Desarrollo de un nanogenerador piezoeléctrico para aplicaciones en sensores biomédicos

dc.contributor.advisorBuitrago Sierra, Robison
dc.contributor.advisorSanta Marín, Juan Felipe
dc.contributor.authorzapata Hernandez, Juan Camilo
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=bhXNtYcAAAAJ&hl=esspa
dc.contributor.orcidZapata Hernandez, Juan Camilo [0000-0002-8664-5867]spa
dc.contributor.researchgroupMateriales Avanzados y Energía MATyERspa
dc.date.accessioned2023-01-23T20:50:04Z
dc.date.available2023-01-23T20:50:04Z
dc.date.issued2022
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEl uso de los PENG (nanogeneradores piezoeléctricos) como sensores ha causado mucho interés en los últimos años en diversas áreas de la ingeniería y medicina. Para desarrollar estos dispositivos es necesario usar materiales piezoeléctricos. Dentro de los materiales piezoeléctricos que pueden ser sintetizados, se encuentra el titanato circonato de plomo (PZT), uno de los materiales más usados; sin embargo, la presencia de plomo y sus impactos tanto ambientales como en la salud humana, han incrementado el interés por materiales que no contengan este elemento en su composición. El óxido de zinc (ZnO) es considerado una alternativa, ya que no es tóxico y puede estar sometido a grandes deformaciones mecánicas durante periodos prolongados, siendo ambas características benéficas para el desarrollo de estos dispositivos. Sin embargo, el valor d33 del PZT (~117 pC/N) es superior al ZnO (~12 pC/Ny esto sugiere que la salida eléctrica de los dispositivos basados en ZnO podría ser menor. La estrategia más empleada para incrementar el coeficiente d33 y la salida eléctrica ha sido el uso de dopantes y el efecto de la morfología, sin embargo, el efecto de estos parametrossobre la salida eléctrica ha sido poco estudiado. Adicionalmente, diversos trabajos usan sistemas mecánicos poco robustos para la evaluación de la salida eléctrica de los dispositivos PENG y podrían inducir errores durante el análisis. En este trabajo se sintetizaron dos morfologías de óxido de zinc con el fin de desarrollar un dispositivo que podría ser usado como sensor. Adicionalmente, se propuso una metodología de ensayo de este tipo de dispositivos con el fin de estandarizar el método. Los análisis SEM evidenciaron la obtención de partículas con morfología de barras y hojas. El análisis DRX conformó que ambos tipos de partículas evidencian la fase cristalina Wurtzita, la más común en el ZnO. Mediante análisis TGA se evaluó la cantidad de ZnO presente en los dos compuestos desarrollados, la diferencia entre ambos fue de 0.02 %. Adicionalmente, se propuso un sistema mecánico para realizar los ensayos de salida eléctrica, el cual consiste de una máquina universal de ensayos adaptada para este fin. El sistema entrega la fuerza aplicada durante cada ciclo y de esta manera se puede normalizar la salida eléctrica. Respecto a la salida de voltaje del dispositivo, el compuesto basado en barras de ZnO evidenció una mayor salida en comparación con el compuesto basado en hojas. Esto podría deberse a la formación de una red conductora que favorece la transferencia de carga dentro del compuesto. (Texto tomado de la fuente)spa
dc.description.abstractPENGs (Piezoelectric nanogenerators) used as sensors have caused great interest in recent years across several areas of engineering and medicine. The development of these devices requires the use of piezoelectric materials. Several piezoelectric materials that can be synthesized, the lead zirconate titanate (PZT), is the most used materials; however, the presence of lead and its environmental and human impacts have increased interest in materials that do not contain this element in their composition. Zinc oxide (ZnO) is considered an alternative since it is not toxic and can be subjected to large mechanical deformations for long periods, both features being beneficial for the development of these devices. However, the d33 value of PZT (~117 pC/N) is higher than ZnO (~12 pC/N), this suggest that the electrical output of ZnO-based devices could be lower. The most used strategy has been the dopants and the effect of morphology on electrical output has been little studied. Additionally, several works use less robust mechanical systems for the evaluation of the electrical output of PENG devices and could induce errors during the analysis. In this work, two morphologies of zinc oxide were synthesized in order to develop a device that could be used as a sensor. Additionally, a testing methodology for this type of device was proposed in order to standardize the testing method. The SEM microgaph evidenced the obtaining of particles with morphology of rods and sheets. The XRD analysis confirmed that both types of particles evidenced the Wurtzite crystalline phase, the most common in ZnO. Through TGA analysis, the amount of ZnO present in the two developed compounds was evaluated, the difference between the boths was 0.02%. Additionally, a mechanical system was proposed to perform the electrical output tests. This system consists of a universal testing machine adapted for this purpose. The system delivers the force applied during each cycle and in this way the electrical output can be normalized. Regarding the voltage output of the device, the ZnO rod-based composite exhibited a higher output compared to the sheet-based composite. This could be due to the formation of a conducting network that favors charge transfer within the compound.eng
dc.description.curricularareaÁrea Curricular de Materiales y Nanotecnologíaspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesosspa
dc.description.researchareaNuevos materialesspa
dc.format.extentxxii, 109 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83074
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbd El-Ghaffar, M. A., Shaffei, K. A., Fouad Zikry, A. A., Mohamed, M. B., & Marzouq, K. A. G. (2016). Novel conductive nano-composite ink based on poly aniline, silver nanoparticles and nitrocellulose. Egyptian Journal of Chemistry, 59(4), 429–443. https://doi.org/10.21608/ejchem.2016.1101spa
dc.relation.referencesAcosta, M., Novak, N., Rojas, V., Patel, S., Vaish, R., Koruza, J., & Rossetti, G. A. (2017). BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. 041305.spa
dc.relation.referencesAhmad, M., Iqbal, M. A., Kiely, J., Luxton, R., & Jabeen, M. (2017). Enhanced output voltage generation via ZnO nanowires (50 nm): Effect of diameter thinning on voltage enhancement. Journal of Physics and Chemistry of Solids, 104, 281–285. https://doi.org/10.1016/j.jpcs.2017.01.006spa
dc.relation.referencesAl-Heniti, S., Umar, A., & Zaki, H. M. (2015). Synthesis and characterization of zinc oxide nanosheets for dye-sensitized solar cells. Journal of Nanoscience and Nanotechnology, 15(12), 9954–9959. https://doi.org/10.1166/jnn.2015.10693spa
dc.relation.referencesAlAhzm, A. M., Alejli, M. O., Ponnamma, D., Elgawady, Y., & Al-Maadeed, M. A. A. (2021). Piezoelectric properties of zinc oxide/iron oxide filled polyvinylidene fluoride nanocomposite fibers. Journal of Materials Science: Materials in Electronics, 32(11), 14610–14622. https://doi.org/10.1007/s10854-021-06020-3spa
dc.relation.referencesAlamer, F. A. (2018). Structural and electrical properties of conductive cotton fabrics coated with the composite polyaniline/carbon black. Cellulose, 25(3), 2075–2082. https://doi.org/10.1007/s10570-018-1667-9spa
dc.relation.referencesAlhashmi Alamer, F. (2017). A simple method for fabricating highly electrically conductive cotton fabric without metals or nanoparticles, using PEDOT:PSS. Journal of Alloys and Compounds, 702, 266–273. https://doi.org/10.1016/j.jallcom.2017.01.001spa
dc.relation.referencesAli, A., Nguyen, N. H. A., Baheti, V., Ashraf, M., Militky, J., Mansoor, T., Noman, M. T., & Ahmad, S. (2018). Electrical conductivity and physiological comfort of silver coated cotton fabrics. Journal of the Textile Institute, 109(5), 620–628. https://doi.org/10.1080/00405000.2017.1362148spa
dc.relation.referencesAlshehri, N. A., Lewis, A. R., Pleydell-Pearce, C., & Maffeis, T. G. G. (2018). Investigation of the growth parameters of hydrothermal ZnO nanowires for scale up applications. Journal of Saudi Chemical Society, 22(5), 538–545. https://doi.org/10.1016/j.jscs.2017.09.004spa
dc.relation.referencesAmin, G., Asif, M. H., Zainelabdin, A., Zaman, S., Nur, O., & Willander, M. (2011). Influence of pH, precursor concentration, growth time, and temperature on the morphology of ZnO nanostructures grown by the hydrothermal method. Journal of Nanomaterials, 2011. https://doi.org/10.1155/2011/269692spa
dc.relation.referencesAriosa, D., Elhordoy, F., Dalchiele, E. A., Marotti, R. E., & Stari, C. (2011). Texture vs morphology in ZnO nano-rods: On the x-ray diffraction characterization of electrochemically grown samples. Journal of Applied Physics, 110(12). https://doi.org/10.1063/1.3669026spa
dc.relation.referencesAskari, H., Hashemi, E., Khajepour, A., Khamesee, M. B., & Wang, Z. L. (2018). Towards self-powered sensing using nanogenerators for automotive systems. Nano Energy, 53, 1003–1019. https://doi.org/10.1016/j.nanoen.2018.09.032spa
dc.relation.referencesAugustine, R., Dan, P., Sosnik, A., Kalarikkal, N., Tran, N., Vincent, B., Thomas, S., Menu, P., Rouxel, D., Augustine, R., Dan, P., Sosnik, A., Kalarikkal, N., & Tran, N. (2022). Electrospun poly ( vinylidene fluoride-trifluoroethylene )/ zinc oxide nanocomposite tissue engineering scaffolds with enhanced cell adhesion and blood vessel formation To cite this version : HAL Id : hal-01712240.spa
dc.relation.referencesBabick, F., Mielke, J., Wohlleben, W., Weigel, S., & Hodoroaba, V. D. (2016). How reliably can a material be classified as a nanomaterial? Available particle-sizing techniques at work. Journal of Nanoparticle Research, 18(6), 1–40. https://doi.org/10.1007/s11051-016-3461-7spa
dc.relation.referencesBai, H., Wang, X., Zhou, Y., & Zhang, L. (2012). Preparation and characterization of poly(vinylidene fluoride) composite membranes blended with nano-crystalline cellulose. Progress in Natural Science: Materials International, 22(3), 250–257. https://doi.org/10.1016/j.pnsc.2012.04.011spa
dc.relation.referencesBairagi, S., & Ali, S. W. (2019). A unique piezoelectric nanogenerator composed of melt-spun PVDF/KNN nanorod-based nanocomposite fibre. European Polymer Journal, 116(April), 554–561. https://doi.org/10.1016/j.eurpolymj.2019.04.043spa
dc.relation.referencesBairagi, S., & Ali, S. W. (2020a). A hybrid piezoelectric nanogenerator comprising of KNN/ZnO nanorods incorporated PVDF electrospun nanocomposite webs. International Journal of Energy Research, 44(7), 5545–5563. https://doi.org/10.1002/er.5306spa
dc.relation.referencesBairagi, S., & Ali, S. W. (2020b). Poly (vinylidine fluoride) (PVDF)/Potassium Sodium Niobate (KNN) nanorods based flexible nanocomposite film: Influence of KNN concentration in the performance of nanogenerator. Organic Electronics, 78(October 2019), 105547. https://doi.org/10.1016/j.orgel.2019.105547spa
dc.relation.referencesBalan, V., Mihai, C. T., Cojocaru, F. D., Uritu, C. M., Dodi, G., Botezat, D., & Gardikiotis, I. (2019). Vibrational spectroscopy fingerprinting in medicine: From molecular to clinical practice. Materials, 12(18), 1–40. https://doi.org/10.3390/ma12182884spa
dc.relation.referencesBandeira, M., Giovanela, M., Roesch-Ely, M., Devine, D. M., & da Silva Crespo, J. (2020). Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustainable Chemistry and Pharmacy, 15(February), 100223. https://doi.org/10.1016/j.scp.2020.100223spa
dc.relation.referencesBasnet, P., & Chatterjee, S. (2020). Structure-directing property and growth mechanism induced by capping agents in nanostructured ZnO during hydrothermal synthesis—A systematic review. Nano-Structures and Nano-Objects, 22, 100426. https://doi.org/10.1016/j.nanoso.2020.100426spa
dc.relation.referencesBergström, J. (2015). Experimental Characterization Techniques. In Mechanics of Solid Polymers. https://doi.org/10.1016/b978-0-323-31150-2.00002-9spa
dc.relation.referencesBhat, T. S., Bhogale, S. B., Patil, S. S., Pisal, S. H., Phaltane, S. A., & Patil, P. S. (2020). Synthesis and characterization of hexagonal zinc oxide nanorods for Eosin-Y dye sensitized solar cell. Materials Today: Proceedings, 43, 2800–2804. https://doi.org/10.1016/j.matpr.2020.08.687spa
dc.relation.referencesBhatia, D., Sharma, H., Meena, R. S., & Palkar, V. R. (2016). A novel ZnO piezoelectric microcantilever energy scavenger: Fabrication and characterization. Sensing and Bio-Sensing Research, 9, 45–52. https://doi.org/10.1016/j.sbsr.2016.05.008spa
dc.relation.referencesBhunia, R., Ghosh, B., Ghosh, D., Hussain, S., Bhar, R., & Pal, A. K. (2015). Free-standing and flexible nano-ZnO/PVDF composite thin films: Impedance spectroscopic studies. Polymers for Advanced Technologies, 26(9), 1176–1183. https://doi.org/10.1002/pat.3551spa
dc.relation.referencesBi, H., Meng, S., Li, Y., Guo, K., Chen, Y., Kong, J., Yang, P., Zhong, W., & Liu, B. (2006). Deposition of PEG onto PMMA microchannel surface to minimize nonspecific adsorption. Lab on a Chip, 6(6), 769–775. https://doi.org/10.1039/b600326espa
dc.relation.referencesBoppella, R., Anjaneyulu, K., Basak, P., & Manorama, S. V. (2013). Facile synthesis of face oriented ZnO crystals: Tunable polar facets and shape induced enhanced photocatalytic performance. Journal of Physical Chemistry C, 117(9), 4597–4605. https://doi.org/10.1021/jp311443sspa
dc.relation.referencesBoukir, A., Fellak, S., & Doumenq, P. (2019). Structural characterization of Argania spinosa Moroccan wooden artifacts during natural degradation progress using infrared spectroscopy (ATR-FTIR) and X-Ray diffraction (XRD). Heliyon, 5(9), e02477. https://doi.org/10.1016/j.heliyon.2019.e02477spa
dc.relation.referencesBriscoe, J., Jalali, N., Woolliams, P., Stewart, M., Weaver, P. M., Cain, M., & Dunn, S. (2013). Measurement techniques for piezoelectric nanogenerators. Energy and Environmental Science, 6(10), 3035–3045. https://doi.org/10.1039/c3ee41889hspa
dc.relation.referencesBruno, T. J. (1999). Sampling accessories for infrared spectrometry. Applied Spectroscopy Reviews, 34(1–2), 91–120. https://doi.org/10.1081/ASR-100100840spa
dc.relation.referencesCano-Raya, C., Denchev, Z. Z., Cruz, S. F., & Viana, J. C. (2019). Chemistry of solid metal-based inks and pastes for printed electronics – A review. Applied Materials Today, 15, 416–430. https://doi.org/10.1016/j.apmt.2019.02.012spa
dc.relation.referencesCao, F., Li, C., Li, M., Li, H., Huang, X., & Yang, B. (2018). Direct growth of Al-doped ZnO ultrathin nanosheets on electrode for ethanol gas sensor application. Applied Surface Science, 447, 173–181. https://doi.org/10.1016/j.apsusc.2018.03.217spa
dc.relation.referencesCao, X. T., Bach, L. G., Islam, M. R., & Lim, K. T. (2015). A simple synthesis, characterization, and properties of poly(methyl methacrylate) grafted CdTe nanocrystals. Molecular Crystals and Liquid Crystals, 618(1), 111–119. https://doi.org/10.1080/15421406.2015.1076305spa
dc.relation.referencesCeylan, Ö., Van Landuyt, L., Rahier, H., & De Clerck, K. (2013). The effect of water immersion on the thermal degradation of cotton fibers. Cellulose, 20(4), 1603–1612. https://doi.org/10.1007/s10570-013-9936-0spa
dc.relation.referencesChamakh, M. M., Mrlík, M., Leadenham, S., Bažant, P., Osička, J., Almaadeed, M. A. A., Erturk, A., & Kuřitka, I. (2020). Vibration sensing systems based on poly(Vinylidene fluoride) and microwave-assisted synthesized zno star-like particles with controllable structural and physical properties. Nanomaterials, 10(12), 1–15. https://doi.org/10.3390/nano10122345spa
dc.relation.referencesChand, N., & Fahim, M. (2020). Tribology of Natural Fiber Polymer Composites (2nd Editio, Vol. 148). https://doi.org/10.1016/C2018-0-04814-8spa
dc.relation.referencesChen, C., Bai, Z., Cao, Y., Dong, M., Jiang, K., Zhou, Y., Tao, Y., Gu, S., Xu, J., Yin, X., & Xu, W. (2020). Enhanced piezoelectric performance of BiCl3/PVDF nanofibers-based nanogenerators. Composites Science and Technology, 192, 108100. https://doi.org/10.1016/j.compscitech.2020.108100spa
dc.relation.referencesChen, F., Jing, M. xiang, Yang, H., Yuan, W. yong, Liu, M. quan, Ji, Y. sheng, Hussain, S., & Shen, X. qian. (2021). Improved ionic conductivity and Li dendrite suppression of PVDF-based solid electrolyte membrane by LLZO incorporation and mechanical reinforcement. Ionics, 27(3), 1101–1111. https://doi.org/10.1007/s11581-020-03891-0spa
dc.relation.referencesChen, J., Nabulsi, N., Wang, W., Kim, J. Y., Kwon, M. K., & Ryou, J. H. (2019). Output characteristics of thin-film flexible piezoelectric generators: A numerical and experimental investigation. Applied Energy, 255(June). https://doi.org/10.1016/j.apenergy.2019.113856spa
dc.relation.referencesCheng, L. C., Brahma, S., Huang, J. L., & Liu, C. P. (2022a). Enhanced piezoelectric coefficient and the piezoelectric nanogenerator output performance in Y-doped ZnO thin films. Materials Science in Semiconductor Processing, 146(February), 106703. https://doi.org/10.1016/j.mssp.2022.106703spa
dc.relation.referencesCheng, L. C., Brahma, S., Huang, J. L., & Liu, C. P. (2022b). Enhanced piezoelectric coefficient and the piezoelectric nanogenerator output performance in Y-doped ZnO thin films. Materials Science in Semiconductor Processing, 146(March), 106703. https://doi.org/10.1016/j.mssp.2022.106703spa
dc.relation.referencesCheon, J., Lee, J., & Kim, J. (2012). Inkjet printing using copper nanoparticles synthesized by electrolysis. Thin Solid Films, 520(7), 2639–2643. https://doi.org/10.1016/j.tsf.2011.11.021spa
dc.relation.referencesChoi, D., & Park, Y. T. (2019). Nanogenerators in Korea. In Nanogenerators in Korea. https://doi.org/10.3390/books978-3-03897-623-3spa
dc.relation.referencesChowdhury, A. R., Jaksik, J., Hussain, I., Longoria, R., Faruque, O., Cesano, F., Scarano, D., Parsons, J., & Uddin, M. J. (2019). Multicomponent nanostructured materials and interfaces for efficient piezoelectricity. Nano-Structures and Nano-Objects, 17, 148–184. https://doi.org/10.1016/j.nanoso.2018.12.002spa
dc.relation.referencesChristian, B., Volk, J., Lukàcs, I. E., Sautieff, E., Sturm, C., Graillot, A., Dauksevicius, R., O’Reilly, E., Ambacher, O., & Lebedev, V. (2016). Piezo-force and Vibration Analysis of ZnO Nanowire Arrays for Sensor Application. Procedia Engineering, 168, 1192–1195. https://doi.org/10.1016/j.proeng.2016.11.406spa
dc.relation.referencesCoates, J. (2004). Encyclopedia of Analytical Chemistry -Interpretation of Infrared Spectra, A Practical Approach. Encyclopedia of Analytical Chemistry, 1–23. http://www3.uma.pt/jrodrigues/disciplinas/QINO-II/Teorica/IR.pdfspa
dc.relation.referencesCosta, S. V., Azana, N. T., Shieh, P., & Mazon, T. (2018). Synthesis of ZnO rod arrays on aluminum recyclable paper and effect of the rod size on power density of eco-friendly nanogenerators. Ceramics International, 44(11), 12174–12179. https://doi.org/10.1016/j.ceramint.2018.03.272spa
dc.relation.referencesCovaci, C., & Gontean, A. (2020). Piezoelectric energy harvesting solutions: A review. Sensors (Switzerland), 20(12), 1–37. https://doi.org/10.3390/s20123512spa
dc.relation.referencesCrossley, S., & Kar-Narayan, S. (2015). Energy harvesting performance of piezoelectric ceramic and polymer nanowires. Nanotechnology, 26(34). https://doi.org/10.1088/0957-4484/26/34/344001spa
dc.relation.referencesDeng, W., Yang, T., Jin, L., Yan, C., Huang, H., Chu, X., Wang, Z., Xiong, D., Tian, G., Gao, Y., Zhang, H., & Yang, W. (2019). Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy, 55, 516–525. https://doi.org/10.1016/j.nanoen.2018.10.049spa
dc.relation.referencesDong, K., Peng, X., & Wang, Z. L. (2020). Fiber/Fabric-Based Piezoelectric and Triboelectric Nanogenerators for Flexible/Stretchable and Wearable Electronics and Artificial Intelligence. Advanced Materials, 32(5), 1–43. https://doi.org/10.1002/adma.201902549spa
dc.relation.referencesDossin Zanrosso, C., Piazza, D., & Lansarin, M. A. (2020). PVDF/ZnO composite films for photocatalysis: A comparative study of solution mixing and melt blending methods. Polymer Engineering and Science, 60(6), 1146–1157. https://doi.org/10.1002/pen.25368spa
dc.relation.referencesDukali, R. M., Radovic, I. M., Stojanovic, D. B., Sevic, D. M., Radojevic, V. J., Jocic, D. M., & Aleksic, R. R. (2014). Electrospinning of the laser dye rhodamine B-doped poly(methyl methacrylate) nanofibers. Journal of the Serbian Chemical Society, 79(7), 867–880. https://doi.org/10.2298/JSC131014011Dspa
dc.relation.referencesElton N. Kaufmann. (2003). Characterization of materials.spa
dc.relation.referencesErer, K. S. (2007). Adaptive usage of the Butterworth digital filter. Journal of Biomechanics, 40(13), 2934–2943. https://doi.org/10.1016/j.jbiomech.2007.02.019spa
dc.relation.referencesFang, L., Wu, W., Huang, X., He, J., & Jiang, P. (2015). Hydrangea-like zinc oxide superstructures for ferroelectric polymer composites with high thermal conductivity and high dielectric constant. Composites Science and Technology, 107, 67–74. https://doi.org/10.1016/j.compscitech.2014.12.009spa
dc.relation.referencesFangueiro, R., & Soutinho, F. (2011). Textile structures. In Fibrous and Composite Materials for Civil Engineering Applications. Woodhead Publishing Limited. https://doi.org/10.1533/9780857095583.1.62spa
dc.relation.referencesFateh, T., Richard, F., Rogaume, T., & Joseph, P. (2016). Experimental and modelling studies on the kinetics and mechanisms of thermal degradation of polymethyl methacrylate in nitrogen and air. Journal of Analytical and Applied Pyrolysis, 120, 423–433. https://doi.org/10.1016/j.jaap.2016.06.014spa
dc.relation.referencesFeng, W., Wang, B., Huang, P., Wang, X., Yu, J., & Wang, C. (2016). Wet chemistry synthesis of ZnO crystals with hexamethylenetetramine(HMTA): Understanding the role of HMTA in the formation of ZnO crystals. Materials Science in Semiconductor Processing, 41, 462–469. https://doi.org/10.1016/j.mssp.2015.10.017spa
dc.relation.referencesFonoberov, V. A., & Balandin, A. A. (2006). ZnO Quantum Dots: Physical Properties and Optoelectronic Applications. Journal of Nanoelectronics and Optoelectronics, 1(1), 19–38. https://doi.org/10.1166/jno.2006.002spa
dc.relation.referencesFraga, M. A., Furlan, H., Pessoa, R. S., & Massi, M. (2014). Wide bandgap semiconductor thin films for piezoelectric and piezoresistive MEMS sensors applied at high temperatures: An overview. Microsystem Technologies, 20(1), 9–21. https://doi.org/10.1007/s00542-013-2029-zspa
dc.relation.referencesGaan, S., & Sun, G. (2009). Effect of nitrogen additives on thermal decomposition of cotton. Journal of Analytical and Applied Pyrolysis, 84(1), 108–115. https://doi.org/10.1016/j.jaap.2008.12.004spa
dc.relation.referencesGad, S. E., & Sullivan, D. W. (2014). Methyl Ethyl Ketone. In Encyclopedia of Toxicology: Third Edition (Third Edit, Vol. 3). Elsevier. https://doi.org/10.1016/B978-0-12-386454-3.00879-4spa
dc.relation.referencesGerbreders, V., Krasovska, M., Sledevskis, E., Gerbreders, A., Mihailova, I., Tamanis, E., & Ogurcovs, A. (2020). Hydrothermal synthesis of ZnO nanostructures with controllable morphology change. CrystEngComm, 22(8), 1346–1358. https://doi.org/10.1039/c9ce01556fspa
dc.relation.referencesGhasemian, M. B., Lin, Q., Adabifiroozjaei, E., Wang, F., Chu, D., & Wang, D. (2017). Morphology control and large piezoresponse of hydrothermally synthesized lead-free piezoelectric (Bi0.5Na0.5)TiO3 nanofibres. RSC Advances, 7(25), 15020–15026. https://doi.org/10.1039/c7ra01293dspa
dc.relation.referencesGodfrey, D., Nirmal, D., Arivazhagan, L., Rathes Kannan, R., Issac Nelson, P., Rajesh, S., Vidhya, B., & Mohankumar, N. (2020). A novel ZnPc nanorod derived piezoelectric nanogenerator for energy harvesting. Physica E: Low-Dimensional Systems and Nanostructures, 118, 113931. https://doi.org/10.1016/j.physe.2019.113931spa
dc.relation.referencesGoel, S., & Kumar, B. (2020). A review on piezo-/ferro-electric properties of morphologically diverse ZnO nanostructures. Journal of Alloys and Compounds, 816, 152491. https://doi.org/10.1016/j.jallcom.2019.152491spa
dc.relation.referencesGolubevas, R., Zarkov, A., Alinauskas, L., Stankeviciute, Z., Balciunas, G., Garskaite, E., & Kareiva, A. (2017). Fabrication and investigation of high-quality glass-ceramic (GC)-polymethyl methacrylate (PMMA) composite for regenerative medicine. RSC Advances, 7(53), 33558–33567. https://doi.org/10.1039/c7ra05188cspa
dc.relation.referencesgowayed, Y. (2013). Types of fiber and fiber arrangement in fi ber-reinforced polymer (FRP) composites. In N. Uddin (Ed.), Developments in fiber-reinforced polymer (FRP) composites for civil engineering (pp. 3–17).spa
dc.relation.referencesGulia, S., & Kakkar, R. (2013). Zno quantum dots for biomedical applications. Advanced Materials Letters, 4(12), 876–887. https://doi.org/10.5185/amlett.2013.3440spa
dc.relation.referencesHe, Q., Li, X., Zhang, J., Zhang, H., & Briscoe, J. (2021). P–N junction-based ZnO wearable textile nanogenerator for biomechanical energy harvesting. Nano Energy, 85(February), 105938. https://doi.org/10.1016/j.nanoen.2021.105938spa
dc.relation.referencesHomayounfar, S. Z., & Andrew, T. L. (2020). Wearable Sensors for Monitoring Human Motion: A Review on Mechanisms, Materials, and Challenges. SLAS Technology, 25(1), 9–24. https://doi.org/10.1177/2472630319891128spa
dc.relation.referencesHou, Q., Zhu, L., Chen, H., Liu, H., & Li, W. (2013). Highly regular and ultra-thin porous ZnO nanosheets: An indirect electrodeposition method using acetate-containing precursor and their application in quantum dots-sensitized solar cells. Electrochimica Acta, 94(3), 72–79. https://doi.org/10.1016/j.electacta.2013.01.122spa
dc.relation.referencesHsu, C. L., & Chen, K. C. (2012). Improving piezoelectric nanogenerator comprises ZnO nanowires by bending the flexible PET substrate at low vibration frequency. Journal of Physical Chemistry C, 116(16), 9351–9355. https://doi.org/10.1021/jp301527yspa
dc.relation.referencesHu, D., Yao, M., Fan, Y., Ma, C., Fan, M., & Liu, M. (2019). Strategies to achieve high performance piezoelectric nanogenerators. Nano Energy, 55(November 2018), 288–304. https://doi.org/10.1016/j.nanoen.2018.10.053spa
dc.relation.referencesIbrahim, N., Akindoyo, J. O., & Mariatti, M. (2022). Recent development in silver-based ink for flexible electronics. Journal of Science: Advanced Materials and Devices, 7(1), 100395. https://doi.org/10.1016/j.jsamd.2021.09.002spa
dc.relation.referencesInamuddin, & Abbas Kashmery, H. (2019). Polyvinylidene fluoride/sulfonated graphene oxide blend membrane coated with polypyrrole/platinum electrode for ionic polymer metal composite actuator applications. Scientific Reports, 9(1), 1–11. https://doi.org/10.1038/s41598-019-46305-6spa
dc.relation.referencesIndira, S. S., Vaithilingam, C. A., Oruganti, K. S. P., Mohd, F., & Rahman, S. (2019). Nanogenerators as a sustainable power source: state of art, applications, and challenges. In Nanomaterials (Vol. 9, Issue 5). https://doi.org/10.3390/nano9050773spa
dc.relation.referencesIndolia, A. P., & Gaur, M. S. (2013). Investigation of structural and thermal characteristics of PVDF/ZnO nanocomposites. Journal of Thermal Analysis and Calorimetry, 113(2), 821–830. https://doi.org/10.1007/s10973-012-2834-0spa
dc.relation.referencesIo, W. F., Wong, M. C., Pang, S. Y., Zhao, Y., Ding, R., Guo, F., & Hao, J. (2022). Strong piezoelectric response in layered CuInP2S6 nanosheets for piezoelectric nanogenerators. Nano Energy, 99(May), 107371. https://doi.org/10.1016/j.nanoen.2022.107371spa
dc.relation.referencesJain, G., Rocks, C., Maguire, P., & Mariotti, D. (2020). One-step synthesis of strongly confined, defect-free and hydroxy-terminated ZnO quantum dots. Nanotechnology, 31(21). https://doi.org/10.1088/1361-6528/ab72b5spa
dc.relation.referencesJaved, Z., Rafiq, L., Nazeer, M. A., Siddiqui, S., Ramzan, M. B., Khan, M. Q., & Naeem, M. S. (2022). Piezoelectric nanogenerator for bio-mechanical strain measurement. Beilstein Journal of Nanotechnology, 13, 192–200. https://doi.org/10.3762/BJNANO.13.14spa
dc.relation.referencesJenkins, K., Kelly, S., Nguyen, V., Wu, Y., & Yang, R. (2018). Piezoelectric diphenylalanine peptide for greatly improved flexible nanogenerators. Nano Energy, 51, 317–323. https://doi.org/10.1016/j.nanoen.2018.06.061spa
dc.relation.referencesJia, G., Lu, X., Hao, B., Wang, X., Li, Y., & Yao, J. (2013). Kinetic mechanism of ZnO hexagonal single crystal slices on GaN/sapphire by a layer-by-layer growth mode. RSC Advances, 3(31), 12826–12830. https://doi.org/10.1039/c3ra23261aspa
dc.relation.referencesJiang, H., Wang, H., & Wang, X. (2011). Facile and mild preparation of fluorescent ZnO nanosheets and their bioimaging applications. Applied Surface Science, 257(15), 6991–6995. https://doi.org/10.1016/j.apsusc.2011.03.053spa
dc.relation.referencesJiang, Y., Deng, Y., & Qi, H. (2021). Microstructure dependence of output performance in flexible pvdf piezoelectric nanogenerators. Polymers, 13(19). https://doi.org/10.3390/polym13193252spa
dc.relation.referencesJiao, P. (2021). Emerging artificial intelligence in piezoelectric and triboelectric nanogenerators. Nano Energy, 88, 106227. https://doi.org/10.1016/j.nanoen.2021.106227spa
dc.relation.referencesJin, C., Hao, N., Xu, Z., Trase, I., Nie, Y., Dong, L., Closson, A., Chen, Z., & Zhang, J. X. J. (2020). Flexible piezoelectric nanogenerators using metal-doped ZnO-PVDF films. Sensors and Actuators, A: Physical, 305, 111912. https://doi.org/10.1016/j.sna.2020.111912spa
dc.relation.referencesJoe, A., Park, S. H., Shim, K. D., Kim, D. J., Jhee, K. H., Lee, H. W., Heo, C. H., Kim, H. M., & Jang, E. S. (2017). Antibacterial mechanism of ZnO nanoparticles under dark conditions. Journal of Industrial and Engineering Chemistry, 45, 430–439. https://doi.org/10.1016/j.jiec.2016.10.013spa
dc.relation.referencesJung, D. Y., Baek, S. H., Hasan, M. R., & Park, I. K. (2015). Performance-enhanced ZnO nanorod-based piezoelectric nanogenerators on double-sided stainless steel foil. Journal of Alloys and Compounds, 641, 163–169. https://doi.org/10.1016/j.jallcom.2015.03.066spa
dc.relation.referencesKammel, R. S., & Sabry, R. S. (2019). Effects of the aspect ratio of ZnO nanorods on the performance of piezoelectric nanogenerators. Journal of Science: Advanced Materials and Devices, 4(3), 420–424. https://doi.org/10.1016/j.jsamd.2019.08.002spa
dc.relation.referencesKamyshny, A., & Magdassi, S. (2014). Conductive nanomaterials for printed electronics. Small, 10(17), 3515–3535. https://doi.org/10.1002/smll.201303000spa
dc.relation.referencesKarmakar, S. R. (1998). Application of biotechnology in the pre-treatment processes of textiles. In Colourage (Vol. 45, Issue ANNUAL).spa
dc.relation.referencesKarthikeyan, C., Arun, L., Hameed, A. S. H., Gopinath, K., Umaralikahan, L., Vijayaprasath, G., & Malathi, P. (2019). Structural, optical, thermal and magnetic properties of nickel calcium and nickel iron co-doped ZnO nanoparticles. Journal of Materials Science: Materials in Electronics, 0(0), 0. https://doi.org/10.1007/s10854-019-01160-zspa
dc.relation.referencesKasaw, E., Haile, A., & Getnet, M. (2020). Conductive Coatings of Cotton Fabric Consisting of. Coatings, 1–17.spa
dc.relation.referencesKaur, J., & Singh, H. (2020). Fabrication and analysis of piezoelectricity in 0D, 1D and 2D Zinc Oxide nanostructures. Ceramics International, 46(11), 19401–19407. https://doi.org/10.1016/j.ceramint.2020.04.283spa
dc.relation.referencesKawamura, G., Alvarez, S., Stewart, I. E., Catenacci, M., Chen, Z., & Ha, Y. C. (2015). Production of Oxidation-Resistant Cu-Based Nanoparticles by Wire Explosion. Scientific Reports, 5, 1–8. https://doi.org/10.1038/srep18333spa
dc.relation.referencesKim, H. G., Kim, E. H., & Kim, S. S. (2021). Growth of zno nanorods on ito film for piezoelectric nanogenerators. Materials, 14(6). https://doi.org/10.3390/ma14061461spa
dc.relation.referencesKim, M., & Fan, J. (2021). Piezoelectric Properties of Three Types of PVDF and ZnO Nanofibrous Composites. Advanced Fiber Materials, 3(3), 160–171. https://doi.org/10.1007/s42765-021-00068-wspa
dc.relation.referencesKim, M., Wu, Y. S., Kan, E. C., & Fan, J. (2018). Breathable and flexible piezoelectric ZnO@PVDF fibrous nanogenerator for wearable applications. Polymers, 10(7). https://doi.org/10.3390/polym10070745spa
dc.relation.referencesKolodziejczak-Radzimska, A., & Jesionowski, T. (2014). Zinc oxide-from synthesis to application: A review. Materials, 7(4), 2833–2881. https://doi.org/10.3390/ma7042833spa
dc.relation.referencesKról, A., Pomastowski, P., Rafińska, K., Railean-Plugaru, V., & Buszewski, B. (2017). Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Advances in Colloid and Interface Science, 249, 37–52. https://doi.org/10.1016/j.cis.2017.07.033spa
dc.relation.referencesKumar, P., Yadav, A. K., Joshi, A. G., Bhattacharyya, D., Jha, S. N., & Pandey, P. C. (2018). Influence of Li co-doping on structural property of sol-gel derived terbium doped zinc oxide nanoparticles. Materials Characterization, 142(December 2017), 593–601. https://doi.org/10.1016/j.matchar.2018.06.024spa
dc.relation.referencesKumar Prajapati, G., Katla, R., & Singh, B. (2021). Effect of variation of MoS2concentration on the piezoelectric performance of PVDF-MoS2based flexible nanogenerator. Materials Today: Proceedings, 47, 4861–4865. https://doi.org/10.1016/j.matpr.2021.06.084spa
dc.relation.referencesKurort, T., Sekiguchi, Y., Ogawa, T., Sawaguchi, T., Ikemusa, T., & Honda, T. (1977). Thermal Degradation of Polystyrene. Nippon Kagaku Kaishi, 1977(6), 894–901. https://doi.org/10.1246/nikkashi.1977.894spa
dc.relation.referencesKwon, Y. H., Kim, D. H., Kim, H. K., & Nah, J. (2015). Phosphorus-doped zinc oxide p-n homojunction thin film for flexible piezoelectric nanogenerators. Nano Energy, 18, 126–132. https://doi.org/10.1016/j.nanoen.2015.10.009spa
dc.relation.referencesLee, E., Park, J., Yim, M., Jeong, S., & Yoon, G. (2014). High-efficiency micro-energy generation based on free-carrier-modulated ZnO:N piezoelectric thin films. Applied Physics Letters, 104(21), 1–6. https://doi.org/10.1063/1.4880935spa
dc.relation.referencesLee, Y., Kim, S., Kim, D., Lee, C., Park, H., & Lee, J. H. (2020). Direct-current flexible piezoelectric nanogenerators based on two-dimensional ZnO nanosheet. Applied Surface Science, 509, 145328. https://doi.org/10.1016/j.apsusc.2020.145328spa
dc.relation.referencesLeong, S. S., Ng, W. M., Lim, J. K., & Yeap, S. P. (2018). Handbook of Materials Characterization. https://doi.org/10.1007/978-3-319-92955-2_3spa
dc.relation.referencesLi, G. Y., Zhang, H. Di, Guo, K., Ma, X. S., & Long, Y. Z. (2020). Fabrication and piezoelectric-pyroelectric properties of electrospun PVDF/ZnO composite fibers. Materials Research Express, 7(9). https://doi.org/10.1088/2053-1591/abb264spa
dc.relation.referencesLi, M., Katsouras, I., Piliego, C., Glasser, G., Lieberwirth, I., Blom, P. W. M., & De Leeuw, D. M. (2013). Controlling the microstructure of poly(vinylidene-fluoride) (PVDF) thin films for microelectronics. Journal of Materials Chemistry C, 1(46), 7695–7702. https://doi.org/10.1039/c3tc31774aspa
dc.relation.referencesLi, T., Li, Y. T., Qin, W. W., Zhang, P. P., Chen, X. Q., Hu, X. F., & Zhang, W. (2015). Piezoelectric Size Effects in a Zinc Oxide Micropillar. Nanoscale Research Letters, 10(1). https://doi.org/10.1186/s11671-015-1081-2spa
dc.relation.referencesLi, Wanxi, Qi, H., Guo, F., Niu, X., Du, Y., & Chen, Y. (2019). NiFe2O4 nanoparticles supported on cotton-based carbon fibers and their application as a novel broadband microwave absorbent. RSC Advances, 9(51), 29959–29966. https://doi.org/10.1039/c9ra05844cspa
dc.relation.referencesLi, Weiwei, Meredov, A., & Shamim, A. (2019). Coat-and-print patterning of silver nanowires for flexible and transparent electronics. Npj Flexible Electronics, 3(1). https://doi.org/10.1038/s41528-019-0063-3spa
dc.relation.referencesLi, Y., Feng, J., Zhao, Y., Wang, J., & Xu, C. (2022). Ultrathin flexible linear-piezoelectric ZnO thin film actuators: Tuning the piezoelectric responses by in-plane epitaxial strain. Applied Surface Science, 599(December 2021), 153969. https://doi.org/10.1016/j.apsusc.2022.153969spa
dc.relation.referencesLiao, Y., Zhang, R., & Qian, J. (2019). Printed electronics based on inorganic conductive nanomaterials and their applications in intelligent food packaging. RSC Advances, 9(50), 29154–29172. https://doi.org/10.1039/c9ra05954gspa
dc.relation.referencesLiu, J., Yang, B., Lu, L., Wang, X., Li, X., Chen, X., & Liu, J. (2020). Flexible and lead-free piezoelectric nanogenerator as self-powered sensor based on electrospinning BZT-BCT/P(VDF-TrFE) nanofibers. Sensors and Actuators, A: Physical, 303(July), 111796. https://doi.org/10.1016/j.sna.2019.111796spa
dc.relation.referencesLiu, M., Chang, J., Sun, J., & Gao, L. (2013). Synthesis of porous NiO using NaBH4 dissolved in ethylene glycol as precipitant for high-performance supercapacitor. Electrochimica Acta, 107, 9–15. https://doi.org/10.1016/j.electacta.2013.05.122spa
dc.relation.referencesLiu, Yangsi, & Gao, W. (2015). Growth process, crystal size and alignment of ZnO nanorods synthesized under neutral and acid conditions. Journal of Alloys and Compounds, 629, 84–91. https://doi.org/10.1016/j.jallcom.2014.12.139spa
dc.relation.referencesLiu, Yiming, Wang, L., Zhao, L., Yu, X., & Zi, Y. (2020). Recent progress on flexible nanogenerators toward self‐powered systems. InfoMat, 2(2), 318–340. https://doi.org/10.1002/inf2.12079spa
dc.relation.referencesLiu, Z., Zhang, S., Jin, Y. M., Ouyang, H., Zou, Y., Wang, X. X., Xie, L. X., & Li, Z. (2017). Flexible piezoelectric nanogenerator in wearable self-powered active sensor for respiration and healthcare monitoring. Semiconductor Science and Technology, 32(6). https://doi.org/10.1088/1361-6641/aa68d1spa
dc.relation.referencesLiu, Z., Zhang, S., Jin, Y. M., Ouyang, H., Zou, Y., Wang, X. X., Xie, L. X., & Li, Z. (2019). Flexible Piezoelectric Nanogenerator for Wearable Self-powered Respiration Active Sensor and Healthcare Monitoring. Materials Research Express, 0–12.spa
dc.relation.referencesLu, L., Ding, W., Liu, J., & Yang, B. (2020a). Flexible PVDF based piezoelectric nanogenerators. Nano Energy, 78(June), 105251. https://doi.org/10.1016/j.nanoen.2020.105251spa
dc.relation.referencesLu, L., Ding, W., Liu, J., & Yang, B. (2020b). Flexible PVDF based piezoelectric nanogenerators. Nano Energy, 78(July), 105251. https://doi.org/10.1016/j.nanoen.2020.105251spa
dc.relation.referencesLuo, J. T., Yang, Y. C., Zhu, X. Y., Chen, G., Zeng, F., & Pan, F. (2010). Enhanced electromechanical response of Fe-doped ZnO films by modulating the chemical state and ionic size of the Fe dopant. Physical Review B - Condensed Matter and Materials Physics, 82(1). https://doi.org/10.1103/PhysRevB.82.014116spa
dc.relation.referencesLv, J., Zhang, L., Zhong, Y., Sui, X., Wang, B., Chen, Z., Feng, X., Xu, H., & Mao, Z. (2019). High-performance polypyrrole coated knitted cotton fabric electrodes for wearable energy storage. Organic Electronics, 74(May), 59–68. https://doi.org/10.1016/j.orgel.2019.06.027spa
dc.relation.referencesMa, X., Zhang, F., Han, K., Yang, B., & Song, G. (2015). Evaporation characteristics of acetone-butanol-ethanol and diesel blends droplets at high ambient temperatures. Fuel, 160, 43–49. https://doi.org/10.1016/j.fuel.2015.07.079spa
dc.relation.referencesMahalakshmi, S., Hema, N., & Vijaya, P. P. (2020). In Vitro Biocompatibility and Antimicrobial activities of Zinc Oxide Nanoparticles (ZnO NPs) Prepared by Chemical and Green Synthetic Route— A Comparative Study. BioNanoScience, 10(1), 112–121. https://doi.org/10.1007/s12668-019-00698-wspa
dc.relation.referencesMahanty, B., Ghosh, S. K., Jana, S., Mallick, Z., Sarkar, S., & Mandal, D. (2021). ZnO nanoparticle confined stress amplified all-fiber piezoelectric nanogenerator for self-powered healthcare monitoring. Sustainable Energy and Fuels, 5(17), 4389–4400. https://doi.org/10.1039/d1se00444aspa
dc.relation.referencesMahapatra, A., Ajimsha, R. S., & Misra, P. (2022). Oxygen annealing induced enhancement in output characteristics of ZnO based flexible piezoelectric nanogenerators. Journal of Alloys and Compounds, 913, 165277. https://doi.org/10.1016/j.jallcom.2022.165277spa
dc.relation.referencesManjula, Y., Kumar, R. R., Raju, P. M. S., Kumar, G. A., Rao, T. V., Akshaykranth, A., & Suparaja, P. (2020). Piezoelectric Flexible Nanogenerator Based on ZnO Nanosheet Networks for Mechanical a Department. Chemical Physics, 110699. https://doi.org/10.1016/j.chemphys.2020.110699spa
dc.relation.referencesManoharan, C., Sutharsan, P., Venkatachalapathy, R., Vasanthi, S., Dhanapandian, S., & Veeramuthu, K. (2015). Spectroscopic and rock magnetic studies on some ancient Indian pottery samples. Egyptian Journal of Basic and Applied Sciences, 2(1), 39–49. https://doi.org/10.1016/j.ejbas.2014.11.001spa
dc.relation.referencesMatin Nazar, A., Egbe, K. J. I., Jiao, P., Wang, Y., & Yang, Y. (2021). Magnetic lifting triboelectric nanogenerators (ml-TENG) for energy harvesting and active sensing. APL Materials, 9(9). https://doi.org/10.1063/5.0064300spa
dc.relation.referencesMayeen, A., & Kalarikkal, N. (2018). Development of ceramic-controlled piezoelectric devices for biomedical applications. In Fundamental Biomaterials: Ceramics. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-102203-0.00002-0spa
dc.relation.referencesMedina Cruz, D., Mostafavi, E., Vernet-Crua, A., Barabadi, H., Shah, V., Cholula-Díaz, J. L., Guisbiers, G., & Webster, T. J. (2020). Green nanotechnology-based zinc oxide (ZnO) nanomaterials for biomedical applications: a review. Journal of Physics: Materials, 3(3), 034005. https://doi.org/10.1088/2515-7639/ab8186spa
dc.relation.referencesMeng, X., Cui, H., Dong, J., Zheng, J., Zhu, Y., Wang, Z., Zhang, J., Jia, S., Zhao, J., & Zhu, Z. (2013). Synthesis and electrocatalytic performance of nitrogen-doped macroporous carbons. Journal of Materials Chemistry A, 1(33), 9469–9476. https://doi.org/10.1039/c3ta10306dspa
dc.relation.referencesMesa, A. M., Castro-Autié, G. I., & Díaz-garcía, A. (2018). Evaluación de nanoestructuras de ZnO en la separación de CH4-CO2 (Issue June). https://doi.org/10.13140/RG.2.2.28587.54566spa
dc.relation.referencesMishra, S., Supraja, P., Jaiswal, V. V., Sankar, P. R., Kumar, R. R., Prakash, K., Kumar, K. U., & Haranath, D. (2021). Enhanced output of ZnO nanosheet-based piezoelectric nanogenerator with a novel device structure. Engineering Research Express, 3(4). https://doi.org/10.1088/2631-8695/ac34spa
dc.relation.referencesMo, L., Guo, Z., Yang, L., Zhang, Q., Fang, Y., Xin, Z., Chen, Z., Hu, K., Han, L., & Li, L. (2019). Silver nanoparticles based ink with moderate sintering in flexible and printed electronics. International Journal of Molecular Sciences, 20(9). https://doi.org/10.3390/ijms20092124spa
dc.relation.referencesMo, X., Zhou, H., Li, W., Xu, Z., Duan, J., Huang, L., Hu, B., & Zhou, J. (2019). Piezoelectrets for wearable energy harvesters and sensors. Nano Energy, 65(May), 104033. https://doi.org/10.1016/j.nanoen.2019.104033spa
dc.relation.referencesMokhatab, S., & Poe, W. A. (2012). Process Control Fundamentals. Handbook of Natural Gas Transmission and Processing, 473–509. https://doi.org/10.1016/b978-0-12-386914-2.00014-5spa
dc.relation.referencesMusbah, S. S., Radojevic, V. J., Borna, N. V., Stojanovic, D. B., Dramicanin, M. D., Marinkovic, A. D., & Aleksic, R. R. (2011). PMMA-Y2O3 (Eu3+) nanocomposites: Optical and mechanical properties. Journal of the Serbian Chemical Society, 76(8), 1153–1161. https://doi.org/10.2298/JSC100330094Mspa
dc.relation.referencesNagaraju, G., Udayabhanu, Shivaraj, Prashanth, S. A., Shastri, M., Yathish, K. V., Anupama, C., & Rangappa, D. (2017). Electrochemical heavy metal detection, photocatalytic, photoluminescence, biodiesel production and antibacterial activities of Ag–ZnO nanomaterial. Materials Research Bulletin, 94(September), 54–63. https://doi.org/10.1016/j.materresbull.2017.05.043spa
dc.relation.referencesNaghdi, S., Rhee, K. Y., Hui, D., & Park, S. J. (2018). A review of conductive metal nanomaterials as conductive, transparent, and flexible coatings, thin films, and conductive fillers: Different deposition methods and applications. Coatings, 8(8). https://doi.org/10.3390/coatings8080278spa
dc.relation.referencesNain, V., Kaur, M., Sandhu, K. S., Thory, R., & Sinhmar, A. (2020). Development, characterization, and biocompatibility of zinc oxide coupled starch nanocomposites from different botanical sources. International Journal of Biological Macromolecules, 162, 24–30. https://doi.org/10.1016/j.ijbiomac.2020.06.125spa
dc.relation.referencesNair, K. S., Varghese, H., Chandran, A., Hareesh, U. N. S., Chouprik, A., Spiridonov, M., & Surendran, K. P. (2022). Synthesis of KNN nanoblocks through surfactant-assisted hot injection method and fabrication of flexible piezoelectric nanogenerator based on KNN-PVDF nanocomposite. Materials Today Communications, 31(February), 103291. https://doi.org/10.1016/j.mtcomm.2022.103291spa
dc.relation.referencesNarita, F., & Fox, M. (2018). A Review on Piezoelectric, Magnetostrictive, and Magnetoelectric Materials and Device Technologies for Energy Harvesting Applications. Advanced Engineering Materials, 20(5), 1–22. https://doi.org/10.1002/adem.201700743spa
dc.relation.referencesNaveed Ul Haq, A., Nadhman, A., Ullah, I., Mustafa, G., Yasinzai, M., & Khan, I. (2017). Synthesis Approaches of Zinc Oxide Nanoparticles: The Dilemma of Ecotoxicity. Journal of Nanomaterials, 2017(Table 1). https://doi.org/10.1155/2017/8510342spa
dc.relation.referencesNayan, M. B., Jagadish, K., Abhilash, M. R., Namratha, K., & Srikantaswamy, S. (2019). Comparative Study on the Effects of Surface Area, Conduction Band and Valence Band Positions on the Photocatalytic Activity of ZnO-M<sub>x</sub>O<sub>y</sub> Heterostructures. Journal of Water Resource and Protection, 11(03), 357–370. https://doi.org/10.4236/jwarp.2019.113021spa
dc.relation.referencesNikolaidis, A. K., & Achilias, D. S. (2018). Thermal degradation kinetics and viscoelastic behavior of poly(methyl methacrylate)/ organomodified montmorillonite nanocomposites prepared via in situ bulk radical polymerization. Polymers, 10(5). https://doi.org/10.3390/polym10050491spa
dc.relation.referencesOmidi, M., Fatehinya, A., Farahani, M., Akbari, Z., Shahmoradi, S., Yazdian, F., Tahriri, M., Moharamzadeh, K., Tayebi, L., & Vashaee, D. (2017). Characterization of biomaterials. In Biomaterials for Oral and Dental Tissue Engineering. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100961-1.00007-4spa
dc.relation.referencesOno, Y. (1997). Catalysis in the production and reactions of dimethyl carbonate, an environmentally benign building block. Applied Catalysis A: General, 155(2), 133–166. https://doi.org/10.1016/S0926-860X(96)00402-4spa
dc.relation.referencesOpoku, H., Nketia-Yawson, B., Shin, E. S., & Noh, Y. Y. (2017). Controlling organization of conjugated polymer films from binary solvent mixtures for high performance organic field-effect transistors. Organic Electronics, 41, 198–204. https://doi.org/10.1016/j.orgel.2016.11.004spa
dc.relation.referencesOutline, C. (2019). Methods for Assessing Surface Cleanliness. In Developments in Surface Contamination and Cleaning, Volume 12 (Vol. 12). https://doi.org/10.1016/b978-0-12-816081-7.00003-6spa
dc.relation.referencesOuyang, J. (2018). Recent advances of intrinsically conductive polymers. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 34(11), 1211–1220. https://doi.org/10.3866/PKU.WHXB201804095spa
dc.relation.referencesÖztürk, S., Klnç, N., Taşaltn, N., & Öztürk, Z. Z. (2012). Fabrication of ZnO nanowires and nanorods. Physica E: Low-Dimensional Systems and Nanostructures, 44(6), 1062–1065. https://doi.org/10.1016/j.physe.2011.01.015spa
dc.relation.referencesParangusan, H., Ponnamma, D., & Al-Maadeed, M. A. A. (2018). Stretchable Electrospun PVDF-HFP/Co-ZnO Nanofibers as Piezoelectric Nanogenerators. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-017-19082-3spa
dc.relation.referencesParangusan, H., Ponnamma, D., & Almaadeed, M. A. A. (2018). Investigation on the effect of γ-irradiation on the dielectric and piezoelectric properties of stretchable PVDF/Fe-ZnO nanocomposites for self-powering devices. Soft Matter, 14(43), 8803–8813. https://doi.org/10.1039/c8sm01655kspa
dc.relation.referencesParize, R., Garnier, J., Chaix-Pluchery, O., Verrier, C., Appert, E., & Consonni, V. (2016). Effects of Hexamethylenetetramine on the Nucleation and Radial Growth of ZnO Nanowires by Chemical Bath Deposition. Journal of Physical Chemistry C, 120(9), 5242–5250. https://doi.org/10.1021/acs.jpcc.6b00479spa
dc.relation.referencesPark, K. Il, Jeong, C. K., Kim, N. K., & Lee, K. J. (2016). Stretchable piezoelectric nanocomposite generator. Nano Convergence, 3(1), 1–12. https://doi.org/10.1186/s40580-016-0072-zspa
dc.relation.referencesPark, J. S. (2010). A Review of Piezoelectric PVDF Film by Electrospinning and Its Applications. Advances in Natural Sciences: Nanoscience and Nanotechnology, 1(4). https://doi.org/10.1088/2043-6262/1/4/043002spa
dc.relation.referencesPedroso Silva Santos, B., Rubio Arias, J. J., Elias Jorge, F., Értola Pereira de Deus Santos, R., da Silva Fernandes, B., da Silva Candido, L., Cesar de Carvalho Peres, A., Gervasoni Chaves, E., & Vieira Marques, M. de F. (2021). Preparation, characterization and permeability evaluation of poly(vinylidene fluoride) composites with ZnO particles for flexible pipelines. Polymer Testing, 94(January). https://doi.org/10.1016/j.polymertesting.2021.107064spa
dc.relation.referencesPeterson, J. D., Vyazovkin, S., & Wight, C. A. (1999). Stabilizing effect of oxygen on thermal degradation of poly(methyl methacrylate). Macromolecular Rapid Communications, 20(9), 480–483. https://doi.org/10.1002/(sici)1521-3927(19990901)20:9<480::aid-marc480>3.3.co;2-zspa
dc.relation.referencesPigliacelli, C., D’Elicio, A., Milani, R., Terraneo, G., Resnati, G., Baldelli Bombelli, F., & Metrangolo, P. (2015). Hydrophobin-stabilized dispersions of PVDF nanoparticles in water. Journal of Fluorine Chemistry, 177, 62–69. https://doi.org/10.1016/j.jfluchem.2015.02.004spa
dc.relation.referencesPorkalai, V., Sathya, B., Benny Anburaj, D., Nedunchezhian, G., Joshua Gnanamuthu, S., & Meenambika, R. (2018). Photoluminescences properties of lanthanum-silver co-doped ZnO nano particles. Modern Electronic Materials, 4(4), 135–141. https://doi.org/10.3897/j.moem.4.4.35063spa
dc.relation.referencesPratihar, S., Medda, S. K., Sen, S., & Devi, P. S. (2020). Tailored piezoelectric performance of self-polarized PVDF-ZnO composites by optimization of aspect ratio of ZnO nanorods. Polymer Composites, 41(8), 3351–3363. https://doi.org/10.1002/pc.25624spa
dc.relation.referencesProto, A., Penhaker, M., Conforto, S., & Schmid, M. (2017). Nanogenerators for Human Body Energy Harvesting. Trends in Biotechnology, 35(7), 610–624. https://doi.org/10.1016/j.tibtech.2017.04.005spa
dc.relation.referencesRafique, S., Kasi, A. K., Kasi, J. K., Aminullah, Bokhari, M., & Shakoor, Z. (2020). Fabrication of silver-doped zinc oxide nanorods piezoelectric nanogenerator on cotton fabric to utilize and optimize the charging system. Nanomaterials and Nanotechnology, 10, 1–12. https://doi.org/10.1177/1847980419895741spa
dc.relation.referencesRai, P., Tripathy, S. K., Park, N. H., & Yu, Y. T. (2009). Hydrothermal synthesis, characterization and optical property of single crystal ZnO nanorods. AIP Conference Proceedings, 1147, 152–159. https://doi.org/10.1063/1.3183424spa
dc.relation.referencesRao, J., Chen, Z., Zhao, D., Yin, Y., Wang, X., & Yi, F. (2019). Recent Progress in Self-Powered Skin Sensors. 1–19.spa
dc.relation.referencesRazza, S., Castro-Hermosa, S., Di Carlo, A., & Brown, T. M. (2016). Research Update: Large-area deposition, coating, printing, and processing techniques for the upscaling of perovskite solar cell technology. APL Materials, 4(9). https://doi.org/10.1063/1.4962478spa
dc.relation.referencesRen, J., Wang, C., Zhang, X., Carey, T., Chen, K., Yin, Y., & Torrisi, F. (2017). Environmentally-friendly conductive cotton fabric as flexible strain sensor based on hot press reduced graphene oxide. Carbon, 111, 622–630. https://doi.org/10.1016/j.carbon.2016.10.045spa
dc.relation.referencesRoji, A. M. M., Jiji, G., & Raj, A. B. T. (2017). A retrospect on the role of piezoelectric nanogenerators in the development of the green world. RSC Advances, 7(53), 33642–33670. https://doi.org/10.1039/c7ra05256aspa
dc.relation.referencesRojo, M. M., Calero, O. C., Lopeandia, A. F., Rodriguez-Viejo, J., & Martín-Gonzalez, M. (2013). Review on measurement techniques of transport properties of nanowires. Nanoscale, 5(23), 11526–11544. https://doi.org/10.1039/c3nr03242fspa
dc.relation.referencesRojo, M. M., Manzano, C. V., Granados, D., Osorio, M. R., Borca-Tasciuc, T., & Martín-González, M. (2015). High electrical conductivity in out of plane direction of electrodeposited Bi2Te3 films. AIP Advances, 5(8). https://doi.org/10.1063/1.4928863spa
dc.relation.referencesRosen, Y., Marrach, R., Gutkin, V., & Magdassi, S. (2019). Thin Copper Flakes for Conductive Inks Prepared by Decomposition of Copper Formate and Ultrafine Wet Milling. Advanced Materials Technologies, 4(1), 1–8. https://doi.org/10.1002/admt.201800426spa
dc.relation.referencesSabry, R. S., & Hussein, A. D. (2019). Nanogenerator based on nanocomposites PVDF/ZnO with different concentrations. Materials Research Express, 6(10), 0–9. https://doi.org/10.1088/2053-1591/ab4296spa
dc.relation.referencesSahu, K., Choudhary, S., Singh, J., Kuriakose, S., Singhal, R., & Mohapatra, S. (2018). Facile wet chemical synthesis of ZnO nanosheets: Effects of counter ions on the morphological, structural, optical and photocatalytic properties. Ceramics International, 44(18), 23094–23101. https://doi.org/10.1016/j.ceramint.2018.09.116spa
dc.relation.referencesSayyah, S. M., El-Shafiey, Z. A., Barsoum, B. N., & Khaliel, A. B. (2004). Infrared spectroscopic studies of poly(methyl methacrylate) doped with a new sulfur-Science: Advanced Materials and Devices, 7(3), 100461. https://doi.org/10.1016/j.jsamd.2022.100461spa
dc.relation.referencesSriphan, S., & Vittayakorn, N. (2022b). Hybrid piezoelectric-triboelectric nanogenerators for flexible electronics: Recent advances and perspectives. Journal of Science: Advanced Materials and Devices, 7(3), 100461. https://doi.org/10.1016/j.jsamd.2022.100461spa
dc.relation.referencesStassi, S., Cauda, V., Ottone, C., Chiodoni, A., Pirri, C. F., & Canavese, G. (2015). Flexible piezoelectric energy nanogenerator based on ZnO nanotubes hosted in a polycarbonate membrane. Nano Energy, 13, 474–481. https://doi.org/10.1016/j.nanoen.2015.03.024spa
dc.relation.referencesStoppa, M., & Chiolerio, A. (2016). Testing and evaluation of wearable electronic textiles and assessment thereof. In Performance Testing of Textiles: Methods, Technology and Applications. Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100570-5.00005-0spa
dc.relation.referencesSun, H., Luo, M., Weng, W., Cheng, K., Du, P., Shen, G., & Han, G. (2008). Room-temperature preparation of ZnO nanosheets grown on Si substrates by a seed-layer assisted solution route. Nanotechnology, 19(12). https://doi.org/10.1088/0957-4484/19/12/125603spa
dc.relation.referencesSun, M., Li, Z., Yang, C., Lv, Y., Yuan, L., Shang, C., Liang, S., Guo, B., Liu, Y., Li, Z., & Luo, D. (2021). Nanogenerator-based devices for biomedical applications. Nano Energy, 89(PB), 106461. https://doi.org/10.1016/j.nanoen.2021.106461spa
dc.relation.referencesŚwierzy, A. P., Pawłowski, R., Warszyński, P., & Szczepanowicz, K. (2020). The conductive properties of ink coating based on Ni–Ag core–shell nanoparticles with the bimodal size distribution. Journal of Materials Science: Materials in Electronics, 31, 12991–12999.spa
dc.relation.referencesTan, K. S., Gan, W. C., Velayutham, T. S., & Majid, W. H. A. (2014). Pyroelectricity enhancement of PVDF nanocomposite thin films doped with ZnO nanoparticles. Smart Materials and Structures, 23(12). https://doi.org/10.1088/0964-1726/23/12/125006spa
dc.relation.referencesTan, W. K., Abdul Razak, K., Lockman, Z., Kawamura, G., Muto, H., & Matsuda, A. (2014). Synthesis of ZnO nanorod-nanosheet composite via facile hydrothermal method and their photocatalytic activities under visible-light irradiation. Journal of Solid State Chemistry, 211, 146–153. https://doi.org/10.1016/j.jssc.2013.12.026spa
dc.relation.referencesTandon, B., Blaker, J. J., & Cartmell, S. H. (2018). Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair. Acta Biomaterialia, 73(April), 1–20. https://doi.org/10.1016/j.actbio.2018.04.026spa
dc.relation.referencesTang, B., Cai, G., Wang, X., Xu, Z., & Yang, M. (2016). Functionalization of cotton fabrics through thermal reduction of graphene oxide. Applied Surface Science, 393, 441–448. https://doi.org/10.1016/j.apsusc.2016.10.046spa
dc.relation.referencesThakur, P., Kool, A., Hoque, N. A., Bagchi, B., Khatun, F., Biswas, P., Brahma, D., Roy, S., Banerjee, S., & Das, S. (2018a). Superior performances of in situ synthesized ZnO/PVDF thin film based self-poled piezoelectric nanogenerator and self-charged photo-power bank with high durability. Nano Energy, 44, 456–467. https://doi.org/10.1016/j.nanoen.2017.11.065spa
dc.relation.referencesThein, M. T., Pung, S. Y., Aziz, A., & Itoh, M. (2015). Stacked ZnO nanorods synthesized by solution precipitation method and their photocatalytic activity study. Journal of Sol-Gel Science and Technology, 74(1), 260–271. https://doi.org/10.1007/s10971-015-3646-zspa
dc.relation.referencesTorreblanca González, J., García Ovejero, R., Lozano Murciego, Á., Villarrubia González, G., & De Paz, J. F. (2019). Effects of Environmental Conditions and Composition on the Electrical Properties of Textile Fabrics. Sensors (Basel, Switzerland), 19(23). https://doi.org/10.3390/s19235145spa
dc.relation.referencesVinoth Pandi, D., Muthukumarasamy, N., Agilan, S., & Velauthapillai, D. (2018). CdSe quantum dots sensitized ZnO nanorods for solar cell application. Materials Letters, 223, 227–230. https://doi.org/10.1016/j.matlet.2018.04.022spa
dc.relation.referencesWahab, R., Ansari, S. G., Kim, Y. S., Seo, H. K., Kim, G. S., Khang, G., & Shin, H. S. (2007). Low temperature solution synthesis and characterization of ZnO nano-flowers. Materials Research Bulletin, 42(9), 1640–1648. https://doi.org/10.1016/j.materresbull.2006.11.035spa
dc.relation.referencesWang, A. C., Wu, C., Pisignano, D., Wang, Z. L., & Persano, L. (2018). Polymer nanogenerators: Opportunities and challenges for large-scale applications. Journal of Applied Polymer Science, 135(24), 1–17. https://doi.org/10.1002/app.45674spa
dc.relation.referencesWang, Q., Yang, D., Qiu, Y., Zhang, X., Song, W., & Hu, L. (2018). Two-dimensional ZnO nanosheets grown on flexible ITO-PET substrate for self-powered energy-harvesting nanodevices. Applied Physics Letters, 112(6). https://doi.org/10.1063/1.5012950spa
dc.relation.referencesWang, W., & Sun, H. (2020). Effect of different forms of nano-ZnO on the properties of PVDF/ZnO hybrid membranes. Journal of Applied Polymer Science, 137(36), 1–14. https://doi.org/10.1002/app.49070spa
dc.relation.referencesWang, Y. W., Shen, R., Wang, Q., & Vasquez, Y. (2018). ZnO Microstructures as Flame-Retardant Coatings on Cotton Fabrics. ACS Omega, 3(6), 6330–6338. https://doi.org/10.1021/acsomega.8b00371spa
dc.relation.referencesWang, Y., Zhu, L., & Du, C. (2021). Progress in piezoelectric nanogenerators based on pvdf composite films. Micromachines, 12(11). https://doi.org/10.3390/mi12111278spa
dc.relation.referencesWang, Z. L. (2009). ZnO nanowire and nanobelt platform for nanotechnology. Materials Science and Engineering R: Reports, 64(3–4), 33–71. https://doi.org/10.1016/j.mser.2009.02.001spa
dc.relation.referencesWang, Z. L., Zhu, G., Yang, Y., Wang, S., & Pan, C. (2012). Progress in nanogenerators for portable electronics. Materials Today, 15(12), 532–543. https://doi.org/10.1016/S1369-7021(13)70011-7spa
dc.relation.referencesWang, Z., & Song, J. (2006). Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science, 312(5771), 242–246. https://doi.org/10.1126/science.1124005spa
dc.relation.referencesWei, H., Wang, H., Xia, Y., Cui, D., Shi, Y., Dong, M., Liu, C., Ding, T., Zhang, J., Ma, Y., Wang, N., Wang, Z., Sun, Y., Wei, R., & Guo, Z. (2018). An overview of lead-free piezoelectric materials and devices. Journal of Materials Chemistry C, 6(46), 12446–12467. https://doi.org/10.1039/c8tc04515aspa
dc.relation.referencesWei, S. F., Lian, J. S., & Jiang, Q. (2009). Controlling growth of ZnO rods by polyvinylpyrrolidone (PVP) and their optical properties. Applied Surface Science, 255(15), 6978–6984. https://doi.org/10.1016/j.apsusc.2009.03.023spa
dc.relation.referencesWeng, L., Ju, P., Li, H., Yan, L., & Liu, L. (2017). Preparation and characterization of multi shape ZnO/PVDF composite materials. Journal Wuhan University of Technology, Materials Science Edition, 32(4), 958–962. https://doi.org/10.1007/s11595-017-1696-5spa
dc.relation.referencesWhiter, R. A., Narayan, V., & Kar-Narayan, S. (2014). A scalable nanogenerator based on self-poled piezoelectric polymer nanowires with high energy conversion efficiency. Advanced Energy Materials, 4(18), 1–7. https://doi.org/10.1002/aenm.201400519spa
dc.relation.referencesWilson, S., & Laing, R. (2019). Fabrics and garments as sensors: A research update. In Sensors (Switzerland) (Vol. 19, Issue 16). https://doi.org/10.3390/s19163570spa
dc.relation.referencesXu, B., & Cai, Z. (2008). Fabrication of a superhydrophobic ZnO nanorod array film on cotton fabrics via a wet chemical route and hydrophobic modification. Applied Surface Science, 254(18), 5899–5904. https://doi.org/10.1016/j.apsusc.2008.03.160spa
dc.relation.referencesXu, L.-L., Guo, M.-X., Liu, S., & Bian, S.-W. (2015). Graphene/cotton composite fabrics as flexible electrode materials for electrochemical capacitors. RSC Advances, 5(32), 25244–25249. https://doi.org/10.1039/C4RA16063Kspa
dc.relation.referencesYaghoubidoust, F., Salimi, E., Wicaksono, D. H. B., & Nur, H. (2020). Physical and electrochemical appraisal of cotton textile modified with polypyrrole and graphene/reduced graphene oxide for flexible electrode. Journal of the Textile Institute, 0(0), 1–13. https://doi.org/10.1080/00405000.2020.1835171spa
dc.relation.referencesYang, Gang, Tian, M. Z., Huang, P., Fu, Y. F., Li, Y. Q., Fu, Y. Q., Wang, X. Q., Li, Y., Hu, N., & Fu, S. Y. (2021). Flexible pressure sensor with a tunable pressure-detecting range for various human motions. Carbon, 173, 736–743. https://doi.org/10.1016/j.carbon.2020.11.066spa
dc.relation.referencesYang, Geng, Pang, G., Pang, Z., Gu, Y., Mantysalo, M., & Yang, H. (2019). Non-Invasive Flexible and Stretchable Wearable Sensors with Nano-Based Enhancement for Chronic Disease Care. IEEE Reviews in Biomedical Engineering, 12, 34–71. https://doi.org/10.1109/RBME.2018.2887301spa
dc.relation.referencesYang, J., Zhang, Y., Li, Y., Wang, Z., Wang, W., An, Q., & Tong, W. (2021). Piezoelectric Nanogenerators based on Graphene Oxide/PVDF Electrospun Nanofiber with Enhanced Performances by In-Situ Reduction. Materials Today Communications, 26. https://doi.org/10.1016/j.mtcomm.2020.101629spa
dc.relation.referencesYang leng. (2008). Characterization of Surfaces and Nanostructures Academic and Industrial Applications Characterization of Solid Materials and Heterogeneous Catalysts From Structure to Surface Reactivity Characterization Techniques for Polymer Nanocomposites Basic Concepts.spa
dc.relation.referencesYang, R., Qin, Y., Li, C., Dai, L., & Wang, Z. L. (2009). Characteristics of output voltage and current of integrated nanogenerators. Applied Physics Letters, 94(2), 4–6. https://doi.org/10.1063/1.3072362spa
dc.relation.referencesYi, G. C., Wang, C., & Park, W. Il. (2005). ZnO nanorods: Synthesis, characterization and applications. Semiconductor Science and Technology, 20(4). https://doi.org/10.1088/0268-1242/20/4/003spa
dc.relation.referencesYi, J., Song, Y., Cao, Z., Li, C., & Xiong, C. (2021). Gram-scale Y-doped ZnO and PVDF electrospun film for piezoelectric nanogenerators. Composites Science and Technology, 215(August), 109011. https://doi.org/10.1016/j.compscitech.2021.109011spa
dc.relation.referencesYu, D., Zhao, J., Wang, W., Qi, J., & Hu, Y. (2019). Mono-acrylated isosorbide as a bio-based monomer for the improvement of thermal and mechanical properties of poly(methyl methacrylate). RSC Advances, 9(61), 35532–35538. https://doi.org/10.1039/c9ra07548hspa
dc.relation.referencesYu, J., Wu, W., Dai, D., Song, Y., Li, C., & Jiang, N. (2014). Crystal structure transformation and dielectric properties of polymer composites incorporating zinc oxide nanorods. Macromolecular Research, 22(1), 19–25. https://doi.org/10.1007/s13233-014-2009-xspa
dc.relation.referencesYu, Q., Weng, P., Han, L., Yin, X., Chen, Z., Hu, X., Wang, L., & Wang, H. (2019). Enhanced thermal conductivity of flexible cotton fabrics coated with reactive MWCNT nanofluid for potential application in thermal conductivity coatings and fire warning. Cellulose, 26(12), 7523–7535. https://doi.org/10.1007/s10570-019-02592-wspa
dc.relation.referencesYue, R., Ramaraj, S. G., Liu, H., Elamaran, D., Elamaran, V., Gupta, V., Arya, S., Verma, S., Satapathi, S., hayawaka, Y., & Liu, X. (2022). A review of flexible lead-free piezoelectric energy harvester. Journal of Alloys and Compounds, 918, 165653. https://doi.org/10.1016/j.jallcom.2022.165653spa
dc.relation.referencesZapata-Hernandez, C., Durango-Giraldo, G., Cacua, K., & Buitrago-Sierra, R. (2020). Influence of graphene oxide synthesis methods on the electrical conductivity of cotton/graphene oxide composites. Journal of the Textile Institute, 0(0), 1–11. https://doi.org/10.1080/00405000.2020.1865507spa
dc.relation.referencesZeyrek Ongun, M., Oguzlar, S., Kartal, U., Yurddaskal, M., & Cihanbegendi, O. (2021). Energy harvesting nanogenerators: Electrospun β-PVDF nanofibers accompanying ZnO NPs and ZnO@Ag NPs. Solid State Sciences, 122(October), 106772. https://doi.org/10.1016/j.solidstatesciences.2021.106772spa
dc.relation.referencesZhang, D., Zhang, X., Li, X., Wang, H., Sang, X., Zhu, G., & Yeung, Y. (2022). Enhanced piezoelectric performance of PVDF/BiCl3/ZnO nanofiber-based piezoelectric nanogenerator. European Polymer Journal, 166(December 2021), 110956. https://doi.org/10.1016/j.eurpolymj.2021.110956spa
dc.relation.referencesZhang, Y., Ram, M. K., Stefanakos, E. K., & Goswami, D. Y. (2012). Synthesis, characterization, and applications of ZnO nanowires. Journal of Nanomaterials, 2012. https://doi.org/10.1155/2012/624520spa
dc.relation.referencesZhang, Z., Chen, Y., & Guo, J. (2019). ZnO nanorods patterned-textile using a novel hydrothermal method for sandwich structured-piezoelectric nanogenerator for human energy harvesting. Physica E: Low-Dimensional Systems and Nanostructures, 105, 212–218. https://doi.org/10.1016/j.physe.2018.09.007spa
dc.relation.referencesZhao, C., Jia, C., Zhu, Y., & Zhao, T. (2021). An effective self-powered piezoelectric sensor for monitoring basketball skills. Sensors, 21(15). https://doi.org/10.3390/s21155144spa
dc.relation.referencesZhao, M., Wang, Z., & Mao, S. X. (2004). Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope.spa
dc.relation.referencesZhao, Z., Dai, Y., Dou, S. X., & Liang, J. (2021). Flexible nanogenerators for wearable electronic applications based on piezoelectric materials. Materials Today Energy, 20, 100690. https://doi.org/10.1016/j.mtener.2021.100690spa
dc.relation.referencesZhou, X., Parida, K., Halevi, O., Liu, Y., Xiong, J., Magdassi, S., & Lee, P. S. (2020). All 3D-printed stretchable piezoelectric nanogenerator with non-protruding kirigami structure. Nano Energy, 72, 104676. https://doi.org/10.1016/j.nanoen.2020.104676spa
dc.relation.referencesZhou, Z., Zhao, Y., & Cai, Z. (2010). Low-temperature growth of ZnO nanorods on PET fabrics with two-step hydrothermal method. Applied Surface Science, 256(14), 4724–4728. https://doi.org/10.1016/j.apsusc.2010.02.081spa
dc.relation.referencesZhu, L., Xiang, Y., Liu, Y., Geng, K., Yao, R., & Li, B. (2022). Comparison of piezoelectric responses of flexible tactile sensors based on hydrothermally-grown ZnO nanorods on ZnO seed layers with different thicknesses. Sensors and Actuators A: Physical, 341(April), 113552. https://doi.org/10.1016/j.sna.2022.113552spa
dc.relation.referencesZhu, M., Shi, Q., He, T., Yi, Z., Ma, Y., Yang, B., Chen, T., & Lee, C. (2019). Self-Powered and Self-Functional Cotton Sock Using Piezoelectric and Triboelectric Hybrid Mechanism for Healthcare and Sports Monitoring. ACS Nano. https://doi.org/10.1021/acsnano.8b08329spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.lembOxido de cincspa
dc.subject.lembDispositivos piezoeléctricosspa
dc.subject.lembPiezoelectric deviceseng
dc.subject.proposalÓxido de zincspa
dc.subject.proposalSalida eléctricaspa
dc.subject.proposalSensorspa
dc.subject.proposalPENGeng
dc.subject.proposalTextilspa
dc.subject.proposalZinc oxideeng
dc.subject.proposalElectrical outputeng
dc.subject.proposalSensoreng
dc.subject.proposalPENGeng
dc.subject.proposalTextileseng
dc.titleDesarrollo de un nanogenerador piezoeléctrico para aplicaciones en sensores biomédicosspa
dc.title.translatedDevelopment of a piezoelectric nanogenerator for applications in biomedical sensorseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1036662665.2022.pdf
Tamaño:
3.48 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Materiales y Procesos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: