Fisiología de la caña de azúcar (Saccharum spp.) en respuesta a baja radiación en fase de maduración

dc.contributor.advisorQuevedo Amaya, Yeison Mauricio
dc.contributor.advisorMejía de Tafur, María Sara
dc.contributor.authorCepeda Quevedo, Aura Mercedes
dc.contributor.orcidCepeda Quevedo, Aura Mercedes [0000-0003-2332-4158]spa
dc.date.accessioned2024-01-16T21:33:27Z
dc.date.available2024-01-16T21:33:27Z
dc.date.issued2023-08
dc.descriptionIlustraciones, tablasspa
dc.description.abstractLa radiación solar (RS) es vital para la fotosíntesis, pero su variabilidad puede afectar el rendimiento del cultivo y desencadenar respuestas fisiológicas y adaptativas para mantener el equilibrio metabólico. El objetivo del estudio fue determinar la respuesta fisiológica a la baja RS en dos variedades de caña de azúcar en la etapa de maduración en Colombia. Se evaluaron cuatro condiciones: campo abierto (0%) y tres niveles de reducción de RS (67, 80 y 95%) usando mallas de color negro. Se identificaron estrategias de adaptación, se determinó la eficiencia fotoquímica, fotosintética, el efecto en la partición de fotoasimilados y acumulación de sacarosa. Como estrategia de adaptación, la variedad CC 01-678 incrementó el SPAD para tolerar la sombra. Mientras que, la variedad CC 05- 430 incrementó su crecimiento apical para evitar la sombra, favoreciendo la captación y uso de la RS en ambientes limitantes. Aunque se observaron diferencias entre variedades e interacciones en ciertos parámetros, estas diferencias no fueron consistentes en las siete semanas de evaluación. Sin embargo, la RS resultó ser el factor principal en las respuestas fisiológicas, los tres niveles de baja RS (67, 80 y 95%) mostraron similitudes notables entre sí, pero difirieron significativamente del testigo (0%). La baja RS afectó negativamente la oxidación de QA- y generó un bloqueo que incrementó la emisión de fluorescencia, disminuyó la tasa de transporte de electrones, y el rendimiento operacional del PSII. Dichas alteraciones disminuyeron la velocidad de producción de ATP y NADPH, reduciéndose la fotosíntesis, el punto de compensación de luz, la respiración y la actividad de RuBisCO. La ralentización de las reacciones del ciclo de Calvin-Benson, disminuyeron la eficiencia fotosintética y la calidad del jugo de la caña de azúcar, resultando en la perdida de entre 1 y 2 unidades porcentuales de sacarosa durante las siete semanas de RS limitada. (Texto tomado de la fuente)spa
dc.description.abstractSolar radiation (SR) is essential for photosynthesis, but its variability can impact crop yield and trigger physiological and adaptive responses to maintain metabolic balance. The aim of the study was to determine the physiological response to low SR in two sugarcane varieties during the ripening stage in Colombia. Four conditions were evaluated: open field (0%) and three levels of SR reduction (67, 80, and 95%) using black shading nets. Adaptation strategies were identified, and photochemical and photosynthetic efficiency, as well as the effect on photoassimilate partitioning and sucrose accumulation, were determined. As an adaptation strategy, variety CC 01-678 increased SPAD to tolerate shade, while CC 05-430 variety increased apical growth to avoid shade, promoting the capture and utilization of SR in limiting environments. Although differences were observed between varieties and interactions in certain parameters, these differences were not consistent over the seven weeks of evaluation. However, SR was the primary factor in physiological responses, as the three low SR levels (67, 80, and 95%) showed notable similarities among themselves but significantly differed from the control (0%). Low SR negatively affected QA- oxidation, leading to a blockage that increased fluorescence emission, reduced the electron transport rate, and reduced the operational efficiency of PSII. These alterations decreased ATP and NADPH production rates, resulting in decreased photosynthesis, light compensation point, respiration, and RuBisCO activity. Slowing down the Calvin-Benson cycle reactions decreased photosynthetic efficiency and the quality of sugarcane juice, resulting in a loss of between 1 and 2 percentage units of sucrose during the seven weeks of limited SR.eng
dc.description.curricularareaCiencias Agropecuarias.Sede Palmiraspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.description.methodsLa metodología aplicada fue el método científico. Se identificó el problema y formuló una hipótesis, conduciendo al diseño experimental y montaje en campo. La recolección de datos siguió el protocolo establecido donde se analizaron variables fisiológicas en el cultivo de la caña de azúcar, seguido por un análisis estadístico para obtener resultados significativos. La fase final incluyó una discusión de los resultados, relacionándolos con la hipótesis inicial y los objetivos de la investigación. Finalmente, se derivaron conclusiones que resumen los hallazgos del estudio y su implicación en el cultivo de la caña de azúcar.spa
dc.description.researchareaFisiología de Cultivosspa
dc.description.sponsorshipEl centro de investigación de la caña de azúcar es financiado por la agroindustria de la caña de azúcar de Colombia ubicado principalmente en la región del valle del río Cauca y Meta. Cenicaña se destaca actualmente por su enfoque en la investigación científica de la caña de azúcar, buscando identificar y maximizar sus aplicaciones en diversos sectores industriales. Como plataforma progresista, su objetivo principal es generar oportunidades que impulsen el progreso sostenible, contribuyendo al desarrollo económico, ambiental y social del país a través de la aplicación de innovaciones en la agroindustria de la caña de azúcar. La entidad se posiciona como un agente clave que no solo investiga las posibilidades de este cultivo, sino que también lidera la transformación positiva de la agroindustria, influyendo en su evolución hacia prácticas más sostenibles.spa
dc.format.extentxx, 129 páginas + anexosspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85339
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombia sede Palmiraspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Palmiraspa
dc.publisher.facultyFacultad de Ciencias Agropecuariasspa
dc.publisher.placePalmira, Valle del Cauca, Colombiaspa
dc.publisher.programPalmira - Ciencias Agropecuarias - Maestría en Ciencias Agrariasspa
dc.relation.referencesArce Cubas, L., Vath, R. L., Bernardo, E. L., Sales, C. R. G., Burnett, A. C., & Kromdijk, J. (2023). Activation of CO2 assimilation during photosynthetic induction is slower in C4 than in C3 photosynthesis in three phylogenetically controlled experiments. Frontiers in Plant Science, 13, 5323. https://doi.org/10.3389/fpls.2022.1091115spa
dc.relation.referencesAbreu, P. P., Souza, M. M., de Almeida, A. A. F., Santos, E. A., Freitas, J. C. de O., & Figueiredo, A. L. (2014). Photosynthetic responses of ornamental passion flower hybrids to varying light intensities. Acta Physiologiae Plantarum, 36(8), 1993–2004. https://doi.org/10.1007/S11738-014-1574-0/FIGURES/4spa
dc.relation.referencesAkhkha, A. (2010). Modelling photosynthetic light-response curve in Calotropis procera under salinity or water deficit stress using non-linear models. Journal of Taibah University for Science, 3(1), 49–57. https://doi.org/10.1016/S1658-3655(12)60020-Xspa
dc.relation.referencesAlmeida, R. L., Silveira, N. M., Miranda, M. T., Pacheco, V. S., Cruz, L. P., Xavier, M. A., Machado, E. C., & Ribeiro, R. V. (2022). Evidence of photosynthetic acclimation to self-shading in sugarcane canopies. Photosynthetica, 60(4), 521–528. https://doi.org/10.32615/ps.2022.045spa
dc.relation.referencesAlmeida, R. L., Silveira, N. M., Pacheco, V. S., Xavier, M. A., Ribeiro, R. V., & Machado, E. C. (2021). Variability and heritability of photosynthetic traits in Saccharum complex. Theoretical and Experimental Plant Physiology, 33(4), 343–355. https://doi.org/10.1007/s40626-021-00217-xspa
dc.relation.referencesArce Cubas, L., Vath, R. L., Bernardo, E. L., Sales, C. R. G., Burnett, A. C., & Kromdijk, J. (2023). Activation of CO2 assimilation during photosynthetic induction is slower in C4 than in C3 photosynthesis in three phylogenetically controlled experiments. Frontiers in Plant Science, 13, 5323. https://doi.org/10.3389/fpls.2022.1091115spa
dc.relation.referencesAsocaña. (2022). Un dulce sabor que se trasforma. Informe anual 2021 – 2022. Sector Agroindustrial de la Caña. http://www.asocana.org/documentos/672022-B663EF18-00FF00,000A000,878787,C3C3C3,0F0F0F,B4B4B4,FF00FF,FFFFFF,2D2D2D,A3C4B5.pdfspa
dc.relation.referencesÁvila-Zárraga, J. G. (2009). Síntesis fotoquímica mediante luz solar. Educación Química, 20(4), 426–432. https://doi.org/10.1016/S0187-893X(18)30046-6spa
dc.relation.referencesAzcón-Bieto, J., & Talón, M. (2003). Fundamentos de fisiología vegetal. In McGrawHill.spa
dc.relation.referencesBąba, W., Kompała-Bąba, A., Zabochnicka-świątek, M., Luźniak, J., Hanczaruk, R., Adamski, A., & Kalaji, H. M. (2019). Discovering trends in photosynthesis using modern analytical tools: More than 100 reasons to use chlorophyll fluorescence. In Photosynthetica (Vol. 57, Issue 2, pp. 668–679). https://doi.org/10.32615/ps.2019.069spa
dc.relation.referencesBaker, N. R. (2008). Chlorophyll Fluorescence: A Probe of Photosynthesis In Vivo. Annual Review of Plant Biology, 59(1), 89–113. https://doi.org/10.1146/annurev.arplant.59.032607.092759spa
dc.relation.referencesBaker, N. R., Harbinson, J., & Kramer, D. M. (2007). Determining the limitations and regulation of photosynthetic energy transduction in leaves. Plant, Cell and Environment, 30(9), 1107–1125. https://doi.org/10.1111/j.1365-3040.2007.01680.xspa
dc.relation.referencesBakker, H. (1999). The Morphology of the Sugar Cane Plant. In Sugar Cane Cultivation and Management (pp. 3–8). Springer US. https://doi.org/10.1007/978-1-4615-4725-9_2spa
dc.relation.referencesBallaré, C. L. (2014). Light Regulation of Plant Defense. Annual Review of Plant Biology, 65(1), 335–363. https://doi.org/10.1146/annurev-arplant-050213-040145spa
dc.relation.referencesBanks, J. M. (2017). Continuous excitation chlorophyll fluorescence parameters: a review for practitioners. Tree Physiology, 37(8), 1128–1136. https://doi.org/10.1093/treephys/tpx059spa
dc.relation.referencesBeed, F. D., Paveley, N. D., & Sylvester-Bradley, R. (2007). Predictability of wheat growth and yield in light-limited conditions. The Journal of Agricultural Science, 145(1), 63–79. https://doi.org/10.1017/S0021859606006678spa
dc.relation.referencesBhat, J. Y., Thieulin-Pardo, G., Hartl, F. U., & Hayer-Hartl, M. (2017). Rubisco Activases: AAA+ Chaperones Adapted to Enzyme Repair. Frontiers in Molecular Biosciences, 4(APR), 20. https://doi.org/10.3389/fmolb.2017.00020spa
dc.relation.referencesBoyd, R. A., Gandin, A., & Cousins, A. B. (2015). Temperature response of C4 photosynthesis: Biochemical analysis of Rubisco, Phosphoenolpyruvate Carboxylase and Carbonic Anhydrase in Setaria viridis. Plant Physiology, 169(3), pp.00586.2015. https://doi.org/10.1104/pp.15.00586spa
dc.relation.referencesCalvache Ulloa, M., & Valle, L. (2021). Índice de cosecha con macro-nutrientes en grano de quinua (Chenopodium quinoa Willd). Revista Alfa, 5(13), 15–28. https://doi.org/10.33996/revistaalfa.v5i13.95spa
dc.relation.referencesCardozo, N. P., & Sentelhas, P. C. (2013). Climatic effects on sugarcane ripening under the influence of cultivars and crop age. Scientia Agricola, 70(6), 449–456. https://doi.org/10.1590/S0103-90162013000600011spa
dc.relation.referencesCastillo, R. O., & Silva Cifuentes, E. (2022). Sugarcane Breeding and Supporting Genetics Research in Ecuador. Sugar Tech, 24(1), 222–231. https://doi.org/10.1007/s12355-021-01057-4spa
dc.relation.referencesCastro, O. R. (2010). La variabilidad de la radiación solar en la superficie terrestre y sus efectos en la producción de caña de azúcar en Guatemala. https://cengicana.org/files/20150828053605989.pdfspa
dc.relation.referencesCENICAÑA. (2021). Informe Anual 2021. Centro de Investigación de La Caña de Azúcar de Colombia, 138. https://www.cenicana.org/wp-content/uploads/2022/04/ia2021_Abril13_2022.pdfspa
dc.relation.referencesChen, James. C. P. (1991). Manual del Azucar de Caña.spa
dc.relation.referencesCollison, R. F., Raven, E. C., Pignon, C. P., & Long, S. P. (2020). Light, Not Age, Underlies the Maladaptation of Maize and Miscanthus Photosynthesis to Self-Shading. Frontiers in Plant Science, 11(June), 1–10. https://doi.org/10.3389/fpls.2020.00783spa
dc.relation.referencesDai, Y., Shen, Z., Liu, Y., Wang, L., Hannaway, D., & Lu, H. (2009). Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. Environmental and Experimental Botany, 65(2–3), 177–182. https://doi.org/10.1016/j.envexpbot.2008.12.008spa
dc.relation.referencesDe Matos, M., Santos, F., & Eichler, P. (2020). Sugarcane world scenario. In Sugarcane Biorefinery, Technology and Perspectives (pp. 1–19). Elsevier. https://doi.org/10.1016/B978-0-12-814236-3.00001-9spa
dc.relation.referencesDe Souza, A. P., Wang, Y., Orr, D. J., Carmo‐Silva, E., & Long, S. P. (2020). Photosynthesis across African cassava germplasm is limited by Rubisco and mesophyll conductance at steady state, but by stomatal conductance in fluctuating light. New Phytologist, 225(6), 2498–2512. https://doi.org/10.1111/nph.16142spa
dc.relation.referencesDemarsy, E., Goldschmidt-Clermont, M., & Ulm, R. (2018). Coping with ‘Dark Sides of the Sun’ through Photoreceptor Signaling. Trends in Plant Science, 23(3), 260–271. https://doi.org/10.1016/j.tplants.2017.11.007spa
dc.relation.referencesDenton, A. K., Simon, R., & Weber, A. P. M. (2013). C4 photosynthesis: from evolutionary analyses to strategies for synthetic reconstruction of the trait. Current Opinion in Plant Biology, 16(3), 315–321. https://doi.org/10.1016/j.pbi.2013.02.013spa
dc.relation.referencesDíaz-Torres, J. J., Hernández-Mena, L., Murillo-Tovar, M. A., León-Becerril, E., López-López, A., Suárez-Plascencia, C., Aviña-Rodriguez, E., Barradas-Gimate, A., & Ojeda-Castillo, V. (2017). Assessment of the modulation effect of rainfall on solar radiation availability at the Earth’s surface. Meteorological Applications, 24(2), 180–190. https://doi.org/10.1002/met.1616spa
dc.relation.referencesDinesh Babu, K. S., Janakiraman, V., Palaniswamy, H., Kasirajan, L., Gomathi, R., & Ramkumar, T. R. (2022). A short review on sugarcane: its domestication, molecular manipulations and future perspectives. Genetic Resources and Crop Evolution, 69(8), 2623–2643. https://doi.org/10.1007/s10722-022-01430-6spa
dc.relation.referencesDurand, M., Murchie, E. H., Lindfors, A. V., Urban, O., Aphalo, P. J., & Robson, T. M. (2021). Diffuse solar radiation and canopy photosynthesis in a changing environment. Agricultural and Forest Meteorology, 311, 108684. https://doi.org/10.1016/j.agrformet.2021.108684spa
dc.relation.referencesErmakova, M., Bellasio, C., Fitzpatrick, D., Furbank, R. T., Mamedov, F., & von Caemmerer, S. (2021). Upregulation of bundle sheath electron transport capacity under limiting light in C 4 Setaria viridis. The Plant Journal, 106(5), 1443–1454. https://doi.org/10.1111/tpj.15247spa
dc.relation.referencesFang, S., Lang, T., Cai, M., & Han, T. (2022). Light keys open locks of plant photoresponses: A review of phosphors for plant cultivation LEDs. Journal of Alloys and Compounds, 902, 163825. https://doi.org/10.1016/j.jallcom.2022.163825spa
dc.relation.referencesFankhauser, C., & Chory, J. (1997). Light control of plant development. Annual Review of Cell and Developmental Biology, 13(1), 203–229. https://doi.org/10.1146/annurev.cellbio.13.1.203spa
dc.relation.referencesFAO. (2020). Sugarcane | Land & Water | Food and Agriculture Organization of the United Nations | Land & Water | Food and Agriculture Organization of the United Nations. http://www.fao.org/land-water/databases-and-software/crop-information/sugarcane/en/spa
dc.relation.referencesFAO. (2022). World Food and Agriculture – Statistical Yearbook 2022. FAO. https://doi.org/10.4060/cc2211enspa
dc.relation.referencesFAOSTAT. (2021). Crops and livestock products. https://www.fao.org/faostat/en/#data/QCL/visualizespa
dc.relation.referencesFiorucci, A.-S., & Fankhauser, C. (2017). Plant Strategies for Enhancing Access to Sunlight. Current Biology, 27(17), R931–R940. https://doi.org/10.1016/j.cub.2017.05.085spa
dc.relation.referencesFlack‐Prain, S., Shi, L., Zhu, P., Rocha, H. R., Cabral, O., Hu, S., & Williams, M. (2021). The impact of climate change and climate extremes on sugarcane production. GCB Bioenergy, 13(3), 408–424. https://doi.org/10.1111/gcbb.12797spa
dc.relation.referencesFranić, M., Jambrović, A., Zdunić, Z., Šimić, D., & Galić, V. (2020). Photosynthetic properties of maize hybrids under different environmental conditions probed by the chlorophyll a fluorescence. Maydica, 64(3).spa
dc.relation.referencesGao, P., Wang, P., Du, B., Li, P., & Kang, B.-H. (2022). Accelerated remodeling of the mesophyll-bundle sheath interface in the maize C4 cycle mutant leaves. Scientific Reports, 12(1), 5057. https://doi.org/10.1038/s41598-022-09135-7spa
dc.relation.referencesGivnish, T. (1988). Adaptation to Sun and Shade: a Whole-Plant Perspective. Functional Plant Biology, 15(2), 63. https://doi.org/10.1071/PP9880063spa
dc.relation.referencesGoltsev, V. N., Kalaji, H. M., Paunov, M., Bąba, W., Horaczek, T., Mojski, J., Kociel, H., & Allakhverdiev, S. I. (2016). Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russian Journal of Plant Physiology, 63(6), 869–893. https://doi.org/10.1134/S1021443716050058spa
dc.relation.referencesGong, X., Liu, C., Dang, K., Wang, H., Du, W., Qi, H., Jiang, Y., & Feng, B. (2022). Mung Bean (Vigna radiata L.) Source Leaf Adaptation to Shading Stress Affects Not Only Photosynthetic Physiology Metabolism but Also Control of Key Gene Expression. Frontiers in Plant Science, 13, 36. https://doi.org/10.3389/fpls.2022.753264spa
dc.relation.referencesGregoriou, K., Pontikis, K., & Vemmos, S. (2007). Effects of reduced irradiance on leaf morphology, photosynthetic capacity, and fruit yield in olive (Olea europaea L.). Photosynthetica, 45(2), 172–181. https://doi.org/10.1007/s11099-007-0029-xspa
dc.relation.referencesHe, Q., & Li, D. (2021). Assessing shade stress in leaves of turf-type tall fescue (Festuca arundinacea Schreb.). Photosynthetica, 59(4), 478–485. https://doi.org/10.32615/ps.2021.037spa
dc.relation.referencesHerrmann, H. A., Schwartz, J.-M., & Johnson, G. N. (2020). From empirical to theoretical models of light response curves - linking photosynthetic and metabolic acclimation. Photosynthesis Research, 145(1), 5–14. https://doi.org/10.1007/s11120-019-00681-2spa
dc.relation.referencesHitchcock, A., Hunter, C. N., Sobotka, R., Komenda, J., Dann, M., & Leister, D. (2022). Redesigning the photosynthetic light reactions to enhance photosynthesis – the PhotoRedesign consortium. The Plant Journal, 109(1), 23–34. https://doi.org/10.1111/tpj.15552spa
dc.relation.referencesHuang, D., Wu, L., Chen, J. R., & Dong, L. (2011). Morphological plasticity, photosynthesis and chlorophyll fluorescence of Athyrium pachyphlebium at different shade levels. Photosynthetica, 49(4), 611–618. https://doi.org/10.1007/s11099-011-0076-1spa
dc.relation.referencesHumbert, R. P., & Bonnet, J. A. (1963). The Growing of Sugar Cane. Soil Science, 107(3), 233. https://doi.org/10.1097/00010694-196903000-00021spa
dc.relation.referencesHussain, S., Hussain, S., Khaliq, A., Ali, S., & Khan, I. (2019). Physiological, Biochemical, and Molecular Aspects of Seed Priming. In Priming and Pretreatment of Seeds and Seedlings (pp. 43–62). Springer Singapore. https://doi.org/10.1007/978-981-13-8625-1_3spa
dc.relation.referencesIDEAM. (2022). BOLETÍN DE MONITOREO FENOMENO EL NIÑO Y LA NIÑA - IDEAM. http://www.ideam.gov.co/web/tiempo-y-clima/boletin-de-seguimiento-fenomeno-el-nino-y-la-nina/-/document_library_display/I6NwA8DioHgN/view/121539941?_110_INSTANCE_I6NwA8DioHgN_redirect=http%3A%2F%2Fwww.ideam.gov.co%2Fweb%2Ftiempo-y-clima%2Fboletin-de-seguispa
dc.relation.referencesJaiswal, R., Mall, R. K., Patel, S., Singh, N., Mendiratta, N., & Gupta, A. (2023). Indian sugarcane under warming climate: A simulation study. European Journal of Agronomy, 144, 126760. https://doi.org/10.1016/j.eja.2023.126760spa
dc.relation.referencesJames, N. I. (1980). Sugarcane. In Hybridization of Crop Plants (pp. 617–629). American Society of Agronomy, Crop Science Society of America. https://doi.org/10.2135/1980.hybridizationofcrops.c44spa
dc.relation.referencesKabir, M. Y., Nambeesan, S. U., & Díaz-Pérez, J. C. (2023). Carbon dioxide and light curves and leaf gas exchange responses to shade levels in bell pepper (Capsicum annuum L.). Plant Science, 326, 111532. https://doi.org/10.1016/j.plantsci.2022.111532spa
dc.relation.referencesKaiser, E., Morales, A., Harbinson, J., Kromdijk, J., Heuvelink, E., & Marcelis, L. F. M. (2015). Dynamic photosynthesis in different environmental conditions. Journal of Experimental Botany, 66(9), 2415–2426. https://doi.org/10.1093/jxb/eru406spa
dc.relation.referencesKarp, G. (2017). Fotosíntesis y el cloroplasto. In Biología celular y molecular. Conceptos y experimentos, 7e (pp. 1–36). McGraw-Hill Education. accessmedicina.mhmedical.com/content.aspx?aid=1139752883spa
dc.relation.referencesKaur, G., Singh, G., Motavalli, P. P., Nelson, K. A., Orlowski, J. M., & Golden, B. R. (2020). Impacts and management strategies for crop production in waterlogged or flooded soils: A review. Agronomy Journal, 112(3), 1475–1501. https://doi.org/10.1002/agj2.20093spa
dc.relation.referencesKochetova, G. V, Avercheva, O. V, Bassarskaya, E. M., & Zhigalova, T. V. (2022). Light quality as a driver of photosynthetic apparatus development. Biophysical Reviews, 14(4), 779–803. https://doi.org/10.1007/s12551-022-00985-zspa
dc.relation.referencesKoetle, M. J., Snyman, S. J., & Rutherford, R. S. (2022). Ex vitro Morpho-Physiological Screening of Drought Tolerant Sugarcane Epimutants Generated Via 5-Azacytidine and Imidacloprid Treatments. Tropical Plant Biology, 15(4), 288–300. https://doi.org/10.1007/s12042-022-09323-9spa
dc.relation.referencesKomor, E. (2000). The physiology of sucrose storage in sugarcane. In Developments in Crop Science (Vol. 26, Issue C, pp. 35–53). https://doi.org/10.1016/S0378-519X(00)80003-3spa
dc.relation.referencesKouřil, R., Wientjes, E., Bultema, J. B., Croce, R., & Boekema, E. J. (2013). High-light vs. low-light: Effect of light acclimation on photosystem II composition and organization in Arabidopsis thaliana. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1827(3), 411–419. https://doi.org/10.1016/j.bbabio.2012.12.003spa
dc.relation.referencesKromdijk, J., Griffiths, H., & Schepers, H. E. (2010). Can the progressive increase of C4 bundle sheath leakiness at low PFD be explained by incomplete suppression of photorespiration? Plant, Cell & Environment, 33(11), 1935–1948. https://doi.org/10.1111/j.1365-3040.2010.02196.xspa
dc.relation.referencesKromdijk, J., Schepers, H. E., Albanito, F., Fitton, N., Carroll, F., Jones, M. B., Finnan, J., Lanigan, G. J., & Griffiths, H. (2008). Bundle Sheath Leakiness and Light Limitation during C4 Leaf and Canopy CO2 Uptake. Plant Physiology, 148(4), 2144–2155. https://doi.org/10.1104/pp.108.129890spa
dc.relation.referencesKromdijk, J., Ubierna, N., Cousins, A. B., & Griffiths, H. (2014). Bundle-sheath leakiness in C4 photosynthesis: a careful balancing act between CO2 concentration and assimilation. Journal of Experimental Botany, 65(13), 3443–3457. https://doi.org/10.1093/jxb/eru157spa
dc.relation.referencesKubásek, J., Urban, O., & Šantrůček, J. (2013). C 4 plants use fluctuating light less efficiently than do C 3 plants: a study of growth, photosynthesis and carbon isotope discrimination. Physiologia Plantarum, 149(4), 528–539. https://doi.org/10.1111/ppl.12057spa
dc.relation.referencesKumar, D., Singh, H., Raj, S., & Soni, V. (2020). Chlorophyll a fluorescence kinetics of mung bean (Vigna radiata L.) grown under artificial continuous light. Biochemistry and Biophysics Reports, 24, 100813. https://doi.org/10.1016/j.bbrep.2020.100813spa
dc.relation.referencesKurepin, L. V., Emery, R. J. N., Pharis, R. P., & Reid, D. M. (2007). Uncoupling light quality from light irradiance effects in Helianthus annuus shoots: putative roles for plant hormones in leaf and internode growth. Journal of Experimental Botany, 58(8), 2145–2157. https://doi.org/10.1093/jxb/erm068spa
dc.relation.referencesLachapelle, P.-P., & Shipley, B. (2012). Interspecific prediction of photosynthetic light response curves using specific leaf mass and leaf nitrogen content: effects of differences in soil fertility and growth irradiance. Annals of Botany, 109(6), 1149–1157. https://doi.org/10.1093/aob/mcs032spa
dc.relation.referencesLarrahondo, J. E., & Villegas, F. (1995). Control y Características de Maduración. In El cultivo de la caña en la zona azucarera de Colombia (p. 412).spa
dc.relation.referencesLaub, M., Pataczek, L., Feuerbacher, A., Zikeli, S., & Högy, P. (2022). Contrasting yield responses at varying levels of shade suggest different suitability of crops for dual land-use systems: a meta-analysis. Agronomy for Sustainable Development, 42(3), 51. https://doi.org/10.1007/s13593-022-00783-7spa
dc.relation.referencesLee, M., Boyd, R. A., & Ort, D. R. (2022). The photosynthetic response of C 3 and C 4 bioenergy grass species to fluctuating light. GCB Bioenergy, 14(1), 37–53. https://doi.org/10.1111/gcbb.12899spa
dc.relation.referencesLudwig, M. (2013). Evolution of the C4 photosynthetic pathway: events at the cellular and molecular levels. Photosynthesis Research, 117(1–3), 147–161. https://doi.org/10.1007/s11120-013-9853-yspa
dc.relation.referencesLundgren, M. R., Osborne, C. P., & Christin, P.-A. (2014). Deconstructing Kranz anatomy to understand C4 evolution. Journal of Experimental Botany, 65(13), 3357–3369. https://doi.org/10.1093/jxb/eru186spa
dc.relation.referencesMall, R. K., Sonkar, G., Bhatt, D., Sharma, N. K., Baxla, A. K., & Singh, K. K. (2016). Managing impact of extreme weather events in sugarcane in different agro-climatic zones of Uttar Pradesh. Mausam, 67(1), 233–250. https://doi.org/10.54302/mausam.v67i1.1187spa
dc.relation.referencesMaloney, V. J., Park, J.-Y., Unda, F., & Mansfield, S. D. (2015). Sucrose phosphate synthase and sucrose phosphate phosphatase interact in planta and promote plant growth and biomass accumulation. Journal of Experimental Botany, 66(14), 4383–4394. https://doi.org/10.1093/jxb/erv101spa
dc.relation.referencesMarchiori, P. E. R., Machado, E. C., & Ribeiro, R. V. (2014). Photosynthetic limitations imposed by self-shading in field-grown sugarcane varieties. Field Crops Research, 155, 30–37. https://doi.org/10.1016/j.fcr.2013.09.025spa
dc.relation.referencesMasoabi, M., Snyman, S., & Van der Vyver, C. (2023). Characterisation of an ethyl methanesulfonate‐derived drought‐tolerant sugarcane mutant line. Annals of Applied Biology, 182(3), 343–360. https://doi.org/10.1111/aab.12823spa
dc.relation.referencesMathur, S., Jain, L., & Jajoo, A. (2018). Photosynthetic efficiency in sun and shade plants. Photosynthetica, 56(SPECIAL ISSUE), 354–365. https://doi.org/10.1007/s11099-018-0767-yspa
dc.relation.referencesMcCormick, A. J., Cramer, M. D., & Watt, D. A. (2006). Sink strength regulates photosynthesis in sugarcane. New Phytologist, 171(4), 759–770. https://doi.org/10.1111/j.1469-8137.2006.01785.xspa
dc.relation.referencesMcPhaden, M. J. (2003). El Niño and La Niña: Causes and Global Consequences. Encyclopedia of Global Environmental Change, Volume 1, The Earth System: Physical and Chemical Dimensions of Global Environmental Change, 1, 353–370. https://www.pmel.noaa.gov/gtmba/featured-publication/el-niño-and-la-niña-causes-and-global-consequencesspa
dc.relation.referencesMeisel, L. A., Urbina, D. C., & Pinto, M. E. (2011). Fotorreceptores y Respuestas de Plantas a Señales Lumínicas. Fisiología Vegetal, 18, 1–9. http://www.biouls.cl/librofv/web/pdf_word/Capitulo 18.pdfspa
dc.relation.referencesMelgarejo, L. M., Romero, M., Hernández, S., Barrera, J., Solarte, M. E., Suárez, D., Pérez, L. V., Rojas, A., Cruz, M., Moreno, L., Crespo, S., & Pérez, W. (2010). Experimentos en fisiología vegetal. Plant, Cell and Environment, 34(1), 65–75. https://doi.org/10.1111/J.1365-3040.2010.02226.Xspa
dc.relation.referencesMinhas, P. S., Rane, J., & Pasala, R. K. (2017). Abiotic Stress Management for Resilient Agriculture. In P. S. Minhas, J. Rane, & R. K. Pasala (Eds.), Abiotic Stress Management for Resilient Agriculture. Springer Singapore. https://doi.org/10.1007/978-981-10-5744-1spa
dc.relation.referencesMisra, V., Mall, A. K., Ansari, S. A., & Ansari, M. I. (2022). Sugar Transporters, Sugar-Metabolizing Enzymes, and Their Interaction with Phytohormones in Sugarcane. Journal of Plant Growth Regulation, 1–14. https://doi.org/10.1007/s00344-022-10778-zspa
dc.relation.referencesMontero, D., García, C. E., Soto, M., & Valencia, J. M. (2017). Estimación de productividad en caña de azúcar desde la percepción remota. Análisis Geográficos, 53(December), 35–49. https://www.researchgate.net/publication/321973459_Estimacion_de_productividad_en_cana_de_azucar_desde_la_percepcion_remotaspa
dc.relation.referencesMoore, P. H., Paterson, A. H., & Tew, T. (2013). Sugarcane: Physiology, Biochemistry, and Functional Biology. In P. H. Moore & F. C. Botha (Eds.), Sugarcane: Physiology, Biochemistry, and Functional Biology (John Wiley). Wiley. https://doi.org/10.1002/9781118771280spa
dc.relation.referencesMoreno, G., Vela, P., & Salcedo Alvarez, Martha, O. (2008). La fluorescencia de la clorofila a como herramienta en la investigación de efectos tóxicos en el aparato fotosintético de plantas y algas. Revista de Educación Bioquímica, 27(4), 119–129. http://redalyc.uaemex.mx/src/inicio/ArtPdfRed.jsp?iCve=49011464003spa
dc.relation.referencesMoustakas, M., Guidi, L., & Calatayud, A. (2022). Editorial: Chlorophyll fluorescence analysis in biotic and abiotic stress, volume II. Frontiers in Plant Science, 13, 4569. https://doi.org/10.3389/fpls.2022.1066865spa
dc.relation.referencesMuhammad, I., Shalmani, A., Ali, M., Yang, Q.-H., Ahmad, H., & Li, F. B. (2021). Mechanisms Regulating the Dynamics of Photosynthesis Under Abiotic Stresses. Frontiers in Plant Science, 11, 615942. https://doi.org/10.3389/fpls.2020.615942spa
dc.relation.referencesMurata, N., Takahashi, S., Nishiyama, Y., & Allakhverdiev, S. I. (2007). Photoinhibition of photosystem II under environmental stress. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1767(6), 414–421. https://doi.org/10.1016/j.bbabio.2006.11.019spa
dc.relation.referencesMurchie, E. H., & Lawson, T. (2013). Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. Journal of Experimental Botany, 64(13), 3983–3998. https://doi.org/10.1093/jxb/ert208spa
dc.relation.referencesNelson, N., & Yocum, C. F. (2006). Structure and function of photosystems I and II. Annual Review of Plant Biology, 57(1), 521–565. https://doi.org/10.1146/annurev.arplant.57.032905.105350spa
dc.relation.referencesNeo, D. C. J., Ong, M. M. X., Lee, Y. Y., Teo, E. J., Ong, Q., Tanoto, H., Xu, J., Ong, K. S., & Suresh, V. (2022). Shaping and Tuning Lighting Conditions in Controlled Environment Agriculture: A Review. ACS Agricultural Science & Technology, 2(1), 3–16. https://doi.org/10.1021/acsagscitech.1c00241spa
dc.relation.referencesNoor, M., Fan, J.-B., Zhang, J.-X., Zhang, C.-J., Sun, S.-N., Gan, L., & Yan, X.-B. (2023). Effects of Shade Stress on Growth and Responsive Mechanisms of Bermudagrass (Cynodon dactylon L.). Journal of Plant Growth Regulation, 42(7), 4037–4047. https://doi.org/10.1007/s00344-023-10920-5spa
dc.relation.referencesPalma, C. F. F., Castro-Alves, V., Morales, L. O., Rosenqvist, E., Ottosen, C.-O., & Strid, Å. (2021). Spectral Composition of Light Affects Sensitivity to UV-B and Photoinhibition in Cucumber. Frontiers in Plant Science, 11, 2016. https://doi.org/10.3389/fpls.2020.610011spa
dc.relation.referencesPanigrahy, M., Majeed, N., & Panigrahi, K. C. S. (2020). Low-light and its effects on crop yield: Genetic and genomic implications. Journal of Biosciences, 45(1), 102. https://doi.org/10.1007/s12038-020-00070-1spa
dc.relation.referencesParadiso, R., & Proietti, S. (2022). Light-Quality Manipulation to Control Plant Growth and Photomorphogenesis in Greenhouse Horticulture: The State of the Art and the Opportunities of Modern LED Systems. Journal of Plant Growth Regulation, 41(2), 742–780. https://doi.org/10.1007/s00344-021-10337-yspa
dc.relation.referencesParthasarathy, N. (1948). Origin of Noble Sugar-Canes (Saccharum officinarum.). Nature, 161(4094), 608–608. https://doi.org/10.1038/161608a0spa
dc.relation.referencesPengelly, J. J. L., Sirault, X. R. R., Tazoe, Y., Evans, J. R., Furbank, R. T., & von Caemmerer, S. (2010). Growth of the C4 dicot Flaveria bidentis: photosynthetic acclimation to low light through shifts in leaf anatomy and biochemistry. Journal of Experimental Botany, 61(14), 4109–4122. https://doi.org/10.1093/jxb/erq226spa
dc.relation.referencesPetro Páez, E. E., Cardozo Conde, C. I., & Rebolledo, M. C. (2018). Caracterización fenotípica de un grupo de diversidad de arroz (Oryza sativa L.) de la subespecie indica en respuesta al estés por baja intensidad lumínica. https://cgspace.cgiar.org/handle/10568/98472spa
dc.relation.referencesPignon, C. P., Jaiswal, D., McGrath, J. M., & Long, S. P. (2017). Loss of photosynthetic efficiency in the shade. An Achilles heel for the dense modern stands of our most productive C 4 crops? Journal of Experimental Botany, 68(2), 335–345. https://doi.org/10.1093/jxb/erw456spa
dc.relation.referencesPoorter, H., Niinemets, Ü., Ntagkas, N., Siebenkäs, A., Mäenpää, M., Matsubara, S., & Pons, T. L. (2019). A meta-analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. New Phytologist, 223(3), 1073–1105. https://doi.org/10.1111/NPH.15754spa
dc.relation.referencesRomero, E., Scandaliaris, J., Digonzelli, P., Leggio, F., Giardina, J. A., Fernández de Ullivarri, J., Casen, S. D., Tonatto, J., & Alonso, L. (2009). La caña de azúcar, características y ecofisiología. Manual Del Cañero., 15-22. https://www.researchgate.net/publication/284772525_La_cana_de_azucar_caracteristicas_y_ecofisiologiaspa
dc.relation.referencesRoopendra, K., Chandra, A., & Saxena, S. (2019). Increase in Sink Demand in Response to Perturbed Source–Sink Communication by Partial Shading in Sugarcane. Sugar Tech, 21(4), 672–677. https://doi.org/10.1007/s12355-018-0665-4spa
dc.relation.referencesRuberti, I., Sessa, G., Ciolfi, A., Possenti, M., Carabelli, M., & Morelli, G. (2012). Plant adaptation to dynamically changing environment: The shade avoidance response. Biotechnology Advances, 30(5), 1047–1058. https://doi.org/10.1016/j.biotechadv.2011.08.014spa
dc.relation.referencesRühle, T., & Leister, D. (2016). Photosystem II Assembly from Scratch. Frontiers in Plant Science, 6(JAN2016), 1234. https://doi.org/10.3389/fpls.2015.01234spa
dc.relation.referencesSachdeva, M., Bhatia, S., & Batta, S. K. (2011). Sucrose accumulation in sugarcane: a potential target for crop improvement. Acta Physiologiae Plantarum, 33(5), 1571–1583. https://doi.org/10.1007/s11738-011-0741-9spa
dc.relation.referencesSadras, V. O., Villalobos, F. J., & Fereres, E. (2016). Radiation Interception, Radiation Use Efficiency and Crop Productivity. In Principles of Agronomy for Sustainable Agriculture (pp. 169–188). Springer International Publishing. https://doi.org/10.1007/978-3-319-46116-8_13spa
dc.relation.referencesSage, R. F. (2013). Stopping the leaks: new insights into C 4 photosynthesis at low light. Plant, Cell & Environment, 37(5), 1037–1041. https://doi.org/10.1111/pce.12246spa
dc.relation.referencesSage, R. F., Sage, T. L., & Kocacinar, F. (2012). Photorespiration and the evolution of C4 photosynthesis. Annual Review of Plant Biology, 63, 19–47. https://doi.org/10.1146/annurev-arplant-042811-105511spa
dc.relation.referencesSagun, J. Ver, Chow, W. S., & Ghannoum, O. (2022). Leaf pigments and photosystems stoichiometry underpin photosynthetic efficiency of related C3, C–C4 and C4 grasses under shade. Physiologia Plantarum, 174(6), e13819. https://doi.org/10.1111/ppl.13819spa
dc.relation.referencesSakaigaichi, T., Tsuchida, H., Adachi, K., Hattori, T., Tarumoto, Y., Tanaka, M., Hayano, M., Sakagami, J.-I., & Irei, S. (2019). Phenological Changes in the Chlorophyll Content and Its Fluorescence in Field-Grown Sugarcane Clones Under Over-Wintering Conditions. Sugar Tech, 21(5), 843–846. https://doi.org/10.1007/s12355-018-0693-0spa
dc.relation.referencesSales, C. R. G., Marchiori, P. E. R., Machado, R. S., Fontenele, A. V., Machado, E. C., Silveira, J. A. G., & Ribeiro, R. V. (2015). Photosynthetic and antioxidant responses to drought during sugarcane ripening. Photosynthetica, 53(4), 547–554. https://doi.org/10.1007/s11099-015-0146-xspa
dc.relation.referencesSales, C. R. G., Ribeiro, R. V., Marchiori, P. E. R., Kromdijk, J., & Machado, E. C. (2023). The negative impact of shade on photosynthetic efficiency in sugarcane may reflect a metabolic bottleneck. Environmental and Experimental Botany, 211, 105351. https://doi.org/10.1016/j.envexpbot.2023.105351spa
dc.relation.referencesSales, C. R. G., Wang, Y., Evers, J. B., & Kromdijk, J. (2021). Improving C4 photosynthesis to increase productivity under optimal and suboptimal conditions. Journal of Experimental Botany, 72(17), 5942–5960. https://doi.org/10.1093/jxb/erab327spa
dc.relation.referencesSales, Cristina R G, Wang, Y., Evers, J. B., & Kromdijk, J. (2021). Improving C4 photosynthesis to increase productivity under optimal and suboptimal conditions. Journal of Experimental Botany, 72(17), 5942–5960. https://doi.org/10.1093/jxb/erab327spa
dc.relation.referencesSales, Cristina R.G., Ribeiro, R. V., Hayashi, A. H., Marchiori, P. E. R., Silva, K. I., Martins, M. O., Silveira, J. A. G., Silveira, N. M., & Machado, E. C. (2018). Flexibility of C4 decarboxylation and photosynthetic plasticity in sugarcane plants under shading. Environmental and Experimental Botany, 149, 34–42. https://doi.org/10.1016/j.envexpbot.2017.10.027spa
dc.relation.referencesSalvatori, N., Alberti, G., Muller, O., & Peressotti, A. (2022). Does Fluctuating Light Affect Crop Yield? A Focus on the Dynamic Photosynthesis of Two Soybean Varieties. Frontiers in Plant Science, 13, 1189. https://doi.org/10.3389/fpls.2022.862275spa
dc.relation.referencesSantos, F., & Diola, V. (2015). Physiology. In Sugarcane (pp. 13–33). Elsevier. https://doi.org/10.1016/B978-0-12-802239-9.00002-5spa
dc.relation.referencesSatriawan, H., Nazirah, L., Fitri, R., & Ernawita. (2022). Evaluation of growth and yield of upland rice varieties under various shading levels and organic fertilizer concentrations. Biodiversitas, 23(5), 2655–2662. https://doi.org/10.13057/biodiv/d230549spa
dc.relation.referencesSchewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B., Dankers, R., Eisner, S., Fekete, B. M., Colón-González, F. J., Gosling, S. N., Kim, H., Liu, X., Masaki, Y., Portmann, F. T., Satoh, Y., Stacke, T., Tang, Q., Wada, Y., … Kabat, P. (2014). Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences, 111(9), 3245–3250. https://doi.org/10.1073/pnas.1222460110spa
dc.relation.referencesSchramma, N., Perugachi Israëls, C., & Jalaal, M. (2023). Chloroplasts in plant cells show active glassy behavior under low-light conditions. Proceedings of the National Academy of Sciences, 120(3), e2216497120. https://doi.org/10.1073/pnas.2216497120spa
dc.relation.referencesSchwerz, F., Elli, E. F., Behling, A., Schmidt, D., Caron, B. O., & Sgarbossa, J. (2019). Yield and qualitative traits of sugarcane cultivated in agroforestry systems: Toward sustainable production systems. Renewable Agriculture and Food Systems, 34(4), 280–292. https://doi.org/10.1017/S1742170517000382spa
dc.relation.referencesScott, H. G., & Smith, N. G. (2022). A Model of C4 Photosynthetic Acclimation Based on Least‐Cost Optimality Theory Suitable for Earth System Model Incorporation. Journal of Advances in Modeling Earth Systems, 14(3), e2021MS002470. https://doi.org/10.1029/2021MS002470spa
dc.relation.referencesShafiq, I., Hussain, S., Hassan, B., Shoaib, M., Mumtaz, M., Wang, B., Raza, A., Manaf, A., Ansar, M., Yang, W., & Yang, F. (2020). Effect of simultaneous shade and drought stress on morphology, leaf gas exchange, and yield parameters of different soybean cultivars. Photosynthetica, 58(5), 1200–1209. https://doi.org/10.32615/ps.2020.067spa
dc.relation.referencesShafiq, I., Hussain, S., Raza, M. ali, Iqbal, N., Asghar, M. A., Raza, A., Fan, Y. F., Mumtaz, M., Shoaib, M., Ansar, M., Manaf, A., Yang, W. Y., & YANG, F. (2021). Crop photosynthetic response to light quality and light intensity. Journal of Integrative Agriculture, 20(1), 4–23. https://doi.org/10.1016/S2095-3119(20)63227-0spa
dc.relation.referencesShanthi, R. M., Alarmelu, S., Mahadeva Swamy, H. K., & Lakshmi Pathy, T. (2022). Impact of Climate Change on Sucrose Synthesis in Sugarcane Varieties. In Agro-industrial Perspectives on Sugarcane Production under Environmental Stress (pp. 13–38). Springer Nature Singapore. https://doi.org/10.1007/978-981-19-3955-6_2spa
dc.relation.referencesSharkey, T. D., Bernacchi, C. J., Farquhar, G. D., & Singsaas, E. L. (2007). Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant, Cell and Environment, 30(9), 1035–1040. https://doi.org/10.1111/j.1365-3040.2007.01710.xspa
dc.relation.referencesSharkey, T. D., Bock, R., Planck, M., & Plant, M. (2012). Photosynthesis (J. J. Eaton-Rye, B. C. Tripathy, & T. D. Sharkey (eds.); Springer, Vol. 34). Springer Netherlands. https://doi.org/10.1007/978-94-007-1579-0spa
dc.relation.referencesSharma, A., Kumar, V., Shahzad, B., Ramakrishnan, M., Singh Sidhu, G. P., Bali, A. S., Handa, N., Kapoor, D., Yadav, P., Khanna, K., Bakshi, P., Rehman, A., Kohli, S. K., Khan, E. A., Parihar, R. D., Yuan, H., Thukral, A. K., Bhardwaj, R., & Zheng, B. (2020). Photosynthetic Response of Plants Under Different Abiotic Stresses: A Review. Journal of Plant Growth Regulation, 39(2), 509–531. https://doi.org/10.1007/s00344-019-10018-xspa
dc.relation.referencesShi, Y., Ke, X., Yang, X., Liu, Y., & Hou, X. (2022). Plants response to light stress. Journal of Genetics and Genomics, 49(8), 735–747. https://doi.org/10.1016/j.jgg.2022.04.017spa
dc.relation.referencesShibamoto, T., Kato, Y., Sugiura, M., & Watanabe, T. (2009). Redox Potential of the Primary Plastoquinone Electron Acceptor Q A in Photosystem II from Thermosynechococcus elongatus Determined by Spectroelectrochemistry. Biochemistry, 48(45), 10682–10684. https://doi.org/10.1021/bi901691jspa
dc.relation.referencesShimoda, S., & Sugikawa, Y. (2020). Grain‐filling response of winter wheat ( Triticum aestivum L.) to post‐anthesis shading in a humid climate. Journal of Agronomy and Crop Science, 206(1), 90–100. https://doi.org/10.1111/jac.12370spa
dc.relation.referencesShrivastava, A. K., Pathak, A. D., Misra, V., Srivastava, S., Swapna, M., & Shukla, S. P. (2017). Sugarcane Crop: Its Tolerance Towards Abiotic Stresses. Abiotic Stress Management for Resilient Agriculture, 375–397. https://doi.org/10.1007/978-981-10-5744-1_17spa
dc.relation.referencesShrivastava, A. K., Solomon, S., Rai, R. K., Singh, P., Chandra, A., Jain, R., & Shukla, S. P. (2015). Physiological Interventions for Enhancing Sugarcane and Sugar Productivity. Sugar Tech, 17(3), 215–226. https://doi.org/10.1007/s12355-014-0321-6spa
dc.relation.referencesSi, C., Yang, S., Lou, X., Zhang, G., & Zhong, Q. (2022). Effects of light spectrum on the morphophysiology and gene expression of lateral branching in Pepino (Solanum muricatum). Frontiers in Plant Science, 13, 3739. https://doi.org/10.3389/fpls.2022.1012086spa
dc.relation.referencesSlattery, R. A., Walker, B. J., Weber, A. P. M., & Ort, D. R. (2018). The Impacts of Fluctuating Light on Crop Performance. Plant Physiology, 176(2), 990–1003. https://doi.org/10.1104/pp.17.01234spa
dc.relation.referencesSmith, A. M., & Stitt, M. (2007). Coordination of carbon supply and plant growth. Plant, Cell & Environment, 30(9), 1126–1149. https://doi.org/10.1111/j.1365-3040.2007.01708.xspa
dc.relation.referencesSom-ard, J., Atzberger, C., Izquierdo-Verdiguier, E., Vuolo, F., & Immitzer, M. (2021). Remote Sensing Applications in Sugarcane Cultivation: A Review. Remote Sensing, 13(20), 4040. https://doi.org/10.3390/rs13204040spa
dc.relation.referencesSonkar, G., Singh, N., Mall, R. K., Singh, K. K., & Gupta, A. (2020). Simulating the Impacts of Climate Change on Sugarcane in Diverse Agro-climatic Zones of Northern India Using CANEGRO-Sugarcane Model. Sugar Tech, 22(3), 460–472. https://doi.org/10.1007/s12355-019-00787-wspa
dc.relation.referencesStinziano, J. R., Morgan, P. B., Lynch, D. J., Saathoff, A. J., McDermitt, D. K., & Hanson, D. T. (2017). The rapid A-C i response: photosynthesis in the phenomic era. Plant, Cell & Environment, 40(8), 1256–1262. https://doi.org/10.1111/pce.12911spa
dc.relation.referencesStirbet, A., Riznichenko, G. Y., Rubin, A. B., & Govindjee. (2014). Modeling chlorophyll a fluorescence transient: Relation to photosynthesis. Biochemistry (Moscow), 79(4), 291–323. https://doi.org/10.1134/S0006297914040014spa
dc.relation.referencesStirbet, Alexandrina, & Govindjee. (2011). On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and applications of the OJIP fluorescence transient. Journal of Photochemistry and Photobiology B: Biology, 104(1–2), 236–257. https://doi.org/10.1016/j.jphotobiol.2010.12.010spa
dc.relation.referencesStrasser, R.J., Srivastava, A., & Tsimilli-Michael, M. (2000). The fluorescence transient as a tool to characterize and screen photosynthetic samples. Probing Photosynthesis: Mechanism, Regulation & Adaptation, May 2014, 443–480. http://ww.hansatech-instruments.com/docs/the fluorescence transient.pdfspa
dc.relation.referencesStrasser, Reto J., Tsimilli-Michael, M., & Srivastava, A. (2004). Analysis of the Chlorophyll a Fluorescence Transient (pp. 321–362). https://doi.org/10.1007/978-1-4020-3218-9_12spa
dc.relation.referencesSwoczyna, T., Kalaji, H. M., Bussotti, F., Mojski, J., & Pollastrini, M. (2022). Environmental stress - what can we learn from chlorophyll a fluorescence analysis in woody plants? A review. Frontiers in Plant Science, 13, 4936. https://doi.org/10.3389/fpls.2022.1048582spa
dc.relation.referencesTaiz, L., & Zeiger, E. (2015). Plant Physiology and Development (2014 Sinauer (ed.); 6th ed., Vol. 6).spa
dc.relation.referencesTakahashi, S., & Badger, M. R. (2011). Photoprotection in plants: a new light on photosystem II damage. Trends in Plant Science, 16(1), 53–60. https://doi.org/10.1016/j.tplants.2010.10.001spa
dc.relation.referencesTanaka, Y., Adachi, S., & Yamori, W. (2019). Natural genetic variation of the photosynthetic induction response to fluctuating light environment. Current Opinion in Plant Biology, 49, 52–59. https://doi.org/10.1016/j.pbi.2019.04.010spa
dc.relation.referencesTang, Y., & Liesche, J. (2017). The molecular mechanism of shade avoidance in crops – How data from Arabidopsis can help to identify targets for increasing yield and biomass production. Journal of Integrative Agriculture, 16(6), 1244–1255. https://doi.org/10.1016/S2095-3119(16)61434-Xspa
dc.relation.referencesTaylor, S. H., & Long, S. P. (2017). Slow induction of photosynthesis on shade to sun transitions in wheat may cost at least 21% of productivity. Philosophical Transactions of the Royal Society B: Biological Sciences, 372(1730), 20160543. https://doi.org/10.1098/rstb.2016.0543spa
dc.relation.referencesTazoe, Y., Hanba, Y. T., Furumoto, T., Noguchi, K., & Terashima, I. (2008). Relationships Between Quantum Yield for CO2 Assimilation, Activity of Key Enzymes and CO2 Leakiness in Amaranthus cruentus, a C4 Dicot, Grown in High or Low Light. Plant and Cell Physiology, 49(1), 19–29. https://doi.org/10.1093/pcp/pcm160spa
dc.relation.referencesTerentyev, V. V. (2022). Macromolecular conformational changes in photosystem II: interaction between structure and function. Biophysical Reviews, 14(4), 871–886. https://doi.org/10.1007/s12551-022-00979-xspa
dc.relation.referencesTsimilli-Michael, M. (2020). Special issue in honour of Prof. Reto J. Strasser - Revisiting JIP-test: An educative review on concepts, assumptions, approximations, definitions and terminology. Photosynthetica, 58(SPECIAL ISSUE), 275–292. https://doi.org/10.32615/ps.2019.150spa
dc.relation.referencesValladares, F., & Niinemets, Ü. (2008). Shade Tolerance, a Key Plant Feature of Complex Nature and Consequences. Annual Review of Ecology, Evolution, and Systematics, 39(1), 237–257. https://doi.org/10.1146/annurev.ecolsys.39.110707.173506spa
dc.relation.referencesValladares, F., & Niinemets, Ü. (2008). Shade Tolerance, a Key Plant Feature of Complex Nature and Consequences. Annual Review of Ecology, Evolution, and Systematics, 39(1), 237–257. https://doi.org/10.1146/annurev.ecolsys.39.110707.173506spa
dc.relation.referencesvan Heerden, P. D. R., Donaldson, R. A., Watt, D. A., & Singels, A. (2010). Biomass accumulation in sugarcane: unravelling the factors underpinning reduced growth phenomena. Journal of Experimental Botany, 61(11), 2877–2887. https://doi.org/10.1093/jxb/erq144spa
dc.relation.referencesVasantha, S., Arun Kumar, • R, Tayade, • A S, Krishnapriya, • V, Ram, • Bakshi, & Solomon, • S. (2021). Physiology of Sucrose Productivity and Implications of Ripeners in Sugarcane. Sugar Tech 2021, 1–17. https://doi.org/10.1007/S12355-021-01062-7spa
dc.relation.referencesVasantha, S., Kumar, R. A., Tayade, A. S., Krishnapriya, V., Ram, B., & Solomon, S. (2022). Physiology of Sucrose Productivity and Implications of Ripeners in Sugarcane. Sugar Tech, 24(3), 715–731. https://doi.org/10.1007/s12355-021-01062-7spa
dc.relation.referencesViola, S., Roseby, W., Santabarbara, S., Nürnberg, D., Assunção, R., Dau, H., Sellés, J., Boussac, A., Fantuzzi, A., & Rutherford, A. W. (2022). Impact of energy limitations on function and resilience in long-wavelength Photosystem II. ELife, 11. https://doi.org/10.7554/eLife.79890spa
dc.relation.referencesvon Caemmerer, S. (2000). Biochemical Models of Leaf Photosynthesis. In Biochemical Models of Leaf Photosynthesis. CSIRO Publishing. https://doi.org/10.1071/9780643103405spa
dc.relation.referencesvon Caemmerer, S., & Furbank, R. T. (2016). Strategies for improving C4 photosynthesis. Current Opinion in Plant Biology, 31, 125–134. https://doi.org/10.1016/j.pbi.2016.04.003spa
dc.relation.referencesvon Caemmerer, Susanne, & Furbank, R. T. (2016). Strategies for improving C4 photosynthesis. Current Opinion in Plant Biology, 31, 125–134. https://doi.org/10.1016/j.pbi.2016.04.003spa
dc.relation.referencesvon Caemmerer, Susanne. (2021). Updating the steady-state model of C4 photosynthesis. Journal of Experimental Botany, 72(17), 6003–6017. https://doi.org/10.1093/jxb/erab266spa
dc.relation.referencesWaheeda, K., Kitchel, H., Wang, Q., & Chiu, P.-L. (2023). Molecular mechanism of Rubisco activase: Dynamic assembly and Rubisco remodeling. Frontiers in Molecular Biosciences, 10, 90. https://doi.org/10.3389/fmolb.2023.1125922spa
dc.relation.referencesWan, Y., Zhang, Y., Zhang, M., Hong, A., Yang, H. Y., & Liu, Y. (2020). Shade effects on growth, photosynthesis and chlorophyll fluorescence parameters of three Paeonia species. PeerJ, 2020(6). https://doi.org/10.7717/PEERJ.9316/SUPP-3spa
dc.relation.referencesWang, J., Nayak, S., Koch, K., & Ming, R. (2013). Carbon partitioning in sugarcane (Saccharum species). Frontiers in Plant Science, 4(JUN), 201. https://doi.org/10.3389/fpls.2013.00201spa
dc.relation.referencesWang, Xiaoyan; Gao, Xinqiang; Liu, Yuling; Fan, Shuli; Ma, Q. (2020). Progress of Research on the Regulatory Pathway of the Plant Shade-Avoidance Syndrome. In Frontiers in Plant Science (Vol. 11, p. 495591). Frontiers Media S.A. https://doi.org/10.3389/fpls.2020.00439spa
dc.relation.referencesWang, Y., Chan, K. X., & Long, S. P. (2021). Towards a dynamic photosynthesis model to guide yield improvement in C4 crops. The Plant Journal, 107(2), 343–359. https://doi.org/10.1111/tpj.15365spa
dc.relation.referencesWang, Y., Stutz, S. S., Bernacchi, C. J., Boyd, R. A., Ort, D. R., & Long, S. P. (2022). Increased bundle‐sheath leakiness of CO 2 during photosynthetic induction shows a lack of coordination between the C4 and C3 cycles. New Phytologist, 236(5), 1661–1675. https://doi.org/10.1111/nph.18485spa
dc.relation.referencesWard, D. A., & Woolhouse, H. W. (1986). Comparative effects of light during growth on the photosynthetic properties of NADP-ME type C4 grasses from open and shaded habitats. I. Gas exchange, leaf anatomy and ultrastructure. Plant, Cell and Environment, 9(4), 261–270. https://doi.org/10.1111/1365-3040.ep11611679spa
dc.relation.referencesWatson‐Lazowski, A., Papanicolaou, A., Koller, F., & Ghannoum, O. (2020). The transcriptomic responses of C 4 grasses to subambient CO 2 and low light are largely species specific and only refined by photosynthetic subtype. The Plant Journal, 101(5), 1170–1184. https://doi.org/10.1111/tpj.14583spa
dc.relation.referencesWimalasekera, R. (2019). Effect of Light Intensity on Photosynthesis. In Photosynthesis, Productivity and Environmental Stress (pp. 65–73). Wiley. https://doi.org/10.1002/9781119501800.ch4spa
dc.relation.referencesXia, H., Chen, K., Liu, L., Plenkovic-Moraj, A., Sun, G., & Lei, Y. (2022). Photosynthetic regulation in fluctuating light under combined stresses of high temperature and dehydration in three contrasting mosses. Plant Science, 323, 111379. https://doi.org/10.1016/j.plantsci.2022.111379spa
dc.relation.referencesXie, F., Shi, Z., Zhang, G., Zhang, C., Sun, X., Yan, Y., Zhao, W., Guo, Z., Zhang, L., Fahad, S., Saud, S., & Chen, Y. (2020). Quantitative leaf anatomy and photophysiology systems of C3 and C4 turfgrasses in response to shading. Scientia Horticulturae, 274, 109674. https://doi.org/10.1016/j.scienta.2020.109674spa
dc.relation.referencesYamori, W. (2016). Photosynthetic response to fluctuating environments and photoprotective strategies under abiotic stress. Journal of Plant Research, 129(3), 379–395. https://doi.org/10.1007/s10265-016-0816-1spa
dc.relation.referencesYang, F., Huang, S., Gao, R., Liu, W., Yong, T., Wang, X., Wu, X., & Yang, W. (2014). Growth of soybean seedlings in relay strip intercropping systems in relation to light quantity and red:far-red ratio. Field Crops Research, 155, 245–253. https://doi.org/10.1016/j.fcr.2013.08.011spa
dc.relation.referencesYang, J., Li, C., Kong, D., Guo, F., & Wei, H. (2020). Light-Mediated Signaling and Metabolic Changes Coordinate Stomatal Opening and Closure. Frontiers in Plant Science, 11, 1915. https://doi.org/10.3389/fpls.2020.601478spa
dc.relation.referencesYao, X., Li, C., Li, S., Zhu, Q., Zhang, H., Wang, H., Yu, C., St. Martin, S. K., & Xie, F. (2017). Effect of shade on leaf photosynthetic capacity, light-intercepting, electron transfer and energy distribution of soybeans. Plant Growth Regulation, 83(3), 409–416. https://doi.org/10.1007/s10725-017-0307-yspa
dc.relation.referencesYin, X., & Struik, P. C. (2018). The energy budget in C 4 photosynthesis: insights from a cell-type-specific electron transport model. New Phytologist, 218(3), 986–998. https://doi.org/10.1111/nph.15051spa
dc.relation.referencesYin, X., Sun, Z., Struik, P. C., Van Der Putten, P. E. L., Van Ieperen, W., & Harbinson, J. (2011). Using a biochemical C4 photosynthesis model and combined gas exchange and chlorophyll fluorescence measurements to estimate bundle-sheath conductance of maize leaves differing in age and nitrogen content. Plant, Cell and Environment, 34(12), 2183–2199. https://doi.org/10.1111/j.1365-3040.2011.02414.xspa
dc.relation.referencesYu, D., Zha, Y., Shi, L., Ye, H., & Zhang, Y. (2022). Improving sugarcane growth simulations by integrating multi-source observations into a crop model. European Journal of Agronomy, 132, 126410. https://doi.org/10.1016/j.eja.2021.126410spa
dc.relation.referencesZahra, N., Al Hinai, M. S., Hafeez, M. B., Rehman, A., Wahid, A., Siddique, K. H. M., & Farooq, M. (2022). Regulation of photosynthesis under salt stress and associated tolerance mechanisms. Plant Physiology and Biochemistry, 178, 55–69. https://doi.org/10.1016/j.plaphy.2022.03.003spa
dc.relation.referencesZhang, H., Zhong, H., Wang, J., Sui, X., & Xu, N. (2016). Adaptive changes in chlorophyll content and photosynthetic features to low light in Physocarpus amurensis Maxim and Physocarpus opulifolius “Diabolo.” PeerJ, 4(6), e2125. https://doi.org/10.7717/peerj.2125spa
dc.relation.referencesZhao, D., & Li, Y.-R. (2015). Climate Change and Sugarcane Production: Potential Impact and Mitigation Strategies. International Journal of Agronomy, 2015(4), 1–10. https://doi.org/10.1155/2015/547386spa
dc.relation.referencesZheng, L., & Van Labeke, M.-C. (2017). Chrysanthemum morphology, photosynthetic efficiency and antioxidant capacity are differentially modified by light quality. Journal of Plant Physiology, 213, 66–74. https://doi.org/10.1016/j.jplph.2017.03.005spa
dc.relation.referencesZhou, Q., Zhao, F., Zhang, H., & Zhu, Z. (2022). Responses of the growth, photosynthetic characteristics, endogenous hormones and antioxidant activity of Carpinus betulus L. seedlings to different light intensities. Frontiers in Plant Science, 13, 4946. https://doi.org/10.3389/fpls.2022.1055984spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocFisiología Vegetal
dc.subject.agrovocPlant physiology
dc.subject.agrovocAdaptación fisiológica
dc.subject.agrovocPhysiological adaptation
dc.subject.agrovocSucrosa
dc.subject.agrovocSucrose
dc.subject.agrovocCaña de azúcar
dc.subject.agrovocSugar cane
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.proposalSombraspa
dc.subject.proposalShadeeng
dc.subject.proposalC4 photosynthesiseng
dc.subject.proposalOJIP transientseng
dc.subject.proposalFotosíntesis C4spa
dc.subject.proposalFluorescencia de la clorofilaspa
dc.subject.proposalTransitorio OJIPspa
dc.subject.proposalTransporte de electronesspa
dc.subject.proposalRendimiento cuánticospa
dc.subject.proposalSacarosaspa
dc.subject.proposalChlorophyll fluorescenceeng
dc.subject.proposalElectron transporteng
dc.subject.proposalQuantum yieldeng
dc.titleFisiología de la caña de azúcar (Saccharum spp.) en respuesta a baja radiación en fase de maduraciónspa
dc.title.translatedPhysiology of sugarcane (Saccharum spp.) in response to low radiation during the ripening stageeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleFisiología de la caña de azúcar (Saccharum spp.) en respuesta a baja radiación en fase de maduración Aura Mercedes Cepeda Quevedo Universidad Nacional de Colombia Facultad de Ciencias Agropecuarias, Departamento de Ciencias Agrícolas Palmira, Colombia 2023spa
oaire.fundernameCentro de investigación de la caña de azúcar (Cenicaña)spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1144172713.2023.pdf
Tamaño:
3.59 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: