Degradación catalítica de pesticidas organoclorados y organofosforados

dc.contributor.advisorCARRIAZO, José G.
dc.contributor.authorPrieto Martinez, John Fredy
dc.contributor.researchgroupDiseño y Reactividad de Estructuras Sólidasspa
dc.date.accessioned2024-07-16T14:39:16Z
dc.date.available2024-07-16T14:39:16Z
dc.date.issued2024
dc.descriptionilustraciones (principalmente a color), diagramasspa
dc.description.abstractEsta monografía de investigación recopila información sobre los métodos más eficaces para la degradación catalítica de pesticidas organoclorados y organofosforados. Hace hincapié en la identificación y clasificación de diversos métodos de degradación oxidativa (catalítica y fotocatalítica), los mecanismos de degradación, la identificación de diferentes materiales inorgánicos para la degradación de pesticidas, la correlación entre la superficie de los materiales inorgánicos y su actividad catalítica, las condiciones ambientales como el pH y la temperatura, y la eficacia catalítica de los métodos de degradación. En los últimos años, el uso de pesticidas ha aumentado significativamente, lo que ha tenido un grave impacto en el medio y el ambiente. La acumulación de estos productos químicos tóxicos en el suelo y en los cuerpos de agua es un problema grave que afecta la salud de los organismos vivos. Por lo tanto, es esencial explorar y desarrollar métodos efectivos para la degradación y eliminación de estos pesticidas tanto en el agua como en el suelo. La monografía proporciona información detallada sobre los diversos métodos de degradación catalítica, incluido el uso de catalizadores homogéneos y heterogéneos, como TiO2, zeolitas, óxidos metálicos y materiales de carbono, redes metalorgánicas (MOF), arcillas modificadas y nanomateriales. También analiza el papel del catalizador en el proceso de degradación, incluida la activación de la molécula del pesticida y la generación de especies reactivas de oxígeno (por ejemplo, radicales libres). Además, la monografía proporciona información sobre el efecto de factores ambientales, como el pH y la temperatura, en el proceso de degradación catalítica. Las condiciones de pH y temperatura afectan significativamente la eficiencia del catalizador, y es crucial optimizar estos parámetros para lograr la máxima eficiencia (Texto tomado de la fuente).spa
dc.description.abstractThis research monograph compiles information on the most effective methods for the catalytic degradation of organochlorine and organophosphorus pesticides. This document emphasizes the identification and classification of various oxidative degradation methods (catalytic and photocatalytic), degradation mechanisms, the inorganic materials used as catalysts for removing pesticides, the correlation between the surface of inorganic materials and their catalytic activity, environmental conditions such as pH and temperature, and the catalytic efficiency of the degradation processes. In recent years, the use of pesticides has increased significantly, which has had a serious impact on the environment. The accumulation of these toxic substances in soil and water bodies is a serious problem affecting the health of living organisms and the quality of natural waters. Therefore, it is essential to explore and develop effective methods for the degradation and removal of these hazardous pesticides from soil and aqueous media. This monograph provides detailed information on the various catalytic degradation methods, including the use of homogeneous and heterogeneous catalysts, such as TiO2, zeolites, metal oxides and carbon materials, metal-organic frameworks (MOF), modified clays and nanomaterials. It also discusses the role of the catalyst in the degradation processes, including the activation of pesticide molecules and the generation of reactive oxygen species (e.g. free radicals). In addition, the monograph provides information on the effect of environmental factors, such as pH and temperature, on the catalytic degradation processes. The pH and temperature significantly affect the catalytic activity of the catalysts used for pesticides degradation, so it is crucial to optimize these parameters to achieve their maximum efficiency.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias - Químicaspa
dc.description.researchareaAplicación de nuevos materiales en la degradación oxidativa de contaminantes orgánicos e inorgánicos en medio acuosospa
dc.format.extentxv, 96 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86452
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.references[2] Abeldaño, D y Hurtado, B.(2022) Revisión sistemática: Remoción de antibióticos por ozono, universidad cesar vallejo, lima, Peruspa
dc.relation.references[3] Ahmad, F., Nisar,S.,Mehmood,M., Zakiratullah. (2022). A Critical Review on the Photo Degradation of Diazinon,A Persistent Organic Pesticides. Department of Chemistry, University of Wah, Quaid Avenue, Wah Cantt(47040), Punjab, Pakistan. https://doi.org/10.52568/001120/JCSP/44.05.2022spa
dc.relation.references[4] Aidoo, O. F., Osei-Owusu, J., Chia, S. Y., Dofuor, A. K., Antwi-Agyakwa, A. K., Okyere, H., Gyan, M., Edusei, G., Ninsin, K. D., Duker, R. Q., Siddiqui, S. A., & Borgemeister, C. (2023). Remediation of pesticide residues using ozone: A comprehensive overview. In Science of the Total Environment (Vol. 894). Elsevier B.V. https://doi.org/10.1016/j.scitotenv.2023.164933spa
dc.relation.references[5] Aktar, M,W., Sengupta, D., Chowdhury, A,(2009). Impact of pesticides use in agriculture: their benefits and hazards Interdiscip. Toxicol., 2 (1), pp. 1-12spa
dc.relation.references[6] Albert L, Reyes R. (2000) Plaguicidas organoclorados. Rev Soc Quim Mex; 22: 65-72spa
dc.relation.references[7] Alberto, E. A., Santos, G. M., Marson, E. O., Mbié, M. J., Paniagua, C. E. S., Ricardo, I. A., Starling, M. C. V. M., Pérez, J. A. S., & Trovó, A. G. (2023). Performance of different peroxide sources and UV-C radiation for the degradation of microcontaminants in tertiary effluent from a municipal wastewater treatment plant. Journal of Environmental Chemical Engineering, 11(5). https://doi.org/10.1016/j.jece.2023.110698spa
dc.relation.references[8] Alley, K. R., Gavenda-Eaton, T. R., & Prieto-Centurion, D. (2022). Photo-thermal catalytic degradation of organophosphate simulant over Cu, Co, and Fe on titania. Catalysis Communications, 162. https://doi.org/10.1016/j.catcom.2021.106369spa
dc.relation.references[9] Al-Saleh I A.(1994). Pesticides: a review article. J Environ Pathol Toxicol Oncol; 13:151-161.spa
dc.relation.references[10] Alsulami, A., Kumarswamy, Y. K., Prashanth, M. K., Hamzada, S., Lakshminarayana, P., Pradeep Kumar, C. B., Jeon, B. H., & Raghu, M. S. (2022). Fabrication of FeVO4/RGO Nanocomposite: An Amperometric Probe for Sensitive Detection of Methyl Parathion in Green Beans and Solar Light-Induced Degradation. ACS Omega, 7(49), 45239–45252. https://doi.org/10.1021/acsomega.2c05729spa
dc.relation.references[11] An, X., Chen, Y., Ao, M., Jin, Y., Zhan, L., Yu, B., Wu, Z., & Jiang, P. (2022). Sequential photocatalytic degradation of organophosphorus pesticides and recovery of orthophosphate by biochar/α-Fe2O3/MgO composite: A new enhanced strategy for reducing the impacts of organophosphorus from wastewater. Chemical Engineering Journal, 435. https://doi.org/10.1016/j.cej.2022.135087spa
dc.relation.references[12] An, X., Liu, H., Qu, J., Moniz, S. J. A., & Tang, J. (2015). Photocatalytic mineralisation of herbicide 2,4,5-trichlorophenoxyacetic acid: Enhanced performance by triple junction Cu-TiO2-Cu2O and the underlying reaction mechanism. New Journal of Chemistry, 39(1), 314–320. https://doi.org/10.1039/c4nj01317dspa
dc.relation.references[13] Anajafi, Z., Naseri, M., & Neri, G. (2020). Acetone sensing behavior of p-SmFeO3/n-ZnO nanocomposite synthesized by thermal treatment method. Sensors and Actuators, B: Chemical, 304. https://doi.org/10.1016/j.snb.2019.127252spa
dc.relation.references[14] Anirudhan, T. S., Manjusha, V., & Shainy, F. (2021). Magnetically retrievable cysteine modified graphene oxide@nickelferrite@titanium dioxide photocatalyst for the effective degradation of chlorpyrifos from aqueous solutions. Environmental Technology and Innovation, 23. https://doi.org/10.1016/j.eti.2021.101633spa
dc.relation.references[15] Askarniya, Z., Rayaroth, M. P., Sun, X., Wang, Z., & Boczkaj, G. (2023). Degradation of bisphenol S – a contaminant of emerging concern - by synergistic ozone and percarbonate based AOP. Water Resources and Industry, 29. https://doi.org/10.1016/j.wri.2023.100208spa
dc.relation.references[16] Atalay, S., & Ersöz, G. (2016). Springer Briefs In Molecular Science Green Chemistry For Sustainability Novel Catalysts in Advanced Oxidation of Organic Pollutants. http://www.springer.com/series/10045spa
dc.relation.references[17] Aungpradit, T., Sutthivaiyakit, P., Martens, D., Sutthivaiyakit, S., & Kettrup, A. A. F. (2007). Photocatalytic degradation of triazophos in aqueous titanium dioxide suspension: Identification of intermediates and degradation pathways. Journal of Hazardous Materials, 146(1–2), 204–213. https://doi.org/10.1016/j.jhazmat.2006.12.007spa
dc.relation.references[18] Ayare, S. D., & Gogate, P. R. (2020). Sonochemical, photocatalytic and sonophotocatalytic oxidation of flonicamid pesticide solution using different catalysts. Chemical Engineering and Processing - Process Intensification, 154. https://doi.org/10.1016/j.cep.2020.108040.spa
dc.relation.references[19] Azarpira, H., Rasolevandi, T., Mahvi, A. H., & Karimy, M. (2022). Diazinon pesticide photocatalytic degradation in aqueous matrices based on reductive agent release in iodide exciting under UV Irradiation. Environmental Science and Pollution Research, 29(38), 58078–58087. https://doi.org/10.1007/s11356-022-19811-wspa
dc.relation.references[20] Aziz, K., Naz, A., Manzoor, S., Khan, M. I., Shanableh, A., & Fernandez Garcia, J. (2023). Visible Light Photodegradation of Glyphosate and Methylene Blue Using Defect-Modified Graphitic Carbon Nitride Decorated with Ag/TiO2. Catalysts, 13(7). https://doi.org/10.3390/catal13071087spa
dc.relation.references[21] Bacheloth, Y. (2017). modelación del transporte de plaguicidas e insecticidas en suelos de cultivo de fresa mediante el software HYDRUS- 1D en la vereda de monteadentro pamplona norte de Santander. Universidad de Pamplona. Norte de Santanderspa
dc.relation.references[22] Banco mundial. (2020). comunicado de prensa N.º 2020/133/GWA. https://www.bancomundial.org/es/news/press-release/2020/03/19/wastewater-a-resource-that-can-pay-dividends-for-people-the-environment-and-economies-says-world-bank. Con acceso 01-09-2022spa
dc.relation.references[23] Becerra-Moreno, D., Rubio-Gómez, Y., Ramírez-Ríos, L.F., Barajas-Solano, A.F., & Machuca Martínez, F. (2021). Procesos Avanzados De Oxidación Basados En Ozono Como Alternativa De Tratamiento Para Lixiviados De Rellenos Sanitarios. Ciencia en Desarrollo.spa
dc.relation.references[24] Begum, A., Agnihotri, P., Mahindrakar, A. B., & Gautam, S. K. (2017). Degradation of endosulfan and lindane using Fenton’s reagent. Applied Water Science, 7(1), 207–215. https://doi.org/10.1007/s13201-014-0237-z.spa
dc.relation.references[25] Benito, M., & María, J. (2011). Dinámica de fungicidas en suelos de viñedo enmendados con sustratos postcultivo de hongos.spa
dc.relation.references[26] Berberidou, C., Kokkinos, P., Poulios, I., & Mantzavinos, D. (2022). Homogeneous Photo-Fenton Degradation and Mineralization of Model and Simulated Pesticide Wastewaters in Lab- and Pilot-Scale Reactors. Catalysts, 12(12). https://doi.org/10.3390/catal12121512spa
dc.relation.references[27] Blanco, S.Z. (2017). Transformación Catalítica Selectiva de Metanol Sobre Catalizadores Basados en Óxidos Mixtos Metálicos.spa
dc.relation.references[28] Boukhemkhem, A., Bedia, J., Belver, C., & Molina, C. B. (2023). Degradation of pesticides by heterogeneous Fenton using iron-exchanged clays. Catalysis Communications, 183. https://doi.org/10.1016/j.catcom.2023.106771.spa
dc.relation.references[29] Brienza,M., Ozkal,C., Puma,G.,(2019) Photo(Catalytic) Oxidation Processes for the Removal of Natural Organic Matter and Contaminants of Emerging Concern from Water A. Gil et al. (eds.), Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment, Hdb Env Chem (2019) 67: 133–154, DOI 10.1007/698_2017_189, © Springer International Publishing AG 2018, Published online: 14 April 2018spa
dc.relation.references[30] Briggs SA, Rachel Carson Council. (1992). Basic guide to pesticides. Their characteristics and hazards. Washington: Taylor & Francis Publisher.spa
dc.relation.references[31] Brouwera A, Ahlborgb UG, Van den Bergc M, Birnbaumd LS, Ruud BE, Bosveldc B, Denisonf MS, Earl GL, Hagmarg L, Holeneh E, Huismane M, Jacobsoni SW, Jacobsoni JL, Koopman-Esseboomj C, Koppek JG, Kuligl BM, Morsea DS, Mucklem G, Petersonn RE, Sauerj PJJ, Seegalo RF, Smits-Van PAE, Touwenq BCL, Weisglas-Kuperusj N, Winneker G. (1995).Functional aspects of developmental toxicity of polyhalogenated aromatic hydrocarbons in experimental animals and human infants. Eur J Pharmacol Environ Toxicol Pharmacol; 293(1):1-40spa
dc.relation.references[32] Byrne, C., Subramanian, G., & Pillai, S. C. (2018). Recent advances in photocatalysis for environmental applications. Journal of Environmental Chemical Engineering, 6(3), 3531–3555. https://doi.org/10.1016/j.jece.2017.07.080spa
dc.relation.references[33] Cadavid Salazar, A. S., Rivera Vergara, J. G., & Becerra Moreno, D. (2022). Procesos avanzados de oxidación usando peróxido de hidrogeno activado con diferentes catalizadores para tratamiento de lixiviado de relleno sanitarios. Revista Ing-Nova, 1(2), 205–214. https://doi.org/10.32997/rin-2022-4005spa
dc.relation.references[34] Cai, Y. L., Xu, Y. H., Xiang, J. Z., Zhang, Z. Q., He, Q. X., Li, Y. F., & Lü, J. (2024). Iron–doped bismuth oxybromides as visible−light−responsive Fenton catalysts for the degradation of atrazine in aqueous phases. Journal of Environmental Sciences (China), 137, 321–332. https://doi.org/10.1016/j.jes.2023.01.005spa
dc.relation.references[35] CAR (2022). “Si continúa vertimiento de detergentes y otros contaminantes al río Balsillas espuma no desaparecerá”, advierte la CAR. https://www.car.gov.co/saladeprensa/si-continua-vertimiento-de-detergentes-y-otros-contaminantes-al-rio-balsillas-espuma-no-desaparecera-advierte-la-car. Con acceso 05-10-2022spa
dc.relation.references[36] Centeno-Bordones, G., & Jiménez, Y. (2020). Evaluación del Lodo Rojo Activado como Catalizador Heterogéneo en Procesos de Oxidación Avanzada con Radiación Solar para la Degradación de Aguas Agrias Petroleras.spa
dc.relation.references[37] Chambers, J, E., Meek, E,C., Chambers., H.W.,(2010)The metabolism of organophosphorus insecticides Hayes’ Handbook of Pesticide Toxicology, Academic Press, pp. 1399-1407spa
dc.relation.references[38] Chen X, Q. Zhou, F. Liu, Q. Peng, P. (2019), Teng Removal of nine pesticide residues from water and soil by biosorption coupled with degradation on biosorbent immobilized laccase Chemosphere, 233 pp. 49-56spa
dc.relation.references[39] Chen, K., Cui, Z., Zhang, Z., Pang, H., Yang, J., Huang, X., & Lu, J. (2022). Life-sustaining of H+ in S(IV)/Fe(VI) system for efficient removal of dimethoate in water: Active species identification and mechanism. Chemical Engineering Journal, 445. https://doi.org/10.1016/j.cej.2022.136865spa
dc.relation.references[40] Chen, L., Wei, L., Ru, Y., Weng, M., Wang, L., & Dai, Q. (2023). A mini-review of the electro-peroxone technology for wastewaters: Characteristics, mechanism and prospect. In Chinese Chemical Letters (Vol. 34, Issue 9). Elsevier B.V. https://doi.org/10.1016/j.cclet.2023.108162spa
dc.relation.references[41] Chinnappa, K., Karuna Ananthai, P., Srinivasan, P. P., & Dharmaraj Glorybai, C. (2022). Green synthesis of rGO-AgNP composite using Curcubita maxima extract for enhanced photocatalytic degradation of the organophosphate pesticide chlorpyrifos. Environmental Science and Pollution Research, 29(38), 58121–58132. https://doi.org/10.1007/s11356-022-19917-1spa
dc.relation.references[42] Chiron, S., Fernandez-Alba, A., Rodriguez, A., & Garcia-Calvo, E. (2000). PESTICIDE CHEMICAL OXIDATION: STATE-OF-THE-ART. www.elsevier.com/locate/watres.spa
dc.relation.references[43] Choudhary, S., Rani, M., Keshu, & Shanker, U. (2022). Green biosynthesized N-doped Bi2O3@SnO2 nanocomposite for efficient remediation of endocrine disrupting pesticides. Environmental Nanotechnology, Monitoring and Management, 18. https://doi.org/10.1016/j.enmm.2022.100746spa
dc.relation.references[44] Cole,S., Cooper,W., Fox, R.,Piero R. Gardinali, Mezyk, S.,Bruce J. Mincher, O’shea, K. (2007) Free Radical Chemistry of Disinfection Byproducts. 2. Rate Constants and Degradation Mechanisms of Trichloronitromethane (Chloropicrin). Environ. Sci. Technol. 2007, 41, 863-869.spa
dc.relation.references[45] Comunidad Andina,(2017) Sistema de Información del Medio Ambiente de los Países de la Comunidad Andinaspa
dc.relation.references[46] Contreras, W.A., Bautista-Carrascosa, I., Lidón, A., & Ginestar, D. (2011). Utilización de un modelo compartimental de transporte de pesticidas en las prácticas de Química Agrícola y Ambiental. Modelización en la Educación y el Aprendizaje de las Ciencias, 4, 147-157.spa
dc.relation.references[47] Corporación Autónoma Regional de los Valles del Sinú y San Jorge, CVS. (2006). Plan de ordenación forestal-cerro Murrucucu, cuenca de la Quebrada Jui: Caracterización física. Ed. Universidad Nacional, sede Medellín (Colombia). 120p.spa
dc.relation.references[48] Cruz,G., julcour,C., Jáuregui,U., (2017) El Estado actual y perspectivas de la degradación de pesticidas por procesos avanzados de oxidación Rev. Cubana Quím.Vol. 29, no.3, sept.-dic., 2017, págs. 492-516, e-ISSN: 2224-5421spa
dc.relation.references[49] Cuerda-Correa, E. M., Alexandre-Franco, M. F., & Fernández-González, C. (2020). Advanced oxidation processes for the removal of antibiotics from water. An overview. In Water (Switzerland) (Vol. 12, Issue 1). MDPI AG. https://doi.org/10.3390/w12010102spa
dc.relation.references[50] Cui, H., Zeng, J., Ren, Y. F., Liu, H., Deng, R., Zhang, W., Lv, Y., Wan, Q., Yang, L., Liu, P., & Yang, H. (2023). Theoretical studies on the degradation mechanism of organochlorine pesticides in the presence of Si-OH in sepiolite. Journal of Molecular Structure, 1279. https://doi.org/10.1016/j.molstruc.2023.134955spa
dc.relation.references[51] Dai, K., Peng, T., Chen, H., Zhang, R., & Zhang, Y. (2008). Photocatalytic degradation and mineralization of commercial methamidophos in aqueous titania suspension. Environmental Science and Technology, 42(5), 1505–1510. https://doi.org/10.1021/es702268p.spa
dc.relation.references[52] Daley JM, Paterson G y Drouillard KG. (2014).Bioamplification as a bioaccumulation mechanism for persistent organic pollutants (POPs) in Wildlife. Rev Environ Contam Toxicol; 227:107-154.spa
dc.relation.references[53] Daneshvar, N., Hejazi, M. J., Rangarangy, B., & Khataee, A. R. (2004). Photocatalytic Degradation of an Organophosphorus Pesticide Phosalone in Aqueous Suspensions of Titanium Dioxide. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 39(2), 285–296. https://doi.org/10.1081/PFC-120030242.spa
dc.relation.references[54] De Luna, M. D. G., Gumaling, R. P., Barte, E. G., Abarca, R. R. M., Garcia-Segura, S., & Lu, M. C. (2022). Electrochemically-driven regeneration of iron (II) enhances Fenton abatement of pesticide cartap. Journal of Hazardous Materials, 421. https://doi.org/10.1016/j.jhazmat.2021.126713spa
dc.relation.references[55] De Oliveira,R., da Silva Martini, W., Sant'Ana, A., (2022) Combined effect involving semiconductors and plasmonic nanoparticles in photocatalytic degradation of pesticides,Environmental Nanotechnology, Monitoring & Management,Volume 17,2022,100657,ISSN 2215-1532,https://doi.org/10.1016/j.enmm.2022.100657.spa
dc.relation.references[56] Debabrata, P., & Sivakumar, M. (2018). Sonochemical degradation of endocrine-disrupting organochlorine pesticide Dicofol: Investigations on the transformation pathways of dechlorination and the influencing operating parameters. Chemosphere, 204, 101–108. https://doi.org/10.1016/j.chemosphere.2018.04.014.spa
dc.relation.references[57] Dell'Arciprete, M.L. (2010). Mecanismos, cinética y toxicidad de insecticidas cloronicotinoides y sus productos de degradación con especies reactivas oxidantes de interés ambiental.spa
dc.relation.references[58] Despotović, V., Finčur, N., Bognar, S., Šojić Merkulov, D., Putnik, P., Abramović, B., & Panić, S. (2023). Characterization and Photocatalytic Performance of Newly Synthesized ZnO Nanoparticles for Environmental Organic Pollutants Removal from Water System. Separations, 10(4). https://doi.org/10.3390/separations10040258spa
dc.relation.references[59] Domènech, X.; Jardim, W. F.; Litter, M. (2004). “Procesos avanzados de oxidación para la remoción de contaminantes”. En: Blesa, M. A.; Sánchez, B., eds. “Eliminación de contaminantes por fotocatálisis heterogénea”. Madrid: CIEMAT.spa
dc.relation.references[60] Dong, X., Gan, Z., Lu, X., Jin, W., Yu, Y., & Zhang, M. (2015). Study on catalytic and non-catalytic supercritical water oxidation of p-nitrophenol wastewater. Chemical Engineering Journal, 277, 30–39. https://doi.org/10.1016/j.cej.2015.04.134spa
dc.relation.references[61] Duan, X., Niu, X., Gao, J., Wacławek, S., Tang, L., & Dionysiou, D. D. (2022). Comparison of sulfate radical with other reactive species. In Current Opinion in Chemical Engineering (Vol. 38). Elsevier Ltd. https://doi.org/10.1016/j.coche.2022.100867spa
dc.relation.references[62] Elfikrie,N., Ho,Y,B.,Zaidon,S,Z., Juahir,H., Tan,E,S.,(2020). Occurrence of pesticides in surface water, pesticides removal efficiency in drinking water treatment plant and potential health risk to consumers in Tengi River Basin, Malaysia,Science of The Total Environment, Volume 712,. https://doi.org/10.1016/j.scitotenv.2020.136540spa
dc.relation.references[63] El-Khalafy, S. H., Hassanein, M. T., Elsigeny, S. M., Taha, H. F., Shoueir, K. R., & Kenawy, E. R. S. (2023). Catalytic activity of Mn(III) porphyrin complex supported onto cross linked polymers in the green oxidation of malathion with hydrogen peroxide in aqueous solution. Arabian Journal of Chemistry, 16(8). https://doi.org/10.1016/j.arabjc.2023.104969spa
dc.relation.references[64] El-Mekkawi, H.; et al.(2009). Determination of chlorinated organic pesticide residues in water, sediments, and fish from private fish farms at Abbassa and Sahl Al-Husainia, Shakia Governorate Aust. J. Basic Appl. Sci., 3spa
dc.relation.references[65] El-Nahhal,I., El-Nahhal,Y.,(2021).Pesticide residues in drinking water, their potential risk to human health and removal options,Journal of Environmental Management,Volume 299. https://doi.org/10.1016/j.jenvman.2021.113611spa
dc.relation.references[66] Elsayed, E., Hassan, H., El-Raouf, A. E. R. A., & Salman, S. N. (2021). Coupling between laser irradiation and TiO2nanoparticles on efficient decontamination of some pesticide’s residues from orange and tomato puree. Egyptian Journal of Chemistry, 64(2), 971–979. https://doi.org/10.21608/EJCHEM.2020.45989.2941.spa
dc.relation.references[67] EPA., Información básica sobre pesticidas (2022). https://espanol.epa.gov/espanol/informacion-basica-sobre-pesticidas#:~:text=Un%20pesticida%20es%20cualquier%20sustancia,repeler%20o%20controlar%20una%20plaga. (con acceso 29-08-2022)spa
dc.relation.references[68] Esfandian, H., Samadi-Maybodi, A., Khoshandam, B., & Parvini, M. (2017). Experimental and CFD modeling of diazinon pesticide removal using fixed bed column with Cu-modified zeolite nanoparticle. Journal of the Taiwan Institute of Chemical Engineers, 75, 164–173. https://doi.org/10.1016/j.jtice.2017.03.024.spa
dc.relation.references[69] Estrada, S., & Garcias, C., Perez,C., Cantu, L., (2023). Nanomateriales: conceptos, aplicación en nanoterapia y regulaciones Nanomaterials: concepts, application in nanotherapy and regulations. In Palabras clave: Nanomateriales, departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, 25280Saltillo, Coahuila, México.spa
dc.relation.references[70] Evgenidou, E., Konstantinou, I., Fytianos, K., & Poulios, I. (2007). Oxidation of two organophosphorous insecticides by the photo-assisted Fenton reaction. Water Research, 41(9), 2015–2027. https://doi.org/10.1016/j.watres.2007.01.027.spa
dc.relation.references[71] Fadaei, A., & Kargar, M. (2013). Photocatalytic degradation of chlorpyrifos in water using titanium dioxide and zinc oxide. Fresenius Environmental Bulletin, © by PSP Volume 22 – No 8a. 2013.spa
dc.relation.references[72] Ferreira, J., Takarada, W., Orth, E., (2022). Waste-derived biocatalysts for pesticide degradation, Journal of Hazardous Materials, Volume 427. https://doi.org/10.1016/j.jhazmat.2021.127885.spa
dc.relation.references[73] Fishel, F. M., (2005). Pesticide Toxicity Profile: Triazole Pesticides. University of Florida, IFAS Ext PI 6spa
dc.relation.references[74] Flyunt et al. (2003). Determination of •OH, O2•-, and Hydroperoxide Yields in Ozone Reactions in Aqueous Solution. J. Phys. Chem. B 2003, 107, 7242-7253. DOI:10.1021/jp022455b.spa
dc.relation.references[75] Food and Agriculture Organization of the United Nations (FAO).(1986). international Code of Conduct on the Distribution and Use of Pesticides. Roma: FAO, 1986; 28.spa
dc.relation.references[76] Frank R. (2009).Organochlorine insecticides. Rev Soc Quim Mex; 12:77-79.spa
dc.relation.references[77] Ganie, S, Y., Javaid, D., Hajam, Y, A., Reshi, M, S., (2022). Mechanisms and treatment strategies of organophosphate pesticide induced neurotoxicity in humans: A critical appraisal, Toxicology, Volume 472, https://doi.org/10.1016/j.tox.2022.153181.spa
dc.relation.references[78] Gao, J., Qin, T., Wacławek, S., Duan, X., Huang, Y., Liu, H., & Dionysiou, D. D. (2023). The application of advanced oxidation processes (AOPs) to treat unconventional water for fit-for-purpose reuse. In Current Opinion in Chemical Engineering (Vol. 42). Elsevier Ltd. https://doi.org/10.1016/j.coche.2023.100974.spa
dc.relation.references[79] Garibay, S. J., Farha, O. K., & Decoste, J. B. (2019). Single-component frameworks for heterogeneous catalytic hydrolysis of organophosphorous compounds in pure water. Chemical Communications, 55(49), 7005–7008. https://doi.org/10.1039/c9cc02236hspa
dc.relation.references[80] Garzón-Cucaita, V., & Carriazo, J. (2022). Óxidos de hierro como catalizadores de procesos tipo Fenton con potencial aplicación en tecnologías de remoción de contaminantes,”TecnoLógicas, vol. 25, nro.55, e2393,2022.https://doi.org/10.22430/22565337.2393spa
dc.relation.references[81] Ghauch, A., & Tuqan, A. (2008). Catalytic degradation of chlorothalonil in water using bimetallic iron-based systems. Chemosphere, 73(5), 751–759. https://doi.org/10.1016/j.chemosphere.2008.06.035.spa
dc.relation.references[82] Gil,A., Galeano,L., Vicente,M.,(2019). Applications of Advanced Oxidation Processes (AOPs) in Drinking Water Treatment The Handbook of Environmental Chemistry 67. Series Editors: Damià Barceló · Andrey G. Kostianoyspa
dc.relation.references[83] Glaze, W.(1987). "Drinking-water treatment with ozone". Environmental Science and Technology. Vol. 21, pp. 224-230.spa
dc.relation.references[84] Godínez Muñoz, E. 2005. Análisis de residuos de pesticidas en muestras de tomate de cáscara y col. Tesis Licenciatura. Ciencias Farmacéuticas. Departamento de Química y Biología, Escuela de Ciencias, Universidad de las Américas Puebla. Mayo. 2005.spa
dc.relation.references[85] Gomez, S. V, Leal Marchena, C., Pizzio, L. R., & Pierella, L. B. (2012). DEGRADACIÓN DE DICLORVOS SOBRE ZEOLITAS ZSM-11 IMPREGNADAS CON TiO2.spa
dc.relation.references[86] Gonçalves, D.D. (2023). Degradação sequencial redutiva-oxidativa de pesticidas em água.spa
dc.relation.references[87] González Finol, M., (2010). Estudio De La Degradación Desustancias Peligrosas Presentes En Aguas De Salida De Edar Mediante Ozono/Luz Uv. Departamento de ingeniería química y medio ambiente. Universidad de Zaragoza. España.spa
dc.relation.references[88] Gopinath, K. P., Madhav, N. V., Krishnan, A., Malolan, R., & Rangarajan, G. (2020). Present applications of titanium dioxide for the photocatalytic removal of pollutants from water: A review. In Journal of Environmental Management (Vol. 270). Academic Press. https://doi.org/10.1016/j.jenvman.2020.110906spa
dc.relation.references[89] Guerra-Rodríguez, S., Cuesta, S., Pérez, J., Rodríguez, E., & Rodríguez-Chueca, J. (2023). Life Cycle Assessment of sulfate radical based-AOPs for wastewater disinfection. Chemical Engineering Journal, 474. https://doi.org/10.1016/j.cej.2023.145427spa
dc.relation.references[90] Guo, Y., Wang, Y., Hu, C., Wang, Y., Wang, E., Zhou, Y., & Feng, S. (2000). Microporous Polyoxometalates POMs/SiO2 : Synthesis and Photocatalytic Degradation of Aqueous Organocholorine Pesticides. https://doi.org/10.1021/cm000074spa
dc.relation.references[91] Gupta, P., & Verma, N. (2021). Evaluation of degradation and mineralization of glyphosate pollutant in wastewater using catalytic wet air oxidation over Fe-dispersed carbon nanofibrous beads. Chemical Engineering Journal, 417. https://doi.org/10.1016/j.cej.2020.128029.spa
dc.relation.references[92] Guzmán González, C.A.(2012). Oxidación catalítica en fase líquida de MTBE con catalizadores de Au/TiO₂ y Au/TiO₂-CeO₂.spa
dc.relation.references[93] Gyalpo T, Fritsche L, Bouwman H, Bornman R, Scheringer M, Hungerbühler K.(2012) Estimation of human body concentrations of DDT from indoor residual spraying for malaria control. Environ Pollut; 169:235-241spa
dc.relation.references[94] Hernández Álvarez, U.; Pinedo-Hernández, J.; Paternina-Uribe, R.; Marrugo-Negrete, J.L. 2021. Evaluación de calidad del agua en la Quebrada Jui, afluente del río Sinú, Colombia. Rev. U.D.C.A Act. & Div. Cient. 24(1):e1678. http://doi.org/10.31910/rudca. v24.n1.2021.1678spa
dc.relation.references[95] Hernandez, D. (2022). Utilización de la nanotecnología En el Desarrollo de Fertilizantes Orgánicos y Pesticidas. International Journal of Science and Society.spa
dc.relation.references[96] Herrera, W., Vera, J., Aponte, H., Hermosilla, E., Fincheira, P., Parada, J., Tortella, G., Seabra, A. B., Diez, M. C., & Rubilar, O. (2023). Meta-analysis of metal nanoparticles degrading pesticides: what parameters are relevant? Environmental Science and Pollution Research, 30(21), 60168–60179. https://doi.org/10.1007/s11356-023-26756-1.spa
dc.relation.references[97] Hlophe, P. V., & Dlamini, L. N. (2021). Photocatalytic degradation of diazinon with a 2d/3d nanocomposite of black phosphorous/metal organic framework. Catalysts, 11(6). https://doi.org/10.3390/catal11060679.spa
dc.relation.references[98] Huang, H., Li, N., Chen, Y., Shentu, X., Yu, X., & Ye, Z. (2024). Synthesis of multiwalled carbon nanotubes/metal-organic framework composite for the determination of neonicotinoid pesticides in medicine and food homology products. Food Chemistry, 434, 137354. https://doi.org/10.1016/j.foodchem.2023.137354.spa
dc.relation.references[99] Huang, Y., Bu, L., Wu, Y., Zhu, S., Zhou, S., Shi, Z., & Dionysiou, D. D. (2022). Degradation of contaminants of emerging concern in UV/Sodium percarbonate Process: Kinetic understanding of carbonate radical and energy consumption evaluation. Chemical Engineering Journal, 442. https://doi.org/10.1016/j.cej.2022.135995.spa
dc.relation.references[100] ICA. (2023). Registro Nacionales de Plaguicidas. https://www.ica.gov.co/areas/agricola/servicios/regulacion-y-control-de-plaguicidas-quimicos/estadisticas/9-bd_registros-nacionales-plaguicidas_20-de-septi.aspx Con acceso 06-12-2023.spa
dc.relation.references[101] INSTITUTO DE HIDROLOGÍA, METEOROLOGÍA Y ESTUDIOS AMBIENTALES, IDEAM. 2018. Reporte de avance del Estudio Nacional del Agua. Disponible desde Internet en: http://www.andi.com.co/Uploads/Cartilla_ENA_%20 2018.pdf (con acceso el 8/05/2022).spa
dc.relation.references[102] INSTITUTO DE HIDROLOGÍA, METEOROLOGÍA Y ESTUDIOS AMBIENTALES. (2001) definiciones Disponible desde Internet en, http://doc umentacion.ideam.gov.co/openbiblio/bvirtual/005247/HTM/CAPITULO_7.HTM (con acceso el 05/10/2022)spa
dc.relation.references[103] Isidro, E., Judith Amador-Hernández, D., Iliana Margarita de la Garza Rodríguez, D., Rosario Enríquez Rosado, D., & Velázquez-Manzanares, M. (2021). Área: Biología y Química Triazinas, los herbicidas más usados alrededor del mundo: aspectos químicos y biológicos Triazines, the most used herbicides around the world: chemical and biological aspects.spa
dc.relation.references[104] IUPAC 'fotocatálisis' (2019) en Compendio de Terminología Química de la IUPAC, 3ª ed. Unión Internacional de Química Pura y Aplicada; 2006. En línea versión 3.0.1, 2019. https://doi.org/10.1351/goldbook.P04580spa
dc.relation.references[105] Jafari, B., Godini, H., Soltani, R. D. C., & Seydi, E. (2022). Effectiveness of UV/SO32− advanced reduction process for degradation and mineralization of trichlorfon pesticide in water: identification of intermediates and toxicity assessment. Environmental Science and Pollution Research, 29(14), 20409–20420. https://doi.org/10.1007/s11356-021-17274-zspa
dc.relation.references[106] Jalili-Jahani, N., Fatehi, A., Azizi-Saadi, J., & Moallem, M. (2022). Enhanced photocatalytic degradation of diazinon by bimetallic Au/Ag-decorated TiO2 nanorods and quadrupole time-of-flight LC-MS/MS assay for detection of by-products. Ceramics International, 48(23), 34415–34427. https://doi.org/10.1016/j.ceramint.2022.08.020spa
dc.relation.references[107] Jaquez, V., Gonzalez, L., Campusano, R., Ortega, V (S.F) Comportamiento De Plaguicidas Persistentes En El Medio Ambiente, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Durango del Instituto Politécnico Nacional, Sigma 119. https://www.labamerex.com/newsletter/news18/Comportamiento-de-plaguicidas.pdf.spa
dc.relation.references[108] Jatoi, A. S., Hashmi, Z., Adriyani, R., Yuniarto, A., Mazari, S. A., Akhter, F., & Mubarak, N. M. (2021). Recent trends and future challenges of pesticide removal techniques - A comprehensive review. Journal of Environmental Chemical Engineering, 9(4). https://doi.org/10.1016/j.jece.2021.105571.spa
dc.relation.references[109] Jiad, M. M., & Abbar, A. H. (2023). Treatment of petroleum refinery wastewater by electrofenton process using a low cost porous graphite air-diffusion cathode with a novel design. Chemical Engineering Research and Design, 193, 207–221. https://doi.org/10.1016/j.cherd.2023.03.021spa
dc.relation.references[110] Jurewicz, J., Radwan, P., Wielgomas, B., Radwan, M., Karwacka, A., Kałużny, P., Piskunowicz, M., Dziewirska, E., & Hanke, W. (2020). Exposure to pyrethroid pesticides and ovarian reserve. Environment International, 144. https://doi.org/10.1016/j.envint.2020.106028.spa
dc.relation.references[111] Kahle M, Buerge IJ, Hauser A, Müller MD, Poiger T.(2008). Fungicidas azoles: ocurrencia y destino en aguas residuales y superficiales. Environ Sci Technol. 1 de octubre de 2008; 42(19):7193-200. doi: 10.1021/es8009309. PMID: 18939546.spa
dc.relation.references[112] Kalantar, S., Bemani, A., Sayadi, M. H., & Chamanehpour, E. (2023). Visible light–driven ZnO/Fe3O4 magnetic nanoparticles for detoxification of diazinon: the photocatalytic optimization process with RSM-BBD model. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-023-29024-4spa
dc.relation.references[113] Keihan, A. H., Hosseinzadeh, R., Farhadian, M., Kooshki, H., & Hosseinzadeh, G. (2016). Solvothermal preparation of Ag nanoparticle and graphene co-loaded TiO2 for the photocatalytic degradation of paraoxon pesticide under visible light irradiation. RSC Advances, 6(87), 83673–83687. https://doi.org/10.1039/c6ra19478hspa
dc.relation.references[114] Khan, J. A., Han, C., Shah, N. S., Khan, H. M., Nadagouda, M. N., Likodimos, V., Falaras, P., O’Shea, K., & Dionysiou, D. D. (2014). Ultraviolet-Visible Light-Sensitive High Surface Area Phosphorous-Fluorine-Co-Doped TiO2 Nanoparticles for the Degradation of Atrazine in Water. Environmental Engineering Science, 31(7), 435–446. https://doi.org/10.1089/ees.2013.0486spa
dc.relation.references[115] Khan, S., He, X., Khan, J. A., Khan, H. M., Boccelli, D. L., & Dionysiou, D. D. (2017). Kinetics and mechanism of sulfate radical- and hydroxyl radical-induced degradation of highly chlorinated pesticide lindane in UV/peroxymonosulfate system. Chemical Engineering Journal, 318, 135–142. https://doi.org/10.1016/j.cej.2016.05.150spa
dc.relation.references[116] Khan, S., Sohail, M., Han, C., Khan, J. A., Khan, H. M., & Dionysiou, D. D. (2021). Degradation of highly chlorinated pesticide, lindane, in water using UV/persulfate: kinetics and mechanism, toxicity evaluation, and synergism by H2O2. Journal of Hazardous Materials, 402. https://doi.org/10.1016/j.jhazmat.2020.123558.spa
dc.relation.references[117] Khoiriah, K., Wellia, D. V., Gunlazuardi, J., & Safni, S. (2020). C. Indonesian Journal of Chemistry, 20(3), 587–596. https://doi.org/10.22146/ijc.43982.spa
dc.relation.references[118] Kumar, A., & Verma, N. (2020). Cu-Fe bimetal-carbon nanofiberous catalytic beads for enhanced oxidation of dichlorvos pesticide and simultaneous reduction of Cr(VI) in wet air. Catalysis Today, 348, 194–202. https://doi.org/10.1016/j.cattod.2019.08.025spa
dc.relation.references[119] Kumar,J., Kaushik,G., Dar,M,A., Nimesh,S., López,J., Villarreal,J,F.,(2018), Microbial Degradation of Organophosphate Pesticides: A Review Pedosphere, Pages 190-208 https://doi.org/10.1016/S1002-0160(18)60017-7.spa
dc.relation.references[120] Kumar,R., & Mukherji, S. (2021) Photocatalysis of dichlorvos using graphene oxide-TiO2 nanocomposite under visible irradiation: process optimization using response surface methodology. Environmental Science and Engineering Department, Indian Institute of Technology, Bombay, Powai,Mumbai—400076, India. Nanotechnology 32, 405708 (15pp). https://doi.org/10.1088/1361-6528/ac101a.spa
dc.relation.references[121] Kumari, P., & Kumar, A. (2023). Advanced Oxidation Process: A remediation technique for organic and non-biodegradable pollutant. Results in Surfaces and Interfaces, 11, 100122. https://doi.org/10.1016/j.rsurfi.2023.100122.spa
dc.relation.references[122] Lee, Y. M., Lee, G., & Zoh, K. D. (2021). Benzophenone-3 degradation via UV/H2O2 and UV/persulfate reactions. Journal of Hazardous Materials, 403. https://doi.org/10.1016/j.jhazmat.2020.123591spa
dc.relation.references[123] Li, J., Chu, B., Xie, Z., Deng, Y., Zhou, Y., Dong, L., Li, B., & Chen, Z. (2022). Mechanism and DFT Study of Degradation of Organic Pollutants on Rare Earth Ions Doped TiO2 Photocatalysts Prepared by Sol-Hydrothermal Synthesis. Catalysis Letters, 152(2), 489–502. https://doi.org/10.1007/s10562-021-03634-4spa
dc.relation.references[124] Li, W., Chen, C., Yang, R., Cheng, S., Sang, X., Zhang, M., Zhang, J., Wang, Z., & Li, Z. (2023). Efficient and Stable Degradation of Triazophos Pesticide by TiO2/WO3 Nanocomposites with S-Scheme Heterojunctions and Oxygen Defects. Catalysts, 13(7). https://doi.org/10.3390/catal13071136.spa
dc.relation.references[125] Liu, J., Wang, Y., Dai, Z., Jia, C. Q., Yang, L., Liu, J., Chen, Y., Yao, L., Wang, B., Huang, W., & Jiang, W. (2024). Recent advances in Zeolite-Based catalysts for volatile organic compounds decontamination by thermal catalytic oxidation. In Separation and Purification Technology (Vol. 330). Elsevier B.V. https://doi.org/10.1016/j.seppur.2023.125339.spa
dc.relation.references[126] López CL. (1993). Exposición a plaguicidas organofosforados. Perspectivas en Salud Pública N.o18. México: Instituto Nacional de Salud Pública. Monografia em Espanhol | LILACS | ID: lil-167674spa
dc.relation.references[127] López, E., & Carlos., J. (2018). Nuevos materiales carbonosos como catalizadores heterogéneos y su aplicación en procesos de oxidación avanzada y en reacciones de interés industrial.spa
dc.relation.references[128] Lourenço, F.M.(2022). Influência nos processos de retenção e transporte de pesticidas e ecotoxicidade de microplásticos em solo tropical.spa
dc.relation.references[129] Lousada, M. E., Lopez Maldonado, E. A., Nthunya, L. N., Mosai, A., Antunes, M. L. P., Fraceto, L. F., & Baigorria, E. (2023). Nanoclays and mineral derivates applied to pesticide water remediation. Journal of Contaminant Hydrology, 259. https://doi.org/10.1016/j.jconhyd.2023.104264spa
dc.relation.references[130] Malato, S., Blanco, J., Maldonado, M. I., Fernández-Ibáñez, P., & Campos, A. (2000). Optimising solar photocatalytic mineralisation of pesticides by adding inorganic oxidising species; application to the recycling of pesticide containers. In Applied Catalysis B: Environmental (Vol. 28).spa
dc.relation.references[131] Meng, X., Guo, Y., Wang, Y., Fan, S., Wang, K., & Han, W. (2022). A Systematic Review of Photolysis and Hydrolysis Degradation Modes, Degradation Mechanisms, and Identification Methods of Pesticides. In Journal of Chemistry (Vol. 2022). Hindawi Limited. https://doi.org/10.1155/2022/9552466spa
dc.relation.references[132] Moezabadi, A. N., Masoumi, A., Asadikaram, G., & Rezaee, A. (2023). Removal of diazinon from aqueous solutions using 3D electrochemical system including a nanocomposite of microbial cellulose/nanomagnetite. Journal of Water Process Engineering, 55, 104232. https://doi.org/10.1016/j.jwpe.2023.104232spa
dc.relation.references[133] Mohamed A. Hassaan, Ahmed El Nemr,(2020) Pesticides pollution: Classifications, human health impact, extraction and treatment techniques,Egyptian Journal of Aquatic Research,Volume 46, Issue 3,Pages 207-220,ISSN 1687-4285,https://doi.org/10.1016/j.ejar.2020.08.007.spa
dc.relation.references[134] Mohammadi, P., & Sheibani, H. (2019). Evaluation, of the bimetallic photocatalytic performance of Resin–Au–Pd nanocomposite for degradation of parathion pesticide under visible light. Polyhedron, 170, 132–137. https://doi.org/10.1016/j.poly.2019.05.030spa
dc.relation.references[135] Moreira, F. C., Boaventura, R. A. R., Brillas, E., & Vilar, V. J. P. (2017). Electrochemical advanced oxidation processes: A review on their application to synthetic and real wastewaters. In Applied Catalysis B: Environmental (Vol. 202, pp. 217–261). Elsevier B.V. https://doi.org/10.1016/j.apcatb.2016.08.037spa
dc.relation.references[136] Moreno, D.M., Rivera, M.E., Delgado, J., & Vargas, M.E. (2018). Modelación del Transporte de Plaguicidas e Insecticidas en Suelos de Cultivo de Arveja con el Software Hydrus-1d en Vereda el Escorial, Pamplona Norte de Santander. Bistua Revista de la Facultad de Ciencias Básicas.spa
dc.relation.references[137] Mosleh, S., Rezaei, K., Dashtian, K., & Salehi, Z. (2021). Ce/Eu redox couple functionalized HKUST-1 MOF insight to sono-photodegradation of malathion. Journal of Hazardous Materials, 409. https://doi.org/10.1016/j.jhazmat.2020.124478spa
dc.relation.references[138] Muff, J., Andersen, C. D., Erichsen, R., & Soegaard, E. G. (2009). Electrochemical treatment of drainage water from toxic dump of pesticides and degradation products. Electrochimica Acta, 54(7), 2062–2068. https://doi.org/10.1016/j.electacta.2008.09.032spa
dc.relation.references[139] Nekooie, R., Ghasemi, J. B., Badiei, A., Shamspur, T., Mostafavi, A., & Moradian, S. (2022). Design and synthesis of g-C3N4/(Cu/TiO2) nanocomposite for the visible light photocatalytic degradation of endosulfan in aqueous solutions. Journal of Molecular Structure, 1258. https://doi.org/10.1016/j.molstruc.2022.132650spa
dc.relation.references[140] Neoblau.(2022) Blossom PinIt Developed By Blossom Themes. Powered by WordPress. Organización Mundial de la Salud (OMS), Organización Panamericana de la Salud (OPS), Centro Panamericano de Ecología Humana y Salud. Serie Vigilancia, 9. Plaguicidas organoclorados. México: OMS/OPS, 1990.spa
dc.relation.references[141] Nivia,E (2004). Los plaguicidas en Colombia. https://www.semillas.org.co/es/los-plaguicidas-en-colombia. (Consultado 22-09-2022)spa
dc.relation.references[142] Nurdin, M., Watoni, A. H., Natsir, M., Rahmatilah, S., Maulidiyah, M., Wibowo, D., Salim, L. O. A., Sadikin, S. N., Bijang, C. M., & Umar, A. A. (2023). Photoelectrocatalysis performance of Se doped-TiO2/Ti nanotube arrays for visible-light-driven degradation of diazinon pesticide. Korean Journal of Chemical Engineering. https://doi.org/10.1007/s11814-023-1395-1.spa
dc.relation.references[143] Organización Mundial de la Salud. (2011). Guidelines for drinking-water quality. 4o ed. Ginebra: Organización Mundial de la Salud: WHO Library cataloguing-in-publication data.spa
dc.relation.references[144] Organización Mundial de la Salud.(2021) WHO Library cataloguing-in-publication data.spa
dc.relation.references[145] Organización Mundial de la Salud: (1990) WHO Library cataloguing-in-publication data.spa
dc.relation.references[146] Oturan, M. A.,& Aaron, J. J. (2014). Advanced oxidation processes in water/wastewater treatment: Principles and applications. A review. In Critical Reviews in Environmental Science and Technology (Vol. 44, Issue 23, pp. 2577–2641). https://doi.org/10.1080/10643389.2013.829765spa
dc.relation.references[147] Paredes-Quevedo, L. C., González-Caicedo, C., Torres-Luna, J. A., & Carriazo, J. G. (2021). Removal of a Textile Azo-Dye (Basic Red 46) in Water by Efficient Adsorption on a Natural Clay. Water, Air, and Soil Pollution, 232(1). https://doi.org/10.1007/s11270-020-04968-2spa
dc.relation.references[148] Parthenidis, P., Evgenidou, E., & Lambropoulou, D. (2023). Landfill leachate treatment by hydroxyl and sulfate radical-based advanced oxidation processes (AOPs). Journal of Water Process Engineering, 53. https://doi.org/10.1016/j.jwpe.2023.103768spa
dc.relation.references[149] Patil, P. B., Raut-Jadhav, S., Topare, N. S., & Pandit, A. B. (2023). Combined strategy of hydrodynamic cavitation and Fenton chemistry for the intensified degradation of acetamiprid. Separation and Purification Technology, 325. https://doi.org/10.1016/j.seppur.2023.124701spa
dc.relation.references[150] Pergal, M. V., Kodranov, I. D., Pergal, M. M., Gašić, U., Stanković, D. M., Petković, B. B., & Manojlović, D. D. (2020). Degradation Products, Mineralization, and Toxicity Assessment of Pesticides Malathion and Fenitrothion. Water, Air, and Soil Pollution, 231(8). https://doi.org/10.1007/s11270-020-04800-x.spa
dc.relation.references[151] Petsas, A. S., & Vagi, M. C. (2018). Photocatalytic Degradation of Selected Organophosphorus Pesticides Using Titanium Dioxide and UV Light. In Titanium Dioxide - Material for a Sustainable Environment. InTech. https://doi.org/10.5772/intechopen.72193.spa
dc.relation.references[152] Pinzon.F., fundación Hidrósfera., entrevista a EL COLOMBIANO.2022 https://www.elcolombiano.com/colombia/espuma-de-mosquera-empezo-a-desaparecer-del-rio-DD17363365 (con Acceso el 16-09-2022)spa
dc.relation.references[153] Ponnaiah, S. K., & Periakaruppan, P. (2024). Fabrication of tin oxide and carbon black nanocomposite for effectual electron-hole separation and visible light-harvesting: Enhanced photocatalytic degradation of an organophosphorus pesticide. Materials Chemistry and Physics, 313. https://doi.org/10.1016/j.matchemphys.2023.128806spa
dc.relation.references[154] Quilez-Molina, A. I., Barroso-Solares, S., Hurtado-García, V., Heredia-Guerrero, J. A., Rodriguez-Mendez, M. L., Rodríguez-Pérez, M. Á., & Pinto, J. (2023). Encapsulation of Copper Nanoparticles in Electrospun Nanofibers for Sustainable Removal of Pesticides. ACS Applied Materials and Interfaces, 15(16), 20385–20397. https://doi.org/10.1021/acsami.3c00849spa
dc.relation.references[155] Ramírez, A.D. (2017). Oxidación Selectiva de Propano y Etano Empleando Catalizadores Basados En Oxidos Multicomponentes. http://hdl.handle.net/10251/90463spa
dc.relation.references[156] Rani, M., Choudhary, S., Yadav, J., Keshu, & Shanker, U. (2023). Metal Oxide-Based Nanocomposites for Elimination of Hazardous Pesticides. In Handbook of Green and Sustainable Nanotechnology (pp. 1123–1148). Springer International Publishing. https://doi.org/10.1007/978-3-031-16101-8_40.spa
dc.relation.references[157] Rapeyko, A. (2017). Materiales Metalorgánicos estructurados (MOFs) y óxidos metálicos como catalizadores heterogéneos para la obtención de compuestos de química fina y valorización de biomasa.spa
dc.relation.references[158] Ribeiro, A. R., Nunes, O. C., Pereira, M. F. R., & Silva, A. M. T. (2015). An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched Directive 2013/39/EU. In Environment International (Vol. 75, pp. 33–51). Elsevier Ltd. https://doi.org/10.1016/j.envint.2014.10.027.spa
dc.relation.references[159] Rocío-Bautista, P., Taima-Mancera, I., Pasán, J., & Pino, V. (2019). Metal-organic frameworks in green analytical chemistry. In Separations (Vol. 6, Issue 3). MDPI Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/separations6030033spa
dc.relation.references[160] Rodriguez, M y Barrera, C. (2020). Procesos de oxidación avanzada en el tratamiento de agua. Universidad Autónoma del Estado de México, Toluca.spa
dc.relation.references[161] Roselló-Márquez,G., Fernández-Domene, R., García-Antón, J.(2021) Organophosphorus pesticides (chlorfenvinphos, phosmet and fenamiphos) photoelectrodegradation by using WO3 nanostructures as photoanode,Journal of Electroanalytical Chemistry,Volume 894,2021,115366,ISSN 1572-6657. https://doi.org/10.1016/j.jelechem.115366.spa
dc.relation.references[162] Roshani, M., Nematollahi, D., Ansari, A., Adib, K., & Masoudi-Khoram, M. (2024). Boosted electrocatalytic oxidation of organophosphorus pesticides by a novel high-efficiency CeO2-Doped PbO2 anode: An electrochemical study, parameter optimization and degradation mechanisms. Chemosphere, 346. https://doi.org/10.1016/j.chemosphere.2023.140597.spa
dc.relation.references[163] Sahithya, K., Kounin, S., Sahana, P., & Arjun, K. P. (2022). Applications of Nanomaterials for Adsorptive and Catalytic Removal of Chemical Pesticides: An Overview. In Asian Journal of Chemistry (Vol. 34, Issue 4, pp. 807–818). Asian Publication Corporation. https://doi.org/10.14233/ajchem.2022.23579spa
dc.relation.references[164] Salazar,M., (2023) Efecto de las propiedades electrocatalíticas de materiales catódicos carbonosos para la decoloración de moléculas modelo aniónica catiónica en un proceso electro-Fenton. Centro De Investigación Y Desarrollo Tecnológico En Electroquimicaspa
dc.relation.references[165] Saljooqi, A., Shamspur, T., & Mostafavi, A. (2020). Synthesis of titanium nanoplate decorated by Pd and Fe3O4 nanoparticles immobilized on graphene oxide as a novel photocatalyst for degradation of parathion pesticide. Polyhedron, 179. https://doi.org/10.1016/j.poly.2020.114371spa
dc.relation.references[166] Sánchez, N. Rodríguez, M. Sarria, V.(2006). Obsolete pesticides in Colombia. Current situation and alternatives for treatment and disposal.spa
dc.relation.references[167] Saqib, M., Solomonenko, A. N., Barek, J., Dorozhko, E. V., Korotkova, E. I., & Aljasar, S. A. (2023). Graphene derivatives-based electrodes for the electrochemical determination of carbamate pesticides in food products: A review. In Analytica Chimica Acta (Vol. 1272). Elsevier B.V. https://doi.org/10.1016/j.aca.2023.341449spa
dc.relation.references[168] Saravanan, A., Kumar, P. S., Vo, D. V. N., Yaashikaa, P. R., Karishma, S., Jeevanantham, S., Gayathri, B., & Bharathi, V. D. (2021). Photocatalysis for removal of environmental pollutants and fuel production: a review. In Environmental Chemistry Letters (Vol. 19, Issue 1, pp. 441–463). Springer Science andBusinessMedia Deutschland GmbH. https://doi.org/10.1007/s10311-020-01077-8spa
dc.relation.references[169] Serna-Galvis, E. A., Silva-Agredo, J., Hernández, F., Botero-Coy, A. M., & Torres-Palma, R. A. (2023). Methods involved in the treatment of four representative pharmaceuticals in hospital wastewater using sonochemical and biological processes. MethodsX, 10. https://doi.org/10.1016/j.mex.2023.102128spa
dc.relation.references[170] Shalini Devi, K. S., Anusha, N., Raja, S., & Senthil Kumar, A. (2018). A New Strategy for Direct Electrochemical Sensing of a Organophosphorus Pesticide, Triazophos, Using a Coomassie Brilliant-Blue Dye Surface-Confined Carbon-Black-Nanoparticle-Modified Electrode. ACS Applied Nano Materials, 1(8), 4110–4119. https://doi.org/10.1021/acsanm.8b00861spa
dc.relation.references[171] Shanaah, H. H., Alzaimoor, E. F. H., Rashdan, S., Abdalhafith, A. A., & Kamel, A. H. (2023). Photocatalytic Degradation and Adsorptive Removal of Emerging Organic Pesticides Using Metal Oxide and Their Composites: Recent Trends and Future Perspectives. In Sustainability (Switzerland) (Vol. 15, Issue 9). MDPI. https://doi.org/10.3390/su15097336spa
dc.relation.references[172] Sharma, S., Sharma, A., Chauhan, N. S., Tahir, M., Kumari, K., Mittal, A., & Kumar, N. (2022). TiO2/Bi2O3/PANI nanocomposite materials for enhanced photocatalytic decontamination of organic pollutants. Inorganic Chemistry Communications, 146. https://doi.org/10.1016/j.inoche.2022.110093spa
dc.relation.references[173] Singh, J., Sharma, S., Aanchal, Basu, S.,(2019) Synthesis of Fe2O3/TiO2 monoliths for the enhanced degradation of industrial dye and pesticide via photo-Fenton catalysis, Journal of Photochemistry and Photobiology A: Chemistry, Volume 376, https://doi.org/10.1016/j.jphotochem.2019.03.004.spa
dc.relation.references[174] Soares da Silva, R.G., Panis, C., Pascotto, C.R., Defante Ferreto, L.E., Lucio, L.C., & Mazetto Brizola, F. (2022). Mecanismos de carcinogênese induzidos por agrotóxicos: revisão sistemática. Acta Elit Salutis.spa
dc.relation.references[175] Sraw, A., Kaur, T., Pandey, Y., Sobti, A., Wanchoo, R. K., & Toor, A. P. (2018). Fixed bed recirculation type photocatalytic reactor with TiO2 immobilized clay beads for the degradation of pesticide polluted water. Journal of Environmental Chemical Engineering, 6(6), 7035–7043. https://doi.org/10.1016/j.jece.2018.10.062spa
dc.relation.references[176] Svensson, F. G., & Österlund, L. (2023). Adsorption and Photo-Degradation of Organophosphates onSulfate-Terminated Anatase TiO2 Nanoparticles. Catalysts, 13(3). https://doi.org/10.3390/catal13030526spa
dc.relation.references[177] Sud,D., & Kaur,P., (2012): Heterogeneous Photocatalytic Degradation of Selected Organophosphate Pesticides: A Review, Critical Reviews in Environmental Science and Technology, 42:22, 2365-2407 To link to this article: http://dx.doi.org/10.1080/10643389.2011.574184spa
dc.relation.references[178] Tahmasebi, A. A., Salimi Beni, A., Azhdarpoor, A., & Moeini, Z. (2023). The application of granular and biological activated carbon columns in removal of organochlorine and organophosphorus pesticides in a water treatment plant. Journal of Water Process Engineering, 56. https://doi.org/10.1016/j.jwpe.2023.104383.spa
dc.relation.references[179] Torres-Mendoza, K.E., Lara-Tambaco, R.M., & León-Araujo, M.E. (2023). Evaluación del proceso de efluentes en refinería Esmeraldas a partir del tratamiento secundario frente al proceso de oxidación húmeda avanzada. Ibero-American Journal of Engineering & Technology Studies.spa
dc.relation.references[180] Trenco, A.G. (2014). Desarrollo de catalizadores híbridos CuZnOAl2O3/zeolita para el proceso de síntesis directa de DME.spa
dc.relation.references[181] Vaya, D., & Surolia, P. K. (2020). C. In Environmental Technology and Innovation (Vol. 20). Elsevier B.V. https://doi.org/10.1016/j.eti.2020.101128spa
dc.relation.references[182] Vela-Monroy, C. A., Saavedra-Alemán, M. J., & Carriazo-Baños, J. G. (2016). Catalizadores homogéneos y heterogéneos de Fe 3+ , Co 2+ y Cu 2+ para la degradación de metilparatión en medio acuoso diluido Homogeneous and heterogeneous catalysts of Fe 3+ , Co 2+ and Cu 2+ for the degradation of methyl parathion in diluted aqueous medium (Vol. 19, Issue 37). , pp. 13-28, 2016.spa
dc.relation.references[183] Wang, C., Shi, P., Wang, Z., Guo, R., You, J., & Zhang, H. (2023). Efficient wastewater disinfection through FeOOH-mediated photo-Fenton reaction: A review. In Journal of Environmental Chemical Engineering (Vol. 11, Issue 6). Elsevier Ltd. https://doi.org/10.1016/j.jece.2023.111269spa
dc.relation.references[184] Wang, D., Li, Y., Jiang, Y., Cai, X., & Yao, X. (2022). Perspectives on surface chemistry of nanostructured catalysts for heterogeneous advanced oxidation processes. Environmental Functional Materials, 1(2), 182–186. https://doi.org/10.1016/j.efmat.2022.08.003spa
dc.relation.references[185] Wang, F., Gao, J., Zhai, W., Cui, J., Hua, Y., Zhou, Z., Liu, D., Wang, P., & Zhang, H. (2021). Accumulation, distribution and removal of triazine pesticides by Eichhornia crassipes in water-sediment microcosm. Ecotoxicology and Environmental Safety, 219. https://doi.org/10.1016/j.ecoenv.2021.112236spa
dc.relation.references[186] Wang, J. L., & Xu, L. J. (2012). Advanced oxidation processes for wastewater treatment: Formation of hydroxyl radical and application. Critical Reviews in Environmental Science and Technology, 42(3), 251–325. https://doi.org/10.1080/10643389.2010.507698spa
dc.relation.references[187] Xochihua Juan, J. L., Solis Maldonado, C., Luna Sánchez, R. A., Enciso Díaz, O. J., Rojas Ronquillo, M. R., Sandoval-Rangel, L., Pineda Aguilar, N., Ramos Delgado, N. A., & Martínez-Vargas, D. X. (2022). TiO2 doped with europium (Eu): Synthesis, characterization and catalytic performance on pesticide degradation under solar irradiation. Catalysis Today, 394–396, 304–313. https://doi.org/10.1016/j.cattod.2021.08.024spa
dc.relation.references[188] Xu, D., Wang, S., Zhang, J., Tang, X., Guo, Y., & Huang, C. (2015). Supercritical water oxidation of a pesticide wastewater. Chemical Engineering Research and Design, 94, 396–406. https://doi.org/10.1016/j.cherd.2014.08.016spa
dc.relation.references[189] Zammataro, A., Santonocito, R., Pappalardo, A., & Sfrazzetto, G. T. (2020). Catalytic degradation of nerve agents. In Catalysts (Vol. 10, Issue 8, pp. 1–18). MDPI. https://doi.org/10.3390/catal10080881spa
dc.relation.references[190] Zawadzki, P. (2022). Visible Light–Driven Advanced Oxidation Processes to Remove Emerging Contaminants from Water and Wastewater: a Review. In Water, Air, and Soil Pollution (Vol. 233, Issue 9). Institute for Ionics. https://doi.org/10.1007/s11270-022-05831-2spa
dc.relation.references[191] Zekkaoui, C., Berrama, T., Dumoulin, D., Billon, G., & Kadmi, Y. (2021). Optimal degradation of organophosphorus pesticide at low levels in water using fenton and photo-fenton processes and identification of by-products by GC-MS/MS. Chemosphere, 279. https://doi.org/10.1016/j.chemosphere.2021.130544spa
dc.relation.references[192] Zeng, Y., Zhang, S., Yin, L., & Dai, Y. (2022). Electrocatalytic degradation of pesticide micropollutants in water by high energy pulse magnetron sputtered Pt/Ti anode. Chinese Chemical Letters, 33(12), 5196–5199. https://doi.org/10.1016/j.cclet.2022.01.031spa
dc.relation.references[193] Zhang, J., Zhao, Z., Liu, J., Wang, J., Sa, G., & Xu, A. (2023). Preparation of mesoporous Hangjin 2# clay supported Nd-TiO2 and its photodegradation of organophosphorus pesticides wastewater. Journal of Environmental Chemical Engineering, 11(6). https://doi.org/10.1016/j.jece.2023.111472spa
dc.relation.references[194] Zhang, Y., Cao, X., Yang, Y., Guan, S., Wang, X., Li, H., Zheng, X., Zhou, L., Jiang, Y., & Gao, J. (2023). Visible light assisted enzyme-photocatalytic cascade degradation of organophosphorus pesticides. Green Chemical Engineering, 4(1), 30–38. https://doi.org/10.1016/j.gce.2022.02.001spa
dc.relation.references[195] Zheng, W., Sun, Y., & Gu, Y. (2022). Assembly of UiO-66 onto Co-doped Fe3O4 nanoparticles to activate peroxymonosulfate for efficient degradation of fenitrothion and simultaneous in-situ adsorption of released phosphate. Journal of Hazardous Materials, 436. https://doi.org/10.1016/j.jhazmat.2022.129058spa
dc.relation.references[196] Zhou, H., Zhang, H., He, Y., Huang, B., Zhou, C., Yao, G., & Lai, B. (2021). Critical review of reductant-enhanced peroxide activation processes: Trade-off between accelerated Fe3+/Fe2+ cycle and quenching reactions. In Applied Catalysis B: Environmental (Vol. 286). Elsevier B.V. https://doi.org/10.1016/j.apcatb.2021.119900spa
dc.relation.references[197] Zhu, Z., Guo, F., Xu, Z., Di, X., & Zhang, Q. (2020). Photocatalytic degradation of an organophosphorus pesticide using a ZnO/rGO composite. RSC Advances, 10(20), 11929–11938. https://doi.org/10.1039/d0ra01741h.spa
dc.relation.references[198] Zolfaghari, H., Yousefi, F., Ghaedi, M., & Mosleh, S. (2022). Performance evaluation of Zr(CUR)/NiCo2S4/CuCo2S4 and Zr(CUR)/CuCo2S4/Ag2S composites for photocatalytic degradation of the methyl parathion pesticide using a spiral-shaped photocatalytic reactor. RSC Advances, 12(45), 29503–29515. https://doi.org/10.1039/d2ra06277aspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::546 - Química inorgánicaspa
dc.subject.lembPlaguicidasspa
dc.subject.lembPesticideseng
dc.subject.lembCompuestos organocloradosspa
dc.subject.lembOrganochlorine compoundseng
dc.subject.lembCompuestos organofosforadosspa
dc.subject.lembOrganophosphorus compoundseng
dc.subject.lembDegradación ambientalspa
dc.subject.lembEnvironmental degradationeng
dc.subject.proposalPesticidasspa
dc.subject.proposalPlaguicidasspa
dc.subject.proposalCompuestos organocloradosspa
dc.subject.proposalCompuestos organofosforadosspa
dc.subject.proposalFotocatálisisspa
dc.subject.proposalDegradación catalíticaspa
dc.subject.proposalProcesos avanzados de oxidaciónspa
dc.subject.proposalPesticideseng
dc.subject.proposalPlaguicideseng
dc.subject.proposalOrganochlorine compoundseng
dc.subject.proposalOrganophosphorus compoundseng
dc.subject.proposalPhotocatalysiseng
dc.subject.proposalCatalytic degradationeng
dc.subject.proposalAdvanced oxidation processeseng
dc.titleDegradación catalítica de pesticidas organoclorados y organofosforadosspa
dc.title.translatedCatalytic degradation of organochlorine and organophosphorus pesticideseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
dcterms.audience.professionaldevelopmentResponsables políticosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ciencias - Química
Tamaño:
1.72 MB
Formato:
Adobe Portable Document Format
Descripción:

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: