Perfilado químico de extractos de subproductos de Passifloras comerciales y propuesta preliminar de una formulación con actividad fotoprotectora
dc.contributor.advisor | Castellanos Hernández, Leonardo | |
dc.contributor.advisor | Baena Aristizábal, Yolima | |
dc.contributor.author | Cabeza Pulido, María Camila | |
dc.contributor.orcid | Cabeza Pulido, Maria [0009-0003-6091-6301] | |
dc.contributor.researchgroup | Estudio y Aprovechamiento de Productos Naturales Marinos y Frutas de Colombia | spa |
dc.contributor.researchgroup | Sistemas Para Liberación Controlada de Moléculas Biológicamente Activas | spa |
dc.contributor.researchgroup | Grupo de Investigación en Tecnología de Productos Naturales Tecprona | spa |
dc.coverage.country | Colombia | spa |
dc.date.accessioned | 2025-09-05T14:01:17Z | |
dc.date.available | 2025-09-05T14:01:17Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones a color, diagramas, gráficos, fotografías | spa |
dc.description.abstract | Las plantas del género Passiflora se cultivan ampliamente en Colombia, destacándose entre las especies más conocidas la granadilla (P. ligularis), el maracuyá (P. edulis var. flavicarpa), la gulupa (P. edulis var. edulis), la badea (P. quadrangularis), la cholupa (P. maliformis) y las curubas (P. tarminiana × P. tripartita). Estas especies son principalmente utilizadas en la industria alimentaria, generando como subproductos hojas, pericarpios y semillas, los cuales presentan un bajo nivel de aprovechamiento a pesar de su potencial como fuentes de compuestos bioactivos. En este contexto, la presente tesis tuvo como objetivo estudiar el perfil químico y la actividad fotoprotectora de subproductos derivados del sistema de producción de diversas Passifloras cultivadas en Colombia, con miras a la inclusión de uno de ellos en una formulación cosmética preliminar. Para ello, se abordó el perfilado químico y la evaluación de la capacidad fotoprotectora de extractos polares obtenidos a partir de dichas especies, seleccionando posteriormente el extracto con mayor potencial como ingrediente fotoprotector. Este extracto fue sometido a un proceso de optimización y evaluación bajo condiciones de estrés. Finalmente, se formuló un prototipo de cosmético fotoprotector que incorporó dicho extracto como uno de sus activos. A continuación, se amplían cada uno de estos resultados. El análisis químico de los extractos de los subproductos del cultivo de las Passifloras permitió la detección de 52 compuestos en las fracciones butanólicas (FB) de hojas y pericarpios, identificándose 31 flavonoides y 16 saponinas (estas últimas únicamente en las FB de hojas). Por su parte, en los extractos hidroetanólicos (EH) de semillas se identificaron 22 compuestos, siendo los estilbenos (como piceatanol y resveratrol) los más abundantes (Texto tomado de la fuente). La evaluación inicial de la actividad fotoprotectora permitió preseleccionar los 10 con mayor factor de protección solar (FPS), destacándose las FB de hojas (P. edulis var. flavicarpa, P. tarminiana x P. tripartita, P. maliformis, P. edulis var. edulis), los EH de semillas (P. ligularis, P. edulis var. edulis, P. edulis var. flavicarpa, P. quadrangularis, P. maliformis) y las FB de pericarpios (P. edulis var. flavicarpa). Con el fin de priorizar alguno de estos extractos, se usó la matriz del proceso de análisis jerárquico (AHP, por sus siglas en inglés), evaluando los extractos preseleccionados con los siguientes siete criterios, relevantes para la selección de ingredientes fotoprotectores: rendimiento, disponibilidad del material vegetal, antecedentes científicos, capacidad de protección UVB y UVA, perfil químico y grado de innovación. Este análisis permitió priorizar el EH de semillas de P. maliformis como el extracto con mayor potencial para el desarrollo de un fotoprotector. Una vez seleccionado el extracto hidroetanólico de semillas de P. maliformis, se procedió a optimizar la metodología de extracción, usando los parámetros de temperatura, composición de la mezcla etanol;agua y tiempo, y mediante la metodología de superficie de respuesta. Las condiciones óptimas encontradas fueron un porcentaje de etanol del 65%, una temperatura de 62,7 °C y un tiempo de 42 minutos. Bajo estas condiciones, se obtuvo un extracto con una concentración efectiva total (CET) diez veces mayor y un FPS 3,8 veces superior al extracto inicial. La validación in vitro de la actividad fotoprotectora del extracto optimizado se realizó sobre queratinocitos humanos inmortalizados (línea HaCaT), confirmando su eficacia. Asimismo, su estabilidad fue evaluada bajo diversas condiciones de estrés, evidenciándose alta resistencia frente a hidrólisis neutra, peroxidación y fotólisis. Sin embargo, se observó una degradación significativa en condiciones de hidrólisis ácida y básica, clasificando al extracto como lábil y extremadamente lábil, respectivamente. Finalmente, se desarrolló y caracterizó un prototipo de formulación tipo emulgel que incorporó tanto el extracto seleccionado como filtros solares aprobados por los entes reguladores. La formulación, basada en Aristoflex® AVS, sin dióxido de titanio y con un 0,5% de extracto, mostró una buena estabilidad físico-química bajo condiciones de estrés, con mejores resultados a los obtenidos en el diseño experimental exploratorio evaluado. Además, presentó un comportamiento reológico pseudoplástico, firmeza adecuada y propiedades texturales favorables para su aplicación cosmética. | spa |
dc.description.abstract | Plants of the genus Passiflora are widely cultivated in Colombia, with some of the most well-known species including granadilla (P. ligularis), passion fruit (P. edulis var. flavicarpa), purple passion fruit (P. edulis var. edulis), giant granadilla (P. quadrangularis), sweet calabash (P. maliformis), and banana passion fruit (P. tarminiana × P. tripartita). These species are primarily used in the food industry, generating by-products such as leaves, pericarps, and seeds, which remain largely underutilized despite their potential as sources of bioactive compounds. In this context, the present thesis aimed to study the chemical profile and photoprotective activity of by-products derived from the production system of various Passiflora species cultivated in Colombia, with the goal of incorporating one of them into a preliminary cosmetic formulation. To achieve this, chemical profiling and assessment of the photoprotective capacity of polar extracts from these species were conducted. The extract showing the highest potential as a photoprotective ingredient was selected and subsequently subjected to optimization and evaluation under stress conditions. Finally, a prototype photoprotective cosmetic formulation incorporating this extract as one of its active ingredients was developed. The following sections detail each of these findings. Chemical analysis of the extracts from Passiflora cultivation by-products led to the detection of 52 compounds in the butanolic fractions (BF) of leaves and pericarps, including 31 flavonoids and 16 saponins (the latter found only in leaf BF). In turn, 22 compounds were identified in the hydroethanolic extracts (HE) of seeds, with stilbenes—such as piceatannol and resveratrol—being the most abundant. An initial evaluation of photoprotective activity enabled the preselection of the ten extracts with the highest sun protection factor (SPF), highlighting the BF of leaves (P. edulis var. flavicarpa, P. tarminiana x P. tripartita, P. maliformis, P. edulis var. edulis), the HE of seeds (P. ligularis, P. edulis var. edulis, P. edulis var. flavicarpa, P. quadrangularis, P. maliformis) and the BF of pericarps (P. edulis var. flavicarpa). To prioritize among these, the Analytic Hierarchy Process (AHP) was employed, assessing the preselected extracts based on seven criteria relevant for selecting photoprotective ingredients: yield, availability of plant material, scientific background, UVB and UVA protection capacity, chemical profile, and degree of innovation. This analysis prioritized the HE of P. maliformis seeds as the extract with the highest potential for photoprotector development. Once the hydroethanolic extract of P. maliformis seeds was selected, the extraction methodology was optimized using temperature, ethanol:water ratio, and time as parameters, applying response surface methodology. The optimal conditions identified were 65% ethanol, a temperature of 62.7 °C, and a duration of 42 minutes. Under these conditions, an extract with a total effective concentration (TEC) ten times higher and an SPF 3.8 times greater than the initial extract was obtained. The in vitro validation of the photoprotective activity of the optimized extract was performed on immortalized human keratinocytes (HaCaT cell line), confirming its efficacy. In addition, its stability was assessed under various stress conditions, demonstrating high resistance to neutral hydrolysis, peroxidation, and photolysis. However, significant degradation was observed under acidic and basic hydrolysis conditions, classifying the extract as labile and extremely labile, respectively. Finally, a prototype emulgel formulation was developed and characterized, incorporating both the selected extract and chemical UV filters. The formulation, based on Aristoflex® AVS, free of titanium dioxide, and containing 0.5% extract, showed good physicochemical stability under stress conditions, achiving better results than those obtained in the exploratory experimental design evaluated. Moreover, it exhibited pseudoplastic rheological behavior, appropriate firmness, and favorable textural properties for cosmetic application. | eng |
dc.description.curriculararea | Farmacia.Sede Bogotá | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magister en Ciencias Farmacéuticas | spa |
dc.description.researcharea | Diseño y desarrollo de productos fitofarmacéuticos | spa |
dc.format.extent | xviii, 229 páginas | spa |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88624 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias Farmacéuticas | spa |
dc.relation.references | Corrêa MDP. Solar ultraviolet radiation: properties, characteristics and amounts observed in Brazil and South America. An Bras Dermatol . 2015;90:297-313. https://doi.org/10.1590/abd1806-4841.20154089 | |
dc.relation.references | Hossain E. The Sun and the Earth. The Sun, Energy, and Climate Change . Cham: Springer Nature Switzerland; 2023. p. 1-67. https://doi.org/10.1007/978-3-031-22196-5_1 | |
dc.relation.references | Van Der Rhee HJ, De Vries E, Coebergh JW. Regular sun exposure benefits health. Medical Hypotheses . 2016;97:34-7. https://doi.org/10.1016/j.mehy.2016.10.011 | |
dc.relation.references | Allenson K, Esnaola N, Bernicker EH. Sun Exposure and Skin Cancer. En: Bernicker EH, editor. Environmental Oncology . Cham: Springer International Publishing; 2023. p. 149-58. https://doi.org/10.1007/978-3-031-33750-5_6 | |
dc.relation.references | Knuschke P. UV Exposure. Kanerva’s Occupational Dermatology . 2018;1-36. https://doi.org/10.1007/978-3-319-40221-5_76-2 | |
dc.relation.references | Hexsel CL, Lim HW. Photoprotection. Preventive Dermatology . 2010;81-91. https://doi.org/10.1007/978-1-84996-021-2_9/TABLES/4 | |
dc.relation.references | Purim KSM, Titski ACK, De Jesus IC, Leite N. Photoprotection and the Environment. En: Rangel Bonamigo R, editor. Dermatology in Public Health Environments . Cham: Springer International Publishing; 2023. p. 1439-57. https://doi.org/10.1007/978-3-031-13505-7_58 | |
dc.relation.references | Mora M, Olivares A, González T, Castro I. The sun: enemy of our skin? MEDISAN . 2010;14. Recuperado a partir de: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1029-30192010000600014&lng=es&tlng=en. | |
dc.relation.references | Cestari TF, De Almeida Dornelles M, Dornelles SIT. Solar Radiation and Photodermatoses. En: Rangel Bonamigo R, editor. Dermatology in Public Health Environments . Cham: Springer International Publishing; 2023. p. 827-44. https://doi.org/10.1007/978-3-031-13505-7_33 | |
dc.relation.references | World Cancer Research Fund. Skin cancer statistics. World Cancer Research Fund. Recuperado a partir de: https://www.wcrf.org/preventing-cancer/cancer-statistics/skin-cancer-statistics/ | |
dc.relation.references | Meijs M, Herrera A, Acosta A, De Vries E. Burden of skin cancer in Colombia. Int J Dermatology . 2022;61:1003-11. https://doi.org/10.1111/ijd.16077 | |
dc.relation.references | Friedman BJ, Lim HW, Wang SQ. Photoprotection and photoaging. Principles and Practice of Photoprotection . 2016;61-74. https://doi.org/10.1007/978-3-319-29382-0_4/FIGURES/3 | |
dc.relation.references | Tips to Stay Safe in the Sun: From Sunscreen to Sunglasses | FDA. Recuperado a partir de: https://www.fda.gov/consumers/consumer-updates/tips-stay-safe-sun-sunscreen-sunglasses | |
dc.relation.references | Forsea A-M. Sunscreens. En: Katsambas AD, Lotti TM, Dessinioti C, D’Erme AM, editores. European Handbook of Dermatological Treatments . Cham: Springer International Publishing; 2023. p. 1771-85. https://doi.org/10.1007/978-3-031-15130-9_156 | |
dc.relation.references | Grether‐Beck S, Marini A, Jaenicke T, Krutmann J. Photoprotection of human skin beyond ultraviolet radiation. Photoderm Photoimm Photomed . 2014;30:167-74. https://doi.org/10.1111/phpp.12111 | |
dc.relation.references | Tanaka Y. Photoprotective Ability of Sunscreens against Ultraviolet, Visible Light and Near-Infrared Radiation. OPJ . 2023;13:140-6. https://doi.org/10.4236/opj.2023.136012 | |
dc.relation.references | Breakell T, Kowalski I, Foerster Y, Kramer R, Erdmann M, Berking C, et al. Ultraviolet Filters: Dissecting Current Facts and Myths. JCM . 2024;13:2986. https://doi.org/10.3390/jcm13102986 | |
dc.relation.references | Hegde AR, Kunder MU, Narayanaswamy M, Murugesan S, Furtado SC, Veerabhadraiah BB, et al. Advancements in sunscreen formulations: integrating polyphenolic nanocarriers and nanotechnology for enhanced UV protection. Environ Sci Pollut Res . 2024;31:38061-82. https://doi.org/10.1007/s11356-024-33712-0 | |
dc.relation.references | Mancuso JB, Maruthi R, Wang SQ, Lim HW. Sunscreens: An Update. Am J Clin Dermatol . 2017;18:643-50. https://doi.org/10.1007/s40257-017-0290-0 | |
dc.relation.references | FDA. Sunscreen Drug Products for Over-the-Counter Human Use. Federal Register; 2019. Report No.: 2019-03019. Recuperado a partir de: https://www.federalregister.gov/documents/2019/02/26/2019-03019/sunscreen-drug-products-for-over-the-counter-human-use | |
dc.relation.references | Manaia EB, Kaminski RCK, Corrêa MA, Chiavacci LA. Inorganic UV filters. Braz J Pharm Sci . 2013;49:201-9. https://doi.org/10.1590/S1984-82502013000200002 | |
dc.relation.references | Jesus A, Sousa E, Cruz MT, Cidade H, Lobo JMS, Almeida IF. UV Filters: Challenges and Prospects. Pharmaceuticals . 2022;15. https://doi.org/10.3390/PH15030263/S1 | |
dc.relation.references | Chopra D, Kamar MD, Shukla S, Patel SK, Bala M, Amar SK. Sunscreens: Toxic Effects as Determined by Biomarkers. En: Patel VB, Preedy VR, Rajendram R, editores. Biomarkers in Toxicology . Cham: Springer International Publishing; 2023. p. 775-95. https://doi.org/10.1007/978-3-031-07392-2_49 | |
dc.relation.references | Yuan S, Huang J, Jiang X, Huang Y, Zhu X, Cai Z. Environmental Fate and Toxicity of Sunscreen-Derived Inorganic Ultraviolet Filters in Aquatic Environments: A Review. Nanomaterials . 2022;12:699. https://doi.org/10.3390/nano12040699 | |
dc.relation.references | Carve M, Allinson G, Nugegoda D, Shimeta J. Trends in environmental and toxicity research on organic ultraviolet filters: A scientometric review. Science of The Total Environment . 2021;773:145628. https://doi.org/10.1016/j.scitotenv.2021.145628 | |
dc.relation.references | Huang Y, Law JC-F, Lam T-K, Leung KS-Y. Risks of organic UV filters: a review of environmental and human health concern studies. Science of The Total Environment . 2021;755:142486. https://doi.org/10.1016/j.scitotenv.2020.142486 | |
dc.relation.references | Verma A, Zanoletti A, Kareem KY, Adelodun B, Kumar P, Ajibade FO, et al. Skin protection from solar ultraviolet radiation using natural compounds: a review. Environ Chem Lett . 2024;22:273-95. https://doi.org/10.1007/s10311-023-01649-4 | |
dc.relation.references | Saewan N, Jimtaisong A. Natural products as photoprotection. Journal of Cosmetic Dermatology . 2015;14:47-63. https://doi.org/10.1111/JOCD.12123 | |
dc.relation.references | Pizano-Andrade JC, Vargas-Guerrero B, Gurrola-Díaz CM, Vargas-Radillo JJ, Ruiz-López MA. Natural products and their mechanisms in potential photoprotection of the skin. J Biosci . 2022;47:77. https://doi.org/10.1007/s12038-022-00314-2 | |
dc.relation.references | Oliveira H, Correia P, Pereira AR, Araújo P, Mateus N, De Freitas V, et al. Exploring the Applications of the Photoprotective Properties of Anthocyanins in Biological Systems. IJMS . 2020;21:7464. https://doi.org/10.3390/ijms21207464 | |
dc.relation.references | La Barre S, S. Bates S. Blue Biotechnology: Production and Use of Marine Molecules. 1.a ed. Wiley; 2018. https://doi.org/10.1002/9783527801718 | |
dc.relation.references | Pangestuti R, Siahaan EA, Kim S-K. Photoprotective Substances Derived from Marine Algae. Marine Drugs . 2018;16:399. https://doi.org/10.3390/md16110399 | |
dc.relation.references | Radice M, Manfredini S, Ziosi P, Dissette V, Buso P, Fallacara A, et al. Herbal extracts, lichens and biomolecules as natural photo-protection alternatives to synthetic UV filters. A systematic review. Fitoterapia . 2016;114:144-62. https://doi.org/10.1016/j.fitote.2016.09.003 | |
dc.relation.references | José L. Rojas, Mauricio Díaz-Santos, Norma A. Valencia-Islas. Metabolites with antioxidant and photo-protective properties from Usnea roccellina Motyka, a lichen from Colombian Andes. Pharmaceutical and Biosciences Journal. 2015;18-26. https://doi.org/10.20510/ukjpb/3/i4/89454 | |
dc.relation.references | Ocampo Pérez JA, Coppens d’Eeckenbrugge G, Restrepo M, Jarvis A, Salazar M, Caetano CM. Diversity of Colombian passifloraceae : Biogeography and an updated list for conservation. Biota Colombiana. 2007;8:1-45. | |
dc.relation.references | Noreña Triana ME. CADENA DEL PASIFLORAS Indicadores e instrumentos. Minagricultura; 2021. | |
dc.relation.references | Rojas Romaní D, Calixto-Cotos MR, Suca Apaza F. Utilization of Passiflora tripartita fruit residues. Scientia Agropecuaria. 2021;12:445-53. https://doi.org/10.17268/sci.agropecu.2021.049 | |
dc.relation.references | Caicedo MA. Obtención de una fuente de fibra dietaría a partir de residuos agroindustriales de pasifloras [Tesis de maestría]. [Manizales]: Universidad Nacional de Colombia; 2021. | |
dc.relation.references | Calevo GA, Benedetti L, Braglia L, Cuna FS, Tava A. Chemical composition of the volatile oil from flowers and leaves of new Passiflora hybrids. International Journal of Applied Research in Natural Products. 2016;9:21-7. | |
dc.relation.references | Ferreres F, Sousa C, Valentão P, Andrade PB, Seabra RM, Gil-Izquierdo Á. New C -Deoxyhexosyl Flavones and Antioxidant Properties of Passiflora edulis Leaf Extract. Journal of Agricultural and Food Chemistry. 2007;55:10187-93. https://doi.org/10.1021/jf072119y | |
dc.relation.references | da Silva JK, Cazarin CBB, Colomeu TC, Batista ÂG, Meletti LMM, Paschoal JAR, et al. Antioxidant activity of aqueous extract of passion fruit (Passiflora edulis) leaves: In vitro and in vivo study. Food Research International. 2013;53:882-90. https://doi.org/10.1016/j.foodres.2012.12.043 | |
dc.relation.references | Molano-Avellaneda Z, Miranda-Lasprilla D, Ocampo-Pérez J. Progress in the study of phenology cholupa (Passiflora maliformis L.) in producing areas of Colombia. Revista Colombiana de Ciencias Hortícolas. 2020;14. https://doi.org/10.17584/rcch.2020v14i1.11251 | |
dc.relation.references | Costa GM, Gazola AC, Madóglio FA, Zucolotto SM, Reginatto FH, Castellanos L, et al. Vitexin Derivatives as Chemical Markers In The Differentiation of the Closely Related Species Passiflora alata Curtis And Passiflora quadrangularis Linn. Journal of Liquid Chromatography & Related Technologies. 2013;36:1697-707. https://doi.org/10.1080/10826076.2012.695316 | |
dc.relation.references | Echeverry S. Aporte a la estandarización del proceso de obtención de un extracto de hojas de Passiflora quadrangularis [MasterThesis]. [Bogotá]: Universidad Nacional de Colombia; 2017. Recuperado a partir de: https://repositorio.unal.edu.co/handle/unal/62356 | |
dc.relation.references | Pardo Solórzano MV, Costa GM, Castellanos L. Passiflora By-Products: Chemical Profile and Potential Use as Cosmetic Ingredients. Sci Pharm . 2024;92:57. https://doi.org/10.3390/scipharm92040057 | |
dc.relation.references | Krutmann J. Pathomechanisms of Photoaged Skin. Textbook of Aging Skin. 2017. | |
dc.relation.references | Viera W, Shinohara T, Samaniego I, Sanada A, Terada N, Ron L, et al. Phytochemical Composition and Antioxidant Activity of Passiflora spp. Germplasm Grown in Ecuador. Plants. 2022;11:328. https://doi.org/10.3390/plants11030328 | |
dc.relation.references | Zakwan Samudin MI, Abdul Aziz MY, Nurhayati Y. Total Phenolic Content and Antioxidant Activity of Passiflora edulis Extract. Journal Of Agrobiotechnology. 2022;13:1-9. https://doi.org/10.37231/jab.2022.13.2.291 | |
dc.relation.references | Ramaiya SD, Bujang JS, Zakaria MH. Assessment of Total Phenolic, Antioxidant, and Antibacterial Activities of Passiflora Species. The Scientific World Journal. 2014;2014:1-10. https://doi.org/10.1155/2014/167309 | |
dc.relation.references | Ruiz Reyes SG. Contenido de fenoles totales y capacidad antioxidante in vitro del zumo de “pur pur” Passiflora tripartita var. mollissima (Passifloraceae). Arnaldoa . 2018;25. https://doi.org/10.22497/arnaldoa.253.25312 | |
dc.relation.references | Wiliantari S, Iswandana R, Elya B. Total Polyphenols, Total Flavonoids, Antioxidant Activity and Inhibition of Tyrosinase Enzymes from Extract and Fraction of Passiflora ligularis Juss. PJ . 2022;14:672-80. https://doi.org/10.5530/pj.2022.14.86 | |
dc.relation.references | Wiliantari S, Iswandana R, Elya B. Evaluation of Antioxidant Activity, Tyrosinase Inhibition, and Stability of Face Mask Cream Formulation from Sweet Granadilla (Passiflora ligularis Juss) Seed Fraction. RJPT . 2023;5255-63. https://doi.org/10.52711/0974-360X.2023.00852 | |
dc.relation.references | Azhid R, Priyanga S, Kanakasabapathy D. In Vitro Free Radical Scavenging Activity, Phytochemical Screening and Quantitative Analysis of Passiflora Ligularis Seed. IJPDA . 2016;4:49-57. Recuperado a partir de: https://ijpda.org/index.php/journal/article/view/196 | |
dc.relation.references | Loizzo MR, Lucci P, Núñez O, Tundis R, Balzano M, Frega NG, et al. Native Colombian Fruits and Their by-Products: Phenolic Profile, Antioxidant Activity and Hypoglycaemic Potential. Foods . 2019;8:89. https://doi.org/10.3390/foods8030089 | |
dc.relation.references | Kawakami S, Morinaga M, Tsukamoto-Sen S, Mori S, Matsui Y, Kawama T. Constituent Characteristics and Functional Properties of Passion Fruit Seed Extract. Life . 2021;12:38. https://doi.org/10.3390/life12010038 | |
dc.relation.references | Ahmad AR, Malik Abd. Antioxidant Activity of Passiflora edulis (Passion fruit) Seed Extracts Obtained from Maceration and Ultrasonic Assisted Extraction Method. fitofarmaka JIF . 2023;13:77-81. https://doi.org/10.33751/jf.v13i1.7303 | |
dc.relation.references | Yepes A, Ochoa-Bautista D, Murillo-Arango W, Quintero-Saumeth J, Bravo K, Osorio E. Purple passion fruit seeds (Passiflora edulis f. edulis Sims) as a promising source of skin anti-aging agents: Enzymatic, antioxidant and multi-level computational studies. Arabian Journal of Chemistry. 2021;14:102905. https://doi.org/10.1016/j.arabjc.2020.11.011 | |
dc.relation.references | González L, Álvarez A, Murillo E, Guerra C, Méndez J. Potential Uses of the Peel And Seed of Passiflora Edulis Sims F. Edulis (Gulupa) From Its Chemical Characterization, Antioxidant, And Antihypertensive Functionalities. Asian J Pharm Clin Res . 2019;104-12. https://doi.org/10.22159/ajpcr.2019.v12i10.33828 | |
dc.relation.references | Dos Reis LCR, Facco EMP, Salvador M, Flôres SH, De Oliveira Rios A. Antioxidant potential and physicochemical characterization of yellow, purple and orange passion fruit. J Food Sci Technol . 2018;55:2679-91. https://doi.org/10.1007/s13197-018-3190-2 | |
dc.relation.references | Guimarães SF, Lima IM, Modolo LV. Phenolic content and antioxidant activity of parts of Passiflora edulis as a function of plant developmental stage. Acta Bot Bras . 2020;34:74-82. https://doi.org/10.1590/0102-33062019abb0148 | |
dc.relation.references | dos Santos GJ, Defendi RO, Düsman E, Biffi MT, Berton GH, Tonin APP, et al. Valorization of Wastes from the Juice Passion Fruit Production Industry: Extraction of Bioactive Compounds from Seeds, Antioxidant, Photoprotective and Antiproliferative Activities. Waste and Biomass Valorization. 2023;14:1233-50. https://doi.org/10.1007/s12649-022-01937-0 | |
dc.relation.references | Ruiz Gutierrez YL, Sifuentes Gonzales KC. Evaluación in vitro de la fotoprotección del extracto de las hojas de Passiflora edulis “maracuyá”. [Trujillo]: Universidad Nacional de Trujillo; 2018. | |
dc.relation.references | Martinez M. Formulación y control de calidad de un fotoprotector a base de badea (Passiflora quadrangularis). [Riabamba]: Escuela Superior Politécnica De Chimborazo Facultad De Ciencias; 2019. | |
dc.relation.references | Bravo K, Duque L, Ferreres F, Moreno DA, Osorio E. Passiflora tarminiana fruits reduce UVB-induced photoaging in human skin fibroblasts. Journal of Photochemistry and Photobiology B: Biology. 2017;168:78-88. https://doi.org/10.1016/j.jphotobiol.2017.01.023 | |
dc.relation.references | Pirotta G. Sunscreen Regulation in the World. En: Tovar-Sánchez A, Sánchez-Quiles D, Blasco J, editores. Sunscreens in Coastal Ecosystems . Cham: Springer International Publishing; 2020. p. 15-35. https://doi.org/10.1007/698_2019_440 | |
dc.relation.references | Health Canada. Primary Sunscreen Monograph. Canada; 2022. Recuperado a partir de: https://webprod.hc-sc.gc.ca/nhpid-bdipsn/atReq?atid=sunscreen-ecransolaire&lang=eng | |
dc.relation.references | Therapeutics Goods Administration. Sunscreen regulation in Australia. 2023. Recuperado a partir de: https://www.tga.gov.au/resources/resource/reference-material/sunscreen-regulation-australia#therapeutic-sunscreens-we-regulate | |
dc.relation.references | European Parliament and Council. REGULATION (EC) No 1223/2009 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 30 November 2009 on cosmetic products. Unión Europea; 2009. Report No.: 1223/2009. | |
dc.relation.references | Comunidad Andina. Decisión 833. Armonización de Legislaciones en materia de Productos Cosméticos. 2018. Report No.: 833. Recuperado a partir de: https://www.mincit.gov.co/ministerio/normograma-sig/procesos-misionales/administracion-profundizacion-y-aprovechamiento-de/decisiones/decision-833.aspx | |
dc.relation.references | Grupo Mercado Común del MERCOSUR. Reglamento Técnico MERCOSUR sobre clasificación de productos de higiene personal, cosméticos y perfumes. 2023. Report No.: Resolución GMC No 18/23. Recuperado a partir de: https://normas.mercosur.int/simfiles/normativas/97844_DEC_018_2023_ES_Enmienda%20Protocolo%20Montevideo.pdf | |
dc.relation.references | Sistema de la Integración Centroamericana. Reglamento Técnico Centroamericano RTCA 71.03.36:07 Etiquetado de Productos Cosméticos. 2008. Recuperado a partir de: https://www.minsa.gob.pa/sites/default/files/publicacion-general/etiquetado_de_cosmeticos_rtca_71.03.3607.pdf | |
dc.relation.references | Geoffrey K, Mwangi AN, Maru SM. Sunscreen products: Rationale for use, formulation development and regulatory considerations. Saudi Pharmaceutical Journal . 2019;27:1009-18. https://doi.org/10.1016/j.jsps.2019.08.003 | |
dc.relation.references | Lourith N, Kanlayavattanakul M, Chingunpitak J. Development of sunscreen products containing passion fruit seed extract. Brazilian Journal of Pharmaceutical Sciences. 2017;53. https://doi.org/10.1590/s2175-97902017000116116 | |
dc.relation.references | Hubert J, Nuzillard J-M, Renault J-H. Dereplication strategies in natural product research: How many tools and methodologies behind the same concept? Phytochem Rev. 2017;16:55-95. https://doi.org/10.1007/s11101-015-9448-7 | |
dc.relation.references | Schripsema J. Application of NMR in plant metabolomics: techniques, problems and prospects. Phytochemical Analysis. 2010;21:14-21. https://doi.org/10.1002/pca.1185 | |
dc.relation.references | Halder M, Kundu A, Jha S. Secondary Metabolites Identification Techniques of the Current Era. En: Mérillon J-M, Ramawat KG, editores. Plant Specialized Metabolites. Cham: Springer Nature Switzerland; 2024. p. 1-41. https://doi.org/10.1007/978-3-031-30037-0_31-1 | |
dc.relation.references | Avery VM, Camp D, Carroll AR, Jenkins ID, Quinn RJ. The Identification of Bioactive Natural Products by High Throughput Screening (HTS). Comprehensive Natural Products II. Elsevier; 2010. p. 177-203. https://doi.org/10.1016/B978-008045382-8.00062-9 | |
dc.relation.references | Wang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol. 2016;34:828-37. https://doi.org/10.1038/nbt.3597 | |
dc.relation.references | Nothias L-F, Petras D, Schmid R, Dührkop K, Rainer J, Sarvepalli A, et al. Feature-based molecular networking in the GNPS analysis environment. Nat Methods. 2020;17:905-8. https://doi.org/10.1038/s41592-020-0933-6 | |
dc.relation.references | Phelan VV. Feature-Based Molecular Networking for Metabolite Annotation. En: Li S, editor. Computational Methods and Data Analysis for Metabolomics. New York, NY: Springer US; 2020. p. 227-43. https://doi.org/10.1007/978-1-0716-0239-3_13 | |
dc.relation.references | Dührkop K, Shen H, Meusel M, Rousu J, Böcker S. Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc Natl Acad Sci USA. 2015;112:12580-5. https://doi.org/10.1073/pnas.1509788112 | |
dc.relation.references | Djoumbou Feunang Y, Eisner R, Knox C, Chepelev L, Hastings J, Owen G, et al. ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J Cheminform. 2016;8:61. https://doi.org/10.1186/s13321-016-0174-y | |
dc.relation.references | Dührkop K, Nothias L-F, Fleischauer M, Reher R, Ludwig M, Hoffmann MA, et al. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat Biotechnol. 2021;39:462-71. | |
dc.relation.references | Pilon AC, Valli M, Dametto AC, Pinto MEF, Freire RT, Castro-Gamboa I, et al. NuBBEDB: an updated database to uncover chemical and biological information from Brazilian biodiversity. Sci Rep. 2017;7:7215. https://doi.org/10.1038/s41598-017-07451-x | |
dc.relation.references | Meneses C. Saponinas y flavonoides de Passiflora ligularis y evaluación de su actividad antiinflamatoria [Tesis de maestría]. [Bogotá]: Universidad Nacional de Colombia; | |
dc.relation.references | Sepúlveda Ramos PM. Contribución a la caracterización biofarmacéutica de un extracto de hojas de Passiflora ligularis (granadilla) optimizado en flavonoides. [Bogotá]: Universidad Nacional de Colombia; 2021. | |
dc.relation.references | Monzón Daza G, Meneses Macías C, Forero AM, Rodríguez J, Aragón M, Jiménez C, et al. Identification of α-Amylase and α-Glucosidase Inhibitors and Ligularoside A, a New Triterpenoid Saponin from Passiflora ligularis Juss (Sweet Granadilla) Leaves, by a Nuclear Magnetic Resonance-Based Metabolomic Study. J Agric Food Chem. 2021;69:2919-31. https://doi.org/10.1021/acs.jafc.0c07850 | |
dc.relation.references | Urrego N. Contribución al estudio fitoquímico y a la evaluación de la actividad antiinflamatoria de las hojas de badea (Passiflora quadrangularis) y gulupa (Passiflora edulis var. edulis) [Tesis de maestría]. [Bogotá]: Universidad Nacional de Colombia; 2017. | |
dc.relation.references | Pan Z-H, Ning D-S, Fu Y-X, Li D-P, Zou Z-Q, Xie Y-C, et al. Preparative Isolation of Piceatannol Derivatives from Passion Fruit ( Passiflora edulis ) Seeds by High-Speed Countercurrent Chromatography Combined with High-Performance Liquid Chromatography and Screening for α-Glucosidase Inhibitory Activities. J Agric Food Chem. 2020;68:1555-62. https://doi.org/10.1021/acs.jafc.9b04871 | |
dc.relation.references | Hernández-Martínez AX, Lozano-Puentes HS, Camacho-Montealegre CM, Costa GM, Díaz-Ariza LA. Establishing the Relationship Between Flavonoid Content, Mycorrhization, and Soil Nutritional Content in Different Species of the Genus Passiflora in Colombia. ACS Omega. 2023;8:40647-56. https://doi.org/10.1021/acsomega.3c05606 | |
dc.relation.references | Bart H-J. Industrial Scale Natural Products Extraction. 1st ed. Weinheim: John Wiley & Sons, Incorporated; 2011. | |
dc.relation.references | Antignac E, Nohynek GJ, Re T, Clouzeau J, Toutain H. Safety of botanical ingredients in personal care products/cosmetics. Food and Chemical Toxicology. 2011;49:324-41. https://doi.org/10.1016/j.fct.2010.11.022 | |
dc.relation.references | Lopez C. Estudio preliminar de la composición química de extractos polares de distintas especies colombianas de Passiflora y su posible actividad antioxidante y antimicrobiana. [Bogotá]: Universidad Nacional de Colombia; 2022. | |
dc.relation.references | Castellanos L, Naranjo-Gaybor SJ, Forero AM, Morales G, Wilson EG, Ramos FA, et al. Metabolic fingerprinting of banana passion fruits and its correlation with quorum quenching activity. Phytochemistry. 2020;172. https://doi.org/10.1016/j.phytochem.2020.112272 | |
dc.relation.references | Araujo P, Nguyen T-T, Frøyland L, Wang J, Kang JX. Evaluation of a rapid method for the quantitative analysis of fatty acids in various matrices. Journal of Chromatography A. 2008;1212:106-13. https://doi.org/10.1016/j.chroma.2008.10.006 | |
dc.relation.references | Aron AT, Gentry EC, McPhail KL, Nothias L-F, Nothias-Esposito M, Bouslimani A, et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat Protoc. 2020;15:1954-91. https://doi.org/10.1038/s41596-020-0317-5 | |
dc.relation.references | Sepúlveda, Lady. Búsqueda de compuestos con posible actividad inhibitoria de enzimas de interés cosmético a partir de algas del Caribe colombiano. [Tesis de maestría]. Universidad Nacional de Colombia; 2022. | |
dc.relation.references | Heuckeroth S, Damiani T, Smirnov A, Mokshyna O, Brungs C, Korf A, et al. Reproducible mass spectrometry data processing and compound annotation in MZmine 3. Nat Protoc. 2024; https://doi.org/10.1038/s41596-024-00996-y | |
dc.relation.references | Böcker Lab. SIRIUS: Official online documentation for the SIRIUS MS/MS Software. | |
dc.relation.references | R S, M D, K A, Ravi M. The active compounds of Passiflora spp and their potential medicinal uses from both in vitro and in vivo evidences. Journal of advanced Biomedical and Pharmaceutical Sciences. 2020;0:0-0. https://doi.org/10.21608/jabps.2020.44321.1105 | |
dc.relation.references | Dhawan K, Dhawan S, Sharma A. Passiflora: a review update. Journal of Ethnopharmacology. 2004;94:1-23. https://doi.org/10.1016/j.jep.2004.02.023 | |
dc.relation.references | Lourith N, Kanlayavattanakul M. Antioxidant Activities and Phenolics of Passiflora edulis Seed Recovered from Juice Production Residue. J Oleo Sci. 2013;62:235-40. https://doi.org/10.5650/jos.62.235 | |
dc.relation.references | Dutra LM, Henrique Vieira Teles P, Diego Da Conceição Santos A, Franklin De Melo N, Nagata N, Roberto Guedes Da Silva Almeida J. 1H NMR-based metabolic profile and chemometric analysis for the discrimination of Passiflora species genotypic variations. Food Research International. 2023;164:112441. https://doi.org/10.1016/j.foodres.2022.112441 | |
dc.relation.references | Arrieta-Durango C, Henao-Rivas L, Andrade-Pizarro R. Rheological Behavior of Passion Fruit (Passiflora edulis) Peel Extract. Gels. 2022;8:566. https://doi.org/10.3390/gels8090566 | |
dc.relation.references | Seixas FL, Fukuda DL, Turbiani FRB, Garcia PS, Petkowicz CLDO, Jagadevan S, et al. Extraction of pectin from passion fruit peel (Passiflora edulis f. flavicarpa) by microwave-induced heating. Food Hydrocolloids. 2014;38:186-92. https://doi.org/10.1016/j.foodhyd.2013.12.001 | |
dc.relation.references | Krambeck K, Oliveira A, Santos D, Pintado MM, Baptista Silva J, Sousa Lobo JM, et al. Identification and Quantification of Stilbenes (Piceatannol and Resveratrol) in Passiflora edulis By-Products. Pharmaceuticals. 2020;13:73. https://doi.org/10.3390/ph13040073 | |
dc.relation.references | Rotta R, Cunha Neto Á, De Lima DP, Beatriz A, Da Silva GVJ. Configuration of stilbene derivatives by 1H NMR and theoretical calculation of chemical shifts. Journal of Molecular Structure. 2010;975:59-62. https://doi.org/10.1016/j.molstruc.2010.03.079 | |
dc.relation.references | Nyanzi SA, Carstensen B, Schwack W. A comparative study of fatty acid profiles of Passiflora seed oils from Uganda. J Americ Oil Chem Soc. 2005;82:41-4. https://doi.org/10.1007/s11746-005-1040-2 | |
dc.relation.references | Thi Thu Nga N, Xuan Bac N, Thi Ngoc Ha L. Green Solvent Extraction and Quality Characteristics of Passion Fruit Seed Oil (Passiflora edulis Sims var. edulis). vjas. 2020;2:469-74. https://doi.org/10.31817/vjas.2019.2.4.03 | |
dc.relation.references | Torres Meléndez AF, Castillo Martinez WE. Extracción y caracterización de aceite a partir de semilla de granadilla (Passiflora ligularis) obtenido por prensado en frio y solvente orgánico. INGnosis. 2018;4:29-40. https://doi.org/10.18050/ingnosis.v4i1.2059 | |
dc.relation.references | Giuffre A. Chemical composition of purple passion fruit (Passiflora edulis var. Sims edulis) seed oil. Rivista Italiana Delle Sostanze Grasse. 2007;84:87-93. | |
dc.relation.references | Silva SR, Dos Santos EA, De Melo Filho AA. Physical and Chemical Properties of oils of three varieties seeds of passion fruit: Passiflora alata Curtis, Passiflora edulis f. flavicarpa and Passiflora quadrangularis. RCT. 2021;7. https://doi.org/10.18227/rct.v7i0.5965 | |
dc.relation.references | Ballesteros-Vivas D, Alvarez-Rivera G, León C, Morantes SJ, Ibánez E, Parada-Alfonso F, et al. Foodomics evaluation of the anti-proliferative potential of Passiflora mollissima seeds. Food Research International. 2020;130:108938. https://doi.org/10.1016/j.foodres.2019.108938 | |
dc.relation.references | Hernández J, Martinez JA, Rojas M, Aragón M. Evaluation of Passiflora tripartita var. mollisima seed oil as potential nanoemulsion excipient. Journal of Excipients & Food Chemicals. 2018;9:16. | |
dc.relation.references | Ramaiya S, Bujang J, Zakaria M. Nutritive Values of Passion Fruit (Passiflora Species) Seeds and Its Role in Human Health. J Agric Food Dev. 2018;4:23-30. https://doi.org/10.30635/2415-0142.2018.04.4 | |
dc.relation.references | Castellanos L, Duque C. Composición quimica y actividad antifouling de la fraccion lipidica de la esponja marina Cliona tenuis (clionidae). Revista Colombiana de Química. 2008; Recuperado a partir de: https://repositorio.unal.edu.co/handle/unal/23945 | |
dc.relation.references | Ernst M, Kang KB, Caraballo-Rodríguez AM, Nothias L-F, Wandy J, Chen C, et al. MolNetEnhancer: Enhanced Molecular Networks by Integrating Metabolome Mining and Annotation Tools. Metabolites. 2019;9:144. https://doi.org/10.3390/metabo9070144 | |
dc.relation.references | Pérez-Magariño S, Revilla I, González-SanJosé ML, Beltrán S. Various applications of liquid chromatography–mass spectrometry to the analysis of phenolic compounds. Journal of Chromatography A. 1999;847:75-81. https://doi.org/10.1016/S0021-9673(99)00255-1 | |
dc.relation.references | Bandara KRV, Padumadasa C, Peiris DC. Potent antibacterial, antioxidant and toxic activities of extracts from Passiflora suberosa L. leaves. PeerJ. 2018;6:e4804. https://doi.org/10.7717/peerj.4804 | |
dc.relation.references | Botelho-Júnior S, Siqueira-Júnior CL, Jardim BC, Machado OLT, Neves-Ferreira AGC, Perales J, et al. Trypsin Inhibitors in Passion Fruit ( Passiflora f. edulis flavicarpa ) Leaves: Accumulation in Response to Methyl Jasmonate, Mechanical Wounding, and Herbivory. J Agric Food Chem. 2008;56:9404-9. https://doi.org/10.1021/jf8013266 | |
dc.relation.references | Carvalho Pires M, Peixoto JR, Yamanishi OK. Rooting of passion fruit species with indole-3-butyric acid under intermittent misting conditions. Acta Hortic. 2011;177-83. https://doi.org/10.17660/ActaHortic.2011.894.19 | |
dc.relation.references | Khandelwal S, Tailor YK, Kumar M. Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations. Journal of Molecular Liquids. 2016;215:345-86. https://doi.org/co-pro | |
dc.relation.references | Snyder LR, Kirkland JJ, Dolan JW. Introduction to Modern Liquid Chromatography. 1.a ed. Wiley; 2009. https://doi.org/10.1002/9780470508183 | |
dc.relation.references | Dreux M, Lafosse M. Chapter 13 Evaporative Light Scattering Detection of Carbohydrates in HPLC. Journal of Chromatography Library. Elsevier; 1995. p. 515-40. https://doi.org/10.1016/S0301-4770(08)60518-7 | |
dc.relation.references | Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA. Untargeted Metabolomics Strategies—Challenges and Emerging Directions. J Am Soc Mass Spectrom. 2016;27:1897-905. https://doi.org/10.1007/s13361-016-1469-y | |
dc.relation.references | Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, et al. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ Sci Technol. 2014;48:2097-8. https://doi.org/10.1021/es5002105 | |
dc.relation.references | Nothias L-F, Wang M. GNPS Lexicon. GNPS Documentation. Recuperado a partir de: https://ccms-ucsd.github.io/GNPSDocumentation/lexicon/ | |
dc.relation.references | Larson EA, Hutchinson CP, Lee YJ. Gas Chromatography-Tandem Mass Spectrometry of Lignin Pyrolyzates with Dopant-Assisted Atmospheric Pressure Chemical Ionization and Molecular Structure Search with CSI:FingerID. J Am Soc Mass Spectrom. 2018;29:1908-18. https://doi.org/10.1007/s13361-018-2001-3 | |
dc.relation.references | Zucolotto SM, Fagundes C, Reginatto FH, Ramos FA, Castellanos L, Duque C, et al. Analysis of C ‐glycosyl Flavonoids from South American Passiflora Species by HPLC‐DAD and HPLC‐MS. Phytochemical Analysis. 2012;23:232-9. https://doi.org/10.1002/pca.1348 | |
dc.relation.references | He X, Luan F, Yang Y, Wang Z, Zhao Z, Fang J, et al. Passiflora edulis: An Insight Into Current Researches on Phytochemistry and Pharmacology. Front Pharmacol. 2020;11:617. https://doi.org/10.3389/fphar.2020.00617 | |
dc.relation.references | Cerqueira-Silva CBM, Faleiro FG, De Jesus ON, Dos Santos ESL, De Souza AP. The Genetic Diversity, Conservation, and Use of Passion Fruit (Passiflora spp.). En: Ahuja MR, Jain SM, editores. Genetic Diversity and Erosion in Plants. Cham: Springer International Publishing; 2016. p. 215-31. https://doi.org/10.1007/978-3-319-25954-3_5 | |
dc.relation.references | Gallo MBC, Vieira PC, Fernandes JB, Da Silva MFDGF, Salimena-Pires FR. Compounds from Vitex polygama active against kidney diseases. Journal of Ethnopharmacology. 2008;115:320-2. https://doi.org/10.1016/j.jep.2007.09.020 | |
dc.relation.references | Domínguez-Rodríguez G, García MC, Plaza M, Marina ML. Revalorization of Passiflora species peels as a sustainable source of antioxidant phenolic compounds. Science of The Total Environment. 2019;696:134030. https://doi.org/10.1016/j.scitotenv.2019.134030 | |
dc.relation.references | Ramirez Alvarado RA, Aponte Cárdenas A, Benavides Barrantes Y, Ortiz Rojas Y. Evaluación de subproductos de pepino cohombro (Cucumis sativus) and granadilla (Passiflora ligularis) como fuente de obtención de pectinas. Acta Agron. 2022;70. https://doi.org/10.15446/acag.v70n4.78441 | |
dc.relation.references | Muñoz Murillo P, García Mendoza J, Saltos Alcívar S. Néctar a base de pitahaya (Hylocereus undatus) con harina de cáscara de maracuyá (Passiflora edulis flavicarpa): Compuestos antioxidantes, estabilidad fisicoquímica y aceptabilidad sensorial. Nutrición Clínica y Dietética Hospitalaria. 2023;43. https://doi.org/10.12873/433munoz | |
dc.relation.references | López-Vargas JH, Fernández-López J, Pérez-Álvarez JA, Viuda-Martos M. Chemical, physico-chemical, technological, antibacterial and antioxidant properties of dietary fiber powder obtained from yellow passion fruit (Passiflora edulis var. flavicarpa) co-products. Food Research International. 2013;51:756-63. https://doi.org/10.1016/j.foodres.2013.01.055 | |
dc.relation.references | Da Silva Francischini D, Lopes AP, Segatto ML, Stahl AM, Zuin VG. Development and application of green and sustainable analytical methods for flavonoid extraction from Passiflora waste. BMC Chemistry. 2020;14:56. https://doi.org/10.1186/s13065-020-00710-5 | |
dc.relation.references | Sabogal-Palma, Angie Cmans, Chávez-M, Jacqueline, Oliveros-Gómez, Diego F, Murillo-Perea, Elizabeth, Méndez-Arteaga, Jonh J. Biological characteristics of Passiflora maliformis from South Colombian Massif. Bioagro. 2016;28:3-12. | |
dc.relation.references | Ito T, Endo H, Shinohara H, Oyama M, Akao Y, Iinuma M. Occurrence of stilbene oligomers in Cyperus rhizomes. Fitoterapia. 2012;83:1420-9. https://doi.org/10.1016/j.fitote.2012.08.005 | |
dc.relation.references | Aragão Craveiro A, Da Costa Prado A, Gottlieb OR, Welerson De Albuquerque PC. Diarylheptanoids of Centrolobium species. Phytochemistry. 1970;9:1869-75. https://doi.org/10.1016/S0031-9422(00)85606-X | |
dc.relation.references | Bjørklund G, Shanaida M, Lysiuk R, Butnariu M, Peana M, Sarac I, et al. Natural Compounds and Products from an Anti-Aging Perspective. Molecules. 2022;27:7084. https://doi.org/10.3390/molecules27207084 | |
dc.relation.references | Chemat F, Abert-Vian M, Fabiano-Tixier AS, Strube J, Uhlenbrock L, Gunjevic V, et al. Green extraction of natural products. Origins, current status, and future challenges. TrAC Trends in Analytical Chemistry. 2019;118:248-63. https://doi.org/10.1016/j.trac.2019.05.037 | |
dc.relation.references | Da Silva Francischini D, Lopes AP, Segatto ML, Stahl AM, Zuin VG. Development and application of green and sustainable analytical methods for flavonoid extraction from Passiflora waste. BMC Chemistry. 2020;14:56. https://doi.org/10.1186/s13065-020-00710-5 | |
dc.relation.references | Martins AM, Marto JM. A sustainable life cycle for cosmetics: From design and development to post-use phase. Sustainable Chemistry and Pharmacy. 2023;35:101178. https://doi.org/10.1016/j.scp.2023.101178 | |
dc.relation.references | Difonzo G, Grassi S, Paciulli M. Upcycling of Agro-Food Chain By-Products to Obtain High-Value-Added Foods. Foods. 2022;11:2043. https://doi.org/10.3390/foods11142043 | |
dc.relation.references | Donner M, Gohier R, De Vries H. A new circular business model typology for creating value from agro-waste. Science of The Total Environment. 2020;716:137065. https://doi.org/10.1016/j.scitotenv.2020.137065 | |
dc.relation.references | Cury R K, Aguas M Y, Martinez M A, Olivero V R, Chams Ch L. Residuos agroindustriales su impacto, manejo y aprovechamiento. Revista Colombiana de Ciencia Animal - RECIA. 2017;9:122-32. https://doi.org/10.24188/recia.v9.nS.2017.530 | |
dc.relation.references | Rodrigues R, Oliveira MBPP, Alves RC. Chlorogenic Acids and Caffeine from Coffee By-Products: A Review on Skincare Applications. Cosmetics. 2023;10:12. https://doi.org/10.3390/cosmetics10010012 | |
dc.relation.references | Abril S. Compuestos con posible actividad fotoprotectora a partir de extractos de macroalgas del caribe colombiano [Tesis maestria]. [Bogotá]: Universidad Nacional de Colombia; 2023. | |
dc.relation.references | Mansur, Joäo de Souza; Breder, Mário Nei Rodrigues; Mansur, Maria Cristina d’Ascençäo; Azulay, Rubem David. Determinaçäo do fator de proteçäo solar por espectrofotometria / Determination of sun protection factor by spectrophotometry. An bras dermatol. 1986;61:121. | |
dc.relation.references | Sayre RM, Agin PP, LeVee GJ, Marlowe E. A COMPARISON OF IN VIVO AND IN VITRO TESTING OF SUNSCREENING FORMULAS. Photochem & Photobiology. 1979;29:559-66. https://doi.org/10.1111/j.1751-1097.1979.tb07090.x | |
dc.relation.references | Rojas JL, Díaz-Santos M, Valencia-Islas NA. Metabolites with antioxidant and photo-protective properties from Usnea roccellina Motyka, a lichen from Colombian Andes. Pharmaceutical and Biosciences Journal. 2015;18-26. https://doi.org/10.20510/ukjpb/3/i4/89454 | |
dc.relation.references | Springsteen A, Yurek R, Frazier M, Carr KF. In vitro measurement of sun protection factor of sunscreens by diffuse transmittance1This paper is dedicated to the memory of our colleague and friend, Mona Yurek (1959–1998), who was involved in the quantitation and methodology of the sample preparation along with most of our in vitro sunscreen measurements.1. Analytica Chimica Acta. 1999;380:155-64. https://doi.org/10.1016/S0003-2670(98)00577-7 | |
dc.relation.references | FDA. Guidance for Industry Labeling and Effectiveness Testing: Sunscreen Drug Products for OverThe-Counter Human Use — Small Entity Compliance Guide. Division of Drug Information Center for Drug Evaluation and Research Food and Drug Administration; 2012. Recuperado a partir de: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/labeling-and-effectiveness-testing-sunscreen-drug-products-over-counter-human-use-small-entity | |
dc.relation.references | R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing; 2023. Recuperado a partir de: https://www.r-project.org/ | |
dc.relation.references | Hothorn T, Hornik K, Wiel MAVD, Zeileis A. Implementing a Class of Permutation Tests: The coin Package. J Stat Soft. 2008;28. https://doi.org/10.18637/jss.v028.i08 | |
dc.relation.references | Hui W, Gel Y R, Gastwirth JL. lawstat : An R Package for Law, Public Policy and Biostatistics. J Stat Soft. 2008;28. https://doi.org/10.18637/jss.v028.i03 | |
dc.relation.references | Saaty TL. Multicriteria decision making: the analytic hierarchy process ; planning, priority setting, resource allocation. 2. ed., with new material added. New York: McGraw-Hill; 1988. | |
dc.relation.references | Saaty TL, Vargas LG. Models, Methods, Concepts & Applications of the Analytic Hierarchy Process. Boston, MA: Springer US; 2012. https://doi.org/10.1007/978-1-4614-3597-6 | |
dc.relation.references | Karimi AR, Mehrdadi N, Hashemian SJ, Bidhendi GRN, Moghaddam RT. Selection of wastewater treatment process based on the analytical hierarchy process and fuzzy analytical hierarchy process methods. Int J Environ Sci Technol. 2011;8:267-80. https://doi.org/10.1007/BF03326215 | |
dc.relation.references | José MTDAF, Pedrita AS, Emanuella CVP, Raimundo GDOJ, Fabrício SS, Jackson RGDSA, et al. Flavonoids as photoprotective agents: A systematic review. J Med Plants Res. 2016;10:848-64. https://doi.org/10.5897/JMPR2016.6273 | |
dc.relation.references | Shelan Nagapan T, Rohi Ghazali A, Fredalina Basri D, Nallance Lim W. Photoprotective Effect of Stilbenes and Its Derivatives against Ultraviolet Radiation-Induced Skin Disorders. Biomed Pharmacol J. 2018;11(3):1199-1208. https://doi.org/10.13005/bpj/1481 | |
dc.relation.references | Thermo Fisher Scientific, Inc. Thermo Scientific Varioskan LUX: Technical manual. Singapur: Thermo Fisher Scientific, Inc; 2023. | |
dc.relation.references | Owen T. Fundamentos de la espectroscopía UV-visible moderna: Conceptos básicos. Alemania: Agilent Technologies; 2000. | |
dc.relation.references | De Gruijl FR. Photocarcinogenesis: UVA vs. UVB Radiation. Skin Pharmacol Physiol. 2002;15:316-20. https://doi.org/10.1159/000064535 | |
dc.relation.references | Mäntele W, Deniz E. UV–VIS absorption spectroscopy: Lambert-Beer reloaded. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2017;173:965-8. https://doi.org/10.1016/j.saa.2016.09.037 | |
dc.relation.references | Oshina I, Spigulis J. Beer–Lambert law for optical tissue diagnostics: current state of the art and the main limitations. J Biomed Opt. 2021;26. https://doi.org/10.1117/1.JBO.26.10.100901 | |
dc.relation.references | Miao W, Gel Y R, Gastwirth JL. A NEW TEST OF SYMMETRY ABOUT AN UNKNOWN MEDIAN. Random Walk, Sequential Analysis and Related Topics. Fudan University, Shanghai, China: WORLD SCIENTIFIC; 2006. p. 199-214. https://doi.org/10.1142/9789812772558_0013 | |
dc.relation.references | Glass GV, Peckham PD, Sanders JR. Consequences of Failure to Meet Assumptions Underlying the Fixed Effects Analyses of Variance and Covariance. Review of Educational Research. 1972;42:237-88. https://doi.org/10.3102/00346543042003237 | |
dc.relation.references | De Oliveira Júnior RG, Reis SAGB, De Oliveira AP, Ferraz CAA, Rolim LA, Lopes NP, et al. Photoprotective Potential of Passiflora Cincinnata Mast. (Passifloraceae) Hydro‐Alcoholic Extracts. Chemistry & Biodiversity. 2024;21:e202401271. https://doi.org/10.1002/cbdv.202401271 | |
dc.relation.references | Hasanah FA, Rabbaniyyah M, Kurniati E. Formulation and efficacy testing of SPF (sun protecting factor) sunscreen gel extract of rambusa leaves (Passiflora foetida L). MS. 2024;9:611-20. https://doi.org/10.37874/ms.v9i2.1236 | |
dc.relation.references | Bhattacharya S, Sherje AP. Development of resveratrol and green tea sunscreen formulation for combined photoprotective and antioxidant properties. Journal of Drug Delivery Science and Technology. 2020;60:102000. https://doi.org/10.1016/j.jddst.2020.102000 | |
dc.relation.references | Stevanato R, Bertelle M, Fabris S. Photoprotective characteristics of natural antioxidant polyphenols. Regulatory Toxicology and Pharmacology. 2014;69:71-7. https://doi.org/10.1016/j.yrtph.2014.02.014 | |
dc.relation.references | Polonini HC, Lima LL, Gonçalves KM, Do Carmo AMR, Da Silva AD, Raposo NRB. Photoprotective activity of resveratrol analogues. Bioorganic & Medicinal Chemistry. 2013;21:964-8. https://doi.org/10.1016/j.bmc.2012.11.052 | |
dc.relation.references | Shiratake S, Nakahara T, Iwahashi H, Onodera T, Mizushina Y. Rose myrtle (Rhodomyrtus tomentosa) extract and its component, piceatannol, enhance the activity of DNA polymeraseand suppress the inflammatory response elicitedby UVB-induced DNA damage in skin cells. Molecular Medicine Reports. 2015;12:5857-64. https://doi.org/10.3892/mmr.2015.4156 | |
dc.relation.references | Stanfield JW. Spectroscopic measurements of sunscreen protection. Expert Review of Dermatology. 2011;6:475-8. https://doi.org/10.1586/edm.11.55 | |
dc.relation.references | Taniguchi M, LaRocca CA, Bernat JD, Lindsey JS. Digital Database of Absorption Spectra of Diverse Flavonoids Enables Structural Comparisons and Quantitative Evaluations. J Nat Prod. 2023;86:1087-119. https://doi.org/10.1021/acs.jnatprod.2c00720 | |
dc.relation.references | Alcahuz M, Marín L, Miró P. Isomerización fotosensibilizada de estilbenos en medios confinados [MasterThesis]. [España]: Universidad Politécnica de Valencia; 2016. | |
dc.relation.references | Burgren M, Thorén L. Comparing the Outcomes of Two Decision Support Models: The Analytical Hierarchy Process and Pugh Matrix Analysis [MasterThesis]. [Suecia]: Karlstads Universitet; 2015. | |
dc.relation.references | Nantes E. El método Analytic Hierarchy Process para la toma de decisiones. Repaso de la metodología y aplicaciones. Revista De La Escuela De Perfeccionamiento En Investigación Operativa. 2019;27:54-73. | |
dc.relation.references | Toskano G, Gambini I. El Proceso de análisis jerárquico (AHP) como herramienta para la toma de decisiones en la selección de proveedores : aplicación en la selección del proveedor para la Empresa Gráfica Comercial MyE S.R.L. Perú: Universidad Nacional Mayor de San Marcos; 2005. | |
dc.relation.references | Rostagno MA. Natural Product Extraction: Principles and Applications. 1st ed. Cambridge: Royal Society of Chemistry; 2013. | |
dc.relation.references | Bom S, Jorge J, Ribeiro HM, Marto J. A step forward on sustainability in the cosmetics industry: A review. Journal of Cleaner Production. 2019;225:270-90. https://doi.org/10.1016/j.jclepro.2019.03.255 | |
dc.relation.references | Barbulova A, Colucci G, Apone F. New Trends in Cosmetics: By-Products of Plant Origin and Their Potential Use as Cosmetic Active Ingredients. Cosmetics. 2015;2:82-92. https://doi.org/10.3390/cosmetics2020082 | |
dc.relation.references | Manful ME, Ahmed L, Barry-Ryan C. Cosmetic Formulations from Natural Sources: Safety Considerations and Legislative Frameworks in the European Union. Cosmetics. 2024;11:72. https://doi.org/10.3390/cosmetics11030072 | |
dc.relation.references | Yapar EA, Şahi̇Ner A, Kara BA, Yildirim ST, Halat E, Bala R, et al. EVALUATION OF MULTIFUNCTIONALITY IN COSMETICS. Univ J Pharm Res. 2021; https://doi.org/10.22270/ujpr.v6i3.606 | |
dc.relation.references | Morganti P. Natural Products Work in Multiple Ways. Nutritional Cosmetics. Elsevier; 2009. p. 95-111. https://doi.org/10.1016/B978-0-8155-2029-0.50012-0 | |
dc.relation.references | Li S, Han Q, Qiao C, Song J, Lung Cheng CL, Xu H. Chemical markers for the quality control of herbal medicines: an overview. Chin Med. 2008;3:7. https://doi.org/10.1186/1749-8546-3-7 | |
dc.relation.references | Fonseca S, Amaral MN, Reis CP, Custódio L. Marine Natural Products as Innovative Cosmetic Ingredients. Marine Drugs. 2023;21:170. https://doi.org/10.3390/md21030170 | |
dc.relation.references | Faccio G. Plant Complexity and Cosmetic Innovation. iScience. 2020;23:101358. https://doi.org/10.1016/j.isci.2020.101358 | |
dc.relation.references | Lee J, Hyun C-G. Natural Products for Cosmetic Applications. Molecules. 2023;28:534. https://doi.org/10.3390/molecules28020534 | |
dc.relation.references | Siqueira César FC, Carnevale Neto F, Porto GS, Campos PM. Patent analysis: a look at the innovative nature of plant-based cosmetics. Quim Nova. 2017; https://doi.org/10.21577/0100-4042.20170022 | |
dc.relation.references | Parra M, Rodríquez A, Piedrahita A, Gordillo A. Comercialización de granadilla (Passiflora ligularis juss). Corporación colombiana de investigación agropecuaria - AGROSAVIA; 2010. Recuperado a partir de: http://hdl.handle.net/20.500.12324/40105 | |
dc.relation.references | Regolo L, Giampieri F, Battino M, Armas Diaz Y, Mezzetti B, Elexpuru-Zabaleta M, et al. From by-products to new application opportunities: the enhancement of the leaves deriving from the fruit plants for new potential healthy products. Front Nutr. 2024;11:1083759. https://doi.org/10.3389/fnut.2024.1083759 | |
dc.relation.references | Jusuf NK, Putra IB, Dewi NK. Antibacterial Activity of Passion Fruit Purple Variant (Passiflora edulis Sims var. edulis) Seeds Extract Against Propionibacterium acnes. CCID. 2020;Volume 13:99-104. https://doi.org/10.2147/CCID.S229743 | |
dc.relation.references | Dewi NK, Putra IB, Jusuf NK. Passion fruit purple variant (Passiflora edulis Sims var. edulis ) seeds extract 10% cream in acne vulgaris treatment: an open‐label pilot study. Int J Dermatology. 2020;59:1506-12. https://doi.org/10.1111/ijd.15178 | |
dc.relation.references | Wijoyo S, Wahyuniari IAI. Potency of Passion Fruit (Passiflora edulis) Prevents Uv-Induced Skin Aging. jppipa, pendidikan ipa, fisika, biologi, kimia. 2023;9:1142-7. https://doi.org/10.29303/jppipa.v9i11.5483 | |
dc.relation.references | Wijoyo S, Wahyuniari IAI. Potency of Passion Fruit (Passiflora edulis) Prevents Uv-Induced Skin Aging. jppipa, pendidikan ipa, fisika, biologi, kimia. 2023;9:1142-7. https://doi.org/10.29303/jppipa.v9i11.5483 | |
dc.relation.references | Guzmán C, Rojas MA, Aragón M. Optimization of Ultrasound-Assisted Emulsification of Emollient Nanoemulsions of Seed Oil of Passiflora edulis var. edulis. Cosmetics. 2020;8:1. https://doi.org/10.3390/cosmetics8010001 | |
dc.relation.references | Chez I, Herrera D, Miranda M, Manzano P. Chemical composition of essential oils of shells, juice and seeds of Passiflora ligularis Juss from Ecuador. Emir J Food Agric. 2015;27:650. https://doi.org/10.9755/ejfa.2015.04.039 | |
dc.relation.references | Andasuryani A, Zainal PW, Ifmalinda I. Chemical characteristic of sweet passion fruit (Passiflora lingularis Juss) seeds from Indonesia based on maturity levels. J Phys: Conf Ser. 2020;1469:012001. https://doi.org/10.1088/1742-6596/1469/1/012001 | |
dc.relation.references | Pereira MG, Maciel GM, Haminiuk CWI, Bach F, Hamerski F, De Paula Scheer A, et al. Effect of Extraction Process on Composition, Antioxidant and Antibacterial Activity of Oil from Yellow Passion Fruit (Passiflora edulis Var. Flavicarpa) Seeds. Waste Biomass Valor. 2019;10:2611-25. https://doi.org/10.1007/s12649-018-0269-y | |
dc.relation.references | De Santana FC, De Oliveira Torres LR, Shinagawa FB, De Oliveira E Silva AM, Yoshime LT, De Melo ILP, et al. Optimization of the antioxidant polyphenolic compounds extraction of yellow passion fruit seeds (Passiflora edulis Sims) by response surface methodology. J Food Sci Technol. 2017;54:3552-61. https://doi.org/10.1007/s13197-017-2813-3 | |
dc.relation.references | De Santana FC, Shinagawa FB, Araujo EDS, Costa AM, Mancini‐Filho J. Chemical Composition and Antioxidant Capacity of Brazilian Passiflora Seed Oils. Journal of Food Science. 2015;80. https://doi.org/10.1111/1750-3841.13102 | |
dc.relation.references | Malacrida CR, Jorge N. Yellow passion fruit seed oil (Passiflora edulis f. flavicarpa): physical and chemical characteristics. Braz arch biol technol. 2012;55:127-34. https://doi.org/10.1590/S1516-89132012000100016 | |
dc.relation.references | Sari LM, Sari DK, Bustami A, Gazali AD, Auerkari EI. Cytotoxicity and apoptosis activities of passion fruit (Passiflora edulis Sims) seed extract on HSC-2, HSC-3, MCF-7, and HaCaT cell lines. J Pharm Pharmacogn Res. 2024;12:659-72. https://doi.org/10.56499/jppres23.1798_12.4.659 | |
dc.relation.references | Montanher AB, Zucolotto SM, Schenkel EP, Fröde TS. Evidence of anti-inflammatory effects of Passiflora edulis in an inflammation model. Journal of Ethnopharmacology. 2007;109:281-8. https://doi.org/10.1016/j.jep.2006.07.031 | |
dc.relation.references | Sepúlveda Ramos PM, Costa GM, Aragón M, Ramos FA, Castellanos L. Analysis of vitexin in aqueous extracts and commercial products of Andean Passiflora species by UHPLC-DAD. J App Pharm Sci. 2018;8:81-6. https://doi.org/10.7324/JAPS.2018.8912 | |
dc.relation.references | Ayres ASFSJ, De Araújo LLS, Soares TC, Costa GM, Reginatto FH, Ramos FA, et al. Comparative central effects of the aqueous leaf extract of two populations of Passiflora edulis. Revista Brasileira de Farmacognosia. 2015;25:499-505. https://doi.org/10.1016/j.bjp.2015.06.007 | |
dc.relation.references | Freitas MSM, Monnerat PH, Vieira IJC, Carvalho AJCD. Flavonóides e composição mineral de folhas de maracujazeiro amarelo en función da posição da folha no ramo. Cienc Rural. 2007;37:1634-9. https://doi.org/10.1590/S0103-84782007000600020 | |
dc.relation.references | Aryunisari CG, Putra IB, Jusuf NK. Effect of Purple Passion Fruit Extract Cream (Passiflora edulis Sims var. Edulis) 6% against Striae Distensae. Open Access Maced J Med Sci. 2021;9:720-5. https://doi.org/10.3889/oamjms.2021.6424 | |
dc.relation.references | Scotti E, Velásquez I, Ojeda L, Pacheco F. Characterization and incorporation of an extract of passion fruit seeds (Passiflora edulis) in a hydrogel. Revista Ingenieria UC. 2020;27:273-81. | |
dc.relation.references | Rubian extractos. Produtos – Rejuvenate. Recuperado a partir de: https://www.rubian.com.br/produtos-rejuvenate/ | |
dc.relation.references | Dos Santos P, Vigano J, Martinez J, Lopes M. Miniemulsions of bioactive fractions of Passiflora, compositions including such miniemulsions and formulations. | |
dc.relation.references | Yanasan N, Wangkananon W, Natakankitkul S, Kiattisin K. Nanoemulsions Containing Passiflora quadrangularis L. Fruit Extracts for Cosmetic Application and Skin Efficacy Study. Cosmetics. 2024;11:57. https://doi.org/10.3390/cosmetics11020057 | |
dc.relation.references | Osterwalder U, Sohn M, Herzog B. Global state of sunscreens. Photoderm Photoimm Photomed. 2014;30:62-80. https://doi.org/10.1111/phpp.12112 | |
dc.relation.references | Abd Hisham NY, Mahat NA, Ramli MAI, Shaharaan NMA. A Review on Knowledge, Perception, Practice and Associated Factors of Sunscreen Usage among the Population. Int J Care Scholars. 2024;7:118-44. https://doi.org/10.31436/ijcs.v7i3.373 | |
dc.relation.references | Lionetti N, Rigano L. The New Sunscreens among Formulation Strategy, Stability Issues, Changing Norms, Safety and Efficacy Evaluations. Cosmetics. 2017;4:15. https://doi.org/10.3390/cosmetics4020015 | |
dc.relation.references | Ngoc TTN, Moon JY, Chae HS, Park MJ, Lee JY. Recent Trends of Sunscreen Cosmetic: An Update Review. Cosmetics. 2019;6:64. https://doi.org/10.3390/cosmetics6040064 | |
dc.relation.references | Thomas T, Fat M, Kearns G. Sunscreens: potential hazards to environmental and human health. Front Mar Sci. 2024;11:1471574. https://doi.org/10.3389/fmars.2024.1471574 | |
dc.relation.references | Resende DISP, Jesus A, Sousa Lobo JM, Sousa E, Cruz MT, Cidade H, et al. Up-to-Date Overview of the Use of Natural Ingredients in Sunscreens. Pharmaceuticals. 2022;15:372. https://doi.org/10.3390/ph15030372 | |
dc.relation.references | Milutinov J, Krstonošić V, Ćirin D, Pavlović N. Emulgels: Promising Carrier Systems for Food Ingredients and Drugs. Polymers. 2023;15:2302. https://doi.org/10.3390/polym15102302 | |
dc.relation.references | Corredor M. Formulaciones tipo bigel como sistemas de entrega de moléculas biológicamente activas [Tesis de maestría]. [Bogotá]: Universidad Nacional de Colombia; 2016. | |
dc.relation.references | Mazurkevičiūtė A, Matulytė I, Ivaškienė M, Žilius M. Assessment of Physical, Mechanical, Biopharmaceutical Properties of Emulgels and Bigel Containing Ciclopirox Olamine. Polymers. 2022;14:2783. https://doi.org/10.3390/polym14142783 | |
dc.relation.references | Daubert CR, Farkas BE. Viscosity Measurement Using a Brookfield Viscometer. En: Nielsen SS, editor. Food Analysis Laboratory Manual. Boston, MA: Springer US; 2010. p. 165-9. https://doi.org/10.1007/978-1-4419-1463-7_20 | |
dc.relation.references | Dutra EA, Oliveira DAGDC, Kedor-Hackmann ERM, Santoro MIRM. Determination of sun protection factor (SPF) of sunscreens by ultraviolet spectrophotometry. Rev Bras Cienc Farm. 2004;40:381-5. https://doi.org/10.1590/S1516-93322004000300014 | |
dc.relation.references | Baptista S, Pereira JR, Gil CV, Torres CAV, Reis MAM, Freitas F. Development of Olive Oil and α-Tocopherol Containing Emulsions Stabilized by FucoPol: Rheological and Textural Analyses. Polymers. 2022;14:2349. https://doi.org/10.3390/polym14122349 | |
dc.relation.references | Portilho L, Aiello LM, Vasques LI, Bagatin E, Leonardi GR. Effectiveness of sunscreens and factors influencing sun protection: a review. Braz J Pharm Sci. 2022;58:e20693. https://doi.org/10.1590/s2175-97902022e20693 | |
dc.relation.references | Milutinov J, Pavlović N, Ćirin D, Hadnađev M, Đanić M, Pavlović N. Development and evaluation of quercetin topical emulgels: Physicochemical and rheological properties, stability and sun protective potential. Journal of Molecular Liquids. 2025;417:126568. https://doi.org/10.1016/j.molliq.2024.126568 | |
dc.relation.references | Araújo L, Curty S, Moreira A, Rossi A, Raposo N, Vaz U, et al. Development of Broad-Spectrum Natural Sunscreens using Combinations of five Plant Species. JYP. 2016;8:144-8. https://doi.org/10.5530/jyp.2016.2.17 | |
dc.relation.references | Bio-Nest biochemical technology CO., LTD. SunCat JCW03 & JCW09, the Sunscreen of the Future. Taiwan: Bio-Nest biochemical technology CO., LTD; | |
dc.relation.references | European Chemicals Agency (ECHA). Cosmetics - UV filters. https://echa.europa.eu/cosmetics-uv-filters. 2025. Recuperado a partir de: https://echa.europa.eu/cosmetics-uv-filters | |
dc.relation.references | Chavda VP, Acharya D, Hala V, Daware S, Vora LK. Sunscreens: A comprehensive review with the application of nanotechnology. Journal of Drug Delivery Science and Technology. 2023;86:104720. https://doi.org/10.1016/j.jddst.2023.104720 | |
dc.relation.references | Pniewska A, Kalinowska-Lis U. A Survey of UV Filters Used in Sunscreen Cosmetics. Applied Sciences. 2024;14:3302. https://doi.org/10.3390/app14083302 | |
dc.relation.references | Lee M-H, Kim I-Y. Moisturizing Effect and Durability of Sun Protection Factor (UVA/B) Activity with Multiple Emulsion (W/O/W) System. Journal of Oil & Applied Science. 2015;32:339-47. https://doi.org/10.12925/JKOCS.2015.32.2.339 | |
dc.relation.references | Mohanty S, Badhei L, Pal A, Panda P. NOVEL COSMECEUTICAL FORMULATIONS: A BETTER APPROACH TO PHOTOPROTECTION. Int J App Pharm. 2022;9-17. https://doi.org/10.22159/ijap.2022v14i4.44602 | |
dc.relation.references | Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry. 2015;97:55-74. https://doi.org/10.1016/j.ejmech.2015.04.040 | |
dc.relation.references | Thbayh DK, Palusiak M, Viskolcz B, Fiser B. Comparative study of the antioxidant capability of EDTA and Irganox. Heliyon. 2023;9:e16064. https://doi.org/10.1016/j.heliyon.2023.e16064 | |
dc.relation.references | Ahmad I, Ali Sheraz M, Ahmed S, Shad Z, Vaid FHM. Photostabilization of ascorbic acid with citric acid, tartaric acid and boric acid in cream formulations. Intern J of Cosmetic Sci. 2012;34:240-5. https://doi.org/10.1111/j.1468-2494.2012.00708.x | |
dc.relation.references | Springer A, Reinelt M, Jesdinszki M, Wunderlich J. How Can the Right Choice of Packaging Materials Prevent a Loss of Quality in Sun Care Products? SOFW Journal. 2021;147. | |
dc.relation.references | Rowe RC, Sheskey PJ, Quinn ME. Handbook of pharmaceutical excipients. 6th ed. London: Pharmaceutical press; 2009. | |
dc.relation.references | Pinto JR, Monteiro e Silva SA, Leonardi GR. Effects of 1,3‐propanediol associated, or not, with butylene glycol and/or glycerol on skin hydration and skin barrier function. Intern J of Cosmetic Sci. 2024;46:85-95. https://doi.org/10.1111/ics.12911 | |
dc.relation.references | Gim H, Hong S, Park H, Im S, Kim JI. Synergistic/antagonistic antimicrobial effects of cosmetic ingredients in combination with 1,2-hexanediol. Journal of Microorganism Control. 2024;29:133-42. https://doi.org/10.4265/jmc.29.4_133 | |
dc.relation.references | Dréno B, Zuberbier T, Gelmetti C, Gontijo G, Marinovich M. Safety review of phenoxyethanol when used as a preservative in cosmetics. Acad Dermatol Venereol. 2019;33:15-24. https://doi.org/10.1111/jdv.15944 | |
dc.relation.references | Halla N, Fernandes IP, Heleno SA, Costa P, Boucherit-Otmani Z, Boucherit K, et al. Cosmetics Preservation: A Review on Present Strategies. Molecules. 2018;23:1571. https://doi.org/10.3390/molecules23071571 | |
dc.relation.references | Latha Samala M, Sridevi G. Role of Polymers as Gelling Agents in the Formulation of Emulgels. Polym Sci. 2016;2. https://doi.org/10.4172/2471-9935.100010 | |
dc.relation.references | Patel BM, Kuchekar AB, Pawar SR. Emulgel Approach to Formulation Development: A Review. Biosci, Biotech Res Asia. 2021;18:459-65. https://doi.org/10.13005/bbra/2931 | |
dc.relation.references | Johnson W, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, et al. Safety Assessment of Vinylpyrrolidone Polymers as Used in Cosmetics. Int J Toxicol. 2024;43:5-41. https://doi.org/10.1177/10915818241267203 | |
dc.relation.references | IFF Pharma Solutions. Product Data Sheet: METHOCEL K100M PREMIUM HPMC. IFF Pharma Solutions; Report No.: 2816565. | |
dc.relation.references | Tafuro G, Costantini A, Baratto G, Busata L, Semenzato A. Rheological and Textural Characterization of Acrylic Polymer Water Dispersions for Cosmetic Use. Ind Eng Chem Res. 2019;58:23549-58. https://doi.org/10.1021/acs.iecr.9b05319 | |
dc.relation.references | Clariant. Technical Data Sheet: ARISTOFLEX AVS. Suiza: CLARIANT INTERNATIONAL LTD; 2019. | |
dc.relation.references | Nery ÉM, Martinez RM, Velasco MVR, Baby AR. A short review of alternative ingredients and technologies of inorganic UV filters. J of Cosmetic Dermatology. 2021;20:1061-5. https://doi.org/10.1111/jocd.13694 | |
dc.relation.references | Serpone N, Dondi D, Albini A. Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products. Inorganica Chimica Acta. 2007;360:794-802. https://doi.org/10.1016/j.ica.2005.12.057 | |
dc.relation.references | Dransfield G, Cutter S, Laurence P. Particulate metal oxide. 2009. | |
dc.relation.references | Crosera M, Prodi A, Mauro M, Pelin M, Florio C, Bellomo F, et al. Titanium Dioxide Nanoparticle Penetration into the Skin and Effects on HaCaT Cells. IJERPH. 2015;12:9282-97. https://doi.org/10.3390/ijerph120809282 | |
dc.relation.references | Kimura E, Kawano Y, Todo H, Ikarashi Y, Sugibayashi K. Measurement of Skin Permeation/Penetration of Nanoparticles for Their Safety Evaluation. Biological & Pharmaceutical Bulletin. 2012;35:1476-86. https://doi.org/10.1248/bpb.b12-00103 | |
dc.relation.references | Croda Inc. SolaveilTM CT Dispersions. Estados Unidos; 2014. Report No.: DS-280-2. | |
dc.relation.references | Roy RK, editor. A primer on the Taguchi method. 2nd ed. Dearborn, MI: Society of Manufacturing Engineers; 2010. | |
dc.relation.references | González‐rodríguez ML, Mouram I, Cózar‐bernal MJ, Villasmil S, Rabasco AM. Applying the taguchi method to optimize sumatriptan succinate niosomes as drug carriers for skin delivery. Journal of Pharmaceutical Sciences. 2012;101:3845-63. https://doi.org/10.1002/jps.23252 | |
dc.relation.references | Saderra L. El secreto de la calidad japonesa: El diseño de experimentos clásico, Taguchi y Shainin. MARCOMBO; 1993. | |
dc.relation.references | Vieira RP, Fernandes AR, Kaneko TM, Consiglieri VO, Pinto CASDO, Pereira CSC, et al. Physical and physicochemical stability evaluation of cosmetic formulations containing soybean extract fermented by Bifidobacterium animalis. Braz J Pharm Sci. 2009;45:515-25. https://doi.org/10.1590/S1984-82502009000300018 | |
dc.relation.references | Dong X, Sun Z, Jiang L, Li C, Zheng S. Investigation on the film-coating mechanism of alumina-coated rutile TiO₂ and its dispersion stability. Advanced Powder Technology. 2017;28:1982-8. https://doi.org/10.1016/j.apt.2017.05.001 | |
dc.relation.references | Kumar Sarella PN, Pravallika LRK. The Expanding Scope of Emulgels: Formulation, Evaluation and Medical Uses. Int J Curr Sci Res Rev. 2023;06(05). https://doi.org/10.47191/ijcsrr/v6-i5-42 | |
dc.relation.references | Himma J, Shekh M, Saroj K, Lalan K. Rheological Properties and Particle Size Distribution of Soy Protein Isolate as Affected by Drying Methods. Nutri Food Sci Int J. 2018;7. https://doi.org/10.19080/NFSIJ.2018.07.555721 | |
dc.relation.references | Wesołowska O, Kużdżał M, Štrancar J, Michalak K. Interaction of the chemopreventive agent resveratrol and its metabolite, piceatannol, with model membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2009;1788:1851-60. https://doi.org/10.1016/j.bbamem.2009.06.005 | |
dc.relation.references | Santos J, Trujillo-Cayado LA, Carrillo F, López-Castejón ML, Alfaro-Rodríguez MC. Relation between Droplet Size Distributions and Physical Stability for Zein Microfluidized Emulsions. Polymers. 2022;14:2195. https://doi.org/10.3390/polym14112195 | |
dc.relation.references | Jafari SM, He Y, Bhandari B. Optimization of nano-emulsions production by microfluidization. Eur Food Res Technol. 2007;225:733-41. https://doi.org/10.1007/s00217-006-0476-9 | |
dc.relation.references | Lowe NJ, editor. Sunscreens: development, evaluation, and regulatory aspects. 2. ed., rev.expanded. New York: Dekker; 1997. | |
dc.relation.references | Klink IM, Phillips RJ, Dungan SR. Effect of emulsion drop-size distribution upon coalescence in simple shear flow: A population balance study. Journal of Colloid and Interface Science. 2011;353:467-75. https://doi.org/10.1016/j.jcis.2010.09.059 | |
dc.relation.references | Martinović M, Nešić I, Bojović D, Žugić A, Blagojević S, Blagojević S, et al. Plant-Based Sunscreen Emulgel: UV Boosting Effect of Bilberry and Green Tea NaDES Extracts. Gels. 2024;10:825. https://doi.org/10.3390/gels10120825 | |
dc.relation.references | International Organization for Standardization (ISO). Cosmetics — Sun protection test methods — In vitro determination of sun protection factor (SPF). 2024 p. 44. Report No.: ISO 23675:2024. | |
dc.relation.references | Shahin M, Abdel Hady S, Hammad M, Mortada N. Novel Jojoba Oil-Based Emulsion Gel Formulations for Clotrimazole Delivery. AAPS PharmSciTech. 2011;12:239-47. https://doi.org/10.1208/s12249-011-9583-4 | |
dc.relation.references | Kalayi M, Yeğen G, Okur NÜ, Aksu B. Evaluation of emulgel formulations contain diclofenac sodium via quality by design approach. jrp. 2022;26(3):460-8. https://doi.org/10.29228/jrp.143 | |
dc.relation.references | Muñoz J, Prieto P, García C, Alfaro M. Influence of Processing Variables on the Physical Porperties of Emulgels Contaning Flaxseed Fiber. Proceedings of the Iberian Meeting on Rheology (IBEREO 2024). Springer Nature; 2024. p. 193. | |
dc.relation.references | Kim J, Jeong EH, Baik JH, Park JD. The role of rheology in cosmetics research: a review. Korea-Aust Rheol J. 2024;36:271-82. https://doi.org/10.1007/s13367-024-00108-y | |
dc.relation.references | Gaspar LR, Maia Campos PMBG. Rheological behavior and the SPF of sunscreens. International Journal of Pharmaceutics. 2003;250:35-44. https://doi.org/10.1016/S0378-5173(02)00462-3 | |
dc.relation.references | Arrieta-Durango C, Henao-Rivas L, Andrade-Pizarro R. Rheological Behavior of Passion Fruit (Passiflora edulis) Peel Extract. Gels. 2022;8:566. https://doi.org/10.3390/gels8090566 | |
dc.relation.references | Dong L, Liu C, Cun D, Fang L. The effect of rheological behavior and microstructure of the emulgels on the release and permeation profiles of Terpinen-4-ol. European Journal of Pharmaceutical Sciences. 2015;78:140-50. https://doi.org/10.1016/j.ejps.2015.07.003 | |
dc.relation.references | Lupi FR, Gabriele D, Seta L, Baldino N, De Cindio B, Marino R. Rheological investigation of pectin-based emulsion gels for pharmaceutical and cosmetic uses. Rheol Acta. 2015;54:41-52. https://doi.org/10.1007/s00397-014-0809-8 | |
dc.relation.references | Vieira GS, Lavarde M, Fréville V, Rocha‐Filho PA, Pensé‐Lhéritier A. Combining sensory and texturometer parameters to characterize different type of cosmetic ingredients. Intern J of Cosmetic Sci. 2020;42:156-66. https://doi.org/10.1111/ics.12598 | |
dc.relation.references | Bourne MC. Food texture and viscosity. 2nd. ed. San Diego San Francisco New York: Academic press; 2002. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.bne | Plantas. Composición | spa |
dc.subject.bne | Plants-Composition | eng |
dc.subject.bne | Extractos de plantas | spa |
dc.subject.bne | Plant extracts | eng |
dc.subject.bne | Piel. Cuidado e higiene | spa |
dc.subject.bne | Skin-Care and hygiene | eng |
dc.subject.ddc | 540 - Química y ciencias afines::547 - Química orgánica | spa |
dc.subject.lemb | Cosmética | spa |
dc.subject.lemb | Cosmética | eng |
dc.subject.proposal | Passiflora | spa |
dc.subject.proposal | Fotoprotección | spa |
dc.subject.proposal | Perfilado químico | spa |
dc.subject.proposal | Estabilidad | spa |
dc.subject.proposal | Protectores solares | spa |
dc.subject.proposal | Emulgel | spa |
dc.subject.proposal | Photoprotection | eng |
dc.subject.proposal | Chemical profiling | eng |
dc.subject.proposal | Stability | eng |
dc.subject.proposal | Sunscreens | eng |
dc.title | Perfilado químico de extractos de subproductos de Passifloras comerciales y propuesta preliminar de una formulación con actividad fotoprotectora | spa |
dc.title.translated | Chemical profiling of extracts from by-products of commercial Passifloras and preliminary proposal of a photoprotective formulation | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis_Perfilado químico de extractos de subproductos de Passifloras comerciales y propuesta preliminar de una formulación con actividad fotoprotectora.pdf
- Tamaño:
- 6.99 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: