Perfilado químico de extractos de subproductos de Passifloras comerciales y propuesta preliminar de una formulación con actividad fotoprotectora

dc.contributor.advisorCastellanos Hernández, Leonardo
dc.contributor.advisorBaena Aristizábal, Yolima
dc.contributor.authorCabeza Pulido, María Camila
dc.contributor.orcidCabeza Pulido, Maria [0009-0003-6091-6301]
dc.contributor.researchgroupEstudio y Aprovechamiento de Productos Naturales Marinos y Frutas de Colombiaspa
dc.contributor.researchgroupSistemas Para Liberación Controlada de Moléculas Biológicamente Activasspa
dc.contributor.researchgroupGrupo de Investigación en Tecnología de Productos Naturales Tecpronaspa
dc.coverage.countryColombiaspa
dc.date.accessioned2025-09-05T14:01:17Z
dc.date.available2025-09-05T14:01:17Z
dc.date.issued2025
dc.descriptionilustraciones a color, diagramas, gráficos, fotografíasspa
dc.description.abstractLas plantas del género Passiflora se cultivan ampliamente en Colombia, destacándose entre las especies más conocidas la granadilla (P. ligularis), el maracuyá (P. edulis var. flavicarpa), la gulupa (P. edulis var. edulis), la badea (P. quadrangularis), la cholupa (P. maliformis) y las curubas (P. tarminiana × P. tripartita). Estas especies son principalmente utilizadas en la industria alimentaria, generando como subproductos hojas, pericarpios y semillas, los cuales presentan un bajo nivel de aprovechamiento a pesar de su potencial como fuentes de compuestos bioactivos. En este contexto, la presente tesis tuvo como objetivo estudiar el perfil químico y la actividad fotoprotectora de subproductos derivados del sistema de producción de diversas Passifloras cultivadas en Colombia, con miras a la inclusión de uno de ellos en una formulación cosmética preliminar. Para ello, se abordó el perfilado químico y la evaluación de la capacidad fotoprotectora de extractos polares obtenidos a partir de dichas especies, seleccionando posteriormente el extracto con mayor potencial como ingrediente fotoprotector. Este extracto fue sometido a un proceso de optimización y evaluación bajo condiciones de estrés. Finalmente, se formuló un prototipo de cosmético fotoprotector que incorporó dicho extracto como uno de sus activos. A continuación, se amplían cada uno de estos resultados. El análisis químico de los extractos de los subproductos del cultivo de las Passifloras permitió la detección de 52 compuestos en las fracciones butanólicas (FB) de hojas y pericarpios, identificándose 31 flavonoides y 16 saponinas (estas últimas únicamente en las FB de hojas). Por su parte, en los extractos hidroetanólicos (EH) de semillas se identificaron 22 compuestos, siendo los estilbenos (como piceatanol y resveratrol) los más abundantes (Texto tomado de la fuente). La evaluación inicial de la actividad fotoprotectora permitió preseleccionar los 10 con mayor factor de protección solar (FPS), destacándose las FB de hojas (P. edulis var. flavicarpa, P. tarminiana x P. tripartita, P. maliformis, P. edulis var. edulis), los EH de semillas (P. ligularis, P. edulis var. edulis, P. edulis var. flavicarpa, P. quadrangularis, P. maliformis) y las FB de pericarpios (P. edulis var. flavicarpa). Con el fin de priorizar alguno de estos extractos, se usó la matriz del proceso de análisis jerárquico (AHP, por sus siglas en inglés), evaluando los extractos preseleccionados con los siguientes siete criterios, relevantes para la selección de ingredientes fotoprotectores: rendimiento, disponibilidad del material vegetal, antecedentes científicos, capacidad de protección UVB y UVA, perfil químico y grado de innovación. Este análisis permitió priorizar el EH de semillas de P. maliformis como el extracto con mayor potencial para el desarrollo de un fotoprotector. Una vez seleccionado el extracto hidroetanólico de semillas de P. maliformis, se procedió a optimizar la metodología de extracción, usando los parámetros de temperatura, composición de la mezcla etanol;agua y tiempo, y mediante la metodología de superficie de respuesta. Las condiciones óptimas encontradas fueron un porcentaje de etanol del 65%, una temperatura de 62,7 °C y un tiempo de 42 minutos. Bajo estas condiciones, se obtuvo un extracto con una concentración efectiva total (CET) diez veces mayor y un FPS 3,8 veces superior al extracto inicial. La validación in vitro de la actividad fotoprotectora del extracto optimizado se realizó sobre queratinocitos humanos inmortalizados (línea HaCaT), confirmando su eficacia. Asimismo, su estabilidad fue evaluada bajo diversas condiciones de estrés, evidenciándose alta resistencia frente a hidrólisis neutra, peroxidación y fotólisis. Sin embargo, se observó una degradación significativa en condiciones de hidrólisis ácida y básica, clasificando al extracto como lábil y extremadamente lábil, respectivamente. Finalmente, se desarrolló y caracterizó un prototipo de formulación tipo emulgel que incorporó tanto el extracto seleccionado como filtros solares aprobados por los entes reguladores. La formulación, basada en Aristoflex® AVS, sin dióxido de titanio y con un 0,5% de extracto, mostró una buena estabilidad físico-química bajo condiciones de estrés, con mejores resultados a los obtenidos en el diseño experimental exploratorio evaluado. Además, presentó un comportamiento reológico pseudoplástico, firmeza adecuada y propiedades texturales favorables para su aplicación cosmética.spa
dc.description.abstractPlants of the genus Passiflora are widely cultivated in Colombia, with some of the most well-known species including granadilla (P. ligularis), passion fruit (P. edulis var. flavicarpa), purple passion fruit (P. edulis var. edulis), giant granadilla (P. quadrangularis), sweet calabash (P. maliformis), and banana passion fruit (P. tarminiana × P. tripartita). These species are primarily used in the food industry, generating by-products such as leaves, pericarps, and seeds, which remain largely underutilized despite their potential as sources of bioactive compounds. In this context, the present thesis aimed to study the chemical profile and photoprotective activity of by-products derived from the production system of various Passiflora species cultivated in Colombia, with the goal of incorporating one of them into a preliminary cosmetic formulation. To achieve this, chemical profiling and assessment of the photoprotective capacity of polar extracts from these species were conducted. The extract showing the highest potential as a photoprotective ingredient was selected and subsequently subjected to optimization and evaluation under stress conditions. Finally, a prototype photoprotective cosmetic formulation incorporating this extract as one of its active ingredients was developed. The following sections detail each of these findings. Chemical analysis of the extracts from Passiflora cultivation by-products led to the detection of 52 compounds in the butanolic fractions (BF) of leaves and pericarps, including 31 flavonoids and 16 saponins (the latter found only in leaf BF). In turn, 22 compounds were identified in the hydroethanolic extracts (HE) of seeds, with stilbenes—such as piceatannol and resveratrol—being the most abundant. An initial evaluation of photoprotective activity enabled the preselection of the ten extracts with the highest sun protection factor (SPF), highlighting the BF of leaves (P. edulis var. flavicarpa, P. tarminiana x P. tripartita, P. maliformis, P. edulis var. edulis), the HE of seeds (P. ligularis, P. edulis var. edulis, P. edulis var. flavicarpa, P. quadrangularis, P. maliformis) and the BF of pericarps (P. edulis var. flavicarpa). To prioritize among these, the Analytic Hierarchy Process (AHP) was employed, assessing the preselected extracts based on seven criteria relevant for selecting photoprotective ingredients: yield, availability of plant material, scientific background, UVB and UVA protection capacity, chemical profile, and degree of innovation. This analysis prioritized the HE of P. maliformis seeds as the extract with the highest potential for photoprotector development. Once the hydroethanolic extract of P. maliformis seeds was selected, the extraction methodology was optimized using temperature, ethanol:water ratio, and time as parameters, applying response surface methodology. The optimal conditions identified were 65% ethanol, a temperature of 62.7 °C, and a duration of 42 minutes. Under these conditions, an extract with a total effective concentration (TEC) ten times higher and an SPF 3.8 times greater than the initial extract was obtained. The in vitro validation of the photoprotective activity of the optimized extract was performed on immortalized human keratinocytes (HaCaT cell line), confirming its efficacy. In addition, its stability was assessed under various stress conditions, demonstrating high resistance to neutral hydrolysis, peroxidation, and photolysis. However, significant degradation was observed under acidic and basic hydrolysis conditions, classifying the extract as labile and extremely labile, respectively. Finally, a prototype emulgel formulation was developed and characterized, incorporating both the selected extract and chemical UV filters. The formulation, based on Aristoflex® AVS, free of titanium dioxide, and containing 0.5% extract, showed good physicochemical stability under stress conditions, achiving better results than those obtained in the exploratory experimental design evaluated. Moreover, it exhibited pseudoplastic rheological behavior, appropriate firmness, and favorable textural properties for cosmetic application.eng
dc.description.curricularareaFarmacia.Sede Bogotáspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias Farmacéuticasspa
dc.description.researchareaDiseño y desarrollo de productos fitofarmacéuticosspa
dc.format.extentxviii, 229 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88624
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotáspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias Farmacéuticasspa
dc.relation.referencesCorrêa MDP. Solar ultraviolet radiation: properties, characteristics and amounts observed in Brazil and South America. An Bras Dermatol . 2015;90:297-313. https://doi.org/10.1590/abd1806-4841.20154089
dc.relation.referencesHossain E. The Sun and the Earth. The Sun, Energy, and Climate Change . Cham: Springer Nature Switzerland; 2023. p. 1-67. https://doi.org/10.1007/978-3-031-22196-5_1
dc.relation.referencesVan Der Rhee HJ, De Vries E, Coebergh JW. Regular sun exposure benefits health. Medical Hypotheses . 2016;97:34-7. https://doi.org/10.1016/j.mehy.2016.10.011
dc.relation.referencesAllenson K, Esnaola N, Bernicker EH. Sun Exposure and Skin Cancer. En: Bernicker EH, editor. Environmental Oncology . Cham: Springer International Publishing; 2023. p. 149-58. https://doi.org/10.1007/978-3-031-33750-5_6
dc.relation.referencesKnuschke P. UV Exposure. Kanerva’s Occupational Dermatology . 2018;1-36. https://doi.org/10.1007/978-3-319-40221-5_76-2
dc.relation.referencesHexsel CL, Lim HW. Photoprotection. Preventive Dermatology . 2010;81-91. https://doi.org/10.1007/978-1-84996-021-2_9/TABLES/4
dc.relation.referencesPurim KSM, Titski ACK, De Jesus IC, Leite N. Photoprotection and the Environment. En: Rangel Bonamigo R, editor. Dermatology in Public Health Environments . Cham: Springer International Publishing; 2023. p. 1439-57. https://doi.org/10.1007/978-3-031-13505-7_58
dc.relation.referencesMora M, Olivares A, González T, Castro I. The sun: enemy of our skin? MEDISAN . 2010;14. Recuperado a partir de: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1029-30192010000600014&lng=es&tlng=en.
dc.relation.referencesCestari TF, De Almeida Dornelles M, Dornelles SIT. Solar Radiation and Photodermatoses. En: Rangel Bonamigo R, editor. Dermatology in Public Health Environments . Cham: Springer International Publishing; 2023. p. 827-44. https://doi.org/10.1007/978-3-031-13505-7_33
dc.relation.referencesWorld Cancer Research Fund. Skin cancer statistics. World Cancer Research Fund. Recuperado a partir de: https://www.wcrf.org/preventing-cancer/cancer-statistics/skin-cancer-statistics/
dc.relation.referencesMeijs M, Herrera A, Acosta A, De Vries E. Burden of skin cancer in Colombia. Int J Dermatology . 2022;61:1003-11. https://doi.org/10.1111/ijd.16077
dc.relation.referencesFriedman BJ, Lim HW, Wang SQ. Photoprotection and photoaging. Principles and Practice of Photoprotection . 2016;61-74. https://doi.org/10.1007/978-3-319-29382-0_4/FIGURES/3
dc.relation.referencesTips to Stay Safe in the Sun: From Sunscreen to Sunglasses | FDA. Recuperado a partir de: https://www.fda.gov/consumers/consumer-updates/tips-stay-safe-sun-sunscreen-sunglasses
dc.relation.referencesForsea A-M. Sunscreens. En: Katsambas AD, Lotti TM, Dessinioti C, D’Erme AM, editores. European Handbook of Dermatological Treatments . Cham: Springer International Publishing; 2023. p. 1771-85. https://doi.org/10.1007/978-3-031-15130-9_156
dc.relation.referencesGrether‐Beck S, Marini A, Jaenicke T, Krutmann J. Photoprotection of human skin beyond ultraviolet radiation. Photoderm Photoimm Photomed . 2014;30:167-74. https://doi.org/10.1111/phpp.12111
dc.relation.referencesTanaka Y. Photoprotective Ability of Sunscreens against Ultraviolet, Visible Light and Near-Infrared Radiation. OPJ . 2023;13:140-6. https://doi.org/10.4236/opj.2023.136012
dc.relation.referencesBreakell T, Kowalski I, Foerster Y, Kramer R, Erdmann M, Berking C, et al. Ultraviolet Filters: Dissecting Current Facts and Myths. JCM . 2024;13:2986. https://doi.org/10.3390/jcm13102986
dc.relation.referencesHegde AR, Kunder MU, Narayanaswamy M, Murugesan S, Furtado SC, Veerabhadraiah BB, et al. Advancements in sunscreen formulations: integrating polyphenolic nanocarriers and nanotechnology for enhanced UV protection. Environ Sci Pollut Res . 2024;31:38061-82. https://doi.org/10.1007/s11356-024-33712-0
dc.relation.referencesMancuso JB, Maruthi R, Wang SQ, Lim HW. Sunscreens: An Update. Am J Clin Dermatol . 2017;18:643-50. https://doi.org/10.1007/s40257-017-0290-0
dc.relation.referencesFDA. Sunscreen Drug Products for Over-the-Counter Human Use. Federal Register; 2019. Report No.: 2019-03019. Recuperado a partir de: https://www.federalregister.gov/documents/2019/02/26/2019-03019/sunscreen-drug-products-for-over-the-counter-human-use
dc.relation.referencesManaia EB, Kaminski RCK, Corrêa MA, Chiavacci LA. Inorganic UV filters. Braz J Pharm Sci . 2013;49:201-9. https://doi.org/10.1590/S1984-82502013000200002
dc.relation.referencesJesus A, Sousa E, Cruz MT, Cidade H, Lobo JMS, Almeida IF. UV Filters: Challenges and Prospects. Pharmaceuticals . 2022;15. https://doi.org/10.3390/PH15030263/S1
dc.relation.referencesChopra D, Kamar MD, Shukla S, Patel SK, Bala M, Amar SK. Sunscreens: Toxic Effects as Determined by Biomarkers. En: Patel VB, Preedy VR, Rajendram R, editores. Biomarkers in Toxicology . Cham: Springer International Publishing; 2023. p. 775-95. https://doi.org/10.1007/978-3-031-07392-2_49
dc.relation.referencesYuan S, Huang J, Jiang X, Huang Y, Zhu X, Cai Z. Environmental Fate and Toxicity of Sunscreen-Derived Inorganic Ultraviolet Filters in Aquatic Environments: A Review. Nanomaterials . 2022;12:699. https://doi.org/10.3390/nano12040699
dc.relation.referencesCarve M, Allinson G, Nugegoda D, Shimeta J. Trends in environmental and toxicity research on organic ultraviolet filters: A scientometric review. Science of The Total Environment . 2021;773:145628. https://doi.org/10.1016/j.scitotenv.2021.145628
dc.relation.referencesHuang Y, Law JC-F, Lam T-K, Leung KS-Y. Risks of organic UV filters: a review of environmental and human health concern studies. Science of The Total Environment . 2021;755:142486. https://doi.org/10.1016/j.scitotenv.2020.142486
dc.relation.referencesVerma A, Zanoletti A, Kareem KY, Adelodun B, Kumar P, Ajibade FO, et al. Skin protection from solar ultraviolet radiation using natural compounds: a review. Environ Chem Lett . 2024;22:273-95. https://doi.org/10.1007/s10311-023-01649-4
dc.relation.referencesSaewan N, Jimtaisong A. Natural products as photoprotection. Journal of Cosmetic Dermatology . 2015;14:47-63. https://doi.org/10.1111/JOCD.12123
dc.relation.referencesPizano-Andrade JC, Vargas-Guerrero B, Gurrola-Díaz CM, Vargas-Radillo JJ, Ruiz-López MA. Natural products and their mechanisms in potential photoprotection of the skin. J Biosci . 2022;47:77. https://doi.org/10.1007/s12038-022-00314-2
dc.relation.referencesOliveira H, Correia P, Pereira AR, Araújo P, Mateus N, De Freitas V, et al. Exploring the Applications of the Photoprotective Properties of Anthocyanins in Biological Systems. IJMS . 2020;21:7464. https://doi.org/10.3390/ijms21207464
dc.relation.referencesLa Barre S, S. Bates S. Blue Biotechnology: Production and Use of Marine Molecules. 1.a ed. Wiley; 2018. https://doi.org/10.1002/9783527801718
dc.relation.referencesPangestuti R, Siahaan EA, Kim S-K. Photoprotective Substances Derived from Marine Algae. Marine Drugs . 2018;16:399. https://doi.org/10.3390/md16110399
dc.relation.referencesRadice M, Manfredini S, Ziosi P, Dissette V, Buso P, Fallacara A, et al. Herbal extracts, lichens and biomolecules as natural photo-protection alternatives to synthetic UV filters. A systematic review. Fitoterapia . 2016;114:144-62. https://doi.org/10.1016/j.fitote.2016.09.003
dc.relation.referencesJosé L. Rojas, Mauricio Díaz-Santos, Norma A. Valencia-Islas. Metabolites with antioxidant and photo-protective properties from Usnea roccellina Motyka, a lichen from Colombian Andes. Pharmaceutical and Biosciences Journal. 2015;18-26. https://doi.org/10.20510/ukjpb/3/i4/89454
dc.relation.referencesOcampo Pérez JA, Coppens d’Eeckenbrugge G, Restrepo M, Jarvis A, Salazar M, Caetano CM. Diversity of Colombian passifloraceae : Biogeography and an updated list for conservation. Biota Colombiana. 2007;8:1-45.
dc.relation.referencesNoreña Triana ME. CADENA DEL PASIFLORAS Indicadores e instrumentos. Minagricultura; 2021.
dc.relation.referencesRojas Romaní D, Calixto-Cotos MR, Suca Apaza F. Utilization of Passiflora tripartita fruit residues. Scientia Agropecuaria. 2021;12:445-53. https://doi.org/10.17268/sci.agropecu.2021.049
dc.relation.referencesCaicedo MA. Obtención de una fuente de fibra dietaría a partir de residuos agroindustriales de pasifloras [Tesis de maestría]. [Manizales]: Universidad Nacional de Colombia; 2021.
dc.relation.referencesCalevo GA, Benedetti L, Braglia L, Cuna FS, Tava A. Chemical composition of the volatile oil from flowers and leaves of new Passiflora hybrids. International Journal of Applied Research in Natural Products. 2016;9:21-7.
dc.relation.referencesFerreres F, Sousa C, Valentão P, Andrade PB, Seabra RM, Gil-Izquierdo Á. New C -Deoxyhexosyl Flavones and Antioxidant Properties of Passiflora edulis Leaf Extract. Journal of Agricultural and Food Chemistry. 2007;55:10187-93. https://doi.org/10.1021/jf072119y
dc.relation.referencesda Silva JK, Cazarin CBB, Colomeu TC, Batista ÂG, Meletti LMM, Paschoal JAR, et al. Antioxidant activity of aqueous extract of passion fruit (Passiflora edulis) leaves: In vitro and in vivo study. Food Research International. 2013;53:882-90. https://doi.org/10.1016/j.foodres.2012.12.043
dc.relation.referencesMolano-Avellaneda Z, Miranda-Lasprilla D, Ocampo-Pérez J. Progress in the study of phenology cholupa (Passiflora maliformis L.) in producing areas of Colombia. Revista Colombiana de Ciencias Hortícolas. 2020;14. https://doi.org/10.17584/rcch.2020v14i1.11251
dc.relation.referencesCosta GM, Gazola AC, Madóglio FA, Zucolotto SM, Reginatto FH, Castellanos L, et al. Vitexin Derivatives as Chemical Markers In The Differentiation of the Closely Related Species Passiflora alata Curtis And Passiflora quadrangularis Linn. Journal of Liquid Chromatography & Related Technologies. 2013;36:1697-707. https://doi.org/10.1080/10826076.2012.695316
dc.relation.referencesEcheverry S. Aporte a la estandarización del proceso de obtención de un extracto de hojas de Passiflora quadrangularis [MasterThesis]. [Bogotá]: Universidad Nacional de Colombia; 2017. Recuperado a partir de: https://repositorio.unal.edu.co/handle/unal/62356
dc.relation.referencesPardo Solórzano MV, Costa GM, Castellanos L. Passiflora By-Products: Chemical Profile and Potential Use as Cosmetic Ingredients. Sci Pharm . 2024;92:57. https://doi.org/10.3390/scipharm92040057
dc.relation.referencesKrutmann J. Pathomechanisms of Photoaged Skin. Textbook of Aging Skin. 2017.
dc.relation.referencesViera W, Shinohara T, Samaniego I, Sanada A, Terada N, Ron L, et al. Phytochemical Composition and Antioxidant Activity of Passiflora spp. Germplasm Grown in Ecuador. Plants. 2022;11:328. https://doi.org/10.3390/plants11030328
dc.relation.referencesZakwan Samudin MI, Abdul Aziz MY, Nurhayati Y. Total Phenolic Content and Antioxidant Activity of Passiflora edulis Extract. Journal Of Agrobiotechnology. 2022;13:1-9. https://doi.org/10.37231/jab.2022.13.2.291
dc.relation.referencesRamaiya SD, Bujang JS, Zakaria MH. Assessment of Total Phenolic, Antioxidant, and Antibacterial Activities of Passiflora Species. The Scientific World Journal. 2014;2014:1-10. https://doi.org/10.1155/2014/167309
dc.relation.referencesRuiz Reyes SG. Contenido de fenoles totales y capacidad antioxidante in vitro del zumo de “pur pur” Passiflora tripartita var. mollissima (Passifloraceae). Arnaldoa . 2018;25. https://doi.org/10.22497/arnaldoa.253.25312
dc.relation.referencesWiliantari S, Iswandana R, Elya B. Total Polyphenols, Total Flavonoids, Antioxidant Activity and Inhibition of Tyrosinase Enzymes from Extract and Fraction of Passiflora ligularis Juss. PJ . 2022;14:672-80. https://doi.org/10.5530/pj.2022.14.86
dc.relation.referencesWiliantari S, Iswandana R, Elya B. Evaluation of Antioxidant Activity, Tyrosinase Inhibition, and Stability of Face Mask Cream Formulation from Sweet Granadilla (Passiflora ligularis Juss) Seed Fraction. RJPT . 2023;5255-63. https://doi.org/10.52711/0974-360X.2023.00852
dc.relation.referencesAzhid R, Priyanga S, Kanakasabapathy D. In Vitro Free Radical Scavenging Activity, Phytochemical Screening and Quantitative Analysis of Passiflora Ligularis Seed. IJPDA . 2016;4:49-57. Recuperado a partir de: https://ijpda.org/index.php/journal/article/view/196
dc.relation.referencesLoizzo MR, Lucci P, Núñez O, Tundis R, Balzano M, Frega NG, et al. Native Colombian Fruits and Their by-Products: Phenolic Profile, Antioxidant Activity and Hypoglycaemic Potential. Foods . 2019;8:89. https://doi.org/10.3390/foods8030089
dc.relation.referencesKawakami S, Morinaga M, Tsukamoto-Sen S, Mori S, Matsui Y, Kawama T. Constituent Characteristics and Functional Properties of Passion Fruit Seed Extract. Life . 2021;12:38. https://doi.org/10.3390/life12010038
dc.relation.referencesAhmad AR, Malik Abd. Antioxidant Activity of Passiflora edulis (Passion fruit) Seed Extracts Obtained from Maceration and Ultrasonic Assisted Extraction Method. fitofarmaka JIF . 2023;13:77-81. https://doi.org/10.33751/jf.v13i1.7303
dc.relation.referencesYepes A, Ochoa-Bautista D, Murillo-Arango W, Quintero-Saumeth J, Bravo K, Osorio E. Purple passion fruit seeds (Passiflora edulis f. edulis Sims) as a promising source of skin anti-aging agents: Enzymatic, antioxidant and multi-level computational studies. Arabian Journal of Chemistry. 2021;14:102905. https://doi.org/10.1016/j.arabjc.2020.11.011
dc.relation.referencesGonzález L, Álvarez A, Murillo E, Guerra C, Méndez J. Potential Uses of the Peel And Seed of Passiflora Edulis Sims F. Edulis (Gulupa) From Its Chemical Characterization, Antioxidant, And Antihypertensive Functionalities. Asian J Pharm Clin Res . 2019;104-12. https://doi.org/10.22159/ajpcr.2019.v12i10.33828
dc.relation.referencesDos Reis LCR, Facco EMP, Salvador M, Flôres SH, De Oliveira Rios A. Antioxidant potential and physicochemical characterization of yellow, purple and orange passion fruit. J Food Sci Technol . 2018;55:2679-91. https://doi.org/10.1007/s13197-018-3190-2
dc.relation.referencesGuimarães SF, Lima IM, Modolo LV. Phenolic content and antioxidant activity of parts of Passiflora edulis as a function of plant developmental stage. Acta Bot Bras . 2020;34:74-82. https://doi.org/10.1590/0102-33062019abb0148
dc.relation.referencesdos Santos GJ, Defendi RO, Düsman E, Biffi MT, Berton GH, Tonin APP, et al. Valorization of Wastes from the Juice Passion Fruit Production Industry: Extraction of Bioactive Compounds from Seeds, Antioxidant, Photoprotective and Antiproliferative Activities. Waste and Biomass Valorization. 2023;14:1233-50. https://doi.org/10.1007/s12649-022-01937-0
dc.relation.referencesRuiz Gutierrez YL, Sifuentes Gonzales KC. Evaluación in vitro de la fotoprotección del extracto de las hojas de Passiflora edulis “maracuyá”. [Trujillo]: Universidad Nacional de Trujillo; 2018.
dc.relation.referencesMartinez M. Formulación y control de calidad de un fotoprotector a base de badea (Passiflora quadrangularis). [Riabamba]: Escuela Superior Politécnica De Chimborazo Facultad De Ciencias; 2019.
dc.relation.referencesBravo K, Duque L, Ferreres F, Moreno DA, Osorio E. Passiflora tarminiana fruits reduce UVB-induced photoaging in human skin fibroblasts. Journal of Photochemistry and Photobiology B: Biology. 2017;168:78-88. https://doi.org/10.1016/j.jphotobiol.2017.01.023
dc.relation.referencesPirotta G. Sunscreen Regulation in the World. En: Tovar-Sánchez A, Sánchez-Quiles D, Blasco J, editores. Sunscreens in Coastal Ecosystems . Cham: Springer International Publishing; 2020. p. 15-35. https://doi.org/10.1007/698_2019_440
dc.relation.referencesHealth Canada. Primary Sunscreen Monograph. Canada; 2022. Recuperado a partir de: https://webprod.hc-sc.gc.ca/nhpid-bdipsn/atReq?atid=sunscreen-ecransolaire&lang=eng
dc.relation.referencesTherapeutics Goods Administration. Sunscreen regulation in Australia. 2023. Recuperado a partir de: https://www.tga.gov.au/resources/resource/reference-material/sunscreen-regulation-australia#therapeutic-sunscreens-we-regulate
dc.relation.referencesEuropean Parliament and Council. REGULATION (EC) No 1223/2009 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 30 November 2009 on cosmetic products. Unión Europea; 2009. Report No.: 1223/2009.
dc.relation.referencesComunidad Andina. Decisión 833. Armonización de Legislaciones en materia de Productos Cosméticos. 2018. Report No.: 833. Recuperado a partir de: https://www.mincit.gov.co/ministerio/normograma-sig/procesos-misionales/administracion-profundizacion-y-aprovechamiento-de/decisiones/decision-833.aspx
dc.relation.referencesGrupo Mercado Común del MERCOSUR. Reglamento Técnico MERCOSUR sobre clasificación de productos de higiene personal, cosméticos y perfumes. 2023. Report No.: Resolución GMC No 18/23. Recuperado a partir de: https://normas.mercosur.int/simfiles/normativas/97844_DEC_018_2023_ES_Enmienda%20Protocolo%20Montevideo.pdf
dc.relation.referencesSistema de la Integración Centroamericana. Reglamento Técnico Centroamericano RTCA 71.03.36:07 Etiquetado de Productos Cosméticos. 2008. Recuperado a partir de: https://www.minsa.gob.pa/sites/default/files/publicacion-general/etiquetado_de_cosmeticos_rtca_71.03.3607.pdf
dc.relation.referencesGeoffrey K, Mwangi AN, Maru SM. Sunscreen products: Rationale for use, formulation development and regulatory considerations. Saudi Pharmaceutical Journal . 2019;27:1009-18. https://doi.org/10.1016/j.jsps.2019.08.003
dc.relation.referencesLourith N, Kanlayavattanakul M, Chingunpitak J. Development of sunscreen products containing passion fruit seed extract. Brazilian Journal of Pharmaceutical Sciences. 2017;53. https://doi.org/10.1590/s2175-97902017000116116
dc.relation.referencesHubert J, Nuzillard J-M, Renault J-H. Dereplication strategies in natural product research: How many tools and methodologies behind the same concept? Phytochem Rev. 2017;16:55-95. https://doi.org/10.1007/s11101-015-9448-7
dc.relation.referencesSchripsema J. Application of NMR in plant metabolomics: techniques, problems and prospects. Phytochemical Analysis. 2010;21:14-21. https://doi.org/10.1002/pca.1185
dc.relation.referencesHalder M, Kundu A, Jha S. Secondary Metabolites Identification Techniques of the Current Era. En: Mérillon J-M, Ramawat KG, editores. Plant Specialized Metabolites. Cham: Springer Nature Switzerland; 2024. p. 1-41. https://doi.org/10.1007/978-3-031-30037-0_31-1
dc.relation.referencesAvery VM, Camp D, Carroll AR, Jenkins ID, Quinn RJ. The Identification of Bioactive Natural Products by High Throughput Screening (HTS). Comprehensive Natural Products II. Elsevier; 2010. p. 177-203. https://doi.org/10.1016/B978-008045382-8.00062-9
dc.relation.referencesWang M, Carver JJ, Phelan VV, Sanchez LM, Garg N, Peng Y, et al. Sharing and community curation of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat Biotechnol. 2016;34:828-37. https://doi.org/10.1038/nbt.3597
dc.relation.referencesNothias L-F, Petras D, Schmid R, Dührkop K, Rainer J, Sarvepalli A, et al. Feature-based molecular networking in the GNPS analysis environment. Nat Methods. 2020;17:905-8. https://doi.org/10.1038/s41592-020-0933-6
dc.relation.referencesPhelan VV. Feature-Based Molecular Networking for Metabolite Annotation. En: Li S, editor. Computational Methods and Data Analysis for Metabolomics. New York, NY: Springer US; 2020. p. 227-43. https://doi.org/10.1007/978-1-0716-0239-3_13
dc.relation.referencesDührkop K, Shen H, Meusel M, Rousu J, Böcker S. Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc Natl Acad Sci USA. 2015;112:12580-5. https://doi.org/10.1073/pnas.1509788112
dc.relation.referencesDjoumbou Feunang Y, Eisner R, Knox C, Chepelev L, Hastings J, Owen G, et al. ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J Cheminform. 2016;8:61. https://doi.org/10.1186/s13321-016-0174-y
dc.relation.referencesDührkop K, Nothias L-F, Fleischauer M, Reher R, Ludwig M, Hoffmann MA, et al. Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat Biotechnol. 2021;39:462-71.
dc.relation.referencesPilon AC, Valli M, Dametto AC, Pinto MEF, Freire RT, Castro-Gamboa I, et al. NuBBEDB: an updated database to uncover chemical and biological information from Brazilian biodiversity. Sci Rep. 2017;7:7215. https://doi.org/10.1038/s41598-017-07451-x
dc.relation.referencesMeneses C. Saponinas y flavonoides de Passiflora ligularis y evaluación de su actividad antiinflamatoria [Tesis de maestría]. [Bogotá]: Universidad Nacional de Colombia;
dc.relation.referencesSepúlveda Ramos PM. Contribución a la caracterización biofarmacéutica de un extracto de hojas de Passiflora ligularis (granadilla) optimizado en flavonoides. [Bogotá]: Universidad Nacional de Colombia; 2021.
dc.relation.referencesMonzón Daza G, Meneses Macías C, Forero AM, Rodríguez J, Aragón M, Jiménez C, et al. Identification of α-Amylase and α-Glucosidase Inhibitors and Ligularoside A, a New Triterpenoid Saponin from Passiflora ligularis Juss (Sweet Granadilla) Leaves, by a Nuclear Magnetic Resonance-Based Metabolomic Study. J Agric Food Chem. 2021;69:2919-31. https://doi.org/10.1021/acs.jafc.0c07850
dc.relation.referencesUrrego N. Contribución al estudio fitoquímico y a la evaluación de la actividad antiinflamatoria de las hojas de badea (Passiflora quadrangularis) y gulupa (Passiflora edulis var. edulis) [Tesis de maestría]. [Bogotá]: Universidad Nacional de Colombia; 2017.
dc.relation.referencesPan Z-H, Ning D-S, Fu Y-X, Li D-P, Zou Z-Q, Xie Y-C, et al. Preparative Isolation of Piceatannol Derivatives from Passion Fruit ( Passiflora edulis ) Seeds by High-Speed Countercurrent Chromatography Combined with High-Performance Liquid Chromatography and Screening for α-Glucosidase Inhibitory Activities. J Agric Food Chem. 2020;68:1555-62. https://doi.org/10.1021/acs.jafc.9b04871
dc.relation.referencesHernández-Martínez AX, Lozano-Puentes HS, Camacho-Montealegre CM, Costa GM, Díaz-Ariza LA. Establishing the Relationship Between Flavonoid Content, Mycorrhization, and Soil Nutritional Content in Different Species of the Genus Passiflora in Colombia. ACS Omega. 2023;8:40647-56. https://doi.org/10.1021/acsomega.3c05606
dc.relation.referencesBart H-J. Industrial Scale Natural Products Extraction. 1st ed. Weinheim: John Wiley & Sons, Incorporated; 2011.
dc.relation.referencesAntignac E, Nohynek GJ, Re T, Clouzeau J, Toutain H. Safety of botanical ingredients in personal care products/cosmetics. Food and Chemical Toxicology. 2011;49:324-41. https://doi.org/10.1016/j.fct.2010.11.022
dc.relation.referencesLopez C. Estudio preliminar de la composición química de extractos polares de distintas especies colombianas de Passiflora y su posible actividad antioxidante y antimicrobiana. [Bogotá]: Universidad Nacional de Colombia; 2022.
dc.relation.referencesCastellanos L, Naranjo-Gaybor SJ, Forero AM, Morales G, Wilson EG, Ramos FA, et al. Metabolic fingerprinting of banana passion fruits and its correlation with quorum quenching activity. Phytochemistry. 2020;172. https://doi.org/10.1016/j.phytochem.2020.112272
dc.relation.referencesAraujo P, Nguyen T-T, Frøyland L, Wang J, Kang JX. Evaluation of a rapid method for the quantitative analysis of fatty acids in various matrices. Journal of Chromatography A. 2008;1212:106-13. https://doi.org/10.1016/j.chroma.2008.10.006
dc.relation.referencesAron AT, Gentry EC, McPhail KL, Nothias L-F, Nothias-Esposito M, Bouslimani A, et al. Reproducible molecular networking of untargeted mass spectrometry data using GNPS. Nat Protoc. 2020;15:1954-91. https://doi.org/10.1038/s41596-020-0317-5
dc.relation.referencesSepúlveda, Lady. Búsqueda de compuestos con posible actividad inhibitoria de enzimas de interés cosmético a partir de algas del Caribe colombiano. [Tesis de maestría]. Universidad Nacional de Colombia; 2022.
dc.relation.referencesHeuckeroth S, Damiani T, Smirnov A, Mokshyna O, Brungs C, Korf A, et al. Reproducible mass spectrometry data processing and compound annotation in MZmine 3. Nat Protoc. 2024; https://doi.org/10.1038/s41596-024-00996-y
dc.relation.referencesBöcker Lab. SIRIUS: Official online documentation for the SIRIUS MS/MS Software.
dc.relation.referencesR S, M D, K A, Ravi M. The active compounds of Passiflora spp and their potential medicinal uses from both in vitro and in vivo evidences. Journal of advanced Biomedical and Pharmaceutical Sciences. 2020;0:0-0. https://doi.org/10.21608/jabps.2020.44321.1105
dc.relation.referencesDhawan K, Dhawan S, Sharma A. Passiflora: a review update. Journal of Ethnopharmacology. 2004;94:1-23. https://doi.org/10.1016/j.jep.2004.02.023
dc.relation.referencesLourith N, Kanlayavattanakul M. Antioxidant Activities and Phenolics of Passiflora edulis Seed Recovered from Juice Production Residue. J Oleo Sci. 2013;62:235-40. https://doi.org/10.5650/jos.62.235
dc.relation.referencesDutra LM, Henrique Vieira Teles P, Diego Da Conceição Santos A, Franklin De Melo N, Nagata N, Roberto Guedes Da Silva Almeida J. 1H NMR-based metabolic profile and chemometric analysis for the discrimination of Passiflora species genotypic variations. Food Research International. 2023;164:112441. https://doi.org/10.1016/j.foodres.2022.112441
dc.relation.referencesArrieta-Durango C, Henao-Rivas L, Andrade-Pizarro R. Rheological Behavior of Passion Fruit (Passiflora edulis) Peel Extract. Gels. 2022;8:566. https://doi.org/10.3390/gels8090566
dc.relation.referencesSeixas FL, Fukuda DL, Turbiani FRB, Garcia PS, Petkowicz CLDO, Jagadevan S, et al. Extraction of pectin from passion fruit peel (Passiflora edulis f. flavicarpa) by microwave-induced heating. Food Hydrocolloids. 2014;38:186-92. https://doi.org/10.1016/j.foodhyd.2013.12.001
dc.relation.referencesKrambeck K, Oliveira A, Santos D, Pintado MM, Baptista Silva J, Sousa Lobo JM, et al. Identification and Quantification of Stilbenes (Piceatannol and Resveratrol) in Passiflora edulis By-Products. Pharmaceuticals. 2020;13:73. https://doi.org/10.3390/ph13040073
dc.relation.referencesRotta R, Cunha Neto Á, De Lima DP, Beatriz A, Da Silva GVJ. Configuration of stilbene derivatives by 1H NMR and theoretical calculation of chemical shifts. Journal of Molecular Structure. 2010;975:59-62. https://doi.org/10.1016/j.molstruc.2010.03.079
dc.relation.referencesNyanzi SA, Carstensen B, Schwack W. A comparative study of fatty acid profiles of Passiflora seed oils from Uganda. J Americ Oil Chem Soc. 2005;82:41-4. https://doi.org/10.1007/s11746-005-1040-2
dc.relation.referencesThi Thu Nga N, Xuan Bac N, Thi Ngoc Ha L. Green Solvent Extraction and Quality Characteristics of Passion Fruit Seed Oil (Passiflora edulis Sims var. edulis). vjas. 2020;2:469-74. https://doi.org/10.31817/vjas.2019.2.4.03
dc.relation.referencesTorres Meléndez AF, Castillo Martinez WE. Extracción y caracterización de aceite a partir de semilla de granadilla (Passiflora ligularis) obtenido por prensado en frio y solvente orgánico. INGnosis. 2018;4:29-40. https://doi.org/10.18050/ingnosis.v4i1.2059
dc.relation.referencesGiuffre A. Chemical composition of purple passion fruit (Passiflora edulis var. Sims edulis) seed oil. Rivista Italiana Delle Sostanze Grasse. 2007;84:87-93.
dc.relation.referencesSilva SR, Dos Santos EA, De Melo Filho AA. Physical and Chemical Properties of oils of three varieties seeds of passion fruit: Passiflora alata Curtis, Passiflora edulis f. flavicarpa and Passiflora quadrangularis. RCT. 2021;7. https://doi.org/10.18227/rct.v7i0.5965
dc.relation.referencesBallesteros-Vivas D, Alvarez-Rivera G, León C, Morantes SJ, Ibánez E, Parada-Alfonso F, et al. Foodomics evaluation of the anti-proliferative potential of Passiflora mollissima seeds. Food Research International. 2020;130:108938. https://doi.org/10.1016/j.foodres.2019.108938
dc.relation.referencesHernández J, Martinez JA, Rojas M, Aragón M. Evaluation of Passiflora tripartita var. mollisima seed oil as potential nanoemulsion excipient. Journal of Excipients & Food Chemicals. 2018;9:16.
dc.relation.referencesRamaiya S, Bujang J, Zakaria M. Nutritive Values of Passion Fruit (Passiflora Species) Seeds and Its Role in Human Health. J Agric Food Dev. 2018;4:23-30. https://doi.org/10.30635/2415-0142.2018.04.4
dc.relation.referencesCastellanos L, Duque C. Composición quimica y actividad antifouling de la fraccion lipidica de la esponja marina Cliona tenuis (clionidae). Revista Colombiana de Química. 2008; Recuperado a partir de: https://repositorio.unal.edu.co/handle/unal/23945
dc.relation.referencesErnst M, Kang KB, Caraballo-Rodríguez AM, Nothias L-F, Wandy J, Chen C, et al. MolNetEnhancer: Enhanced Molecular Networks by Integrating Metabolome Mining and Annotation Tools. Metabolites. 2019;9:144. https://doi.org/10.3390/metabo9070144
dc.relation.referencesPérez-Magariño S, Revilla I, González-SanJosé ML, Beltrán S. Various applications of liquid chromatography–mass spectrometry to the analysis of phenolic compounds. Journal of Chromatography A. 1999;847:75-81. https://doi.org/10.1016/S0021-9673(99)00255-1
dc.relation.referencesBandara KRV, Padumadasa C, Peiris DC. Potent antibacterial, antioxidant and toxic activities of extracts from Passiflora suberosa L. leaves. PeerJ. 2018;6:e4804. https://doi.org/10.7717/peerj.4804
dc.relation.referencesBotelho-Júnior S, Siqueira-Júnior CL, Jardim BC, Machado OLT, Neves-Ferreira AGC, Perales J, et al. Trypsin Inhibitors in Passion Fruit ( Passiflora f. edulis flavicarpa ) Leaves: Accumulation in Response to Methyl Jasmonate, Mechanical Wounding, and Herbivory. J Agric Food Chem. 2008;56:9404-9. https://doi.org/10.1021/jf8013266
dc.relation.referencesCarvalho Pires M, Peixoto JR, Yamanishi OK. Rooting of passion fruit species with indole-3-butyric acid under intermittent misting conditions. Acta Hortic. 2011;177-83. https://doi.org/10.17660/ActaHortic.2011.894.19
dc.relation.referencesKhandelwal S, Tailor YK, Kumar M. Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations. Journal of Molecular Liquids. 2016;215:345-86. https://doi.org/co-pro
dc.relation.referencesSnyder LR, Kirkland JJ, Dolan JW. Introduction to Modern Liquid Chromatography. 1.a ed. Wiley; 2009. https://doi.org/10.1002/9780470508183
dc.relation.referencesDreux M, Lafosse M. Chapter 13 Evaporative Light Scattering Detection of Carbohydrates in HPLC. Journal of Chromatography Library. Elsevier; 1995. p. 515-40. https://doi.org/10.1016/S0301-4770(08)60518-7
dc.relation.referencesSchrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA. Untargeted Metabolomics Strategies—Challenges and Emerging Directions. J Am Soc Mass Spectrom. 2016;27:1897-905. https://doi.org/10.1007/s13361-016-1469-y
dc.relation.referencesSchymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, et al. Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence. Environ Sci Technol. 2014;48:2097-8. https://doi.org/10.1021/es5002105
dc.relation.referencesNothias L-F, Wang M. GNPS Lexicon. GNPS Documentation. Recuperado a partir de: https://ccms-ucsd.github.io/GNPSDocumentation/lexicon/
dc.relation.referencesLarson EA, Hutchinson CP, Lee YJ. Gas Chromatography-Tandem Mass Spectrometry of Lignin Pyrolyzates with Dopant-Assisted Atmospheric Pressure Chemical Ionization and Molecular Structure Search with CSI:FingerID. J Am Soc Mass Spectrom. 2018;29:1908-18. https://doi.org/10.1007/s13361-018-2001-3
dc.relation.referencesZucolotto SM, Fagundes C, Reginatto FH, Ramos FA, Castellanos L, Duque C, et al. Analysis of C ‐glycosyl Flavonoids from South American Passiflora Species by HPLC‐DAD and HPLC‐MS. Phytochemical Analysis. 2012;23:232-9. https://doi.org/10.1002/pca.1348
dc.relation.referencesHe X, Luan F, Yang Y, Wang Z, Zhao Z, Fang J, et al. Passiflora edulis: An Insight Into Current Researches on Phytochemistry and Pharmacology. Front Pharmacol. 2020;11:617. https://doi.org/10.3389/fphar.2020.00617
dc.relation.referencesCerqueira-Silva CBM, Faleiro FG, De Jesus ON, Dos Santos ESL, De Souza AP. The Genetic Diversity, Conservation, and Use of Passion Fruit (Passiflora spp.). En: Ahuja MR, Jain SM, editores. Genetic Diversity and Erosion in Plants. Cham: Springer International Publishing; 2016. p. 215-31. https://doi.org/10.1007/978-3-319-25954-3_5
dc.relation.referencesGallo MBC, Vieira PC, Fernandes JB, Da Silva MFDGF, Salimena-Pires FR. Compounds from Vitex polygama active against kidney diseases. Journal of Ethnopharmacology. 2008;115:320-2. https://doi.org/10.1016/j.jep.2007.09.020
dc.relation.referencesDomínguez-Rodríguez G, García MC, Plaza M, Marina ML. Revalorization of Passiflora species peels as a sustainable source of antioxidant phenolic compounds. Science of The Total Environment. 2019;696:134030. https://doi.org/10.1016/j.scitotenv.2019.134030
dc.relation.referencesRamirez Alvarado RA, Aponte Cárdenas A, Benavides Barrantes Y, Ortiz Rojas Y. Evaluación de subproductos de pepino cohombro (Cucumis sativus) and granadilla (Passiflora ligularis) como fuente de obtención de pectinas. Acta Agron. 2022;70. https://doi.org/10.15446/acag.v70n4.78441
dc.relation.referencesMuñoz Murillo P, García Mendoza J, Saltos Alcívar S. Néctar a base de pitahaya (Hylocereus undatus) con harina de cáscara de maracuyá (Passiflora edulis flavicarpa): Compuestos antioxidantes, estabilidad fisicoquímica y aceptabilidad sensorial. Nutrición Clínica y Dietética Hospitalaria. 2023;43. https://doi.org/10.12873/433munoz
dc.relation.referencesLópez-Vargas JH, Fernández-López J, Pérez-Álvarez JA, Viuda-Martos M. Chemical, physico-chemical, technological, antibacterial and antioxidant properties of dietary fiber powder obtained from yellow passion fruit (Passiflora edulis var. flavicarpa) co-products. Food Research International. 2013;51:756-63. https://doi.org/10.1016/j.foodres.2013.01.055
dc.relation.referencesDa Silva Francischini D, Lopes AP, Segatto ML, Stahl AM, Zuin VG. Development and application of green and sustainable analytical methods for flavonoid extraction from Passiflora waste. BMC Chemistry. 2020;14:56. https://doi.org/10.1186/s13065-020-00710-5
dc.relation.referencesSabogal-Palma, Angie Cmans, Chávez-M, Jacqueline, Oliveros-Gómez, Diego F, Murillo-Perea, Elizabeth, Méndez-Arteaga, Jonh J. Biological characteristics of Passiflora maliformis from South Colombian Massif. Bioagro. 2016;28:3-12.
dc.relation.referencesIto T, Endo H, Shinohara H, Oyama M, Akao Y, Iinuma M. Occurrence of stilbene oligomers in Cyperus rhizomes. Fitoterapia. 2012;83:1420-9. https://doi.org/10.1016/j.fitote.2012.08.005
dc.relation.referencesAragão Craveiro A, Da Costa Prado A, Gottlieb OR, Welerson De Albuquerque PC. Diarylheptanoids of Centrolobium species. Phytochemistry. 1970;9:1869-75. https://doi.org/10.1016/S0031-9422(00)85606-X
dc.relation.referencesBjørklund G, Shanaida M, Lysiuk R, Butnariu M, Peana M, Sarac I, et al. Natural Compounds and Products from an Anti-Aging Perspective. Molecules. 2022;27:7084. https://doi.org/10.3390/molecules27207084
dc.relation.referencesChemat F, Abert-Vian M, Fabiano-Tixier AS, Strube J, Uhlenbrock L, Gunjevic V, et al. Green extraction of natural products. Origins, current status, and future challenges. TrAC Trends in Analytical Chemistry. 2019;118:248-63. https://doi.org/10.1016/j.trac.2019.05.037
dc.relation.referencesDa Silva Francischini D, Lopes AP, Segatto ML, Stahl AM, Zuin VG. Development and application of green and sustainable analytical methods for flavonoid extraction from Passiflora waste. BMC Chemistry. 2020;14:56. https://doi.org/10.1186/s13065-020-00710-5
dc.relation.referencesMartins AM, Marto JM. A sustainable life cycle for cosmetics: From design and development to post-use phase. Sustainable Chemistry and Pharmacy. 2023;35:101178. https://doi.org/10.1016/j.scp.2023.101178
dc.relation.referencesDifonzo G, Grassi S, Paciulli M. Upcycling of Agro-Food Chain By-Products to Obtain High-Value-Added Foods. Foods. 2022;11:2043. https://doi.org/10.3390/foods11142043
dc.relation.referencesDonner M, Gohier R, De Vries H. A new circular business model typology for creating value from agro-waste. Science of The Total Environment. 2020;716:137065. https://doi.org/10.1016/j.scitotenv.2020.137065
dc.relation.referencesCury R K, Aguas M Y, Martinez M A, Olivero V R, Chams Ch L. Residuos agroindustriales su impacto, manejo y aprovechamiento. Revista Colombiana de Ciencia Animal - RECIA. 2017;9:122-32. https://doi.org/10.24188/recia.v9.nS.2017.530
dc.relation.referencesRodrigues R, Oliveira MBPP, Alves RC. Chlorogenic Acids and Caffeine from Coffee By-Products: A Review on Skincare Applications. Cosmetics. 2023;10:12. https://doi.org/10.3390/cosmetics10010012
dc.relation.referencesAbril S. Compuestos con posible actividad fotoprotectora a partir de extractos de macroalgas del caribe colombiano [Tesis maestria]. [Bogotá]: Universidad Nacional de Colombia; 2023.
dc.relation.referencesMansur, Joäo de Souza; Breder, Mário Nei Rodrigues; Mansur, Maria Cristina d’Ascençäo; Azulay, Rubem David. Determinaçäo do fator de proteçäo solar por espectrofotometria / Determination of sun protection factor by spectrophotometry. An bras dermatol. 1986;61:121.
dc.relation.referencesSayre RM, Agin PP, LeVee GJ, Marlowe E. A COMPARISON OF IN VIVO AND IN VITRO TESTING OF SUNSCREENING FORMULAS. Photochem & Photobiology. 1979;29:559-66. https://doi.org/10.1111/j.1751-1097.1979.tb07090.x
dc.relation.referencesRojas JL, Díaz-Santos M, Valencia-Islas NA. Metabolites with antioxidant and photo-protective properties from Usnea roccellina Motyka, a lichen from Colombian Andes. Pharmaceutical and Biosciences Journal. 2015;18-26. https://doi.org/10.20510/ukjpb/3/i4/89454
dc.relation.referencesSpringsteen A, Yurek R, Frazier M, Carr KF. In vitro measurement of sun protection factor of sunscreens by diffuse transmittance1This paper is dedicated to the memory of our colleague and friend, Mona Yurek (1959–1998), who was involved in the quantitation and methodology of the sample preparation along with most of our in vitro sunscreen measurements.1. Analytica Chimica Acta. 1999;380:155-64. https://doi.org/10.1016/S0003-2670(98)00577-7
dc.relation.referencesFDA. Guidance for Industry Labeling and Effectiveness Testing: Sunscreen Drug Products for OverThe-Counter Human Use — Small Entity Compliance Guide. Division of Drug Information Center for Drug Evaluation and Research Food and Drug Administration; 2012. Recuperado a partir de: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/labeling-and-effectiveness-testing-sunscreen-drug-products-over-counter-human-use-small-entity
dc.relation.referencesR Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing; 2023. Recuperado a partir de: https://www.r-project.org/
dc.relation.referencesHothorn T, Hornik K, Wiel MAVD, Zeileis A. Implementing a Class of Permutation Tests: The coin Package. J Stat Soft. 2008;28. https://doi.org/10.18637/jss.v028.i08
dc.relation.referencesHui W, Gel Y R, Gastwirth JL. lawstat : An R Package for Law, Public Policy and Biostatistics. J Stat Soft. 2008;28. https://doi.org/10.18637/jss.v028.i03
dc.relation.referencesSaaty TL. Multicriteria decision making: the analytic hierarchy process ; planning, priority setting, resource allocation. 2. ed., with new material added. New York: McGraw-Hill; 1988.
dc.relation.referencesSaaty TL, Vargas LG. Models, Methods, Concepts & Applications of the Analytic Hierarchy Process. Boston, MA: Springer US; 2012. https://doi.org/10.1007/978-1-4614-3597-6
dc.relation.referencesKarimi AR, Mehrdadi N, Hashemian SJ, Bidhendi GRN, Moghaddam RT. Selection of wastewater treatment process based on the analytical hierarchy process and fuzzy analytical hierarchy process methods. Int J Environ Sci Technol. 2011;8:267-80. https://doi.org/10.1007/BF03326215
dc.relation.referencesJosé MTDAF, Pedrita AS, Emanuella CVP, Raimundo GDOJ, Fabrício SS, Jackson RGDSA, et al. Flavonoids as photoprotective agents: A systematic review. J Med Plants Res. 2016;10:848-64. https://doi.org/10.5897/JMPR2016.6273
dc.relation.referencesShelan Nagapan T, Rohi Ghazali A, Fredalina Basri D, Nallance Lim W. Photoprotective Effect of Stilbenes and Its Derivatives against Ultraviolet Radiation-Induced Skin Disorders. Biomed Pharmacol J. 2018;11(3):1199-1208. https://doi.org/10.13005/bpj/1481
dc.relation.referencesThermo Fisher Scientific, Inc. Thermo Scientific Varioskan LUX: Technical manual. Singapur: Thermo Fisher Scientific, Inc; 2023.
dc.relation.referencesOwen T. Fundamentos de la espectroscopía UV-visible moderna: Conceptos básicos. Alemania: Agilent Technologies; 2000.
dc.relation.referencesDe Gruijl FR. Photocarcinogenesis: UVA vs. UVB Radiation. Skin Pharmacol Physiol. 2002;15:316-20. https://doi.org/10.1159/000064535
dc.relation.referencesMäntele W, Deniz E. UV–VIS absorption spectroscopy: Lambert-Beer reloaded. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2017;173:965-8. https://doi.org/10.1016/j.saa.2016.09.037
dc.relation.referencesOshina I, Spigulis J. Beer–Lambert law for optical tissue diagnostics: current state of the art and the main limitations. J Biomed Opt. 2021;26. https://doi.org/10.1117/1.JBO.26.10.100901
dc.relation.referencesMiao W, Gel Y R, Gastwirth JL. A NEW TEST OF SYMMETRY ABOUT AN UNKNOWN MEDIAN. Random Walk, Sequential Analysis and Related Topics. Fudan University, Shanghai, China: WORLD SCIENTIFIC; 2006. p. 199-214. https://doi.org/10.1142/9789812772558_0013
dc.relation.referencesGlass GV, Peckham PD, Sanders JR. Consequences of Failure to Meet Assumptions Underlying the Fixed Effects Analyses of Variance and Covariance. Review of Educational Research. 1972;42:237-88. https://doi.org/10.3102/00346543042003237
dc.relation.referencesDe Oliveira Júnior RG, Reis SAGB, De Oliveira AP, Ferraz CAA, Rolim LA, Lopes NP, et al. Photoprotective Potential of Passiflora Cincinnata Mast. (Passifloraceae) Hydro‐Alcoholic Extracts. Chemistry & Biodiversity. 2024;21:e202401271. https://doi.org/10.1002/cbdv.202401271
dc.relation.referencesHasanah FA, Rabbaniyyah M, Kurniati E. Formulation and efficacy testing of SPF (sun protecting factor) sunscreen gel extract of rambusa leaves (Passiflora foetida L). MS. 2024;9:611-20. https://doi.org/10.37874/ms.v9i2.1236
dc.relation.referencesBhattacharya S, Sherje AP. Development of resveratrol and green tea sunscreen formulation for combined photoprotective and antioxidant properties. Journal of Drug Delivery Science and Technology. 2020;60:102000. https://doi.org/10.1016/j.jddst.2020.102000
dc.relation.referencesStevanato R, Bertelle M, Fabris S. Photoprotective characteristics of natural antioxidant polyphenols. Regulatory Toxicology and Pharmacology. 2014;69:71-7. https://doi.org/10.1016/j.yrtph.2014.02.014
dc.relation.referencesPolonini HC, Lima LL, Gonçalves KM, Do Carmo AMR, Da Silva AD, Raposo NRB. Photoprotective activity of resveratrol analogues. Bioorganic & Medicinal Chemistry. 2013;21:964-8. https://doi.org/10.1016/j.bmc.2012.11.052
dc.relation.referencesShiratake S, Nakahara T, Iwahashi H, Onodera T, Mizushina Y. Rose myrtle (Rhodomyrtus tomentosa) extract and its component, piceatannol, enhance the activity of DNA polymeraseand suppress the inflammatory response elicitedby UVB-induced DNA damage in skin cells. Molecular Medicine Reports. 2015;12:5857-64. https://doi.org/10.3892/mmr.2015.4156
dc.relation.referencesStanfield JW. Spectroscopic measurements of sunscreen protection. Expert Review of Dermatology. 2011;6:475-8. https://doi.org/10.1586/edm.11.55
dc.relation.referencesTaniguchi M, LaRocca CA, Bernat JD, Lindsey JS. Digital Database of Absorption Spectra of Diverse Flavonoids Enables Structural Comparisons and Quantitative Evaluations. J Nat Prod. 2023;86:1087-119. https://doi.org/10.1021/acs.jnatprod.2c00720
dc.relation.referencesAlcahuz M, Marín L, Miró P. Isomerización fotosensibilizada de estilbenos en medios confinados [MasterThesis]. [España]: Universidad Politécnica de Valencia; 2016.
dc.relation.referencesBurgren M, Thorén L. Comparing the Outcomes of Two Decision Support Models: The Analytical Hierarchy Process and Pugh Matrix Analysis [MasterThesis]. [Suecia]: Karlstads Universitet; 2015.
dc.relation.referencesNantes E. El método Analytic Hierarchy Process para la toma de decisiones. Repaso de la metodología y aplicaciones. Revista De La Escuela De Perfeccionamiento En Investigación Operativa. 2019;27:54-73.
dc.relation.referencesToskano G, Gambini I. El Proceso de análisis jerárquico (AHP) como herramienta para la toma de decisiones en la selección de proveedores : aplicación en la selección del proveedor para la Empresa Gráfica Comercial MyE S.R.L. Perú: Universidad Nacional Mayor de San Marcos; 2005.
dc.relation.referencesRostagno MA. Natural Product Extraction: Principles and Applications. 1st ed. Cambridge: Royal Society of Chemistry; 2013.
dc.relation.referencesBom S, Jorge J, Ribeiro HM, Marto J. A step forward on sustainability in the cosmetics industry: A review. Journal of Cleaner Production. 2019;225:270-90. https://doi.org/10.1016/j.jclepro.2019.03.255
dc.relation.referencesBarbulova A, Colucci G, Apone F. New Trends in Cosmetics: By-Products of Plant Origin and Their Potential Use as Cosmetic Active Ingredients. Cosmetics. 2015;2:82-92. https://doi.org/10.3390/cosmetics2020082
dc.relation.referencesManful ME, Ahmed L, Barry-Ryan C. Cosmetic Formulations from Natural Sources: Safety Considerations and Legislative Frameworks in the European Union. Cosmetics. 2024;11:72. https://doi.org/10.3390/cosmetics11030072
dc.relation.referencesYapar EA, Şahi̇Ner A, Kara BA, Yildirim ST, Halat E, Bala R, et al. EVALUATION OF MULTIFUNCTIONALITY IN COSMETICS. Univ J Pharm Res. 2021; https://doi.org/10.22270/ujpr.v6i3.606
dc.relation.referencesMorganti P. Natural Products Work in Multiple Ways. Nutritional Cosmetics. Elsevier; 2009. p. 95-111. https://doi.org/10.1016/B978-0-8155-2029-0.50012-0
dc.relation.referencesLi S, Han Q, Qiao C, Song J, Lung Cheng CL, Xu H. Chemical markers for the quality control of herbal medicines: an overview. Chin Med. 2008;3:7. https://doi.org/10.1186/1749-8546-3-7
dc.relation.referencesFonseca S, Amaral MN, Reis CP, Custódio L. Marine Natural Products as Innovative Cosmetic Ingredients. Marine Drugs. 2023;21:170. https://doi.org/10.3390/md21030170
dc.relation.referencesFaccio G. Plant Complexity and Cosmetic Innovation. iScience. 2020;23:101358. https://doi.org/10.1016/j.isci.2020.101358
dc.relation.referencesLee J, Hyun C-G. Natural Products for Cosmetic Applications. Molecules. 2023;28:534. https://doi.org/10.3390/molecules28020534
dc.relation.referencesSiqueira César FC, Carnevale Neto F, Porto GS, Campos PM. Patent analysis: a look at the innovative nature of plant-based cosmetics. Quim Nova. 2017; https://doi.org/10.21577/0100-4042.20170022
dc.relation.referencesParra M, Rodríquez A, Piedrahita A, Gordillo A. Comercialización de granadilla (Passiflora ligularis juss). Corporación colombiana de investigación agropecuaria - AGROSAVIA; 2010. Recuperado a partir de: http://hdl.handle.net/20.500.12324/40105
dc.relation.referencesRegolo L, Giampieri F, Battino M, Armas Diaz Y, Mezzetti B, Elexpuru-Zabaleta M, et al. From by-products to new application opportunities: the enhancement of the leaves deriving from the fruit plants for new potential healthy products. Front Nutr. 2024;11:1083759. https://doi.org/10.3389/fnut.2024.1083759
dc.relation.referencesJusuf NK, Putra IB, Dewi NK. Antibacterial Activity of Passion Fruit Purple Variant (Passiflora edulis Sims var. edulis) Seeds Extract Against Propionibacterium acnes. CCID. 2020;Volume 13:99-104. https://doi.org/10.2147/CCID.S229743
dc.relation.referencesDewi NK, Putra IB, Jusuf NK. Passion fruit purple variant (Passiflora edulis Sims var. edulis ) seeds extract 10% cream in acne vulgaris treatment: an open‐label pilot study. Int J Dermatology. 2020;59:1506-12. https://doi.org/10.1111/ijd.15178
dc.relation.referencesWijoyo S, Wahyuniari IAI. Potency of Passion Fruit (Passiflora edulis) Prevents Uv-Induced Skin Aging. jppipa, pendidikan ipa, fisika, biologi, kimia. 2023;9:1142-7. https://doi.org/10.29303/jppipa.v9i11.5483
dc.relation.referencesWijoyo S, Wahyuniari IAI. Potency of Passion Fruit (Passiflora edulis) Prevents Uv-Induced Skin Aging. jppipa, pendidikan ipa, fisika, biologi, kimia. 2023;9:1142-7. https://doi.org/10.29303/jppipa.v9i11.5483
dc.relation.referencesGuzmán C, Rojas MA, Aragón M. Optimization of Ultrasound-Assisted Emulsification of Emollient Nanoemulsions of Seed Oil of Passiflora edulis var. edulis. Cosmetics. 2020;8:1. https://doi.org/10.3390/cosmetics8010001
dc.relation.referencesChez I, Herrera D, Miranda M, Manzano P. Chemical composition of essential oils of shells, juice and seeds of Passiflora ligularis Juss from Ecuador. Emir J Food Agric. 2015;27:650. https://doi.org/10.9755/ejfa.2015.04.039
dc.relation.referencesAndasuryani A, Zainal PW, Ifmalinda I. Chemical characteristic of sweet passion fruit (Passiflora lingularis Juss) seeds from Indonesia based on maturity levels. J Phys: Conf Ser. 2020;1469:012001. https://doi.org/10.1088/1742-6596/1469/1/012001
dc.relation.referencesPereira MG, Maciel GM, Haminiuk CWI, Bach F, Hamerski F, De Paula Scheer A, et al. Effect of Extraction Process on Composition, Antioxidant and Antibacterial Activity of Oil from Yellow Passion Fruit (Passiflora edulis Var. Flavicarpa) Seeds. Waste Biomass Valor. 2019;10:2611-25. https://doi.org/10.1007/s12649-018-0269-y
dc.relation.referencesDe Santana FC, De Oliveira Torres LR, Shinagawa FB, De Oliveira E Silva AM, Yoshime LT, De Melo ILP, et al. Optimization of the antioxidant polyphenolic compounds extraction of yellow passion fruit seeds (Passiflora edulis Sims) by response surface methodology. J Food Sci Technol. 2017;54:3552-61. https://doi.org/10.1007/s13197-017-2813-3
dc.relation.referencesDe Santana FC, Shinagawa FB, Araujo EDS, Costa AM, Mancini‐Filho J. Chemical Composition and Antioxidant Capacity of Brazilian Passiflora Seed Oils. Journal of Food Science. 2015;80. https://doi.org/10.1111/1750-3841.13102
dc.relation.referencesMalacrida CR, Jorge N. Yellow passion fruit seed oil (Passiflora edulis f. flavicarpa): physical and chemical characteristics. Braz arch biol technol. 2012;55:127-34. https://doi.org/10.1590/S1516-89132012000100016
dc.relation.referencesSari LM, Sari DK, Bustami A, Gazali AD, Auerkari EI. Cytotoxicity and apoptosis activities of passion fruit (Passiflora edulis Sims) seed extract on HSC-2, HSC-3, MCF-7, and HaCaT cell lines. J Pharm Pharmacogn Res. 2024;12:659-72. https://doi.org/10.56499/jppres23.1798_12.4.659
dc.relation.referencesMontanher AB, Zucolotto SM, Schenkel EP, Fröde TS. Evidence of anti-inflammatory effects of Passiflora edulis in an inflammation model. Journal of Ethnopharmacology. 2007;109:281-8. https://doi.org/10.1016/j.jep.2006.07.031
dc.relation.referencesSepúlveda Ramos PM, Costa GM, Aragón M, Ramos FA, Castellanos L. Analysis of vitexin in aqueous extracts and commercial products of Andean Passiflora species by UHPLC-DAD. J App Pharm Sci. 2018;8:81-6. https://doi.org/10.7324/JAPS.2018.8912
dc.relation.referencesAyres ASFSJ, De Araújo LLS, Soares TC, Costa GM, Reginatto FH, Ramos FA, et al. Comparative central effects of the aqueous leaf extract of two populations of Passiflora edulis. Revista Brasileira de Farmacognosia. 2015;25:499-505. https://doi.org/10.1016/j.bjp.2015.06.007
dc.relation.referencesFreitas MSM, Monnerat PH, Vieira IJC, Carvalho AJCD. Flavonóides e composição mineral de folhas de maracujazeiro amarelo en función da posição da folha no ramo. Cienc Rural. 2007;37:1634-9. https://doi.org/10.1590/S0103-84782007000600020
dc.relation.referencesAryunisari CG, Putra IB, Jusuf NK. Effect of Purple Passion Fruit Extract Cream (Passiflora edulis Sims var. Edulis) 6% against Striae Distensae. Open Access Maced J Med Sci. 2021;9:720-5. https://doi.org/10.3889/oamjms.2021.6424
dc.relation.referencesScotti E, Velásquez I, Ojeda L, Pacheco F. Characterization and incorporation of an extract of passion fruit seeds (Passiflora edulis) in a hydrogel. Revista Ingenieria UC. 2020;27:273-81.
dc.relation.referencesRubian extractos. Produtos – Rejuvenate. Recuperado a partir de: https://www.rubian.com.br/produtos-rejuvenate/
dc.relation.referencesDos Santos P, Vigano J, Martinez J, Lopes M. Miniemulsions of bioactive fractions of Passiflora, compositions including such miniemulsions and formulations.
dc.relation.referencesYanasan N, Wangkananon W, Natakankitkul S, Kiattisin K. Nanoemulsions Containing Passiflora quadrangularis L. Fruit Extracts for Cosmetic Application and Skin Efficacy Study. Cosmetics. 2024;11:57. https://doi.org/10.3390/cosmetics11020057
dc.relation.referencesOsterwalder U, Sohn M, Herzog B. Global state of sunscreens. Photoderm Photoimm Photomed. 2014;30:62-80. https://doi.org/10.1111/phpp.12112
dc.relation.referencesAbd Hisham NY, Mahat NA, Ramli MAI, Shaharaan NMA. A Review on Knowledge, Perception, Practice and Associated Factors of Sunscreen Usage among the Population. Int J Care Scholars. 2024;7:118-44. https://doi.org/10.31436/ijcs.v7i3.373
dc.relation.referencesLionetti N, Rigano L. The New Sunscreens among Formulation Strategy, Stability Issues, Changing Norms, Safety and Efficacy Evaluations. Cosmetics. 2017;4:15. https://doi.org/10.3390/cosmetics4020015
dc.relation.referencesNgoc TTN, Moon JY, Chae HS, Park MJ, Lee JY. Recent Trends of Sunscreen Cosmetic: An Update Review. Cosmetics. 2019;6:64. https://doi.org/10.3390/cosmetics6040064
dc.relation.referencesThomas T, Fat M, Kearns G. Sunscreens: potential hazards to environmental and human health. Front Mar Sci. 2024;11:1471574. https://doi.org/10.3389/fmars.2024.1471574
dc.relation.referencesResende DISP, Jesus A, Sousa Lobo JM, Sousa E, Cruz MT, Cidade H, et al. Up-to-Date Overview of the Use of Natural Ingredients in Sunscreens. Pharmaceuticals. 2022;15:372. https://doi.org/10.3390/ph15030372
dc.relation.referencesMilutinov J, Krstonošić V, Ćirin D, Pavlović N. Emulgels: Promising Carrier Systems for Food Ingredients and Drugs. Polymers. 2023;15:2302. https://doi.org/10.3390/polym15102302
dc.relation.referencesCorredor M. Formulaciones tipo bigel como sistemas de entrega de moléculas biológicamente activas [Tesis de maestría]. [Bogotá]: Universidad Nacional de Colombia; 2016.
dc.relation.referencesMazurkevičiūtė A, Matulytė I, Ivaškienė M, Žilius M. Assessment of Physical, Mechanical, Biopharmaceutical Properties of Emulgels and Bigel Containing Ciclopirox Olamine. Polymers. 2022;14:2783. https://doi.org/10.3390/polym14142783
dc.relation.referencesDaubert CR, Farkas BE. Viscosity Measurement Using a Brookfield Viscometer. En: Nielsen SS, editor. Food Analysis Laboratory Manual. Boston, MA: Springer US; 2010. p. 165-9. https://doi.org/10.1007/978-1-4419-1463-7_20
dc.relation.referencesDutra EA, Oliveira DAGDC, Kedor-Hackmann ERM, Santoro MIRM. Determination of sun protection factor (SPF) of sunscreens by ultraviolet spectrophotometry. Rev Bras Cienc Farm. 2004;40:381-5. https://doi.org/10.1590/S1516-93322004000300014
dc.relation.referencesBaptista S, Pereira JR, Gil CV, Torres CAV, Reis MAM, Freitas F. Development of Olive Oil and α-Tocopherol Containing Emulsions Stabilized by FucoPol: Rheological and Textural Analyses. Polymers. 2022;14:2349. https://doi.org/10.3390/polym14122349
dc.relation.referencesPortilho L, Aiello LM, Vasques LI, Bagatin E, Leonardi GR. Effectiveness of sunscreens and factors influencing sun protection: a review. Braz J Pharm Sci. 2022;58:e20693. https://doi.org/10.1590/s2175-97902022e20693
dc.relation.referencesMilutinov J, Pavlović N, Ćirin D, Hadnađev M, Đanić M, Pavlović N. Development and evaluation of quercetin topical emulgels: Physicochemical and rheological properties, stability and sun protective potential. Journal of Molecular Liquids. 2025;417:126568. https://doi.org/10.1016/j.molliq.2024.126568
dc.relation.referencesAraújo L, Curty S, Moreira A, Rossi A, Raposo N, Vaz U, et al. Development of Broad-Spectrum Natural Sunscreens using Combinations of five Plant Species. JYP. 2016;8:144-8. https://doi.org/10.5530/jyp.2016.2.17
dc.relation.referencesBio-Nest biochemical technology CO., LTD. SunCat JCW03 & JCW09, the Sunscreen of the Future. Taiwan: Bio-Nest biochemical technology CO., LTD;
dc.relation.referencesEuropean Chemicals Agency (ECHA). Cosmetics - UV filters. https://echa.europa.eu/cosmetics-uv-filters. 2025. Recuperado a partir de: https://echa.europa.eu/cosmetics-uv-filters
dc.relation.referencesChavda VP, Acharya D, Hala V, Daware S, Vora LK. Sunscreens: A comprehensive review with the application of nanotechnology. Journal of Drug Delivery Science and Technology. 2023;86:104720. https://doi.org/10.1016/j.jddst.2023.104720
dc.relation.referencesPniewska A, Kalinowska-Lis U. A Survey of UV Filters Used in Sunscreen Cosmetics. Applied Sciences. 2024;14:3302. https://doi.org/10.3390/app14083302
dc.relation.referencesLee M-H, Kim I-Y. Moisturizing Effect and Durability of Sun Protection Factor (UVA/B) Activity with Multiple Emulsion (W/O/W) System. Journal of Oil & Applied Science. 2015;32:339-47. https://doi.org/10.12925/JKOCS.2015.32.2.339
dc.relation.referencesMohanty S, Badhei L, Pal A, Panda P. NOVEL COSMECEUTICAL FORMULATIONS: A BETTER APPROACH TO PHOTOPROTECTION. Int J App Pharm. 2022;9-17. https://doi.org/10.22159/ijap.2022v14i4.44602
dc.relation.referencesPisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. European Journal of Medicinal Chemistry. 2015;97:55-74. https://doi.org/10.1016/j.ejmech.2015.04.040
dc.relation.referencesThbayh DK, Palusiak M, Viskolcz B, Fiser B. Comparative study of the antioxidant capability of EDTA and Irganox. Heliyon. 2023;9:e16064. https://doi.org/10.1016/j.heliyon.2023.e16064
dc.relation.referencesAhmad I, Ali Sheraz M, Ahmed S, Shad Z, Vaid FHM. Photostabilization of ascorbic acid with citric acid, tartaric acid and boric acid in cream formulations. Intern J of Cosmetic Sci. 2012;34:240-5. https://doi.org/10.1111/j.1468-2494.2012.00708.x
dc.relation.referencesSpringer A, Reinelt M, Jesdinszki M, Wunderlich J. How Can the Right Choice of Packaging Materials Prevent a Loss of Quality in Sun Care Products? SOFW Journal. 2021;147.
dc.relation.referencesRowe RC, Sheskey PJ, Quinn ME. Handbook of pharmaceutical excipients. 6th ed. London: Pharmaceutical press; 2009.
dc.relation.referencesPinto JR, Monteiro e Silva SA, Leonardi GR. Effects of 1,3‐propanediol associated, or not, with butylene glycol and/or glycerol on skin hydration and skin barrier function. Intern J of Cosmetic Sci. 2024;46:85-95. https://doi.org/10.1111/ics.12911
dc.relation.referencesGim H, Hong S, Park H, Im S, Kim JI. Synergistic/antagonistic antimicrobial effects of cosmetic ingredients in combination with 1,2-hexanediol. Journal of Microorganism Control. 2024;29:133-42. https://doi.org/10.4265/jmc.29.4_133
dc.relation.referencesDréno B, Zuberbier T, Gelmetti C, Gontijo G, Marinovich M. Safety review of phenoxyethanol when used as a preservative in cosmetics. Acad Dermatol Venereol. 2019;33:15-24. https://doi.org/10.1111/jdv.15944
dc.relation.referencesHalla N, Fernandes IP, Heleno SA, Costa P, Boucherit-Otmani Z, Boucherit K, et al. Cosmetics Preservation: A Review on Present Strategies. Molecules. 2018;23:1571. https://doi.org/10.3390/molecules23071571
dc.relation.referencesLatha Samala M, Sridevi G. Role of Polymers as Gelling Agents in the Formulation of Emulgels. Polym Sci. 2016;2. https://doi.org/10.4172/2471-9935.100010
dc.relation.referencesPatel BM, Kuchekar AB, Pawar SR. Emulgel Approach to Formulation Development: A Review. Biosci, Biotech Res Asia. 2021;18:459-65. https://doi.org/10.13005/bbra/2931
dc.relation.referencesJohnson W, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, et al. Safety Assessment of Vinylpyrrolidone Polymers as Used in Cosmetics. Int J Toxicol. 2024;43:5-41. https://doi.org/10.1177/10915818241267203
dc.relation.referencesIFF Pharma Solutions. Product Data Sheet: METHOCEL K100M PREMIUM HPMC. IFF Pharma Solutions; Report No.: 2816565.
dc.relation.referencesTafuro G, Costantini A, Baratto G, Busata L, Semenzato A. Rheological and Textural Characterization of Acrylic Polymer Water Dispersions for Cosmetic Use. Ind Eng Chem Res. 2019;58:23549-58. https://doi.org/10.1021/acs.iecr.9b05319
dc.relation.referencesClariant. Technical Data Sheet: ARISTOFLEX AVS. Suiza: CLARIANT INTERNATIONAL LTD; 2019.
dc.relation.referencesNery ÉM, Martinez RM, Velasco MVR, Baby AR. A short review of alternative ingredients and technologies of inorganic UV filters. J of Cosmetic Dermatology. 2021;20:1061-5. https://doi.org/10.1111/jocd.13694
dc.relation.referencesSerpone N, Dondi D, Albini A. Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products. Inorganica Chimica Acta. 2007;360:794-802. https://doi.org/10.1016/j.ica.2005.12.057
dc.relation.referencesDransfield G, Cutter S, Laurence P. Particulate metal oxide. 2009.
dc.relation.referencesCrosera M, Prodi A, Mauro M, Pelin M, Florio C, Bellomo F, et al. Titanium Dioxide Nanoparticle Penetration into the Skin and Effects on HaCaT Cells. IJERPH. 2015;12:9282-97. https://doi.org/10.3390/ijerph120809282
dc.relation.referencesKimura E, Kawano Y, Todo H, Ikarashi Y, Sugibayashi K. Measurement of Skin Permeation/Penetration of Nanoparticles for Their Safety Evaluation. Biological & Pharmaceutical Bulletin. 2012;35:1476-86. https://doi.org/10.1248/bpb.b12-00103
dc.relation.referencesCroda Inc. SolaveilTM CT Dispersions. Estados Unidos; 2014. Report No.: DS-280-2.
dc.relation.referencesRoy RK, editor. A primer on the Taguchi method. 2nd ed. Dearborn, MI: Society of Manufacturing Engineers; 2010.
dc.relation.referencesGonzález‐rodríguez ML, Mouram I, Cózar‐bernal MJ, Villasmil S, Rabasco AM. Applying the taguchi method to optimize sumatriptan succinate niosomes as drug carriers for skin delivery. Journal of Pharmaceutical Sciences. 2012;101:3845-63. https://doi.org/10.1002/jps.23252
dc.relation.referencesSaderra L. El secreto de la calidad japonesa: El diseño de experimentos clásico, Taguchi y Shainin. MARCOMBO; 1993.
dc.relation.referencesVieira RP, Fernandes AR, Kaneko TM, Consiglieri VO, Pinto CASDO, Pereira CSC, et al. Physical and physicochemical stability evaluation of cosmetic formulations containing soybean extract fermented by Bifidobacterium animalis. Braz J Pharm Sci. 2009;45:515-25. https://doi.org/10.1590/S1984-82502009000300018
dc.relation.referencesDong X, Sun Z, Jiang L, Li C, Zheng S. Investigation on the film-coating mechanism of alumina-coated rutile TiO₂ and its dispersion stability. Advanced Powder Technology. 2017;28:1982-8. https://doi.org/10.1016/j.apt.2017.05.001
dc.relation.referencesKumar Sarella PN, Pravallika LRK. The Expanding Scope of Emulgels: Formulation, Evaluation and Medical Uses. Int J Curr Sci Res Rev. 2023;06(05). https://doi.org/10.47191/ijcsrr/v6-i5-42
dc.relation.referencesHimma J, Shekh M, Saroj K, Lalan K. Rheological Properties and Particle Size Distribution of Soy Protein Isolate as Affected by Drying Methods. Nutri Food Sci Int J. 2018;7. https://doi.org/10.19080/NFSIJ.2018.07.555721
dc.relation.referencesWesołowska O, Kużdżał M, Štrancar J, Michalak K. Interaction of the chemopreventive agent resveratrol and its metabolite, piceatannol, with model membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2009;1788:1851-60. https://doi.org/10.1016/j.bbamem.2009.06.005
dc.relation.referencesSantos J, Trujillo-Cayado LA, Carrillo F, López-Castejón ML, Alfaro-Rodríguez MC. Relation between Droplet Size Distributions and Physical Stability for Zein Microfluidized Emulsions. Polymers. 2022;14:2195. https://doi.org/10.3390/polym14112195
dc.relation.referencesJafari SM, He Y, Bhandari B. Optimization of nano-emulsions production by microfluidization. Eur Food Res Technol. 2007;225:733-41. https://doi.org/10.1007/s00217-006-0476-9
dc.relation.referencesLowe NJ, editor. Sunscreens: development, evaluation, and regulatory aspects. 2. ed., rev.expanded. New York: Dekker; 1997.
dc.relation.referencesKlink IM, Phillips RJ, Dungan SR. Effect of emulsion drop-size distribution upon coalescence in simple shear flow: A population balance study. Journal of Colloid and Interface Science. 2011;353:467-75. https://doi.org/10.1016/j.jcis.2010.09.059
dc.relation.referencesMartinović M, Nešić I, Bojović D, Žugić A, Blagojević S, Blagojević S, et al. Plant-Based Sunscreen Emulgel: UV Boosting Effect of Bilberry and Green Tea NaDES Extracts. Gels. 2024;10:825. https://doi.org/10.3390/gels10120825
dc.relation.referencesInternational Organization for Standardization (ISO). Cosmetics — Sun protection test methods — In vitro determination of sun protection factor (SPF). 2024 p. 44. Report No.: ISO 23675:2024.
dc.relation.referencesShahin M, Abdel Hady S, Hammad M, Mortada N. Novel Jojoba Oil-Based Emulsion Gel Formulations for Clotrimazole Delivery. AAPS PharmSciTech. 2011;12:239-47. https://doi.org/10.1208/s12249-011-9583-4
dc.relation.referencesKalayi M, Yeğen G, Okur NÜ, Aksu B. Evaluation of emulgel formulations contain diclofenac sodium via quality by design approach. jrp. 2022;26(3):460-8. https://doi.org/10.29228/jrp.143
dc.relation.referencesMuñoz J, Prieto P, García C, Alfaro M. Influence of Processing Variables on the Physical Porperties of Emulgels Contaning Flaxseed Fiber. Proceedings of the Iberian Meeting on Rheology (IBEREO 2024). Springer Nature; 2024. p. 193.
dc.relation.referencesKim J, Jeong EH, Baik JH, Park JD. The role of rheology in cosmetics research: a review. Korea-Aust Rheol J. 2024;36:271-82. https://doi.org/10.1007/s13367-024-00108-y
dc.relation.referencesGaspar LR, Maia Campos PMBG. Rheological behavior and the SPF of sunscreens. International Journal of Pharmaceutics. 2003;250:35-44. https://doi.org/10.1016/S0378-5173(02)00462-3
dc.relation.referencesArrieta-Durango C, Henao-Rivas L, Andrade-Pizarro R. Rheological Behavior of Passion Fruit (Passiflora edulis) Peel Extract. Gels. 2022;8:566. https://doi.org/10.3390/gels8090566
dc.relation.referencesDong L, Liu C, Cun D, Fang L. The effect of rheological behavior and microstructure of the emulgels on the release and permeation profiles of Terpinen-4-ol. European Journal of Pharmaceutical Sciences. 2015;78:140-50. https://doi.org/10.1016/j.ejps.2015.07.003
dc.relation.referencesLupi FR, Gabriele D, Seta L, Baldino N, De Cindio B, Marino R. Rheological investigation of pectin-based emulsion gels for pharmaceutical and cosmetic uses. Rheol Acta. 2015;54:41-52. https://doi.org/10.1007/s00397-014-0809-8
dc.relation.referencesVieira GS, Lavarde M, Fréville V, Rocha‐Filho PA, Pensé‐Lhéritier A. Combining sensory and texturometer parameters to characterize different type of cosmetic ingredients. Intern J of Cosmetic Sci. 2020;42:156-66. https://doi.org/10.1111/ics.12598
dc.relation.referencesBourne MC. Food texture and viscosity. 2nd. ed. San Diego San Francisco New York: Academic press; 2002.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.bnePlantas. Composiciónspa
dc.subject.bnePlants-Compositioneng
dc.subject.bneExtractos de plantasspa
dc.subject.bnePlant extractseng
dc.subject.bnePiel. Cuidado e higienespa
dc.subject.bneSkin-Care and hygieneeng
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.lembCosméticaspa
dc.subject.lembCosméticaeng
dc.subject.proposalPassifloraspa
dc.subject.proposalFotoprotecciónspa
dc.subject.proposalPerfilado químicospa
dc.subject.proposalEstabilidadspa
dc.subject.proposalProtectores solaresspa
dc.subject.proposalEmulgelspa
dc.subject.proposalPhotoprotectioneng
dc.subject.proposalChemical profilingeng
dc.subject.proposalStabilityeng
dc.subject.proposalSunscreenseng
dc.titlePerfilado químico de extractos de subproductos de Passifloras comerciales y propuesta preliminar de una formulación con actividad fotoprotectoraspa
dc.title.translatedChemical profiling of extracts from by-products of commercial Passifloras and preliminary proposal of a photoprotective formulationeng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis_Perfilado químico de extractos de subproductos de Passifloras comerciales y propuesta preliminar de una formulación con actividad fotoprotectora.pdf
Tamaño:
6.99 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: