Evaluación de los cambios transcripcionales de células trofoblásticas humanas inmortalizadas (BeWo) infectadas con Trypanosoma cruzi

dc.contributor.advisorRamírez González, Juan Davidspa
dc.contributor.advisorPatarroyo Gutiérrez, Manuel Alfonsospa
dc.contributor.authorCáceres Bernal, Tatiana Marcelaspa
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000152573spa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=xuCUtX8AAAAJ&hl=esspa
dc.contributor.orcidCáceres Bernal, Tatiana Marcela [0009000468777446]spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Tatiana-Caceres-3?ev=hdr_xprfspa
dc.date.accessioned2025-05-09T16:34:44Z
dc.date.available2025-05-09T16:34:44Z
dc.date.issued2024
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa transmisión congénita de Trypanosoma cruzi representa un importante desafío para la salud global, derivado de complejas interacciones entre el parásito, la madre, la placenta y el feto. Aunque los mecanismos moleculares del paso de T. cruzi a través de la placenta siguen siendo en gran medida desconocidos, su interacción con las células trofoblásticas es esencial para la infección. Las investigaciones han revelado cambios sustanciales en la expresión génica de la placenta durante la infección, especialmente en rutas relacionadas con la respuesta inmune. Sin embargo, persiste una brecha en el conocimiento sobre las interacciones moleculares específicas, particularmente en relación con la unidad de tipificación discreta (DTU) I de T. cruzi, prevalente en Colombia y Venezuela, pero poco explorada en el contexto de la transmisión congénita. Por lo tanto, este estudio tiene como objetivo investigar el remodelamiento transcripcional tanto del hospedero como de T. cruzi (TcI) durante la infección de células trofoblásticas humanas, con el fin de dilucidar los mecanismos moleculares que subyacen a la transmisión congénita de la enfermedad de Chagas. Se cultivaron cepas de T. cruzi MHOM/CO/01/DA (TcI) y MHOM/CO/04/MG (TcI), y su genotipificación fue confirmada mediante PCR y secuenciación Sanger. Los tripomastigotes derivados de células infectadas VERO fueron purificados y utilizados para infectar células trofoblásticas BeWo. Las infecciones se evaluaron mediante curvas de infección y análisis estadísticos. Se extrajo ARN de los cultivos a las 72 y 120 horas postinfección, y se secuenció utilizando Illumina NOVAseq. Los análisis incluyeron expresión diferencial, evaluación de ontologías y reconstrucción de rutas de señalización. La cepa MG mostró una mayor capacidad de invasión, replicación y producción de tripomastigotes en comparación con DA. El análisis de expresión génica reveló 129 genes reprimidos y 28 genes sobreexpresados en el parásito en ambos puntos de tiempo. Se identificaron variaciones en familias multigénicas que codifican proteínas de superficie, esenciales para el ciclo de vida y la evasión inmune. En las células trofoblásticas, la sobreexpresión de histonas y ribonucleoproteínas sugiere una reorganización de la cromatina y la activación de rutas de reparación del ADN. La represión de genes relacionados con el empalme de ARN podría afectar la maduración del ARN y la defensa del hospedero. La ruta de necroptosis se encontró activada a las 120 horas, lo que indica una transición hacia muerte celular regulada y respuestas proinflamatorias. Este estudio revela que la infección por T. cruzi DTU I induce un significativo remodelamiento genético que afecta numerosos procesos celulares tanto en el parásito como en el hospedero. Estos cambios alteran la transcripción, modifican rutas de señalización celular y afectan la estructura genómica de las células trofoblásticas, facilitando la adaptación del parásito y su evasión de la respuesta inmune del hospedero. Las alteraciones en las células del hospedero pueden comprometer procesos esenciales para el mantenimiento de la integridad tisular y el equilibrio celular (Texto tomado de la fuente).spa
dc.description.abstractCongenital transmission of Trypanosoma cruzi poses a significant global health challenge, stemming from complex interactions among the parasite, mother, placenta, and fetus. While the molecular mechanisms of T. cruzi's passage across the placenta remain largely unknown, its engagement with trophoblastic cells is essential for infection. Research has revealed substantial gene expression changes in the placenta during infection, especially in immune response pathways. However, a gap remains regarding specific molecular interactions, particularly for T. cruzi discrete typing unit (DTU) I, prevalent in Colombia and Venezuela yet underexplored in congenital transmission. Therefore, this study aims to investigate the transcriptional remodeling of both the host and T. cruzi (TcI) during infection of human trophoblastic cells, elucidating the molecular mechanisms underpinning congenital Chagas disease transmission. T. cruzi strains MHOM/CO/01/DA (TcI) and MHOM/CO/04/MG (TcI) were cultured, with genotyping confirmed through PCR and Sanger sequencing. Purified cell-derived trypomastigotes from infected VERO cells were used to infect BeWo trophoblast cells. Infections were evaluated with infection curves and statistical analysis. RNA was extracted from cultures at 72- and 120-hours post-infection and sequenced using Illumina NOVAseq. Analyses included differential expression, ontology evaluation, and signaling pathway reconstruction. The MG strain demonstrated superior invasion, replication, and trypomastigote production compared to DA. Gene expression analysis revealed 129 down-regulated and 28 upregulated genes in the parasite at both time points. Variations in multigene families encoding surface proteins, essential for life cycle and immune evasion, were identified. In trophoblastic cells, upregulation of histones and ribonucleoproteins suggested chromatin reorganization and activation of DNA repair pathways. Down-regulation of RNA splicing-related genes may impair RNA maturation and host defense. The necroptosis pathway was upregulated at 120 hours, indicating a shift toward regulated cell death and pro-inflammatory responses. This study reveals that infection by T. cruzi DTU I induces significant genetic remodeling that impacts numerous cellular processes in both the parasite and the host. These changes affect transcription, alter cellular signaling pathways, and modify the genomic structure of trophoblastic cells, facilitating the parasite’s adaptation and evasion of the host immune response. Alterations in the host cells can compromise essential processes needed to maintain tissue integrity and balance.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias-Microbiologíaspa
dc.format.extent88 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88162
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.referencesWorld Health Organization. Integrating neglected tropical diseases into global health and development: fourth WHO report on neglected tropical diseases [Internet]. World Health Organization; 2017 [citado 30 de enero de 2023]. 278 p. Disponible en: https://apps.who.int/iris/handle/10665/255011spa
dc.relation.referencesBern C. Chagas’ Disease. Longo DL, editor. N Engl J Med. 30 de julio de 2015;373(5):456-66.spa
dc.relation.referencesHoward EJ, Xiong X, Carlier Y, Sosa-Estani S, Buekens P. Frequency of the congenital transmission of Trypanosoma cruzi: a systematic review and meta-analysis. BJOG. enero de 2014;121(1):22-33.spa
dc.relation.referencesOliveira I, Torrico F, Muñoz J, Gascon J. Congenital transmission of Chagas disease: a clinical approach. Expert Rev Anti Infect Ther. agosto de 2010;8(8):945-56.spa
dc.relation.referencesSchmunis GA, Yadon ZE. Chagas disease: A Latin American health problem becoming a world health problem. Acta Tropica. 1 de julio de 2010;115(1):14-21.spa
dc.relation.referencesTorrico F, Alonso-Vega C, Suarez E, Rodriguez P, Torrico MC, Dramaix M, et al. Maternal Trypanosoma cruzi infection, pregnancy outcome, morbidity, and mortality of congenitally infected and non-infected newborns in Bolivia. Am J Trop Med Hyg. febrero de 2004;70(2):201-9.spa
dc.relation.referencesEdwards MS, Montgomery SP. Congenital Chagas disease: progress toward implementation of pregnancy-based screening. Curr Opin Infect Dis. 1 de octubre de 2021;34(5):538-45.spa
dc.relation.referencesRios L, Campos EE, Menon R, Zago MP, Garg NJ. Epidemiology and pathogenesis of maternal-fetal transmission of Trypanosoma cruzi and a case for vaccine development against congenital Chagas disease. Biochim Biophys Acta Mol Basis Dis. 1 de marzo de 2020;1866(3):165591.spa
dc.relation.referencesAoki MP, Guiñazú NL, Pellegrini AV, Gotoh T, Masih DT, Gea S. Cruzipain, a major Trypanosoma cruzi antigen, promotes arginase-2 expression and survival of neonatal mouse cardiomyocytes. Am J Physiol Cell Physiol. febrero de 2004;286(2):C206-212.spa
dc.relation.referencesKemmerling U, Osuna A, Schijman AG, Truyens C. Congenital Transmission of Trypanosoma cruzi: A Review About the Interactions Between the Parasite, the Placenta, the Maternal and the Fetal/Neonatal Immune Responses. Front Microbiol. 2019;10:1854.spa
dc.relation.referencesLiempi A, Castillo C, Carrillo I, Muñoz L, Droguett D, Galanti N, et al. A local innate immune response against Trypanosoma cruzi in the human placenta: The epithelial turnover of the trophoblast. Microb Pathog. octubre de 2016;99:123-9.spa
dc.relation.referencesDíaz-Luján C, Triquell MF, Castillo C, Hardisson D, Kemmerling U, Fretes RE. Role of placental barrier integrity in infection by Trypanosoma cruzi. Acta Tropica. 1 de diciembre de 2016;164:360-8.spa
dc.relation.referencesDuaso J, Rojo G, Cabrera G, Galanti N, Bosco C, Maya JD, et al. Trypanosoma cruzi induces tissue disorganization and destruction of chorionic villi in an ex vivo infection model of human placenta. Placenta. agosto de 2010;31(8):705-11.spa
dc.relation.referencesLiempi A, Castillo C, Duaso J, Droguett D, Sandoval A, Barahona K, et al. Trypanosoma cruzi induces trophoblast differentiation: a potential local antiparasitic mechanism of the human placenta? Placenta. diciembre de 2014;35(12):1035-42.spa
dc.relation.referencesShippey SH, Zahn CM, Cisar MM, Wu TJ, Satin AJ. Use of the placental perfusion model to evaluate transplacental passage of Trypanosoma cruzi. Am J Obstet Gynecol. febrero de 2005;192(2):586-91.spa
dc.relation.referencesCarrea A, Diambra L. Systems Biology Approach to Model the Life Cycle of Trypanosoma cruzi. PLoS One. 11 de enero de 2016;11(1):e0146947.spa
dc.relation.referencesRaghavachari N, Garcia-Reyero N. Overview of Gene Expression Analysis: Transcriptomics. Methods Mol Biol. 2018;1783:1-6.spa
dc.relation.referencesRaghavachari N, Garcia-Reyero N. Overview of Gene Expression Analysis: Transcriptomics. Methods Mol Biol. 2018;1783:1-6.spa
dc.relation.referencesSood R, Zehnder JL, Druzin ML, Brown PO. Gene expression patterns in human placenta. Proc Natl Acad Sci U S A. 4 de abril de 2006;103(14):5478-83.spa
dc.relation.referencesCastillo C, Carrillo I, Libisch G, Juiz N, Schijman A, Robello C, et al. Host-parasite interaction: changes in human placental gene expression induced by Trypanosoma cruzi. Parasites & Vectors. 24 de agosto de 2018;11(1):479.spa
dc.relation.referencesJuiz NA, Torrejón I, Burgos M, Torres AMF, Duffy T, Cayo NM, et al. Alterations in Placental Gene Expression of Pregnant Women with Chronic Chagas Disease. Am J Pathol. junio de 2018;188(6):1345-53.spa
dc.relation.referencesOride A, Kanasaki H, Mijiddorj T, Sukhbaatar U, Ishihara T, Kyo S. Regulation of kisspeptin and gonadotropin-releasing hormone expression in rat placenta: study using primary cultures of rat placental cells. Reprod Biol Endocrinol. 13 de agosto de 2015;13:90.spa
dc.relation.referencespark DW, Lee SK, Hong SR, Han AR, Kwak-Kim J, Yang KM. Expression of Kisspeptin and its receptor GPR54 in the first trimester trophoblast of women with recurrent pregnancy loss. Am J Reprod Immunol. febrero de 2012;67(2):132-9.spa
dc.relation.referencesFaral-Tello P, Greif G, Romero S, Cabrera A, Oviedo C, González T, et al. Trypanosoma cruzi Isolates Naturally Adapted to Congenital Transmission Display a Unique Strategy of Transplacental Passage. Microbiology Spectrum. 14 de febrero de 2023;0(0):e02504-22.spa
dc.relation.referencesAndrade LO, Machado CRS, Chiari E, Pena SDJ, Macedo AM. Trypanosoma cruzi: role of host genetic background in the differential tissue distribution of parasite clonal populations. Exp Parasitol. abril de 2002;100(4):269-75.spa
dc.relation.referencesManoel-Caetano F da S, Silva AE. Implications of genetic variability of Trypanosoma cruzi for the pathogenesis of Chagas disease. Cad Saude Publica. octubre de 2007;23(10):2263-74.spa
dc.relation.referencesZingales B. Trypanosoma cruzi genetic diversity: Something new for something known about Chagas disease manifestations, serodiagnosis and drug sensitivity. Acta Trop. agosto de 2018;184:38-52.spa
dc.relation.referencesJuiz NA, Solana ME, Acevedo GR, Benatar AF, Ramirez JC, da Costa PA, et al. Different genotypes of Trypanosoma cruzi produce distinctive placental environment genetic response in chronic experimental infection. PLoS Negl Trop Dis. marzo de 2017;11(3):e0005436.spa
dc.relation.referencesMedina L, Castillo C, Liempi A, Herbach M, Cabrera G, Valenzuela L, et al. Differential infectivity of two Trypanosoma cruzi strains in placental cells and tissue. Acta Trop. octubre de 2018;186:35-40.spa
dc.relation.referencesCastellanos-Domínguez YZ, Cucunubá ZM, Orozco LC, Valencia-Hernández CA, León CM, Florez AC, et al. Risk factors associated with Chagas disease in pregnant women in Santander, a highly endemic Colombian area. Trop Med Int Health. enero de 2016;21(1):140-8.spa
dc.relation.referencesCucunubá ZM, Flórez AC, Cárdenas A, Pavía P, Montilla M, Aldana R, et al. Prevalence and risk factors for Chagas disease in pregnant women in Casanare, Colombia. Am J Trop Med Hyg. noviembre de 2012;87(5):837-42.spa
dc.relation.referencesPuerta CJ, Pavia PX, Montilla M, Flórez C, Herrera G, Ospina JM, et al. The first case of congenital Chagas’ disease analyzed by AP-PCR in Colombia. Biomédica. 1 de diciembre de 2009;29(4):513-22.spa
dc.relation.referencesZabala NDC, Berrizbeitia M, Jorquera A, Rodríguez J, Romero L. Trypanosoma cruzi infection in puerperal women and their neonates at Barcelona, Anzoategui State, Venezuela. Biomedica. 1 de diciembre de 2019;39(4):769-84.spa
dc.relation.referencesZambrano MR, Rouset F, Carrasco OF, Murillo DE, Costales JA, Brenière SF. Congenital Chagas Disease in the Ecuadorian Amazon: Maternal Screening at Delivery and Evaluation of Risk Factors Associated with Vector Exposure. The American Journal of Tropical Medicine and Hygiene. 7 de octubre de 2019;101(6):1350.spa
dc.relation.referencesLi Y, Shah-Simpson S, Okrah K, Belew AT, Choi J, Caradonna KL, et al. Transcriptome Remodeling in Trypanosoma cruzi and Human Cells during Intracellular Infection. PLOS Pathogens. 5 de abril de 2016;12(4):e1005511.spa
dc.relation.referencesKoumandou VL, Natesan SKA, Sergeenko T, Field MC. The trypanosome transcriptome is remodelled during differentiation but displays limited responsiveness within life stages. BMC Genomics. 23 de junio de 2008;9(1):298.spa
dc.relation.referencesQueiroz R, Benz C, Fellenberg K, Hoheisel JD, Clayton C. Transcriptome analysis of differentiating trypanosomes reveals the existence of multiple post-transcriptional regulons. BMC Genomics. 26 de octubre de 2009;10(1):495.spa
dc.relation.referencesBuscaglia CA, Campo VA, Frasch ACC, Di Noia JM. Trypanosoma cruzi surface mucins: host-dependent coat diversity. Nat Rev Microbiol. marzo de 2006;4(3):229-36.spa
dc.relation.referencesChuenkova MV, Furnari FB, Cavenee WK, Pereira MA. Trypanosoma cruzi trans-sialidase: A potent and specific survival factor for human Schwann cells by means of phosphatidylinositol 3-kinase/Akt signaling. Proceedings of the National Academy of Sciences. 14 de agosto de 2001;98(17):9936-41.spa
dc.relation.referencesStaquicini DI, Martins RM, Macedo S, Sasso GRS, Atayde VD, Juliano MA, et al. Role of GP82 in the Selective Binding to Gastric Mucin during Oral Infection with Trypanosoma cruzi. PLOS Neglected Tropical Diseases. 2 de marzo de 2010;4(3):e613.spa
dc.relation.referencesWestermann AJ, Gorski SA, Vogel J. Dual RNA-seq of pathogen and host. Nat Rev Microbiol. septiembre de 2012;10(9):618-30.spa
dc.relation.referencesGuerfali FZ, Laouini D, Guizani-Tabbane L, Ottones F, Ben-Aissa K, Benkahla A, et al. Simultaneous gene expression profiling in human macrophages infected with Leishmania major parasites using SAGE. BMC Genomics. 21 de mayo de 2008;9(1):238.spa
dc.relation.referencesHouston-Ludlam GA, Belew AT, El-Sayed NM. Comparative Transcriptome Profiling of Human Foreskin Fibroblasts Infected with the Sylvio and Y Strains of Trypanosoma cruzi. PLOS ONE. 9 de agosto de 2016;11(8):e0159197.spa
dc.relation.referencesLibisch MG, Rego N, Robello C. Transcriptional Studies on Trypanosoma cruzi - Host Cell Interactions: A Complex Puzzle of Variables. Front Cell Infect Microbiol. 2021;11:692134.spa
dc.relation.referencesCruz-Saavedra L, Muñoz M, León C, Patarroyo MA, Arevalo G, Pavia P, et al. Purification of Trypanosoma cruzi metacyclic trypomastigotes by ion exchange chromatography in sepharose-DEAE, a novel methodology for host-pathogen interaction studies. Journal of Microbiological Methods. noviembre de 2017;142:27-32.spa
dc.relation.referencesCáceres TM, Cruz-Saavedra L, Patiño LH, Ramírez JD. Comparative analysis of metacyclogenesis and infection curves in different discrete typing units of Trypanosoma cruzi. Parasitol Res. 11 de abril de 2024;123(4):181.spa
dc.relation.referencesDobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. enero de 2013;29(1):15-21.spa
dc.relation.referencesAnders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics. 15 de enero de 2015;31(2):166-9.spa
dc.relation.referencesLove MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology. 5 de diciembre de 2014;15(12):550.spa
dc.relation.referencesAslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, et al. TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res. enero de 2010;38(Database issue):D457-462.spa
dc.relation.referencesHuang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. enero de 2009;37(1):1-13.spa
dc.relation.referencesKanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 4 de enero de 2017;45(D1):D353-61.spa
dc.relation.referencesSantana KH, Oliveira LGR, Barros de Castro D, Pereira M. Epidemiology of Chagas disease in pregnant women and congenital transmission of Trypanosoma cruzi in the Americas: systematic review and meta-analysis. Trop Med Int Health. julio de 2020;25(7):752-63.spa
dc.relation.referencesApt W, Zulantay I, Solari A, Ortiz S, Oddo D, Corral G, et al. Vertical transmission of Trypanosoma cruzi in the Province of Choapa, IV Region, Chile: Preliminary Report (2005-2008). Biol Res. 2010;43(3):269-74.spa
dc.relation.referencesBisio M, Seidenstein ME, Burgos JM, Ballering G, Risso M, Pontoriero R, et al. Urbanization of congenital transmission of Trypanosoma cruzi: prospective polymerase chain reaction study in pregnancy. Transactions of the Royal Society of Tropical Medicine and Hygiene. octubre de 2011;105(10):543-9.spa
dc.relation.referencesBua J, Volta BJ, Perrone AE, Scollo K, Velázquez EB, Ruiz AM, et al. How to improve the early diagnosis of Trypanosoma cruzi infection: relationship between validated conventional diagnosis and quantitative DNA amplification in congenitally infected children. PLoS Negl Trop Dis. 2013;7(10):e2476.spa
dc.relation.referencesBuekens P, Cafferata ML, Alger J, Althabe F, Belizán JM, Bustamante N, et al. Congenital Transmission of Trypanosoma cruzi in Argentina, Honduras, and Mexico: An Observational Prospective Study. Am J Trop Med Hyg. febrero de 2018;98(2):478-85.spa
dc.relation.referencesCencig S, Coltel N, Truyens C, Carlier Y. Fertility, Gestation Outcome and Parasite Congenital Transmissibility in Mice Infected with TcI, TcII and TcVI Genotypes of Trypanosoma cruzi. PLoS Negl Trop Dis. 13 de junio de 2013;7(6):e2271.spa
dc.relation.referencesTorres-Vargas J, Jiménez-Coello M, Guzmán-Marín E, Acosta-Viana KY, Yadon ZE, Gutiérrez-Blanco E, et al. Quantitative and histological assessment of maternal-fetal transmission of Trypanosoma cruzi in guinea pigs: An experimental model of congenital Chagas disease. PLoS Negl Trop Dis. enero de 2018;12(1):e0006222.spa
dc.relation.referencesLlewellyn MS, Messenger LA, Luquetti AO, Garcia L, Torrico F, Tavares SBN, et al. Deep sequencing of the Trypanosoma cruzi GP63 surface proteases reveals diversity and diversifying selection among chronic and congenital Chagas disease patients. PLoS Negl Trop Dis. abril de 2015;9(4):e0003458.spa
dc.relation.referencesCortez DR, Lima FM, Reis-Cunha JL, Bartholomeu DC, Villacis RAR, Rogatto SR, et al. Trypanosoma cruzi Genomic Variability: Array Comparative Genomic Hybridization Analysis of Clone and Parental Strain. Front Cell Infect Microbiol. 25 de marzo de 2022;12:760830.spa
dc.relation.referencesGuhl F, Ramírez JD. Trypanosoma cruzi I diversity: Towards the need of genetic subdivision? Acta Tropica. 1 de julio de 2011;119(1):1-4.spa
dc.relation.referencesReis-Cunha JL, Baptista RP, Rodrigues-Luiz GF, Coqueiro-Dos-Santos A, Valdivia HO, de Almeida LV, et al. Whole genome sequencing of Trypanosoma cruzi field isolates reveals extensive genomic variability and complex aneuploidy patterns within TcII DTU. BMC Genomics. 13 de noviembre de 2018;19(1):816.spa
dc.relation.referencesHerreros-Cabello A, Callejas-Hernández F, Gironès N, Fresno M. Trypanosoma Cruzi Genome: Organization, Multi-Gene Families, Transcription, and Biological Implications. Genes (Basel). 14 de octubre de 2020;11(10):E1196.spa
dc.relation.referencesRodriguez HO, Guerrero NA, Fortes A, Santi-Rocca J, Gironès N, Fresno M. Trypanosoma cruzi strains cause different myocarditis patterns in infected mice. Acta Trop. noviembre de 2014;139:57-66.spa
dc.relation.referencesGarcía-Huertas P, Mejía-Jaramillo AM, González L, Triana-Chávez O. Transcriptome and Functional Genomics Reveal the Participation of Adenine Phosphoribosyltransferase in Trypanosoma cruzi Resistance to Benznidazole. J Cell Biochem. julio de 2017;118(7):1936-45.spa
dc.relation.referencesLima RS de, Bulla ACS, Silva ML da. Functional annotation hypothetical proteins: a world to be explored in drug development in Trypanosomatids [Internet]. bioRxiv; 2023 [citado 15 de julio de 2024]. p. 2023.12.07.570673. Disponible en: https://www.biorxiv.org/content/10.1101/2023.12.07.570673v2spa
dc.relation.referencesReis-Cunha JL, Coqueiro-Dos-Santos A, Pimenta-Carvalho SA, Marques LP, Rodrigues-Luiz GF, Baptista RP, et al. Accessing the Variability of Multicopy Genes in Complex Genomes using Unassembled Next-Generation Sequencing Reads: The Case of Trypanosoma cruzi Multigene Families. mBio. 20 de diciembre de 2022;13(6):e0231922.spa
dc.relation.referencesStoco PH, Wagner G, Talavera-Lopez C, Gerber A, Zaha A, Thompson CE, et al. Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli. PLOS Neglected Tropical Diseases. 18 de septiembre de 2014;8(9):e3176.spa
dc.relation.referencesMinning TA, Weatherly DB, Atwood J, Orlando R, Tarleton RL. The steady-state transcriptome of the four major life-cycle stages of Trypanosoma cruzi. BMC Genomics. 7 de agosto de 2009;10(1):370.spa
dc.relation.referencesNardy AFFR, Freire-de-Lima CG, Pérez AR, Morrot A. Role of Trypanosoma cruzi Trans-sialidase on the Escape from Host Immune Surveillance. Front Microbiol [Internet]. 23 de marzo de 2016 [citado 10 de febrero de 2025];7. Disponible en: https://www.frontiersin.org/journals/microbiology/articles/10.3389/fmicb.2016.00348/fullspa
dc.relation.referencesFreitas LM, dos Santos SL, Rodrigues-Luiz GF, Mendes TAO, Rodrigues TS, Gazzinelli RT, et al. Genomic analyses, gene expression and antigenic profile of the trans-sialidase superfamily of Trypanosoma cruzi reveal an undetected level of complexity. PLoS One. 2011;6(10):e25914.spa
dc.relation.referencesBonfim-Melo A, Ferreira ER, Florentino PTV, Mortara RA. Amastigote Synapse: The Tricks of Trypanosoma cruzi Extracellular Amastigotes. Front Microbiol. 27 de junio de 2018;9:1341.spa
dc.relation.referencesPech-Canul Á de la C, Monteón V, Solís-Oviedo RL. A Brief View of the Surface Membrane Proteins from Trypanosoma cruzi. J Parasitol Res. 2017;2017:3751403.spa
dc.relation.referencesClaser C, Curcio M, de Mello SM, Silveira EV, Monteiro HP, Rodrigues MM. Silencing cytokeratin 18 gene inhibits intracellular replication of Trypanosoma cruzi in HeLa cells but not binding and invasion of trypanosomes. BMC Cell Biol. 17 de diciembre de 2008;9:68.spa
dc.relation.referencesRodríguez-Bejarano OH, Avendaño C, Patarroyo MA. Mechanisms Associated with Trypanosoma cruzi Host Target Cell Adhesion, Recognition and Internalization. Life (Basel). 9 de junio de 2021;11(6):534.spa
dc.relation.referencesTonelli RR, Giordano RJ, Barbu EM, Torrecilhas AC, Kobayashi GS, Langley RR, et al. Role of the gp85/Trans-Sialidases in Trypanosoma cruzi Tissue Tropism: Preferential Binding of a Conserved Peptide Motif to the Vasculature In Vivo. PLOS Neglected Tropical Diseases. 2 de noviembre de 2010;4(11):e864.spa
dc.relation.referencesGraifer D, Karpova G. Roles of ribosomal proteins in the functioning of translational machinery of eukaryotes. Biochimie. febrero de 2015;109:1-17.spa
dc.relation.referencesJensen BC, Ramasamy G, Vasconcelos EJR, Ingolia NT, Myler PJ, Parsons M. Extensive stage-regulation of translation revealed by ribosome profiling of Trypanosoma brucei. BMC Genomics. 20 de octubre de 2014;15(1):911.spa
dc.relation.referencesSmircich P, Eastman G, Bispo S, Duhagon MA, Guerra-Slompo EP, Garat B, et al. Ribosome profiling reveals translation control as a key mechanism generating differential gene expression in Trypanosoma cruzi. BMC Genomics. 9 de junio de 2015;16(1):443.spa
dc.relation.referencesCruz-Saavedra L, Muñoz M, Patiño LH, Vallejo GA, Guhl F, Ramírez JD. Slight temperature changes cause rapid transcriptomic responses in Trypanosoma cruzi metacyclic trypomastigotes. Parasites & Vectors. 14 de mayo de 2020;13(1):255.spa
dc.relation.referencesDalla Venezia N, Vincent A, Marcel V, Catez F, Diaz JJ. Emerging Role of Eukaryote Ribosomes in Translational Control. Int J Mol Sci. 11 de marzo de 2019;20(5):1226spa
dc.relation.referencesKoeller CM, van der Wel H, Feasley CL, Abreu F, da Rocha JDB, Montalvão F, et al. Golgi UDP-GlcNAc:Polypeptide O-α-N-Acetyl-d-Glucosaminyltransferase 2 (TcOGNT2) Regulates Trypomastigote Production and Function in Trypanosoma cruzi. Eukaryot Cell. octubre de 2014;13(10):1312-27.spa
dc.relation.referencesMeech R, Hu DG, McKinnon RA, Mubarokah SN, Haines AZ, Nair PC, et al. The UDP-Glycosyltransferase (UGT) Superfamily: New Members, New Functions, and Novel Paradigms. Physiological Reviews. abril de 2019;99(2):1153-222.spa
dc.relation.referencesMendonça-Previato L, Penha L, Garcez TC, Jones C, Previato JO. Addition of α-O-GlcNAc to threonine residues define the post-translational modification of mucin-like molecules in Trypanosoma cruzi. Glycoconj J. octubre de 2013;30(7):659-66.spa
dc.relation.referencesSinclair AN, de Graffenried CL. More than Microtubules: The Structure and Function of the Subpellicular Array in Trypanosomatids. Trends Parasitol. octubre de 2019;35(10):760-77.spa
dc.relation.referencesda Silva RA, Bartholomeu DC, Teixeira SMR. Control mechanisms of tubulin gene expression in Trypanosoma cruzi. International Journal for Parasitology. 1 de enero de 2006;36(1):87-96.spa
dc.relation.referencesMattos EC, Schumacher RI, Colli W, Alves MJM. Adhesion of Trypanosoma cruzi Trypomastigotes to Fibronectin or Laminin Modifies Tubulin and Paraflagellar Rod Protein Phosphorylation. PLoS One. 4 de octubre de 2012;7(10):e46767.spa
dc.relation.referencesMaugeri DA, Cannata JJB, Cazzulo JJ. Glucose metabolism in Trypanosoma cruzi. Docampo R, editor. Essays in Biochemistry. 24 de octubre de 2011;51:15-30.spa
dc.relation.referencesBernardo WP, Souza RT, Costa-Martins AG, Ferreira ER, Mortara RA, Teixeira MMG, et al. Genomic Organization and Generation of Genetic Variability in the RHS (Retrotransposon Hot Spot) Protein Multigene Family in Trypanosoma cruzi. Genes. septiembre de 2020;11(9):1085.spa
dc.relation.referencesFlorini F, Naguleswaran A, Gharib WH, Bringaud F, Roditi I. Unexpected diversity in eukaryotic transcription revealed by the retrotransposon hotspot family of Trypanosoma brucei. Nucleic Acids Res. 28 de febrero de 2019;47(4):1725-39.spa
dc.relation.referencesZhao X, Kumar P, Shah-Simpson S, Caradonna KL, Galjart N, Teygong C, et al. Host microtubule plus-end binding protein CLASP1 influences sequential steps in the Trypanosoma cruzi infection process. Cell Microbiol. abril de 2013;15(4):571-84.spa
dc.relation.referencesGachet-Castro C, Freitas-Castro F, Gonzáles-Córdova RA, da Fonseca CK, Gomes MD, Ishikawa-Ankerhold HC, et al. Modulation of the Host Nuclear Compartment by Trypanosoma cruzi Uncovers Effects on Host Transcription and Splicing Machinery. Front Cell Infect Microbiol. 19 de octubre de 2021;11:718028.spa
dc.relation.referencesWeitzman MD, Weitzman JB. What’s the Damage? The Impact of Pathogens on Pathways that Maintain Host Genome Integrity. Cell Host & Microbe. 12 de marzo de 2014;15(3):283-94.spa
dc.relation.referencesGonzáles-Córdova RA, dos Santos TR, Gachet-Castro C, Andrade Vieira J, Trajano-Silva LAM, Sakamoto-Hojo ET, et al. Trypanosoma cruzi infection induces DNA double-strand breaks and activates DNA damage response pathway in host epithelial cells. Sci Rep. 4 de marzo de 2024;14(1):5225.spa
dc.relation.referencesJackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. octubre de 2009;461(7267):1071-8.spa
dc.relation.referencesMcGowan CH, Russell P. The DNA damage response: sensing and signaling. Current Opinion in Cell Biology. 1 de diciembre de 2004;16(6):629-33.spa
dc.relation.referencesGu J, Chen Z, Chen X, Wang Z. Heterogeneous nuclear ribonucleoprotein (hnRNPL) in cancer. Clin Chim Acta. agosto de 2020;507:286-94.spa
dc.relation.referencesLi Y, Zhao H, Li N, Yuan C, Dong N, Wen J, et al. BBOX1-AS1 mediates trophoblast cells dysfunction via regulating hnRNPK/GADD45A axis†. Biol Reprod. 13 de marzo de 2023;108(3):408-22.spa
dc.relation.referencesEl Khoury W, Nasr Z. Deregulation of ribosomal proteins in human cancers. Biosci Rep. 17 de diciembre de 2021;41(12):BSR20211577.spa
dc.relation.referencesBertheloot D, Latz E, Franklin BS. Necroptosis, pyroptosis and apoptosis: an intricate game of cell death. Cell Mol Immunol. mayo de 2021;18(5):1106-21.spa
dc.relation.referencesNikseresht S, Khodagholi F, Ahmadiani A. Actors of necroptosis scenario in cell’s scene. Physiology and Pharmacology. 10 de mayo de 2017;21(2):88-101.spa
dc.relation.referencesCarlier Y, Torrico F, Sosa-Estani S, Russomando G, Luquetti A, Freilij H, et al. Congenital Chagas Disease: Recommendations for Diagnosis, Treatment and Control of Newborns, Siblings and Pregnant Women. PLOS Neglected Tropical Diseases. 25 de octubre de 2011;5(10):e1250.spa
dc.relation.referencesPennington PM, Juárez JG, Arrivillaga MR, De Urioste-Stone SM, Doktor K, Bryan JP, et al. Towards Chagas disease elimination: Neonatal screening for congenital transmission in rural communities. PLoS Negl Trop Dis. 11 de septiembre de 2017;11(9):e0005783.spa
dc.relation.referencesCarlier Y, Altcheh J, Angheben A, Freilij H, Luquetti AO, Schijman AG, et al. Congenital Chagas disease: Updated recommendations for prevention, diagnosis, treatment, and follow-up of newborns and siblings, girls, women of childbearing age, and pregnant women. PLOS Neglected Tropical Diseases. 24 de octubre de 2019;13(10):e0007694.spa
dc.relation.referencesCarlier Y, Truyens C. Congenital Chagas disease as an ecological model of interactions between Trypanosoma cruzi parasites, pregnant women, placenta and fetuses. Acta Tropica. 1 de noviembre de 2015;151:103-15.spa
dc.relation.referencesAltcheh J, Moscatelli G, Moroni S, Garcia-Bournissen F, Freilij H. Adverse Events After the Use of Benznidazole in Infants and Children With Chagas Disease. Pediatrics. 1 de enero de 2011;127(1):e212-8.spa
dc.relation.referencesBern C, Montgomery SP. An estimate of the burden of Chagas disease in the United States. Clin Infect Dis. 1 de septiembre de 2009;49(5):e52-54.spa
dc.relation.referencesBustos PL, Milduberger N, Volta BJ, Perrone AE, Laucella SA, Bua J. Trypanosoma cruzi Infection at the Maternal-Fetal Interface: Implications of Parasite Load in the Congenital Transmission and Challenges in the Diagnosis of Infected Newborns. Front Microbiol. 2019;10:1250.spa
dc.relation.referencesDanesi E, Codebó MO, Sosa-Estani S. [Congenital transmission of Trypanosoma cruzi. Argentina 2002-2014]. Medicina (B Aires). 2019;79(2):81-9.spa
dc.relation.referencesParra-Henao G, Oliveros H, Hotez PJ, Motoa G, Franco-Paredes C, Henao-Martínez AF. In Search of Congenital Chagas Disease in the Sierra Nevada de Santa Marta, Colombia. Am J Trop Med Hyg. septiembre de 2019;101(3):482-3spa
dc.relation.referencesManrique-Abril F, Ospina JM, Herrera A G, Florez AC, Pavia PX, Montilla M, et al. Diagnóstico de enfermedad de Chagas en mujeres embarazadas y recién nacidos de Moniquirá y Miraflores, Boyacá, Colombia. Infectio. marzo de 2013;17(1):28-34.spa
dc.relation.referencesAlarcón M, Pérez MC, Villarreal J, Araujo S, Goncalves L, González A, et al. Detección de ADN de Trypanosoma cruzi en la placenta y fetos de ratones con infección chagásica aguda. Investigación Clínica. septiembre de 2009;50(3):335-45.spa
dc.relation.referencesSalas NA, Cot M, Schneider D, Mendoza B, Santalla JA, Postigo J, et al. Risk factors and consequences of congenital Chagas disease in Yacuiba, south Bolivia. Trop Med Int Health. diciembre de 2007;12(12):1498-505.spa
dc.relation.referencesCarlier Y, Schijman AG, Kemmerling U. Placenta, Trypanosoma cruzi, and Congenital Chagas Disease. Curr Trop Med Rep. 1 de diciembre de 2020;7(4):172-82.spa
dc.relation.referencesGutierrez FRS, Lalu MM, Mariano FS, Milanezi CM, Cena J, Gerlach RF, et al. Increased activities of cardiac matrix metalloproteinases matrix metalloproteinase (MMP)-2 and MMP-9 are associated with mortality during the acute phase of experimental Trypanosoma cruzi infection. J Infect Dis. 15 de mayo de 2008;197(10):1468-76.spa
dc.relation.referencesCevallos AM, Hernández R. Chagas’ Disease: Pregnancy and Congenital Transmission. Biomed Res Int. 2014;2014:401864.spa
dc.relation.referencesOrtiz S, Zulantay I, Solari A, Bisio M, Schijman A, Carlier Y, et al. Presence of Trypanosoma cruzi in pregnant women and typing of lineages in congenital cases. Acta Trop. diciembre de 2012;124(3):243-6.spa
dc.relation.referencesGarcia A, Ortiz S, Iribarren C, Bahamonde MI, Solari A. Congenital co-infection with different Trypanosoma cruzi lineages. Parasitol Int. febrero de 2014;63(1):138-9.spa
dc.relation.referencesWang W, Peng D, Baptista RP, Li Y, Kissinger JC, Tarleton RL. Strain-specific genome evolution in Trypanosoma cruzi, the agent of Chagas disease. PLoS Pathog. enero de 2021;17(1):e1009254.spa
dc.relation.referencesRisso MG, Garbarino GB, Mocetti E, Campetella O, Gonzalez Cappa SM, Buscaglia CA, et al. Differential expression of a virulence factor, the trans-sialidase, by the main Trypanosoma cruzi phylogenetic lineages. J Infect Dis. 15 de junio de 2004;189(12):2250-9.spa
dc.relation.referencesHenry A, Monéger F, Samal A, Martin OC. Network function shapes network structure: the case of the Arabidopsis flower organ specification genetic network. Mol BioSyst. 4 de junio de 2013;9(7):1726-35.spa
dc.relation.referencesJiang Z, Zhou X, Li R, Michal JJ, Zhang S, Dodson MV, et al. Whole transcriptome analysis with sequencing: methods, challenges and potential solutions. Cell Mol Life Sci. septiembre de 2015;72(18):3425-39.spa
dc.relation.referencesAtwood JA, Weatherly DB, Minning TA, Bundy B, Cavola C, Opperdoes FR, et al. The Trypanosoma cruzi proteome. Science. 15 de julio de 2005;309(5733):473-6. 52. Caradonna KL, Burleigh BA. Mechanisms of host cell invasion by Trypanosoma cruzi. Adv Parasitol. 2011;76:33-61.spa
dc.relation.referencesCaradonna KL, Burleigh BA. Mechanisms of host cell invasion by Trypanosoma cruzi. Adv Parasitol. 2011;76:33-61.spa
dc.relation.referencesOliveira AER, Grazielle-Silva V, Ferreira LRP, Teixeira SMR. Close encounters between Trypanosoma cruzi and the host mammalian cell: Lessons from genome-wide expression studies. Genomics. 1 de enero de 2020;112(1):990-7.spa
dc.relation.referencesZingales B, Andrade SG, Briones MRS, Campbell DA, Chiari E, Fernandes O, et al. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Mem Inst Oswaldo Cruz. noviembre de 2009;104(7):1051-4.spa
dc.relation.referencesMarcili A, Lima L, Cavazzana M, Junqueira ACV, Veludo HH, Maia Da Silva F, et al. A new genotype of Trypanosoma cruzi associated with bats evidenced by phylogenetic analyses using SSU rDNA, cytochrome b and Histone H2B genes and genotyping based on ITS1 rDNA. Parasitology. mayo de 2009;136(6):641-55.spa
dc.relation.referencesZingales B, Miles MA, Campbell DA, Tibayrenc M, Macedo AM, Teixeira MMG, et al. The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect Genet Evol. marzo de 2012;12(2):240-53.spa
dc.relation.referencesMacedo AM, Machado CR, Oliveira RP, Pena SD. Trypanosoma cruzi: genetic structure of populations and relevance of genetic variability to the pathogenesis of chagas disease. Mem Inst Oswaldo Cruz. febrero de 2004;99:1-12.spa
dc.relation.referencesVago AR, Andrade LO, Leite AA, d’Avila Reis D, Macedo AM, Adad SJ, et al. Genetic characterization of Trypanosoma cruzi directly from tissues of patients with chronic Chagas disease: differential distribution of genetic types into diverse organs. Am J Pathol. mayo de 2000;156(5):1805-9.spa
dc.relation.referencesBarbosa CG, Gómez-Hernández C, Silva MV da, Rezende-Oliveira K, Ferreira PTM, Oliveira ACM de, et al. Congenital transmission of Mexican strains of Trypanosoma cruzi TcIa: interaction between parasite and human placental explants. Parasitology. marzo de 2022;149(3):418-26spa
dc.relation.referencesRassi A, Rassi A, Marcondes de Rezende J. American trypanosomiasis (Chagas disease). Infect Dis Clin North Am. junio de 2012;26(2):275-91.spa
dc.relation.referencesCeballos-Pomares JC, Cuéllar-Rufino S, Vazquez-Ortega MF, López-Dominguez J, Romero-Cruz V, Calderón-Garcidueñas AL. Inmunología de la enfermedad de Chagas congénita. Perinatología y Reproducción Humana. 1 de septiembre de 2017;31(3):144-50.spa
dc.relation.referencesMartins AV, Gomes AP, Mendonça EG de. Biology of Trypanosoma cruzi: An update. Infectio [Internet]. 2012 [citado 2 de junio de 2021];16(1). Disponible en: http://www.revistainfectio.org/index.php/infectio/article/view/515spa
dc.relation.referencesTeixeira DE, Benchimol M, Crepaldi PH, de Souza W. Interactive Multimedia to Teach the Life Cycle of Trypanosoma cruzi, the Causative Agent of Chagas Disease. PLoS Negl Trop Dis [Internet]. 28 de agosto de 2012 [citado 2 de junio de 2021];6(8). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3429381/spa
dc.relation.referencesJimenez V. Dealing with environmental challenges: mechanisms of adaptation in Trypanosoma cruzi. Res Microbiol. abril de 2014;165(3):155-65.spa
dc.relation.referencesMelo R de FP, Guarneri AA, Silber AM. The Influence of Environmental Cues on the Development of Trypanosoma cruzi in Triatominae Vector. Front Cell Infect Microbiol [Internet]. 21 de febrero de 2020 [citado 24 de junio de 2024];10. Disponible en: https://www.frontiersin.org/journals/cellular-and-infection-microbiology/articles/10.3389/fcimb.2020.00027/fullspa
dc.relation.referencesGarcia ES, Genta FA, de Azambuja P, Schaub GA. Interactions between intestinal compounds of triatomines and Trypanosoma cruzi. Trends Parasitol. octubre de 2010;26(10):499-505.spa
dc.relation.referencesSalassa BN, Romano PS. Autophagy: A necessary process during the Trypanosoma cruzi life-cycle. Virulence. diciembre de 2019;10(1):460-9spa
dc.relation.referencesTyler KM, Engman DM. The life cycle of Trypanosoma cruzi revisited. Int J Parasitol. 1 de mayo de 2001;31(5-6):472-81.spa
dc.relation.referencesFerreira LF, Jansen AM, Araújo A. Chagas disease in prehistory. An Acad Bras Ciênc. septiembre de 2011;83:1041-4.spa
dc.relation.referencesMoretti NS, Mortara RA, Schenkman S. Trypanosoma cruzi. Trends Parasitol. abril de 2020;36(4):404-5.spa
dc.relation.referencesRassi A, Rassi A, Marin-Neto JA. Chagas disease. Lancet. 17 de abril de 2010;375(9723):1388-402.spa
dc.relation.referencesHermann E, Truyens C, Vega CA, Rodriguez P, Berthe A, Torrico F, et al. Congenital Transmission of Trypanosoma cruzi Is Associated with Maternal Enhanced Parasitemia and Decreased Production of Interferon-γ in Response to Parasite Antigens. The Journal of Infectious Diseases. 1 de abril de 2004;189(7):1274-81.spa
dc.relation.referencesSouza RM, Ataíde R, Dombrowski JG, Ippólito V, Aitken EH, Valle SN, et al. Placental histopathological changes associated with Plasmodium vivax infection during pregnancy. PLoS Negl Trop Dis. 2013;7(2):e2071.spa
dc.relation.referencesSánchez LV, Ramírez JD. Congenital and oral transmission of American trypanosomiasis: an ovspa
dc.relation.referencesFernandez-Aguilar S, Lambot MA, Torrico F, Alonso-Vega C, Córdoba M, Suarez E, et al. [Placental lesions in human Trypanosoma cruzi infection]. Rev Soc Bras Med Trop. 2005;38 Suppl 2:84-6.spa
dc.relation.referencesCruz-Saavedra L, Vallejo GA, Guhl F, Messenger LA, Ramírez JD. Transcriptional remodeling during metacyclogenesis in Trypanosoma cruzi I. Virulence. 31 de diciembre de 2020;11(1):968-79.spa
dc.relation.referencesUdoko AN, Johnson CA, Dykan A, Rachakonda G, Villalta F, Mandape SN, et al. Early Regulation of Profibrotic Genes in Primary Human Cardiac Myocytes by Trypanosoma cruzi. PLOS Neglected Tropical Diseases. 15 de enero de 2016;10(1):e0003747.spa
dc.relation.referencesTelleria J, Tibayrenc M, editores. 17 - Genetics of Trypanosoma cruzi. En: American Trypanosomiasis [Internet]. London: Elsevier; 2010 [citado 26 de abril de 2021]. p. 433-57. Disponible en: https://www.sciencedirect.com/science/article/pii/B9780123848765000174spa
dc.relation.referencesCruz-Saavedra L, Schwabl P, Vallejo GA, Carranza JC, Muñoz M, Patino LH, et al. Genome plasticity driven by aneuploidy and loss of heterozygosity in Trypanosoma cruzi. Microb Genom. junio de 2022;8(6):mgen000843.spa
dc.relation.referencesReis-Cunha JL, Valdivia HO, Bartholomeu DC. Gene and Chromosomal Copy Number Variations as an Adaptive Mechanism Towards a Parasitic Lifestyle in Trypanosomatids. Curr Genomics. febrero de 2018;19(2):87-97.spa
dc.relation.referencesDowning T, Imamura H, Decuypere S, Clark T, Coombs G, Cotton J, et al. Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Research. 2011;21(12):2143-56.spa
dc.relation.referencesLima DA, Gonçalves LO, Reis-Cunha JL, Guimarães PAS, Ruiz JC, Liarte DB, et al. Transcriptomic analysis of benznidazole-resistant and susceptible Trypanosoma cruzi populations. Parasites & Vectors. 22 de mayo de 2023;16(1):167.spa
dc.relation.referencesNogueira FB, Krieger MA, Nirdé P, Goldenberg S, Romanha AJ, Murta SMF. Increased expression of iron-containing superoxide dismutase-A (TcFeSOD-A) enzyme in Trypanosoma cruzi population with in vitro-induced resistance to benznidazole. Acta Trop. noviembre de 2006;100(1-2):119-32.spa
dc.relation.referencesNogueira FB, Rodrigues JFA, Correa MMS, Ruiz JC, Romanha AJ, Murta SMF. The level of ascorbate peroxidase is enhanced in benznidazole-resistant populations of Trypanosoma cruzi and its expression is modulated by stress generated by hydrogen peroxide. Mem Inst Oswaldo Cruz. junio de 2012;107(4):494-502.spa
dc.relation.referencesCruz-Saavedra L, Vallejo GA, Guhl F, Ramírez JD. Transcriptomic changes across the life cycle of Trypanosoma cruzi II. PeerJ. 14 de mayo de 2020;8:e8947.spa
dc.relation.referencesSantos CMB dos, Ludwig A, Kessler RL, Rampazzo R de CP, Inoue AH, Krieger MA, et al. Trypanosoma cruzi transcriptome during axenic epimastigote growth curve. Mem Inst Oswaldo Cruz [Internet]. 9 de abril de 2018 [citado 17 de noviembre de 2021];113. Disponible en: http://www.scielo.br/j/mioc/a/wdC4Jr6GRhnStjXMPMvFsGG/?lang=enspa
dc.relation.referencesBerná L, Chiribao ML, Greif G, Rodriguez M, Alvarez-Valin F, Robello C. Transcriptomic analysis reveals metabolic switches and surface remodeling as key processes for stage transition in Trypanosoma cruzi. PeerJ. 2017;5:e3017.spa
dc.relation.referencesBelew AT, Junqueira C, Rodrigues-Luiz GF, Valente BM, Oliveira AER, Polidoro RB, et al. Comparative transcriptome profiling of virulent and non-virulent Trypanosoma cruzi underlines the role of surface proteins during infection. PLoS Pathog. 14 de diciembre de 2017;13(12):e1006767.spa
dc.relation.referencesBaddal B. Next-generation technologies for studying host-pathogen interactions: a focus on dual transcriptomics, CRISPR/Cas9 screening and organs-on-chips. Pathog Dis. 1 de agosto de 2019;77(6):ftz060.spa
dc.relation.referencesWolf T, Kämmer P, Brunke S, Linde J. Two’s company: studying interspecies relationships with dual RNA-seq. Curr Opin Microbiol. abril de 2018;42:7-12.spa
dc.relation.referencesWestermann AJ, Barquist L, Vogel J. Resolving host-pathogen interactions by dual RNA-seq. PLoS Pathog. febrero de 2017;13(2):e1006033.spa
dc.relation.referencesWestermann AJ, Vogel J. Host-Pathogen Transcriptomics by Dual RNA-Seq. Methods Mol Biol. 2018;1737:59-75.spa
dc.relation.referencesTanowitz HB, Weiss LM, Montgomery SP. Chagas Disease Has Now Gone Global. PLOS Neglected Tropical Diseases. 26 de abril de 2011;5(4):e1136. 109. Sosa-Estani S, Segura EL. Integrated control of Chagas disease for its elimination as public health problem - A Review. Mem Inst Oswaldo Cruz. mayo de 2015;110(3):289-98.spa
dc.relation.referencesMessenger LA, Gilman RH, Verastegui M, Galdos-Cardenas G, Sanchez G, Valencia E, et al. Toward Improving Early Diagnosis of Congenital Chagas Disease in an Endemic Setting. Clin Infect Dis. 15 de julio de 2017;65(2):268-75. 111. Weitzman MD, Weitzman JB. What’s the Damage? The Impact of Pathogens on Pathways that Maintain Host Genome Integrity. Cell Host & Microbe. 12 de marzo de 2014;15(3):283-94.spa
dc.relation.referencesWeitzman MD, Weitzman JB. What’s the Damage? The Impact of Pathogens on Pathways that Maintain Host Genome Integrity. Cell Host & Microbe. 12 de marzo de 2014;15(3):283-94.spa
dc.relation.referencesKemmerling U, Bosco C, Galanti N. Infection and invasion mechanisms of Trypanosoma cruzi in the congenital transmission of Chagas’ disease: a proposal. Biol Res. 2010;43(3):307-16.spa
dc.relation.referencesNakamura IB, Miguel DC, Bruscato A, Pereira MB, Campiolo D, de Almeida EA, et al. Biological characterization of Trypanosoma cruzi epimastigotes derived from trypomastigotes isolated from Brazilian chagasic patients. Curr Res Microb Sci. 9 de febrero de 2022;3:100110.spa
dc.relation.referencesRibeiro AR, Lima L, de Almeida LA, Monteiro J, Moreno CJG, Nascimento JD, et al. Biological and Molecular Characterization of Trypanosoma cruzi Strains from Four States of Brazil. Am J Trop Med Hyg. febrero de 2018;98(2):453-63.spa
dc.relation.referencesVora LK, Gholap AD, Jetha K, Thakur RRS, Solanki HK, Chavda VP. Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. Pharmaceutics. 10 de julio de 2023;15(7):1916.spa
dc.relation.referencesSchijman AG, Alonso-Padilla J, Longhi SA, Picado A. Parasitological, serological and molecular diagnosis of acute and chronic Chagas disease: from field to laboratory. Mem Inst Oswaldo Cruz. 1 de junio de 2022;117:e200444.spa
dc.relation.referencesRamírez JD, Duque MC, Montilla M, Cucunubá Z, Guhl F. Natural and emergent Trypanosoma cruzi I genotypes revealed by mitochondrial (Cytb) aspa
dc.relation.referencesLangmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. abril de 2012;9(4):357-9.spa
dc.relation.referencesEden E, Navon R, Steinfeld I, Lipson D, Yakhini Z. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics. 3 de febrero de 2009;10:48.spa
dc.relation.referencesBrenière SF, Waleckx E, Barnabé C. Over Six Thousand Trypanosoma cruzi Strains Classified into Discrete Typing Units (DTUs): Attempt at an Inventory. PLoS Negl Trop Dis. 29 de agosto de 2016;10(8):e0004792.spa
dc.relation.referencesCerqueira GC, Bartholomeu DC, DaRocha WD, Hou L, Freitas-Silva DM, Machado CR, et al. Sequence diversity and evolution of multigene families in Trypanosoma cruzi. Molecular and Biochemical Parasitology. 1 de enero de 2008;157(1):65-72.spa
dc.relation.referencesReis-Cunha JL, Rodrigues-Luiz GF, Valdivia HO, Baptista RP, Mendes TAO, de Morais GL, et al. Chromosomal copy number variation reveals differential levels of genomic plasticity in distinct Trypanosoma cruzi strains. BMC Genomics. 4 de julio de 2015;16(1):499.spa
dc.relation.referencesBradwell KR, Koparde VN, Matveyev AV, Serrano MG, Alves JMP, Parikh H, et al. Genomic comparison of Trypanosoma conorhini and Trypanosoma rangeli to Trypanosoma cruzi strains of high and low virulence. BMC Genomics. 24 de octubre de 2018;19(1):770.spa
dc.relation.referencesBartholomeu DC, Teixeira SMR, Cruz AK. Genomics and functional genomics in Leishmania and Trypanosoma cruzi: statuses, challenges and perspectives. Mem Inst Oswaldo Cruz. 2021;116:e200634.spa
dc.relation.referencesPatino LH, Ramírez JD. RNA-seq in kinetoplastids: A powerful tool for the understanding of the biology and host-pathogen interactions. Infect Genet Evol. abril de 2017;49:273-82.spa
dc.relation.referencesCantacessi C, Dantas-Torres F, Nolan MJ, Otranto D. The past, present, and future of Leishmania genomics and transcriptomics. Trends in Parasitology. 1 de marzo de 2015;31(3):100-8.spa
dc.relation.referencesReis-Cunha JL, Coqueiro-Dos-Santos A, Pimenta-Carvalho SA, Marques LP, Rodrigues-Luiz GF, Baptista RP, et al. Accessing the Variability of Multicopy Genes in Complex Genomes using Unassembled Next-Generation Sequencing Reads: The Case of Trypanosoma cruzi Multigene Families. mBio. 20 de diciembre de 2022;13(6):e0231922.spa
dc.relation.referencesUmaer K, Williams N. Kinetoplastid Specific RNA-Protein Interactions in Trypanosoma cruzi Ribosome Biogenesis. PLoS One. 29 de junio de 2015;10(6):e0131323.spa
dc.relation.referencespaneque A, Fortus H, Zheng J, Werlen G, Jacinto E. The Hexosamine Biosynthesis Pathway: Regulation and Function. Genes (Basel). 18 de abril de 2023;14(4):933.spa
dc.relation.referencesGhosh AK, Sardar AH, Mandal A, Saini S, Abhishek K, Kumar A, et al. Metabolic reconfiguration of the central glucose metabolism: a crucial strategy of Leishmania donovani for its survival during oxidative stress. The FASEB Journal. 2015;29(5):2081-98.spa
dc.relation.referencesRalser M, Wamelink MM, Kowald A, Gerisch B, Heeren G, Struys EA, et al. Dynamic rerouting of the carbohydrate flux is key to counteracting oxidative stress. J Biol. 21 de diciembre de 2007;6(4):10.spa
dc.relation.referencesLi Y, Li K, Lou X, Wu Y, Seery S, Xu D, et al. HNRNPA2B1-Mediated MicroRNA-92a Upregulation and Section Acts as a Promising Noninvasive Diagnostic Biomarker in Colorectal Cancer. Cancers (Basel). 21 de febrero de 2023;15(4):1367.spa
dc.relation.referencesYan J, Wan P, Choksi S, Liu ZG. Necroptosis and Tumor Progression. Trends Cancer. enero de 2022;8(1):21-7.spa
dc.relation.referencesDuaso J, Rojo G, Jaña F, Galanti N, Cabrera G, Bosco C, et al. Trypanosoma cruzi induces apoptosis in ex vivo infected human chorionic villi. Placenta. mayo de 2011;32(5):356-61.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biología::579 - Historia natural microorganismos, hongos, algasspa
dc.subject.ddc610 - Medicina y salud::612 - Fisiología humanaspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsEnfermedad de Chagasspa
dc.subject.decsChagas Diseaseeng
dc.subject.decsTripanosomiasisspa
dc.subject.decsTrypanosomiasiseng
dc.subject.decsInfecciones por Protozoosspa
dc.subject.decsProtozoan Infectionseng
dc.subject.decsEnfermedades Parasitariasspa
dc.subject.decsParasitic Diseaseseng
dc.subject.decsEnfermedades y Anomalías Neonatales Congénitas y Hereditariasspa
dc.subject.decsCongenital, Hereditary, and Neonatal Diseases and Abnormalitieseng
dc.subject.decsMicrobiologíaspa
dc.subject.decsMicrobiologyeng
dc.subject.decsEnfermedad Trofoblástica Gestacionalspa
dc.subject.decsGestational Trophoblastic Diseaseeng
dc.subject.proposalEnfermedad de Chagasspa
dc.subject.proposalTransmisión congénitaspa
dc.subject.proposalInteracciones molecularesspa
dc.subject.proposalTranscriptómicaspa
dc.subject.proposalChagas diseaseeng
dc.subject.proposalCongenital transmissioneng
dc.subject.proposalMolecular interactionseng
dc.subject.proposalTranscriptomicseng
dc.titleEvaluación de los cambios transcripcionales de células trofoblásticas humanas inmortalizadas (BeWo) infectadas con Trypanosoma cruzispa
dc.title.translatedAssessment of transcriptional changes in immortalised human trophoblast cells (BeWo) infected with Trypanosoma cruzieng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentDataPaperspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1098790198.2024.pdf
Tamaño:
17.05 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis maestría en Ciencias - Microbiología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: