Real Business Cycles Author. Journal of Political Economy, 91(1), 39–69.spa
dc.relation.referencesLucas, R. E. (1977). Understanding Business Cycles. In Carnegie–Rochester Conference Series on Public Policy (No. 5)spa
dc.relation.referencesMcNerney, J., Fath, B. D., & Silverberg, G. (2013). Network structure of inter-industry flows. Physica A: Statistical Mechanics and Its Applications, 392(24), 6427–6441. https://doi.org/10.1016/j.physa.2013.07.063spa
dc.relation.referencesMundt, P. (2021). The formation of input–output architecture: Evidence from the European Union. Journal of Economic Behavior and Organization, 183, 89–104. https://doi.org/10.1016/j.jebo.2020.12.031spa
dc.relation.referencesNewman, M. (2018). Networks (Second Edi). Oxford University Press. https://global.oup.com/academic/product/networks-9780198805090?cc=co&lang=en&#spa
dc.relation.referencesOECD/World Trade Organization. (2019). Promoting economic diversification and structural transformation through industrialisation. In Aid for Trade at a Glance 2019: Economic Diversification and Empowerment (pp. 81–108). OECD Publishing. https://doi.org/10.1787/785f021c-enspa
dc.relation.referencesRamey, G., & Ramey, V. A. (1995). Cross-Country Evidence on the Link Between Volatility and Growth. The American Economic Review, 85(5), 1138–1151. http://www.jstor.com/stable/2950979spa
dc.relation.referencesRomero, P. P., López, R., & Jiménez, C. (2018). Sectoral networks and macroeconomic tail risks in an emerging economy. PLoS ONE, 13(1), 1–17. https://doi.org/10.1371/journal.pone.0190076spa
dc.relation.referencesSahay, R., & Goyal, R. (2006). Volatility and Growth in Latin America: An Episodic Approach. IMF Working Papers, 06(287), 1. https://doi.org/10.5089/9781451865479.001spa
dc.relation.referencesSzirmai, A. (2012). Industrialisation as an engine of growth in developing countries, 1950–2005. Structural Change and Economic Dynamics, 23(4), 406–420. https://doi.org/10.1016/j.strueco.2011.01.005spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc330 - Economíaspa
dc.subject.jelInput–Output Tables and Analysiseng
dc.subject.jelNetwork Formation and Analysis: Theoryeng
dc.subject.jelBusiness Fluctuations • Cycleseng
dc.subject.jelTransactional Relationships • Contracts and Reputation • Networkseng
dc.subject.proposalAggregate volatilityeng
dc.subject.proposalVolatilidad agregadaspa
dc.subject.proposalProduction networkseng
dc.subject.proposalDiversificationeng
dc.subject.proposalInput-output linkageseng
dc.subject.proposalRedes de producciónspa
dc.subject.proposalDiversificaciónspa
dc.subject.proposalTablas insumo-productospa
dc.subject.unescoComportamiento económicospa
dc.subject.unescoEconomic behavioureng
dc.titleProduction networks and volatility in the colombian manufacturing industryeng
dc.title.translatedRedes de producción y volatilidad en la industria colombianaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
52987337.2020.pdf
Tamaño:
882.87 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Económicas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: