Desarrollo de un prototipo de biofertilizante a partir de bacterias promotoras de crecimiento vegetal de cebolla de rama (Allium fistulosum L.)

dc.contributor.advisorPerez Naranjo, Juan Carlos
dc.contributor.advisorCamelo Rusinque, Mauricio
dc.contributor.authorBallestas Álvarez, Karen Lorena
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001410532
dc.contributor.orcidBallestas Álvarez, Karen Lorena [0000-0002-4580-4120]
dc.contributor.researchgroupSistemas Simbioticos
dc.date.accessioned2025-09-03T00:42:21Z
dc.date.available2025-09-03T00:42:21Z
dc.date.issued2025-06-12
dc.descriptionIlustraciones, fotografíasspa
dc.description.abstractDesarrollo de un prototipo de biofertilizante a partir de bacterias promotoras de crecimiento vegetal de cebolla de rama (Allium fistulosum L.) La agricultura enfrenta el desafío de aumentar la productividad para satisfacer la demanda creciente de alimentos, estimada en un 60% para el año 2030. Para lograr buenos rendimientos en los cultivos se acude al uso excesivo de fertilizantes químicos. Las bacterias promotoras de crecimiento, mediados por procesos naturales, representan una opción sostenible de manejo agrícola, comparado con el uso de fertilizantes químicos, que son efectivos para aumentar la productividad, pero plantean riesgos ambientales. En esta investigación se aislaron bacterias de hojas, raíces y tallos de plantas de cebolla de rama, que se evaluaron in vitro por su capacidad para solubilizar fosfatos, producir compuestos indólicos o presentar actividad de la enzima ACC desaminasa (desaminasa del ácido 1-aminociclopropano-1-carboxílico). Luego en casa de malla se determinó su efecto en la promoción de germinación de semillas y en el crecimiento de plantas de cebolla. Tres aislamientos bacterianos promisorios, se seleccionaron para elaborar formulaciones líquida, liofilizada o microencapsulada en alginato de sodio 4% y fueron al almacenarlas temporalmente en diferentes temperaturas (4 °C, T° ambiente (21° C±2) y 50 °C) durante 60 días para evaluar su viabilidad celular (UFC mL-1). Diecisiete aislados bacterianos mostraron actividad solubilizadora de fosfatos y de estos nueve produjeron compuestos indólicos y dos actividad ACC desaminasa. Catorce de quince bacterias evaluados en condiciones de casa malla mostraron efecto positivo en al menos un parámetro de crecimiento de las plantas. El alginato de sodio 4% y la temperatura a 4 °C permitieron que la viabilidad celular de las bacterias fuera mayor en comparación con los demás formulados. Este estudio subraya la importancia de continuar investigando el potencial para desarrollar bioinsumos agrícolas a partir de la biodiversidad microbiana local, que optimicen el rendimiento de los cultivos y promuevan prácticas agrícolas más sostenibles y respetuosas con el medio ambiente. (Tomado de la fuente)spa
dc.description.abstractDevelopment of a prototype biofertilizer based on plant growth promoting bacteria of green onion (Allium fistulosum L.). Agriculture faces the challenge of increasing productivity to meet the growing demand for food, estimated at 60% by 2030. To achieve good crop yields, excessive use of chemical fertilizers is common. Growth-promoting bacteria, mediated by natural processes, represent a sustainable agricultural management option compared to the use of chemical fertilizers, which are effective in increasing productivity but pose environmental risks. In this research, bacteria were isolated from the leaves, roots, and stems of spring onion plants and evaluated in vitro for their ability to solubilize phosphates, produce indole compounds, or exhibit ACC deaminase (1-aminocyclopropane-1-carboxylic acid deaminase) enzyme activity. Then, at the mesh house, its effect on promoting seed germination and onion plant growth was determined. Three promising bacterial isolates were selected to develop liquid, lyophilized, or microencapsulated formulations in 4% sodium alginate and were temporarily stored at different temperatures (4 °C, room temperature (21 °C±2), and 50 °C) for 60 days to evaluate their cell viability (CFU mL-1). Seventeen bacterial isolates showed phosphate solubilizing activity, and of these, nine produced indole compounds and two showed ACC deaminase activity. Fourteen of the fifteen bacteria evaluated under mesh conditions showed a positive effect on at least one plant growth parameter. Sodium alginate 4% and a temperature of 4 °C allowed for greater bacterial cell viability compared to the other formulations. This study highlights the importance of continuing to investigate the potential for developing agricultural bio-inputs from local microbial biodiversity that optimize crop yields and promote more sustainable and environmentally friendly agricultural practices.eng
dc.description.curricularareaBiotecnología.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias - Biotecnología
dc.description.researchareaBiotecnología microbiana
dc.description.sponsorshipSistema general de regalías del departamento Antioquia
dc.description.sponsorshipAgrosavia - Corporación Colombiana de Investigación Agropecuaria
dc.format.extent131 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88562
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnología
dc.relation.indexedLaReferencia
dc.relation.referencesAbo-Koura, H. A. (2023). Endophytic Bacteria; Diversity, Characterization and Role in Agriculture. Journal of Basic y Applied Sciences, 19, 116–130. https://doi.org/10.29169/1927-5129.2023.19.11
dc.relation.referencesAGRONET (2024). Estadísticas agrícolas. Evaluaciones agropecuarias municipales (EVA). [Internet]. Colombia: Ministerio de agricultura y desarrollo rural; 2018-2020. [Consultado 24 de Junio de 2024]. Tomado de: https://www.agronet.gov.co/estadistica/paginas/home.aspx?cod=1 .
dc.relation.referencesAhemad, M., y Khan, M. (2010). Influence of selective herbicides on plant growth-promoting traits of phosphate-solubilizing Enterobacter asburiae strain PS2. Research Journal of Microbiology, 5, 849–857.
dc.relation.referencesAhemad, M., y Khan, M. (2010). Plant growth-promoting activities of phosphate-solubilizing Enterobacter asburiae as influenced by fungicides. Eurasia Journal of Biosciences, 4, 88–95. doi:10.5053/ejobios.2010.4.0.11
dc.relation.referencesAlam, S., Khalil, S., Ayub, N., y Rashid, M. (2002). In vitro solubilization of inorganic phosphate by phosphate solubilizing microorganisms (PSM) from maize rhizosphere. International Journal of Agriculture y Biology, 4(4), 454-458. http://www.ijab.org
dc.relation.referencesAloo, B. N., Tripathi, V., Makumba, B. A., y Mbega, E. R. (2022). Plant growth-promoting rhizobacterial biofertilizers for crop production: The past, present, and future. Frontiers in Plant Science, 13, Article 1002448, 1-15. https://doi.org/10.3389/fpls.2022.1002448
dc.relation.referencesAmbrosini A., De Souza, R., Passaglia, L. (2016). Ecological role of bacterial inoculants and their potential impact on soil microbial diversity. Plant Soil, 400:193–207. doi: 10.1007/s11104-015-2727-7.
dc.relation.referencesAngulo, V. C., Sanfuentes, E. A., Rodríguez, F., y Sossa, K. E. (2014). Caracterización de rizobacterias promotoras de crecimiento en plántulas de Eucalyptus nitens. Revista Argentina de Microbiología, 46(4), 338-347. doi.org/10.1016/S0325-7541(14)70093-8.
dc.relation.referencesAnuario estadístico agropecuario departamento de Antioquia (2024).Gobernación de Antioquia. Secretaria de agricultura y desarrollo rural. Medellín.
dc.relation.referencesArora, N. K., y Verma, M. (2017). Modified microplate method for rapid and efficient estimation of siderophore produced by bacteria. 3 Biotech, 7 (381), 1-9. https://doi.org/10.1007/s13205-017-1008-y
dc.relation.referencesAteş, Ö. (2023). Phosphate Solubilizing Bacteria Isolation Medium: Rock Phosphate or Tricalcium Phosphate? Geomicrobiology Journal, 40(8–10), 751–755. https://doi.org/10.1080/01490451.2023.2245401
dc.relation.referencesBacker, R., Rokem, J., Llangumaran, G., Lamont, J., Praslickova, D., Ricci, E., Subramanian, S., y Smith, D. L. (2018). Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. In Frontiers in Plant Science, 9(1473), 1-17. https://doi.org/10.3389/fpls.2018.01473
dc.relation.referencesBai, Y. , Chang, Y. , Hussain, M., Lu, B., Zhang, J., Song, X. , Lei, X. , y Pei, D. (2020). Soil chemical and microbiological properties are changed by long-term chemical fertilizers that limit ecosystem functioning. Microorganisms, 8(5), 1-22. https://doi.org/10.3390/microorganisms8050694
dc.relation.referencesBalla, A., Silini, A., Cherif-Silini, H., Chenari, A., Alenezi, F., y Belbahri, L. (2022). Recent Advances in Encapsulation Techniques of Plant Growth-Promoting Microorganisms and Their Prospects in the Sustainable Agriculture. In Applied Sciences (Switzerland) 12(18). MDPI. https://doi.org/10.3390/app12189020
dc.relation.referencesBashan Y., De-Bashan, L., Prabhu, S., y Hernandez, J.(2014). Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013), Plant Soil , 378, 1–33. doi: 10.1007/s11104-013-1956-x
dc.relation.referencesBashan, Y., Kamnev, A., y de-Bashan, L. (2013). Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: A proposal for an alternative procedure. Biology and Fertility of Soils, 49(4), 465–479. https://doi.org/10.1007/s00374-012-0737-7.
dc.relation.referencesBektaş, I., y Küsek, M. (2021). The Isolation and Characterization of Phosphate Solubilizing Bacteria from the Onion Rhizosphere and Their Effect on Onion Growth. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 24(5), 1084–1092. https://doi.org/10.18016/ksutarimdoga.vi.811324
dc.relation.referencesBeracochea, M., Taulé, C., y Battistoni, F. (2019). Draft genome sequence of Kosakonia radicincitans UYSO10, an endophytic plant growth-promoting bacterium of sugarcane (Saccharum officinarum). Microbiology Resource Announcements, 8(43), 1-2. https://doi.org/10.1128/MRA.01000-19
dc.relation.referencesBerninger, T., González López, O., Bejarano, A., Preininger, C., y Sessitsch, A. (2018). Maintenance and assessment of cell viability in formulation of non-sporulating bacterial inoculants. Microbial Biotechnology, 11(2), 277-301. https://doi.org/10.1111/1751-7915.12880
dc.relation.referencesBiradar, B. , y Santhosh, G. (2018). Cell protectants, adjuvants, surfactant and preservative and their role in increasing the shelf life of liquid inoculant formulations of Pseudomonas fluorescens. International Journal of Pure and Applied Bioscience, 6(4), 116-122. doi: http://dx.doi.org/10.18782/2320-7051.6821
dc.relation.referencesBlanco - Vargas, A., Rodriguez, L., Sanchez, N., Garzón, R., Pedroza, L., Poutou, R., Riviera, C., Díaz, L., y Pedroza, A. (2020). Phosphate-solubilizing Pseudomonas sp., and Serratia sp., co-culture for Allium cepa L. growth promotion. Heliyon, https://doi.org/10.1016/j.heliyon.2020.e05218.
dc.relation.referencesBonilla, R., González de Bashan, L., Pedraza, R., Estrada Bonilla, G., y Pardo, S. (2021). Bacterias promotoras de crecimiento vegetal en sistemas de agricultura sostenible. AGROSAVIA. https://doi.org/10.21930/agrosavia.analisis.7405019
dc.relation.referencesBrenner, K., You, L., y Arnold, F. (2008). Engineering microbial consortia: A new frontier in synthetic biology. Trends in Biotechnology, 26, 483–489.
dc.relation.referencesCamelo, M., Vera, S. y Bonilla, R. (2011). Mecanismos de acción de las rizobacterias promotoras del crecimiento vegetal. Revista Corpoica - Ciencia y Tecnología Agropecuaria 12(2), 159-166.
dc.relation.referencesCarmona, S. (2019). Identificación de un aislamiento de Fusarium oxysporum f. sp. lycopersici y respuesta fisiológica en tomate durante la infección frente a dos elicitores fúngicos [Tesis de maestría, Universidad Nacional de Colombia]. Repositorio Institucional Ciencias agrarias Universidad Nacional de Colombia https://repositorio.unal.edu.co/handle/unal/69660
dc.relation.referencesEVAS (2023). Base Agrícola UPRA 2019-2023. https://experience.arcgis.com/experience/17859d5712b046fca6b0df5781e0b560/page/%C3%81rea-sembrada-y-cosechada?views=EVA-Nivel-Nacional%2C-EVA-Departamentales
dc.relation.referencesCheng, D., Tian, Z., Feng, L., Xu, L., y Wang, H. (2019). Diversity analysis of the rhizospheric and endophytic bacterial communities of Senecio vulgaris L. (Asteraceae) in an invasive range. PeerJ, 2019(1), 1-24. https://doi.org/10.7717/peerj.6162
dc.relation.referencesComité de Agentes Biológicos - ABAS. (2015). Normas técnicas para Agentes biológicos Clasificación de procariotas (bacterias y arqueas) en grupos de riesgo TRBA 466. https://www.baua.de/DE/Angebote/Regelwerk/TRBA/TRBA-466?nn=e1d541a2-07fc-48eb-a882-1aee9c348775
dc.relation.referencesCortés, S., y Bonilla, R. (2015). Polymers selection for a liquid inoculant of Azospirillum brasilense based on the Arrhenius thermodynamic model. African Journal of Biotechnology, 14(33), 2547–2553. https://doi.org/10.5897/ajb2015.14777
dc.relation.referencesCosta - Júnior, P. S. P., Cardoso, F. P., Martins, A. D., Teixeira Buttrós, V. H., Pasqual, M., Dias, D. R., Schwan, R. F., y Dória, J. (2020). Endophytic bacteria of garlic roots promote growth of micropropagated meristems. Microbiological Research, 241 1-10. https://doi.org/10.1016/j.micres.2020.126585
dc.relation.referencesEgamberdieva, D., Wirth, S., Alqarawi, A., Abd_Allah E y Hashem A. (2017). Phytohormones and Beneficial Microbes: Essential Components for Plants to Balance Stress and Fitness. Frontiers in microbiology, 8:2104, 1-14. doi: 10.3389/fmicb.2017.02104.
dc.relation.referencesFAO (2019). Organización de las Naciones Unidas para la Alimentación y la Agricultura Roma, Código Internacional de Conducta para el Uso y Manejo de Fertilizantes. Roma. http://www.fao.org/publications/es.
dc.relation.referencesFAO. (2019). World fertilizer trends and outlook to 2022. Rome.
dc.relation.referencesFAO. Organización de las Naciones Unidas para la Alimentación y la Agricultura (2024). Recuperado de https://www.fao.org/faostat/es/#data/RFN
dc.relation.referencesFathi , F., Saberi-Riseh, R., y Khodaygan, P. (2021). Survivability and controlled release of alginate-microencapsulated Pseudomonas fluorescens VUPF506 and their effects on biocontrol of Rhizoctonia solani on potato. International Journal of Biological Macromolecules, 183, 627-634. https://doi.org/10.1016/j.ijbiomac.2021.04.159
dc.relation.referencesFerreira, C. M. H., Soares, H. M. V. M., y Soares, E. V. (2019). Promising bacterial genera for agricultural practices: An insight on plant growth-promoting properties and microbial safety aspects. In Science of the Total Environment 682, 779–799. Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2019.04.225
dc.relation.referencesGao, M., Zhou, J., Wang, E., Chen, Q., Xu, J., y Sun, J. (2015). Multiphasic characterization of a plant growth promoting bacterial strain, Burkholderia sp. 7016 and its effect on tomato growth in the field. Journal of Integrative Agriculture, 14(9), 1855-1863. https://doi.org/10.1016/S2095-3119(14)60932-1
dc.relation.referencesGholami, A., Shahsavani, S., y Nezarat, S. (2009). The effect of plant growth promoting rhizobacteria (PGPR) on germination, seedling growth and yield of maize. World Academy of Science, Engineering and Technology, International Journal of Agricultural and Biosystems Engineering, 3(1), 1-14
dc.relation.referencesGlick, B., Jacobson C., Schwarze, M., y Pasternak, J. (1994).“1-Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation,” Canadian Journal of Microbiology, 40(11), 911–915.
dc.relation.referencesGordon, S., y Weber, R. (1951). Colorimetric estimation of indoleacetic acid. Plant physiology, 26(1), 192–5. http://www.ncbi.nlm.nih.gov/pubmed/16654351>
dc.relation.referencesGotor-Vila, A., Usall, J., Torres, R., Abadias, M., y Teixidó, N. (2017). Formulation of the biocontrol agent Bacillus amyloliquefaciens CPA-8 using different approaches: Liquid, freeze-drying and fluid-bed spray-drying. BioControl, 62(5), 545-555. https://doi.org/10.1007/s10526-017-9802-3
dc.relation.referencesGross, A., Tiwari, S., Shtein, I., y Erel, R. (2021). Direct foliar uptake of phosphorus from desert dust. New Phytologist, 230(6), 2213-2225.
dc.relation.referencesGrzegorczyk, M., Kancelista, A., Łaba, W., Piegza, M., y Witkowska, D. (2018). The effect of lyophilization and storage time on the survival rate and hydrolytic activity of Trichoderma strains. Folia Microbiologica, 63(4), 433-441. https://doi.org/10.1007/s12223-017-0581-0
dc.relation.referencesGupta, G., Parihar, S., Ahirwar, N., Snehi, S., y Singh, V. (2015). Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. Journal of microbial and Biochemical technology, 7(2), 96-102. doi: 10.4172/1948-5948.1000188.
dc.relation.referencesGupta, S., y Pandey, S. (2019). ACC deaminase producing bacteria with multifarious plant growth promoting traits alleviates salinity stress in French Bean (Phaseolus vulgaris) plants. Frontiers in Microbiology, 324, 183-197 https://doi.org/10.3389/fmicb.2019.01506.
dc.relation.referencesGupta, S., Stirk, W., Plačková, L., Kulkarni, M., Doležal, K., y Van Staden, J. (2021). Interactive effects of plant growth-promoting rhizobacteria and a seaweed extract on the growth and physiology of Allium cepa L. (onion). Journal of Plant Physiology, 262, 1-13. https://doi.org/10.1016/j.jplph.2021.153437.
dc.relation.referencesHabib, S., Kausar, H., y Saud, H. (2016). Plant Growth-Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Okra through ROS-Scavenging Enzymes. BioMed Research International, 2016, 1-11. https://doi.org/10.1155/2016/6284547.
dc.relation.referencesHe, Y., Wu, Z., Tu, L., Han, Y., Zhang, G., y Li, C. (2015). Encapsulation and characterization of slow-release microbial fertilizer from the composites of bentonite and alginate. Applied Clay Science, 109–110, 68-75.
dc.relation.referencesHe, Y., Wu, Z., Ye, B.C., Wang, J., Guan, X., Zhang, J., 2016. Viability evaluation of alginate-encapsulated Pseudomonas putida Rs-198 under simulated salt-stress conditions and its effect on cotton growth. Eur. J. Soil Biol. 75, 135–141. https://doi. org/10.1016/j.ejsobi.2016.05.002.
dc.relation.referencesHerrera, H., Sanhueza, T., Novotná, A., Charles, T. C., y Arriagada, C. (2020). Isolation and Identification of Endophytic Bacteria from Mycorrhizal Tissues of Terrestrial Orchids from Southern Chile. Diversity, 12(2), 55. http://dx.doi.org/10.3390/d1202005
dc.relation.referencesJaiswal A., Kumar D., Pabbi , S., Priya, H., Kumar, A., Mishra, R., Kumar, G., y Singh B. (2022). Effect of Protective Polymers and Storage Temperatures on Shelf Life of Cyanobacterial Liquid Formulation. Indian Journal of Ecology, 49(4): 1517-1525. doi: https://doi.org/10.55362/IJE/2022/3692
dc.relation.referencesJaramillo, J., Cano, L.E., Franco, G., Aguilar P.A., Tamayo, P.J., Benjumea, F. (2016). Modelo tecnológico para el cultivo de cebolla de rama en el departamento de Antioquia (Allium fistulosum). Corporación colombiana de investigación agropecuaria – Corpoica. 267 p.
dc.relation.referencesJetiyanon, K. (2015). Multiple mechanisms of Enterobacter asburiae strain RS83 for plant growth enhancement. Songklanakarin Journal of Science and Technology, 37(1), 29-36.
dc.relation.referencesJohn, R., Tyagi, R., Brar, S., Surampalli, R., y Prévost, D. (2011). Bio-encapsulation of microbial cells for targeted agricultural delivery. In Critical Reviews in Biotechnology Vol. 31(3), 211–226. https://doi.org/10.3109/07388551.2010.513327
dc.relation.referencesKalayu, G. (2019). Phosphate solubilizing microorganisms: Promising approach as biofertilizers. In International Journal of Agronomy, 2019(4917256), 1-8. https://doi.org/10.1155/2019/4917256
dc.relation.referencesKshetri, L., Pandey, P., y Sharma, G. D. (2017). Solubilization of inorganic rock phosphate by rhizobacteria of Allium hookeri thwaites and influence of carbon and nitrogen sources Amendments. Journal of Pure and Applied Microbiology, 11(4), 1899–1908. https://doi.org/10.22207/JPAM.11.4.30.
dc.relation.referencesKumar, A., Meena, V., Roy, P., Vandana, y Kumari, R. (2019). Role of Rhizobia for sustainable agriculture: Lab to land. In A. Kumar y V. S. Meena (Eds.), Plant growth promoting rhizobacteria for agricultural sustainability: From theory to practices (pp. 129-146). Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978-981-13-7553-8_7
dc.relation.referencesKumar, R., Kumar, R., y Prakash, O. (2019). The Impact of Chemical Fertilizers on Our Environment and Ecosystem. In book: Research Trends in Environmental Sciences, Edition: 2nd, Chapter 5. 69-86. https://www.researchgate.net/publication/331132826_The_Impact_of_Chemical_Fertilizers_on_our_Environment_and_Ecosystem
dc.relation.referencesLeoncio, M. y Botelho, G. (2017). Isolation and characterization of plant growth promoting bacteria isolated from garlic (Allium sativum) / Isolamento e caracterização de bactérias indutoras de crescimento vegetal de alho (Allium sativum). Scientia agraria, 18(3), 95-106. doi: 10.5380/rsa. v18i3.5063
dc.relation.referencesLi, G., Kong,W., Wu, X., y Ma, S. (2021). Phytase-Producing Rahnella aquatilis JZ-GX1 Promotes Seed Germination and Growth in Corn (Zea mays L.). Microorganisms, 9(1647), 1-16. https://doi.org/10.3390/microorganisms9081647
dc.relation.referencesLobo, C., Juárez, M., Viruel, E., Ferrero, M., y Lucca, M. (2018). Development of low-cost formulations of plant growth-promoting bacteria to be used as inoculants in beneficial agricultural technologies. Microbiological Research, 219, 12-25. https://doi.org/10.1016/j.micres.2018.10
dc.relation.referencesLopes, M. Dos S., Dias-Filho, M., y Gurgel, E. (2021). Successful Plant Growth-Promoting Microbes: Inoculation Methods and Abiotic Factors. In Frontiers in Sustainable Food Systems, 5 (606454). Frontiers Media S.A. https://doi.org/10.3389/fsufs.2021.606454
dc.relation.referencesLópez-Ortega, M., Criollo-Campos, P., Gómez-Vargas, R., Camelo-Rusinque, M., Estrada-Bonilla, G., Garrido-Rubiano, M., y Bonilla-Buitrago, R. (2013). Caracterización de bacterias diazotróficas solublizadoras de fosfato como promotoras de crecimiento en plantas de maíz. Revista Colombiana de Biotecnología, 15(2), 115-123. https://doi.org/10.15446/rev.colomb.biote.v15n2.36303.
dc.relation.referencesLovaisa, N., Guevara, E., Delaporte, P., Elías, J., Arroyo,J., y Salazar, S. (2018). Efecto de la inoculación con bacterias promotoras del crecimiento vegetal en plantas de maíz (Zea mays L.). Revista de la Facultad de Agronomía del Noroeste Argentino, 38 (1), 33-38.
dc.relation.referencesLouden, B. C., Haarmann, D., y Lynne, A. M. (2011). Use of Blue Agar CAS Assay for Siderophore Detection. Journal of Microbiology y Biology Education, 12(1), 51–53. https://doi.org/10.1128/jmbe.v12i1.249
dc.relation.referencesLudueña, L. M., Anzuaya, M. S., Angelini, J. G., McIntosh, M., Becker, A., Rupp, O., Goesmann, A., Blom, J., Fabra, A., y Tauriana, T. (2019). Genome sequence of the endophytic strain Enterobacter sp. J49, a potential biofertilizer for peanut and maize. Genomics, 111(4), 913-920. https://doi.org/10.1016/j.ygeno.2018.05.021
dc.relation.referencesLuria, S. E., y Burrous, J. W. (1957). Hybridization between Escherichia coli and Shigella. Journal of Bacteriology, 74(4), 461–476.
dc.relation.referencesMahanty, T., Bhattacharjee, S., Goswami, M., Bhattacharyya, P., Das, B., Ghosh, A., y Tribedi, P. (2017). Biofertilizers: a potential approach for sustainable agriculture development. Environmental Science and Pollution Research, 24(4), 3315–3335. https://doi.org/10.1007/s11356-016-8104-0
dc.relation.referencesMahmud, A., Upadhyay, S., Srivastava, A., y Bhojiya, A. (2021). Biofertilizers: A Nexus between soil fertility and crop productivity under abiotic stress. Current Research in Environmental Sustainability, 3(100063). https://doi.org/10.1016/j.crsust.2021.100063
dc.relation.referencesMartínez-Viveros, O., Jorquera, M. , Crowley, D.., Gajardo, G., y Mora, M.. (2010). Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. Journal of Soil Science and Plant Nutrition, 10, 293–319.
dc.relation.referencesMehnaz, S., Baig, D., y Lazarovits, G. (2010). Genetic and phenotypic diversity of plant growth-promoting rhizobacteria isolated from sugarcane plants growing in Pakistan. Journal of Microbiology and Biotechnology, 20, 1614–1623.
dc.relation.referencesMehta , S., y Nautiyal, C. (2001). An efficient method for qualitative screening of phosphate-solubilizing bacteria. Current Microbiology, 43(1), 51–56. https://doi.org/10.1007/s002840010259
dc.relation.referencesMeldgaard, M., Bollen, P. J. A., y Finsen, B. (2004). Non-invasive method for sampling and extraction of mouse DNA for PCR. Laboratory Animals, 38(4), 413-417.
dc.relation.referencesMendoza-Labrador, J., Romero-Perdomo, F., Abril, J., Hernández, J. P., Uribe-Vélez, D., y Buitrago, R. B. (2021). Bacillus strains immobilized in alginate macrobeads enhance drought stress adaptation of Guinea grass. Rhizosphere, 19. https://doi.org/10.1016/j.rhisph.2021.100385
dc.relation.referencesMiranda, A. M., Hernandez-Tenorio, F., Villalta, F., Vargas, G. J., y Sáez, A. A. (2024). Advances in the development of biofertilizers and biostimulants from microalgae. Biology, 13(3), 199, 1-19 . https://doi.org/10.3390/biology13030199
dc.relation.referencesMoirangthem Nautiyal, A., Haokip, S., Sheik, H., Vida, E., y Heisnam, P. (2023). Biofertilizers: its application and mechanism in action. Organic Farming Practices in Hills. 82-98. https://www.researchgate.net/publication/372717235
dc.relation.referencesMorales-Cedeño, L. R., Orozco-Mosqueda, M. del C., Loeza-Lara, P. D., Parra-Cota, F. I., de los Santos-Villalobos, S., y Santoyo, G. (2021). Plant growth-promoting bacterial endophytes as biocontrol agents of pre- and post-harvest diseases: Fundamentals, methods of application and future perspectives. Microbiological Research, 242, 126612, 1-12. https://doi.org/10.1016/j.micres.2020.126612
dc.relation.referencesMurphy J, y Riley J. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica chimica acta, 27, 31–36. https://doi.org/10.1016/S0003-2670(00)88444-5.
dc.relation.referencesNautiyal, C. S. (1999). "An efficient microbiological growth medium for screening phosphate solubilizing microorganisms." FEMS Microbiology Letters, 170(1), 265-270. DOI: 10.1111/j.1574-6968.1999.tb13383.x.
dc.relation.referencesNautiyal, C., Bhadauria, S., Kumar, P., Lal, H., Mondal, R., y Verma, D. (2000). Stress induced phosphate solubilization in bacteria isolated from alkaline soils. FEMS Microbiology Letters, 182(2), 291–296. https://doi.org/10.1111/j.1574-6968.2000.tb08910.x
dc.relation.referencesNgamau, C. N., Matiru, V. N., Tani, A., y Muthuri, C. W. (2012). Isolation and identification of endophytic bacteria of bananas (Musa spp.) in Kenya and their potential as biofertilizers for sustainable banana production. African Journal of Microbiology Research, 6(34), 6414–6422. http://hdl.handle.net/123456789/1485
dc.relation.referencesNosheen, S., Ajmal, I., y Song, Y. (2021). Microbes as biofertilizers, a potential approach for sustainable crop production. In Sustainability, 13(4), 1–20. https://doi.org/10.3390/su13041868
dc.relation.referencesObianuju, C., y Olubukola, B. (2020). Productivity and quality of horticultural crops through coinoculation of arbuscular mycorrhizal fungi and plant growth promoting bacteria. Microbiological Research, 239, 1- 11. https://doi.org/10.1016/j.micres.2020.126569.
dc.relation.referencesOECD/FAO (2023). OECD-FAO Agricultural Outlook 2023-2032, OECD Publishing, Paris, Recuperado de https://doi.org/10.1787/08801ab7-en
dc.relation.referencesOlanrewaju, O., Glick, B., y Babalola, O. (2017). Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology, 33(197), 1-16. https://doi.org/10.1007/s11274-017-2364-9
dc.relation.referencesONU. Organización de Naciones Unidas (2023). https://www.un.org/es/global-issues/population. Consultado: diciembre de 2023.
dc.relation.referencesOrona, L y Leos, J. (2020).Estudios sobre el manejo orgánico del suelo en el norte de México. Reporte de Investigación núm. 97. México: Universidad Autónoma Chapingo, CIESTAAM.
dc.relation.referencesOrozco-Mosqueda, M. del C., Flores, A., Rojas, B., Urtis, C., Morales, L., Valencia-Marin, M., Chávez, S., Rojas, D., y Santoyo, G. (2021). Plant growth-promoting bacteria as bioinoculants: Attributes and challenges for sustainable crop improvement. Agronomy, 11(6). 1-15. https://doi.org/10.3390/agronomy11061167
dc.relation.referencesOrozco-Mosqueda, M., y Santoyo, G. (2021). Plant-microbial endophytes interactions: Scrutinizing their beneficial mechanisms from genomic explorations. In Current Plant Biology, 25 (100189), 1-10. https://doi.org/10.1016/j.cpb.2020.100189
dc.relation.referencesOrtega-Ortega, Y., Sarmiento-López, L. , Baylón-Palomino, A., Vázquez-Lee, J., Maldonado-Bonilla, L., Flores-Olivas, A., y Valenzuela-Soto, J. (2024). Enterobacter sp. DBA51 produces ACC deaminase and promotes the growth of tomato (Solanum lycopersicum L.) and tobacco (Nicotiana tabacum L.) plants under greenhouse conditions. Current Research in Microbial Sciences, 6, 100207, 1-9. https://doi.org/10.1016/j.crmicr.2024.100207
dc.relation.referencesOrtiz, M., Hernández, J., Valenzuela, V., De los Santos, S., Rocha, M., y Santoyo, G. (2018). Diversidad de bacterias endófitas cultivables asociadas a plantas de arándano (Vaccinium corymbosum l.) Cv. Biloxi con actividades promotoras del crecimiento vegetal. Chilean Journal of Agricultural y Animal Science., ex Agro-Ciencia. 34(2):140-141.
dc.relation.referencesPadula, G., Xia, X., y Hołubowicz, R. (2022). Welsh Onion (Allium fistulosum L.) Seed Physiology, Breeding, Production and Trade. Plants , 11(3). https://doi.org/10.3390/plants11030343
dc.relation.referencesPanneerselvam, P., Senapati, A., Sharma, L., Nayak, A. K., Kumar, A., Kumar, U., Prabhukarthikeyan, S. R., Mitra, D., y Sagarika, M. (2021). Understanding rice growth-promoting potential of Enterobacter spp. isolated from long-term organic farming soil in India through a supervised learning approach. Current Research in Microbial Sciences, 2, 100035, 1-10. https://doi.org/10.1016/j.crmicr.2021.100035
dc.relation.referencesPatil, N., Inchanalkar, M., Desai, D., Landge, V. , y Bhole, B.(2016). Screening of 1-aminocyclopropane-1-carboxylic acid (ACC) Deaminase Producing Multifunctional Plant Growth Promoting Rhizobacteria from Onion (Allium cepa) Rhizosphere. International Journal of Current Microbiology and Applied Sciences, 5(10), 118–127. https://doi.org/10.20546/ijcmas.2016.510.014
dc.relation.referencesPellegrini, M., Spera, D., Ercole, C., y Del Gallo, M. (2020). Allium cepa L. inoculation with a consortium of plant growth-promoting bacteria: effects on plant growth and development and soil fertility status and microbial community. Proceedings, 1-5. www.mdpi.com/journal/proceedingsonline:https://ecm2020.sciforum.net/.
dc.relation.referencesPinzón, H. (2009). Los cultivos de cebolla y ajo en Colombia: estado del arte y perspectivas. Revista Colombiana de Ciencias Hortícolas, 3(1), 45-55. https://doi.org/10.17584/rcch.2009v3i1.1198
dc.relation.referencesPulido, L.; Medina, N.; y Cabrera, A. (2003). La biofertilización con rizobacterias y hongos micorrízicos arbusculares en la producción de posturas de tomate (Lycopersicon esculentum Mill.) y cebolla (Allium cepa L.). I. crecimiento vegetativo. Cultivos Tropicales, 24(1), 15-24. https://www.redalyc.org/articulo.oa?id=193218221003.
dc.relation.referencesPurnima, y Singh, P. (2023). Plant Growth Promoting- Rhizobacteria (PGPR): Their Potential as Biofertilizer and Biopesticide Agents: A Review. Asian Journal of Advances in Agricultural Research, 22(1), 25–37. https://doi.org/10.9734/ajaar/2023/v22i1431
dc.relation.referencesRfaki, A., Zennouhi, O., Aliyat, F. Z., Nassiri, L., y Ibijbijen, J. (2020). Isolation, Selection and Characterization of Root-Associated Rock Phosphate Solubilizing Bacteria in Moroccan Wheat (Triticum aestivum L.). Geomicrobiology Journal, 37(3), 230–241. https://doi.org/10.1080/01490451.2019.1694106
dc.relation.referencesSaha, S., Paul, D., Poudel, T. , Basunia, N. , Hasan, T., Hasan, M., Li, B., Reza, R., Haque, A. , Hanif, M., Sarker, M., Roberts, N. , Khoso, M. , Wu, , y Shen, H. (2023). Biofertilizer science and practice for agriculture and forestry: A review. In Journal of Applied Biology and Biotechnology, 11(6),31–44. https://doi.org/10.7324/JABB.2023.148741
dc.relation.referencesSalimi, F., y Hamedi, J. (2021). Biofertilizers: Microbes for agricultural productivity. In A. N. Yadav (Ed.), Soil microbiomes for sustainable agriculture 27, 407-469. Springer Nature. https://doi.org/10.1007/978-3-030-73507-4_14
dc.relation.referencesSamayoa, B., Shen, F., Lai, W., y Chen, W. (2020). Screening and Assessment of Potential Plant Growth-promoting Bacteria Associated with Allium cepa Linn. Microbes and Environments, 35(2), 1-10. doi:10.1264/jsme2.ME19147.
dc.relation.referencesSantoyo, G., Moreno, G., Orozco, M., y Glick, B. (2016). Plant growth-promoting bacterial endophytes. Microbiological Research, 183, 92-99. http://dx.doi.org/10.1016/j.micres.2015.11.008
dc.relation.referencesSchoebitz , M., López, M., y Roldán, A. (2013). Bioencapsulation of microbial inoculants for better soil–plant fertilization: A review. Agronomy for Sustainable Development, 33(4), 751-765. https://doi.org/10.1007/s13593-013-0142-0
dc.relation.referencesSharma, S., Sayyed, R., Trivedi, M., y Gobi, T. (2013). Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. In SpringerPlus 2(587), 1-14. https://doi.org/10.1186/2193-1801-2-587
dc.relation.referencesShin, H., Cho, H., y Park, J. (2023). Alginate as a Soil Conditioner: Properties, Mechanisms, and Agricultural Applications. In Biotechnology and Bioprocess Engineering 28(5),734–749. https://doi.org/10.1007/s12257-023-0206-1
dc.relation.referencesSingh, A. K., Tripathi, V., Shukla, A. K., y Kumar, P. (2022). Bacterial Endophytes for Sustainable Agriculture and Environmental Management. In Bacterial Endophytes for Sustainable Agriculture and Environmental Management. Springer Nature. https://doi.org/10.1007/978-981-16-4497-9
dc.relation.referencesSingh, D., y Prabha, R. (2019). Microbial interventions in agriculture and environment. In Microbial Interventions in Agriculture and Environment: Volume 3: Soil and Crop Health Management. Springer Singapore. https://doi.org/10.1007/978-981-32-9084-6
dc.relation.referencesSingh, P., Singh, R., Li, H., Guo, D., Sharma, A., Lakshmanan, P., Malviya, M., Song, X., Solanki, M., Verma, K., Yang, L., y Li, Y. (2021). Diazotrophic Bacteria Pantoea dispersa and Enterobacter asburiae Promote Sugarcane Growth by Inducing Nitrogen Uptake and Defense-Related Gene Expression. Frontiers in Microbiology, 11 (600417), 1-20. https://doi.org/10.3389/fmicb.2020.600417
dc.relation.referencesSingh, V., y Kumar, B. (2024). A review of agricultural microbial inoculants and their carriers in bioformulation. Rhizosphere, 29, 100843, 1-19. https://doi.org/10.1016/j.rhisph.2023.100843
dc.relation.referencesSinghvi, G., y Singh, M. (2011). Review: in-vitro drug release characterization models. Int. J. Pharm. Stud. Res. 2, 77–84
dc.relation.referencesSoumare, A., Boubekri, K., Lyamlouli, K., Hafidi, M., Ouhdouch, Y., y Kouisni, L. (2020). From Isolation of Phosphate Solubilizing Microbes to Their Formulation and Use as Biofertilizers: Status and Needs. In Frontiers in Bioengineering and Biotechnology, 7, 1-14. https://doi.org/10.3389/fbioe.2019.00425
dc.relation.referencesSouza, R., de, Ambrosini, A., y Passaglia, L. (2015). Plant growth promoting bacteria as inoculants in agricultural soils. Genetics and molecular biology. 38, 401–419. doi: 10.1590/S1415-47573842015005
dc.relation.referencesSzopa, D., Mielczarek, M., Skrzypczak, D., Izydorczyk, G., Mikula, K., Chojnacka, K., y Witek-Krowiak, A. (2022). Encapsulation efficiency and survival of plant growth-promoting microorganisms in an alginate-based matrix – A systematic review and protocol for a practical approach. Industrial Crops and Products, 181, 1-15. https://doi.org/10.1016/j.indcrop.2022.114846
dc.relation.referencesTaghavi, S., Garafola, C., Monchy, S., Newman, L., Hoffman, A. y Weyens, N. (2009). Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar trees. Applied and Environmental Microbiology, 75(3), 748-757. https://doi.org/10.1128/AEM.02239-08
dc.relation.referencesTinna, D., Garg, N., Sharma, S., Pandove, G., y Chawla, N. (2020). Utilization of plant growth promoting rhizobacteria as root dipping of seedlings for improving bulb yield and curtailing mineral fertilizer use in onion under field conditions. Scientia Horticulturae, 270(109432), 1-9. https://doi.org/10.1016/j.scienta.2020.109432
dc.relation.referencesTyas Soemarah K, Agus B., Teguh S., Endang S., Siti M., y Putro S..(2024). Onion Varieties (Allium Ascalonicum L.) Test With Application Of Several Kinds Microbia Consortium Its Influence On Growth and Yield. JURCS : Journal of Rural and Urban Community Studies. 2(1). https://doi.org/10.36728/jrucs.v2i1.3296
dc.relation.referencesUPRA- Unidad de planificación rural agropecuaria. (2023). Índice de precios de insumos agrícolas y alimentos balanceados para animales.
dc.relation.referencesUribe, L.; García Riaño, J. y Amaya, C. (2021). Conservación y manejo de la diversidad microbiana en los Bancos de Germoplasma para la Alimentación y la Agricultura en Colombia . Capitulo IV. Colección de Microorganismos con Interés en Control Biológico (CMICB). Editorial AGROSAVIA. Mosquera, Colombia. 236 páginas.
dc.relation.referencesVassilev, N., Vassileva, M., Martos, V., Garcia del Moral, L. F., Kowalska, J., Tylkowski, B., y Malusá, E. (2020). Formulation of Microbial Inoculants by Encapsulation in Natural Polysaccharides: Focus on Beneficial Properties of Carrier Additives and Derivatives. In Frontiers in Plant Science, Vol. 11 (270), 1-9, https://doi.org/10.3389/fpls.2020.00270
dc.relation.referencesWalpola, B. , y Yoon, M. (2012). Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: A review. African Journal of Microbiology Research, 6(37), 6600-6605. http://www.academicjournals.org/AJMR. https://doi.org/10.5897/AJMR12.889
dc.relation.referencesWang, N., Wang, B., Wan, Y., Gao, B., y Rajput, V. D. (2023). Alginate-based composites as novel soil conditioners for sustainable applications in agriculture: A critical review. Journal of Environmental Management, 348, 1-15
dc.relation.referencesWang, X., Fenga, Y., Cunshan, Z., Sun Y. , Wua, B., Yagoub, A. y Aboagarib E. (2019). Effect of vacuum and ethanol pretreatment on infrared-hot air drying of scallion (Allium fistulosum). Food Chemistry 295 432-440. https://doi.org/10.1016/j.foodchem.2019.05.145
dc.relation.referencesWang, Y., Deng, C., Cota-Ruiz, K., Peralta-Videa, J. R., Sun, Y., Rawat, S., Tan, W., Reyes, A., Hernandez-Viezcas, J. A., Niu, G., Li, C., y Gardea-Torresdey, J. L. (2020). Improvement of nutrient elements and allicin content in green onion (Allium fistulosum) plants exposed to CuO nanoparticles. Science of the Total Environment, 725, Article 138387. 1-9. https://doi.org/10.1016/j.scitotenv.2020.138387
dc.relation.referencesWang, J., Jayasinghe, H., Cho, Y., Tsai, Y., Chen, C., Doan, H., Ariyawansa, H. (2023). Diversity and Biocontrol Potential of Endophytic Fungi and Bacteria Associated with Healthy Welsh Onion Leaves in Taiwan. Microorganisms. 11, 1801. https://doi.org/10.3390/microorganisms11071801
dc.relation.referencesWu, Z., Guo, L., Qin, S., Li, C., 2012. Encapsulation of R. planticola Rs-2 from alginate-starch-bentonite and its controlled release and swelling behavior under simulated soil conditions. J. Ind. Microbiol. Biotechnol. 39, 317–327. https://doi.org/10.1007/ s10295-011-1028-2.
dc.relation.referencesXia, Y., DeBolt, S., Ma, Q., McDermaid, A., Wang, C., Shapiro, N., y Zhao, X. (2019). Improved draft genome sequence of Pseudomonas poae A2-S9, a strain with plant growth-promoting activity. Microbiology Resource Announcements, 8(15), 1-3. https://doi.org/10.1128/MRA.00275-19
dc.relation.referencesXing, J., Zhu, M., Wang, Y., y Liu, H. (2023). The complete mitochondrial genome of Allium fistulosum L. (Amaryllidaceae). Mitochondrial DNA Part B: Resources, 8(8), 890–894. https://doi.org/10.1080/23802359.2023.2248684
dc.relation.referencesYadav, A., y Yadav, K. (2024). Challenges and Opportunities in Biofertilizer Commercialization. SVOA Microbiology, 5(1), 01–14. https://doi.org/10.58624/SVOAMB.2024.05.037.
dc.relation.referencesYaish , M. W. (2016). Draft genome sequence of endophytic bacterium Enterobacter asburiae PDA134, isolated from date palm (Phoenix dactylifera L.) roots. Genome Announcements, 4(4), e00848-16, 1-2. https://doi.org/10.1128/genomeA.00848-16
dc.relation.referencesYusupov, Z., Deng, T., Liu, C., Lin, N., Tojibaev, K., y Sun, H. (2019). The complete chloroplast genome of Allium fistulosum. Mitochondrial DNA Part B: Resources, 4(1), 489–490. https://doi.org/10.1080/23802359.2018.1545532
dc.relation.referencesZhang, J., Feng, L., Ouyang, Y., Hu, R., Xu, H., y Wang, J. (2020). Phosphate-solubilizing bacteria and fungi in relation to phosphorus availability under different land uses for some latosols from Guangdong, China. Catena, 195(104686), 1-7. 7.https://doi.org/10.1016/j.catena.2020.104686
dc.relation.referencesZhang, W., Zheng, L., Lang, D., Zhang, X., Ma, X., Li, X., y Zhang, X. (2023). Eco-friendly bio-encapsulation from sodium alginate-trehalose-kaolin and its performance evaluation in improving plant growth under salt or/and drought conditions. International Journal of Biological Macromolecules, 225, 1
dc.relation.referencesZhao, C., Ni, H., Zhao, L., Zhou, L., Borras-Hidalgo, O., y Cui, R. (2020). High nitrogen concentration alter microbial community in Allium fistulosum rhizosphere. PLoS ONE 15(11): e0241371. https://doi.org/10.1371/journal. pone.024137
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc580 - Plantas
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::634 - Huertos, frutas, silvicultura
dc.subject.lembBiofertilizantes
dc.subject.lembCebollas - Mejoramiento
dc.subject.lembCrecimiento (Plantas)
dc.subject.lembProductividad agrícola
dc.subject.lembAbonos y fertilizantes
dc.subject.lembFosfatos como fertilizantes
dc.subject.proposalPromoción de crecimiento vegetalspa
dc.subject.proposalBacteria endófitasspa
dc.subject.proposalInoculantes microbianosspa
dc.subject.proposalSolubilización de fosfatosspa
dc.subject.proposalCompuestos indólicosspa
dc.subject.proposalAlginato de sodiospa
dc.subject.proposalViabilidad celularspa
dc.subject.proposalPlant growth promotioneng
dc.subject.proposalEndophytic bacteriaeng
dc.subject.proposalMicrobial inoculantseng
dc.subject.proposalPhosphate solubilizationeng
dc.subject.proposalIndolic compoundseng
dc.subject.proposalSodium alginateeng
dc.subject.proposalCell viabilityeng
dc.titleDesarrollo de un prototipo de biofertilizante a partir de bacterias promotoras de crecimiento vegetal de cebolla de rama (Allium fistulosum L.)spa
dc.title.translatedDevelopment of a prototype biofertilizer based on plant growth promoting bacteria of green onion (Allium fistulosum L.)eng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitle“Mejoramiento del sistema productivo de cebolla de rama enfocado a las demandas del mercado en fresco y/o agroindustria en el departamento de Antioquia” BPIN 2020000100413
oaire.fundernameSistema general de regalías del departamento Antioquia

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ciencias - Biotecnología
Tamaño:
3.89 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: