Papel del receptor nuclear PPARβ/δ en la respuesta metabólica a ácidos grasos de cadena media en macrófagos murinos

dc.contributor.advisorMendivil Anaya, Carlos Olimpo
dc.contributor.authorGaete Carrillo, Paula Valentina
dc.contributor.cvlachttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000097625spa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=Wd5n4WQAAAAJ&hl=es&authuser=1spa
dc.contributor.orcidPaula Valentina Gaete Carrillo, 0000-0001-9387-6017spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Paula-Gaetespa
dc.contributor.researchgroupDiabetes, Lípidos y Metabolismo UniAndesspa
dc.date.accessioned2023-02-22T15:39:50Z
dc.date.available2023-02-22T15:39:50Z
dc.date.issued2023-02-21
dc.descriptionilustracionesspa
dc.description.abstractPapel del receptor nuclear PPARβ/δ en la respuesta metabólica a ácidos grasos de cadena media en macrófagos murinos Objetivo: El objetivo de esta investigación es esclarecer la participación del receptor nuclear PPARβ/δ en la respuesta metabólica que desarrollan los macrófagos de ratón después de la exposición a ácidos grasos de cadena media (octanoico, C8:0 y decanoico, C10:0). Metodología: Se cultivaron macrófagos murinos J774A.1 en diferentes condiciones de tratamiento; en la mitad de las células se realizó un knock-down de la expresión para PPARβ/δ con un sistema de ácido ribonucleico pequeño de interferencia y el porcentaje de interferencia obtenido se verificó por RT-qPCR. El diseño experimental comparó 5 factores en las células a estudio: - Knockdown de PPARβ/δ (sí o no) - Exposición a ácido graso (cadena media vs cadena larga) - Exposición a un agonista de PPARβ/δ (GW501516) - Activación por lipopolisacárido (sí o no) - Control negativo En cada grupo de células se evaluó la expresión de genes relacionados con el metabolismo lipídico (Scarb1, Plin2, Npc1, Pltp, Cpt1, Abca1 y Abcg1) y con la función inmunitaria (Il6, Tnf, Ifng, Il10, Nos2, Ptgs2, Mcp1y Mmp9) mediante RT-qPCR. La expresión de cada gen se cuantificó de forma relativa al gen de la gliceraldeheido-3-fosfato deshidrogenasa utilizando el método ∆∆Ct. Para evaluar el impacto funcional de la exposición a ácidos grasos de cadena media sobre la fagocitosis de lipoproteínas, un paso fundamental de la aterogénesis, se realizó en cada subgrupo de tratamientos un ensayo de captación de lipoproteínas de baja densidad (LDL) fluorescentemente marcadas. Resultados y conclusiones: Este estudio amplió el conocimiento sobre la respuesta a los ácidos grasos de cadena media en la expresión de genes relacionados con el metabolismo de lípidos y la función inmune en macrófagos murinos, y en qué medida este efecto está mediado por el receptor nuclear PPARβ/δ. Palabras clave: Ppard, metabolismo, lípidos, colesterol, ateroesclerosis e inflamación. (Texto tomado de la fuente)spa
dc.description.abstractRole of the nuclear receptor PPARβ/δ in the metabolic response to medium-chain fatty acids in murine macrophages Aim: The aim of this investigation is to clarify the role of the nuclear receptor PPARβ/δ in the metabolic response that the murine macrophages develop after the exposition to medium-chain fatty acids (octanoic acid, C8:0 y decanoic acid, C10:0). Methods: J774A.1 murine macrophages were cultured under different treatment conditions; Half of the cells, had a knock-down against PPARβ/δ by using small interfering ribonucleic acids and the percentage of reduced expression was verified by RT-qPCR. The experimental design compared 5 factors in the cells under study: - PPARβ/δ knockdown (yes or no) - Exposure to fatty acid (medium chain vs. long chain) - Exposure to a PPARβ/δ agonist (GW501516) - Activation by lipopolysaccharide (yes or no) - Negative control The expression of genes related to lipid metabolism (Scarb1, Plin2, Npc1, Pltp, Cpt1, Abca1 and Abcg1) and immune function (Il6, Tnf, Ifng, Il10, Nos2, Ptgs2, Mcp1 and Mmp9) was evaluated in each group of cells by RT-qPCR. The expression of each gene was quantified relative to the glyceraldehyde-3-phosphate dehydrogenase gene using the ∆∆Ct method. To assess the functional impact of medium-chain fatty acid exposure on lipoprotein phagocytosis, a critical step in atherogenesis, a fluorescently labeled low-density lipoprotein (LDL) uptake assay was performed on each treatment subgroup. Conclusions and results: This study furthered our understanding of the response to medium-chain fatty acids in the expression of genes related to lipid metabolism and immune function in murine macrophages, and clarify the role of the nuclear receptor PPARβ/δ in this process. Key words: Ppard, metabolism, lipids, cholesterol, atherosclerosis and inflammation.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Bioquímicaspa
dc.description.researchareaMetabolismospa
dc.format.extentxvi, 85 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/83542
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Maestría en Bioquímicaspa
dc.relation.referencesZhao, X., Wang, J., Deng, Y., Liao, L., Zhou, M., Peng, C., & Li, Y. (2021). Quercetin as a protective agent for liver diseases: A comprehensive descriptive review of the molecular mechanism. Phytotherapy Research, 35(9), 4727-4747.spa
dc.relation.referencesZhang, X., Zhang, Y., Liu, Y., Wang, J., Xu, Q., Yu, X., ... & Xue, C. (2016). Medium-chain triglycerides promote macrophage reverse cholesterol transport and improve atherosclerosis in ApoE-deficient mice fed a high-fat diet. Nutrition Research, 36(9), 964-973.spa
dc.relation.referencesZhang, S., Li, L., Wang, J., Wang, S., Xing, D., & Chen, W. (2021). Recent advances in the regulation of ABCA1 and ABCG1 by lncRNAs. Clinica Chimica Acta.spa
dc.relation.referencesZhang, J. R., Coleman, T., Langmade, S. J., Scherrer, D. E., Lane, L., Lanier, M. H., ... & Ory, D. S. (2008). Niemann-Pick C1 protects against atherosclerosis in mice via regulation of macrophage intracellular cholesterol trafficking. The Journal of clinical investigation, 118(6), 2281-2290.spa
dc.relation.referencesZhang, J. (2022). Biomarkers of endothelial activation and dysfunction in cardiovascular diseases. Reviews in Cardiovascular Medicine, 23(2), 73.spa
dc.relation.referencesZieleniak, A., Wójcik, M., & Woźniak, L. A. (2008). Structure and physiological functions of the human peroxisome proliferator-activated receptor γ. Archivum immunologiae et therapiae experimentalis, 56(5), 331-345.spa
dc.relation.referencesWlaź, P., Socała, K., Nieoczym, D., Łuszczki, J. J., Żarnowska, I., Żarnowski, T., ... & Gasior, M. (2012). Anticonvulsant profile of caprylic acid, a main constituent of the medium-chain triglyceride (MCT) ketogenic diet, in mice. Neuropharmacology, 62(4), 1882-1889.spa
dc.relation.referencesWang, M. E., Singh, B. K., Hsu, M. C., Huang, C., Yen, P. M., Wu, L. S., ... & Chiu, C. H. (2017). Increasing dietary medium-chain fatty acid ratio mitigates high-fat diet-induced non-alcoholic steatohepatitis by regulating autophagy. Scientific reports, 7(1), 1-13.spa
dc.relation.referencesWakana, H., Kono, H., Fukushima, H., Nakata, Y., Akazawa, Y., Maruyama, S., ... & Ichikawa, D. (2019). Effects of medium-chain triglycerides administration in chemically induced carcinogenesis in mice. Anticancer research, 39(12), 6653-6660.spa
dc.relation.referencesWagner, N., & Wagner, K. D. (2020). PPAR beta/delta and the hallmarks of cancer. Cells, 9(5), 1133.spa
dc.relation.referencesVoloshyna, I., Littlefield, M. J., & Reiss, A. B. (2014). Atherosclerosis and interferon-γ: new insights and therapeutic targets. Trends in cardiovascular medicine, 24(1), 45-51.spa
dc.relation.referencesVergallo, R., & Crea, F. (2020). Atherosclerotic plaque healing. New England journal of medicine, 383(9), 846-857.spa
dc.relation.referencesVergallo, R., & Crea, F. (2020). Atherosclerotic plaque healing. New England journal of medicine, 383(9), 846-857.spa
dc.relation.referencesTan, Y., Wang, M., Yang, K., Chi, T., Liao, Z., & Wei, P. (2021). PPAR-α modulators as current and potential cancer treatments. Frontiers in oncology, 11, 707.spa
dc.relation.referencesTan, L., Lu, J., Liu, L., & Li, L. (2021). Fatty acid binding protein 3 deficiency limits atherosclerosis development via macrophage foam cell formation inhibition. Experimental Cell Research, 407(1), 112768.spa
dc.relation.referencesSung, M. H., Liao, F. H., & Chien, Y. W. (2018). Medium-chain triglycerides lower blood lipids and body weight in streptozotocin-induced type 2 diabetes rats. Nutrients, 10(8), 963.spa
dc.relation.referencesShim, S. Y., Yoon, H. Y., Yee, J., Han, J. M., & Gwak, H. S. (2021). Association between ABCA1 Gene Polymorphisms and Plasma Lipid Concentration: A Systematic Review and Meta-Analysis. Journal of personalized medicine, 11(9), 883.spa
dc.relation.referencesSaliba‐Gustafsson, P., Pedrelli, M. A. T. T. E. O., Gertow, K., Werngren, O., Janas, V., Pourteymour, S., ... & Schillaci, G. (2019). Subclinical atherosclerosis and its progression are modulated by PLIN2 through a feed‐forward loop between LXR and autophagy. Journal of internal medicine, 286(6), 660-675.spa
dc.relation.referencesRen, Y., Zhao, H., Yin, C., Lan, X., Wu, L., Du, X., ... & Gao, D. (2022). Adipokines, Hepatokines and Myokines: Focus on Their Role and Molecular Mechanisms in Adipose Tissue Inflammation. Frontiers in Endocrinology, 13.spa
dc.relation.referencesReiss, A. B., Siegart, N. M., & De Leon, J. (2017). Interleukin-6 in atherosclerosis: atherogenic or atheroprotective?. Clinical Lipidology, 12(1), 14-23.spa
dc.relation.referencesPark, B. H., Vogelstein, B., & Kinzler, K. W. (2001). Genetic disruption of PPAR δ decreases the tumorigenicity of human colon cancer cells. Proceedings of the National Academy of Sciences, 98(5), 2598-2603.spa
dc.relation.referencesPain, E., Shinhmar, S., & Williams, R. S. (2021). Using Dictyostelium to advance our understanding of the role of medium chain fatty acids in health and disease. Frontiers in cell and developmental biology, 2515.spa
dc.relation.referencesNowbar, A. N., Gitto, M., Howard, J. P., Francis, D. P., & Al-Lamee, R. (2019). Mortality from ischemic heart disease: Analysis of data from the World Health Organization and coronary artery disease risk factors From NCD Risk Factor Collaboration. Circulation: cardiovascular quality and outcomes, 12(6), e005375.spa
dc.relation.referencesNomura, M., Liu, J., Yu, Z. X., Yamazaki, T., Yan, Y., Kawagishi, H., ... & Finkel, T. (2019). Macrophage fatty acid oxidation inhibits atherosclerosis progression. Journal of molecular and cellular cardiology, 127, 270-276.spa
dc.relation.referencesNohara, R. (2001). Lipid metabolism in the heart—Contribution of BMIPP to the diseased heart—. Annals of nuclear medicine, 15(5), 403-409.spa
dc.relation.referencesNarayanan, A., Baskaran, S. A., Amalaradjou, M. A. R., & Venkitanarayanan, K. (2015). Anticarcinogenic properties of medium chain fatty acids on human colorectal, skin and breast cancer cells in vitro. International journal of molecular sciences, 16(3), 5014-5027.spa
dc.relation.referencesMalekmohammad, K., Bezsonov, E. E., & Rafieian-Kopaei, M. (2021). Role of Lipid Accumulation and Inflammation in Atherosclerosis: Focus on molecular and cellular mechanisms. Frontiers in cardiovascular medicine, 8.spa
dc.relation.referencesLiberato, M. V., Nascimento, A. S., Ayers, S. D., Lin, J. Z., Cvoro, A., Silveira, R. L., ... & Polikarpov, I. (2012). Medium chain fatty acids are selective peroxisome proliferator activated receptor (PPAR) γ activators and pan-PPAR partial agonists. PloS one, 7(5), e36297.spa
dc.relation.referencesLibby, P., Buring, J.E., Badimon, L. et al (2019). Atherosclerosis. Nature Reviews Disease Primers 5 (56), 1-18.spa
dc.relation.referencesLibby, P. (2021). The changing landscape of atherosclerosis. Nature, 592(7855), 524-533.spa
dc.relation.referencesLiao, Y., Zhu, E., & Zhou, W. (2021). Ox-LDL Aggravates the Oxidative Stress and Inflammatory Responses of THP-1 Macrophages by Reducing the Inhibition Effect of miR-491-5p on MMP-9. Frontiers in cardiovascular medicine, 8.spa
dc.relation.referencesKobiyama, K., & Ley, K. (2018). Atherosclerosis: A chronic inflammatory disease with an autoimmune component. Circulation Research, 123(10), 1118-1120.Lopez, A. D., & Murray, C. C. (2020). The global burden of disease, 1990–2020. Nature medicine, 4(11), 1241-1243.spa
dc.relation.referencesKiepura, A., Stachyra, K., & Olszanecki, R. (2021). Anti-atherosclerotic potential of free fatty acid receptor 4 (FFAR4). Biomedicines, 9(5), 467.spa
dc.relation.referencesKahremany, S., Livne, A., Gruzman, A., Senderowitz, H., & Sasson, S. (2015). Activation of PPAR δ: from computer modelling to biological effects. British journal of pharmacology, 172(3), 754-770.spa
dc.relation.referencesKaddatz, K., Adhikary, T., Finkernagel, F., Meissner, W., Müller-Brüsselbach, S., & Müller, R. (2010). Transcriptional Profiling Identifies Functional Interactions of TGFβ and PPARβ/δ Signaling: SYNERGISTIC INDUCTION OF ANGPTL4 TRANSCRIPTION [S]. Journal of Biological Chemistry, 285(38), 29469-29479.spa
dc.relation.referencesJump, D. B., Tripathy, S., & Depner, C. M. (2013). fatty acid–regulated transcription factors in the liver. Annual review of nutrition, 33, 249.spa
dc.relation.referencesJiang, X. C., & Yu, Y. (2021). The role of phospholipid transfer protein in the development of atherosclerosis. Current atherosclerosis reports, 23(3), 1-9.spa
dc.relation.referencesIwashita, A., Muramatsu, Y., Yamazaki, T., Muramoto, M., Kita, Y., Yamazaki, S., ... & Matsuoka, N. (2007). Neuroprotective efficacy of the peroxisome proliferator-activated receptor δ-selective agonists in vitro and in vivo. Journal of pharmacology and experimental therapeutics, 320(3), 1087-1096.spa
dc.relation.referencesIrene, G. R., César, M., Fernando, C., & Ana, C. (2021). SR-B1, a Key Receptor Involved in the Progression of Cardiovascular Disease: A Perspective from Mice and Human Genetic Studies. Biomedicines, 9(6), 612.spa
dc.relation.referencesHuangfu, N., Wang, Y., Xu, Z., Zheng, W., Tao, C., Li, Z., ... & Chen, X. (2021). TDP43 Exacerbates Atherosclerosis Progression by Promoting Inflammation and Lipid Uptake of Macrophages. Frontiers in Cell and Developmental Biology, 9, 1705.spa
dc.relation.referencesHelsen, C., & Claessens, F. (2014). Looking at nuclear receptors from a new angle. Molecular and cellular endocrinology, 382(1), 97-106.spa
dc.relation.referencesHansson, G. K., & Hermansson, A. (2011). The immune system in atherosclerosis. Nature immunology, 12(3), 204-212.spa
dc.relation.referencesHaidukewych, D., Forsythe, W. I., & Sills, M. (1982). Monitoring octanoic and decanoic acids in plasma from children with intractable epilepsy treated with medium-chain triglyceride diet. Clinical chemistry, 28(4), 642-645.spa
dc.relation.referencesGu, J., Geng, M., Qi, M., Wang, L., Zhang, Y., & Gao, J. (2021). The role of lysosomal membrane proteins in glucose and lipid metabolism. The FASEB Journal, 35(10), e21848.spa
dc.relation.referencesGao, W., Liu, H., Yuan, J., Wu, C., Huang, D., Ma, Y., ... & Ge, J. (2016). Exosomes derived from mature dendritic cells increase endothelial inflammation and atherosclerosis via membrane TNF‐α mediated NF‐κB pathway. Journal of cellular and molecular medicine, 20(12), 2318-2327.spa
dc.relation.referencesFang, L., Zhang, M., Li, Y., Liu, Y., Cui, Q., & Wang, N. (2016). PPARgene: a database of experimentally verified and computationally predicted PPAR target genes. PPAR research, 2016.spa
dc.relation.referencesEnayati, A., Ghojoghnejad, M., Roufogalis, B. D., Maollem, S. A., & Sahebkar, A. (2022). Impact of Phytochemicals on PPAR Receptors: Implications for Disease Treatments. PPAR research, 2022.spa
dc.relation.referencesEliopoulos, A. G., Dumitru, C. D., Wang, C. C., Cho, J., & Tsichlis, P. N. (2002). Induction of COX-2 by LPS in macrophages is regulated by Tpl2-dependent CREB activation signals. The EMBO journal, 21(18), 4831-4840.spa
dc.relation.referencesDressel, U., Allen, T. L., Pippal, J. B., Rohde, P. R., Lau, P., & Muscat, G. E. (2003). The peroxisome proliferator-activated receptor β/δ agonist, GW501516, regulates the expression of genes involved in lipid catabolism and energy uncoupling in skeletal muscle cells. Molecular endocrinology, 17(12), 2477-2493.spa
dc.relation.referencesDíaz-Gandarilla, J. A., Osorio-Trujillo, C., Hernández-Ramírez, V. I., & Talamás-Rohana, P. (2013). PPAR activation induces M1 macrophage polarization via cPLA2-COX-2 inhibition, activating ROS production against Leishmania mexicana. BioMed research international, 2013.spa
dc.relation.referencesChojnacka, K., & Lewandowska, U. (2021). The influence of polyphenol-rich extracts on the production of pro-inflammatory mediators in macrophages. Journal of Physiology and Pharmacology: an Official Journal of the Polish Physiological Society, 72(2).spa
dc.relation.referencesChi, T., Wang, M., Wang, X., Yang, K., Xie, F., Liao, Z., & Wei, P. (2021). PPAR-γ modulators as current and potential cancer treatments. Frontiers in oncology, 11.spa
dc.relation.referencesCheng, R., Xu, X., Yang, S., Zhao, Y., Yu, F., & Ren, X. (2022). The underlying molecular mechanisms and biomarkers of plaque vulnerability based on bioinformatics analysis. European Journal of Medical Research, 27(1), 1-10.spa
dc.relation.referencesChen, M., Lin, W., Ye, R., Yi, J., & Zhao, Z. (2021). PPAR β/δ Agonist Alleviates Diabetic Osteoporosis via Regulating M1/M2 Macrophage Polarization. Frontiers in Cell and Developmental Biology, 3349.spa
dc.relation.referencesChang, P., Zuckermann, A. M., Williams, S., Close, A. J., Cano-Jaimez, M., McEvoy, J. P., ... & Williams, R. S. (2015). Seizure control by derivatives of medium chain fatty acids associated with the ketogenic diet show novel branching-point structure for enhanced potency. Journal of pharmacology and experimental therapeutics, 352(1), 43-52.spa
dc.relation.referencesCarrieri, A., Giudici, M., Parente, M., De Rosas, M., Piemontese, L., Fracchiolla, G., ... & Loiodice, F. (2013). Molecular determinants for nuclear receptors selectivity: Chemometric analysis, dockings and site-directed mutagenesis of dual peroxisome proliferator-activated receptors α/γ agonists. European journal of medicinal chemistry, 63, 321-332.spa
dc.relation.referencesCaligiuri, G., Rudling, M., Ollivier, V., Jacob, M. P., Michel, J. B., Hansson, G. K., & Nicoletti, A. (2003). Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice. Molecular medicine, 9(1), 10-17.spa
dc.relation.referencesBlunder, S., Pavel, P., Minzaghi, D., & Dubrac, S. (2021). PPARdelta in affected atopic dermatitis and psoriasis: A possible role in metabolic reprograming. International journal of molecular sciences, 22(14), 7354.spa
dc.relation.referencesBerlato, C., Cassatella, M. A., Kinjyo, I., Gatto, L., Yoshimura, A., & Bazzoni, F. (2002). Involvement of suppressor of cytokine signaling-3 as a mediator of the inhibitory effects of IL-10 on lipopolysaccharide-induced macrophage activation. The journal of immunology, 168(12), 6404-6411.spa
dc.relation.referencesBerger, J., & Moller, D. E. (2002). The mechanisms of action of PPARs. Annual review of medicine, 53(1), 409-435.spa
dc.relation.referencesBenetti, E., SA Patel, N., & Collino, M. (2011). The role of PPARβ/δ in the management of metabolic syndrome and its associated cardiovascular complications. Endocrine, metabolic & immune disorders-drug targets, 11(4), 273-284.spa
dc.relation.referencesBatista, F. A., Trivella, D. B., Bernardes, A., Gratieri, J., Oliveira, P. S., Figueira, A. C. M., ... & Polikarpov, I. (2012). Structural insights into human peroxisome proliferator activated receptor delta (PPAR-delta) selective ligand binding. PloS one, 7(5), e33643.spa
dc.relation.referencesBalta, I., Stef, L., Pet, I., Iancu, T., Stef, D., & Corcionivoschi, N. (2021). Essential fatty acids as biomedicines in cardiac health. Biomedicines, 9(10), 1466.spa
dc.relation.referencesBahiraii, S., Brenner, M., Yan, F., Weckwerth, W., & Heiss, E. H. (2022). Sulforaphane diminishes moonlighting of pyruvate kinase M2 and interleukin 1β expression in M1 (LPS) macrophages. Frontiers in immunology, 13.spa
dc.relation.referencesAnbalagan, M., Huderson, B., Murphy, L., & Rowan, B. G. (2012). Post-translational modifications of nuclear receptors and human disease. Nuclear receptor signaling, 10(1), nrs-10001.spa
dc.relation.referencesAlahmadi, A., & Ramji, D. P. (2022). Monitoring modified lipoprotein uptake and macropinocytosis associated with macrophage foam cell formation. In Atherosclerosis (pp. 247-255). Humana, New York, NY.spa
dc.relation.referencesAdhikary, T., Wortmann, A., Schumann, T., Finkernagel, F., Lieber, S., Roth, K., ... & Müller, R. (2015). The transcriptional PPARβ/δ network in human macrophages defines a unique agonist-induced activation state. Nucleic acids research, 43(10), 5033-5051.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc610 - Medicina y saludspa
dc.subject.decsMacrófagosspa
dc.subject.decsMacrophageseng
dc.subject.decsFagocitosisspa
dc.subject.decsPhagocytosiseng
dc.subject.proposalPpardspa
dc.subject.proposalMetabolismospa
dc.subject.proposalLípidosspa
dc.subject.proposalColesterolspa
dc.subject.proposalAteroesclerosisspa
dc.subject.proposalInflamaciónspa
dc.subject.proposalPpardeng
dc.subject.proposalMetabolismeng
dc.subject.proposalLipidseng
dc.subject.proposalCholesteroleng
dc.subject.proposalAtherosclerosiseng
dc.subject.proposalInflammationeng
dc.titlePapel del receptor nuclear PPARβ/δ en la respuesta metabólica a ácidos grasos de cadena media en macrófagos murinosspa
dc.title.translatedRole of the nuclear receptor PPARβ/δ in the metabolic response to medium-chain fatty acids in murine macrophageseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitlePapel del receptor nuclear PPARβ/δ en la respuesta metabólica a ácidos grasos de cadena media en macrófagos murinosspa
oaire.fundernameMito Therapies SASspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1026590616.2023.pdf
Tamaño:
4.42 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: