Degradación fotocatalítica de contaminantes emergentes empleando una estructura metal orgánica de circonio

dc.contributor.advisorCastellanos Márquez, Nelson Jair
dc.contributor.authorLeón Manrique, Laura Camila
dc.contributor.cvlacLeón, Laura Camila [0002259684]
dc.contributor.orcidLeón Manrique, Laura Camila [0009000370989440]
dc.contributor.researchgroupDiseño y Reactividad de Estructuras Sólidas
dc.date.accessioned2025-12-16T20:29:17Z
dc.date.available2025-12-16T20:29:17Z
dc.date.issued2025
dc.descriptionilustraciones a color, diagramas, fotografíasspa
dc.description.abstractLa contaminación producida por los productos farmacéuticos ha sido reconocida por muchos países como un problema ambiental. Este tipo de fármacos son resistentes a la degradación, muy persistentes en medio acuoso, y potencialmente capaces de producir efectos adversos en los organismos acuáticos, y en la salud humana debido al aumento de su concentración, su capacidad de bioacumulación y su presencia en fuentes hídricas. En esta investigación se evaluó el uso de estructuras metal-orgánicas (MOF) de circonio de la familia de los UiO para la remoción de IBU en agua mediante procesos de adsorción y fotodegradación. Se sintetizaron los MOF UiO-66 y UiO-66-NH2, empleando el método de síntesis solvotérmico bajo dos procesos distintos, uno en reflujo (R) utilizando un reactor tipo Schlenk y el otro en un reactor autoclave de acero inoxidable revestido con teflón sin agitación (A). Mediante las técnicas de caracterización por IR y DRXP se confirmó la obtención de las estructuras cristalinas esperadas y mediante espectroscopía UV-Vis se logró calcular el band-gap de estas estructuras para su aplicación en procesos fotocatalíticos. Se obtuvieron valores de remoción del IBU por encima del 70%, alcanzando una remoción del 90% del IBU empelando el UiO-66-NH2 (R). El modelo de isoterma de adsorción que mejor ajuste presentó a los datos obtenidos fue la isoterma de Langmuir, y la cinética de adsorción presentó una buena correlación con el modelo de pseudo segundo orden (PSO), lo que indica una adsorción de monocapa y un comportamiento similar a la quimisorción. El UiO-66 (A) fue el único MOF que presentó actividad fotocatalítica, con una fotodegradación cercana al 80% al cabo de 180 minutos de reacción en presencia de luz visible (λ=410 nm). En conclusión, el proceso de síntesis demostró tener un efecto directo en la estructura, actividad catalítica y aplicación de los MOF sintetizados (Texto tomado de la fuente).spa
dc.description.abstractPharmaceutical contamination has been recognized by many countries as a significant environmental problem. These drugs are resistant to degradation, highly persistent in aquatic environments, and have the potential to cause adverse effects on aquatic organisms and human health due to their increasing concentration, bioaccumulation potential, and presence in water sources. This research evaluated the use of zirconium-based Metal-Organic Frameworks (MOFs) from the UiO family for the removal of ibuprofen (IBU) from water through adsorption and photodegradation processes. The UiO-66 and UiO-66-NH2 MOFs were synthesized using a solvothermal method under two distinct processes: one by reflux (R) using a Schlenk-type reactor and the other in a non-agitated, Teflon-lined stainless steel autoclave reactor (A).The successful synthesis of the expected crystalline structures was confirmed by IR and XRD characterization techniques. UV-Vis spectroscopy was used to calculate the band gap of these structures for their application in photocatalytic processes. IBU removal values above 70% were obtained, reaching a maximum removal of 90% using the UiO-66-NH2 (R) sample. The Langmuir adsorption isotherm model provided the best fit for the obtained data, and the adsorption kinetics showed a good correlation with the pseudo-second-order (PSO) model, indicating monolayer adsorption and a chemisorption-like behavior.The UiO-66 (A) was the only MOF that exhibited photocatalytic activity, with photodegradation close to 80% after 180 minutes of reaction in the presence of visible light (λ=410 nm). In conclusion, the synthesis process was shown to have a direct effect on the structure, catalytic activity, and application of the synthesized MOFs.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ingeniería Ambiental
dc.description.researchareaCatálisis ambiental
dc.format.extent120 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89218
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ingeniería
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambiental
dc.relation.referencesS. Vaz, Analytical Chemistry Applied to Emerging Pollutants, 1st ed., Springer Cham, 2018. https://doi.org/https://doi.org/10.1007/978-3-319-74403-2.
dc.relation.referencesV. Borova, Β. Μπορόβα, Detection and identification of emerging contaminants and their metabolites in wastewater and sewage sludge by mass spectrometric techniques, (2018). https://doi.org/10.12681/EADD/43404.
dc.relation.referencesT. aus der Beek, F.A. Weber, A. Bergmann, S. Hickmann, I. Ebert, A. Hein, A. Küster, Pharmaceuticals in the environment-global occurrences and perspectives, Environ Toxicol Chem 35 (2016) 823–835. https://doi.org/10.1002/etc.3339.
dc.relation.referencesS.D. Kayode-Afolayan, E.F. Ahuekwe, O.C. Nwinyi, Impacts of pharmaceutical effluents on aquatic ecosystems, Sci Afr 17 (2022) e01288. https://doi.org/10.1016/J.SCIAF.2022.E01288.
dc.relation.referencesH. Tan, G. Polverino, J.M. Martin, M.G. Bertram, S.C. Wiles, M.M. Palacios, C.L. Bywater, C.R. White, B.B.M. Wong, Chronic exposure to a pervasive pharmaceutical pollutant erodes among-individual phenotypic variation in a fish, Environmental Pollution 263 (2020) 114450. https://doi.org/10.1016/J.ENVPOL.2020.114450
dc.relation.referencesY. Luo, W. Guo, H.H. Ngo, L.D. Nghiem, F.I. Hai, J. Zhang, S. Liang, X.C. Wang, A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Science of The Total Environment 473–474 (2014) 619–641. https://doi.org/10.1016/J.SCITOTENV.2013.12.065.
dc.relation.referencesJ. Wang, S. Wang, Removal of pharmaceuticals and personal care products (PPCPs) from wastewater: A review, J Environ Manage 182 (2016) 620–640. https://doi.org/10.1016/j.jenvman.2016.07.049.
dc.relation.referencesY. Yang, Y.S. Ok, K.H. Kim, E.E. Kwon, Y.F. Tsang, Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review, Science of The Total Environment 596–597 (2017) 303–320. https://doi.org/10.1016/J.SCITOTENV.2017.04.102.
dc.relation.referencesB.M. Sharma, J. Bečanová, M. Scheringer, A. Sharma, G.K. Bharat, P.G. Whitehead, J. Klánová, L. Nizzetto, Health and ecological risk assessment of emerging contaminants (pharmaceuticals, personal care products, and artificial sweeteners) in surface and groundwater (drinking water) in the Ganges River Basin, India, Science of The Total Environment 646 (2019) 1459–1467. https://doi.org/10.1016/J.SCITOTENV.2018.07.235.
dc.relation.referencesP. Barathe, K. Kaur, S. Reddy, V. Shriram, V. Kumar, Antibiotic pollution and associated antimicrobial resistance in the environment, Journal of Hazardous Materials Letters 5 (2024) 100–105. https://doi.org/10.1016/j.hazl.2024.100105.
dc.relation.referencesN. Pérez-Lemus, R. López-Serna, S.I. Pérez-Elvira, E. Barrado, Analytical methodologies for the determination of pharmaceuticals and personal care products (PPCPs) in sewage sludge: A critical review, Anal Chim Acta 1083 (2019) 19–40. https://doi.org/10.1016/j.aca.2019.06.044.
dc.relation.referencesL. Rodríguez-González, A. Núñez-Delgado, E. Álvarez-Rodríguez, E. García-Campos, Á. Martín, M. Díaz-Raviña, M. Arias-Estévez, D. Fernández-Calviño, V. Santás-Miguel, Effects of ciprofloxacin, trimethoprim, and amoxicillin on microbial structure and growth as emerging pollutants reaching crop soils, Environ Res 214 (2022) 113916. https://doi.org/10.1016/J.ENVRES.2022.113916.
dc.relation.referencesG. Mceneff, W. Schmidt, B. Quinn, Pharmaceuticals in the Aquatic Environment: A Short Summary of Current Knowledge and the Potential Impacts on Aquatic Biota and Humans, (2014). https://www.epa.ie/publications/research/water/Research 142-Report-FINAL.pdf (accessed September 16, 2023).
dc.relation.referencesJ. Martín, M. del M. Orta, S. Medina-Carrasco, J.L. Santos, I. Aparicio, E. Alonso, Evaluation of a modified mica and montmorillonite for the adsorption of ibuprofen from aqueous media, Appl Clay Sci 171 (2019) 29–37. https://doi.org/10.1016/J.CLAY.2019.02.002
dc.relation.referencesD. Kolpin, E. Furlong, M. Meyer, E. Michael Thurman, S. Zaugg, E. Michael, Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 1999-2000: A National Reconnaissance, Contaminants in U.S. Streams (1999). https://doi.org/10.1021/es011055j.
dc.relation.referencesT. Brodin, S. Piovano, J. Fick, J. Klaminder, M. Heynen, M. Jonsson, Ecological effects of pharmaceuticals in aquatic systems—impacts through behavioural alterations, Philosophical Transactions of the Royal Society B: Biological Sciences 369 (2014). https://doi.org/10.1098/RSTB.2013.0580.
dc.relation.referencesJ.M. Martin, M.G. Bertram, P.J. Blanchfield, J.A. Brand, T. Brodin, B.W. Brooks, D. Cerveny, M. Lagisz, I.Y. Ligocki, M. Michelangeli, S. Nakagawa, J.T. Orford, J. Sundin, H. Tan, B.B.M. Wong, E.S. McCallum, Evidence of the impacts of pharmaceuticals on aquatic animal behaviour: a systematic map protocol, Environ Evid 10 (2021) 1–10. https://doi.org/10.1186/S13750-021-00241-Z/FIGURES/2.
dc.relation.referencesM. Patel, R. Kumar, K. Kishor, T. Mlsna, C.U. Pittman, D. Mohan, Pharmaceuticals of emerging concern in aquatic systems: chemistry, occurrence, effects, and removal methods, Chem Rev 119 (2019) 3510–3673. https://doi.org/10.1021/acs.chemrev.8b00299.
dc.relation.referencesH.W. Leung, T.B. Minh, M.B. Murphy, J.C.W. Lam, M.K. So, M. Martin, P.K.S. Lam, B.J. Richardson, Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China, Environ Int 42 (2012) 1–9. https://doi.org/10.1016/J.ENVINT.2011.03.004.
dc.relation.referencesK. Ikehata, N. Jodeiri Naghashkar, M. Gamal El-Din, Degradation of Aqueous Pharmaceuticals by Ozonation and Advanced Oxidation Processes: A Review, Https://Doi.Org/10.1080/01919510600985937 28 (2007) 353–414. https://doi.org/10.1080/01919510600985937.
dc.relation.referencesY.L. Wang, S. Zhang, Y.F. Zhao, J. Bedia, J.J. Rodriguez, C. Belver, UiO-66-based metal organic frameworks for the photodegradation of acetaminophen under simulated solar irradiation, J Environ Chem Eng 9 (2021) 106087. https://doi.org/10.1016/j.jece.2021.106087.
dc.relation.referencesD.A. Pino Sandoval, DETERMINACIÓN DE FÁRMACOS EN AGUA RESIDUAL HOSPITALARIA Y APLICACIÓN DEL PROCESO DE FOTOCATÁLISIS HETEROGÉNEA SOLAR PARA SU DEGRADACIÓN, UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN, 2018. http://eprints.uanl.mx/17074/1/1080252220.pdf (accessed July 16, 2025).
dc.relation.referencesJ.O. Tijani, O.O. Fatoba, L.F. Petrik, A Review of Pharmaceuticals and Endocrine-Disrupting Compounds: Sources, Effects, Removal, and Detections, Water Air Soil Pollut 224 (2013). https://doi.org/10.1007/S11270-013-1770-3.
dc.relation.referencesL. Yin, B. Wang, H. Yuan, S. Deng, J. Huang, Y. Wang, G. Yu, Pay special attention to the transformation products of PPCPs in environment, Emerg Contam 3 (2017) 69–75. https://doi.org/10.1016/J.EMCON.2017.04.001.
dc.relation.referencesR. Hernández-Tenorio, E. González-Juárez, J.L. Guzmán-Mar, L. Hinojosa-Reyes, A. Hernández-Ramírez, Review of occurrence of pharmaceuticals worldwide for estimating concentration ranges in aquatic environments at the end of the last decade, Journal of Hazardous Materials Advances 8 (2022) 100172. https://doi.org/10.1016/J.HAZADV.2022.100172.
dc.relation.referencesT. Heberer, Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data, Toxicol Lett 131 (2002) 5–17. https://doi.org/10.1016/S0378-4274(02)00041-3.
dc.relation.referencesR.R. Singh, A. Lai, J. Krier, T. Kondić, P. Diderich, E.L. Schymanski, Occurrence and Distribution of Pharmaceuticals and Their Transformation Products in Luxembourgish Surface Waters, ACS Environmental Au 1 (2021) 58–70. https://doi.org/10.1021/ACSENVIRONAU.1C00008/SUPPL_FILE/VG1C00008_SI_001.XLSX.
dc.relation.referencesB. Halling-Sørensen, S. Nors Nielsen, P.F. Lanzky, F. Ingerslev, H.C. Holten Lützhøft, S.E. Jørgensen, Occurrence, fate and effects of pharmaceutical substances in the environment- A review, Chemosphere 36 (1998) 357–393. https://doi.org/https://doi.org/10.1016/S0045-6535(97)00354-8.
dc.relation.referencesK. Kummerer, Resistance in the environment, Journal of Antimicrobial Chemotherapy 54 (2004) 311–320. https://doi.org/10.1093/jac/dkh325.
dc.relation.referencesJ. Narvaez, C. Jimenez, PHARMACEUTICAL PRODUCTS IN THE ENVIRONMENT: SOURCES, EFFECTS AND RISKS, Vitae 19 (2012) 92–108. https://doi.org/10.17533/udea.vitae.10865.
dc.relation.referencesY. Kaya, G. Ersan, I. Vergili, Z.B. Gönder, G. Yilmaz, N. Dizge, C. Aydiner, The treatment of pharmaceutical wastewater using in a submerged membrane bioreactor under different sludge retention times, J Memb Sci 442 (2013) 72–82. https://doi.org/10.1016/J.MEMSCI.2013.03.059.
dc.relation.referencesB. Tiwari, Y. Ouarda, P. Drogui, R.D. Tyagi, M.A. Vaudreuil, S. Sauvé, G. Buelna, R. Dubé, Fate of Pharmaceuticals in a Submerged Membrane Bioreactor Treating Hospital Wastewater, Frontiers in Water 3 (2021) 730479. https://doi.org/10.3389/FRWA.2021.730479/BIBTEX.
dc.relation.referencesJ. Jiang, J. Guo, Treatment Performance of Municipal Sewage in a Submerged Membrane Bioreactor (SMBR) and Mechanism of Biochar to Reduce Membrane Fouling, Sustainability 2023, Vol. 15, Page 9239 15 (2023) 9239. https://doi.org/10.3390/SU15129239.
dc.relation.referencesJ. Radjenović, M. Petrović, D. Barceló, Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment, Water Res 43 (2009) 831–841. https://doi.org/10.1016/J.WATRES.2008.11.043.
dc.relation.referencesE. Sahar, R. Messalem, H. Cikurel, A. Aharoni, A. Brenner, M. Godehardt, M. Jekel, M. Ernst, Fate of antibiotics in activated sludge followed by ultrafiltration (CAS-UF) and in a membrane bioreactor (MBR)., Water Res 45 (2011) 4827–4836. https://doi.org/10.1016/J.WATRES.2011.06.023.
dc.relation.referencesY. Li, X. Niu, C. Yao, W. Yang, G. Lu, Distribution, Removal, and Risk Assessment of Pharmaceuticals and Their Metabolites in Five Sewage Plants, International Journal of Environmental Research and Public Health 2019, Vol. 16, Page 4729 16 (2019) 4729. https://doi.org/10.3390/IJERPH16234729.
dc.relation.referencesN.N. Roslan, H.L.H. Lau, N.A.A. Suhaimi, N.N.M. Shahri, S.B. Verinda, M. Nur, J.W. Lim, A. Usman, Recent Advances in Advanced Oxidation Processes for Degrading Pharmaceuticals in Wastewater—A Review, Catalysts 2024, Vol. 14, Page 189 14 (2024) 189. https://doi.org/10.3390/CATAL14030189.
dc.relation.referencesÖ. Berkün Olgun, B. Palas, S. Atalay, G. Ersöz, Photocatalytic oxidation and catalytic wet air oxidation of real pharmaceutical wastewater in the presence of Fe and LaFeO3 doped activated carbon catalysts, Chemical Engineering Research and Design 171 (2021) 421–432. https://doi.org/10.1016/J.CHERD.2021.05.017.
dc.relation.referencesY. Teng, K. Yao, W. Song, Y. Sun, H. Liu, Z. Liu, Y. Xu, Preparation and Characterization of Cu-Mn-Ce@γ-Al2O3 to Catalyze Ozonation in Coal Chemical Wastewater-Biotreated Effluent, International Journal of Environmental Research and Public Health 2019, Vol. 16, Page 1439 16 (2019) 1439. https://doi.org/10.3390/IJERPH16081439.
dc.relation.referencesQ. Dai, Z. Zhang, T. Zhan, Z.T. Hu, J. Chen, Catalytic Ozonation for the Degradation of 5-Sulfosalicylic Acid with Spinel-Type ZnAl2O4 Prepared by Hydrothermal, Sol-Gel, and Coprecipitation Methods: A Comparison Study, ACS Omega 3 (2018) 6506–6512. https://doi.org/10.1021/ACSOMEGA.8B00263/ASSET/IMAGES/LARGE/AO-2018-00263H_0008.JPEG.
dc.relation.referencesQ. Dai, J. Wang, J. Yu, J. Chen, J. Wang, J. Chen, Catalytic ozonation for the degradation of acetylsalicylic acid in aqueous solution by magnetic CeO2 nanometer catalyst particles, Appl Catal B 144 (2014) 686–693. https://doi.org/10.1016/J.APCATB.2013.05.072.
dc.relation.referencesY. Zhao, W. Ding, X. Chen, S. Chen, CeO2-modified monolithic ceramic foams for efficient catalytic ozonation of refractory organic pollutants in a continuous-flow reactor, Catal Sci Technol (2024). https://doi.org/10.1039/D4CY00710G.
dc.relation.referencesV. Arya, L. Philip, Removal of Pharmaceuticals from Water Using Adsorption, Trends in Asian Water Environmental Science and Technology (2017) 105–114. https://doi.org/10.1007/978-3-319-39259-2_9.
dc.relation.referencesV. Rakić, N. Rajić, A. Daković, A. Auroux, The adsorption of salicylic acid, acetylsalicylic acid and atenolol from aqueous solutions onto natural zeolites and clays: Clinoptilolite, bentonite and kaolin, Microporous and Mesoporous Materials 166 (2013) 185–194. https://doi.org/10.1016/J.MICROMESO.2012.04.049.
dc.relation.referencesA. Mojiri, M. Vakili, H. Farraji, S.Q. Aziz, Combined ozone oxidation process and adsorption methods for the removal of acetaminophen and amoxicillin from aqueous solution; kinetic and optimisation, Environ Technol Innov 15 (2019) 100404. https://doi.org/10.1016/J.ETI.2019.100404.
dc.relation.referencesS. Zhang, Y. Wang, Z. Cao, J. Xu, J. Hu, Y. Huang, C. Cui, H. Liu, H. Wang, Simultaneous enhancements of light-harvesting and charge transfer in UiO-67/CdS/rGO composites toward ofloxacin photo-degradation, Chemical Engineering Journal 381 (2020) 122771. https://doi.org/10.1016/j.cej.2019.122771.
dc.relation.referencesB.H. Alshammari, K.D. Alanazi, O.A.S. Ahmad, S. Sallam, A.H. Al-Bagawi, A.H. Alsehli, B.M. Alshammari, N.M. El-Metwaly, Tailoring magnetic Sn-MOFs for efficient amoxicillin antibiotic removal through process optimization, RSC Adv 14 (2024) 5875–5892. https://doi.org/10.1039/D3RA08676C.
dc.relation.referencesM. Rigoletto, E. Laurenti, M.L. Tummino, An Overview of Environmental Catalysis Mediated by Hydrogen Peroxide, Catalysts 14 (2024) 267. https://doi.org/10.3390/catal14040267.
dc.relation.referencesA. Corma, H. García, F.X. Llabrés i Xamena, Engineering Metal Organic Frameworks for Heterogeneous Catalysis, Chem Rev 110 (2010) 4606–4655. https://doi.org/10.1021/cr9003924.
dc.relation.referencesY. Wen, M. Feng, P. Zhang, H.-C. Zhou, V.K. Sharma, X. Ma, Metal Organic Frameworks (MOFs) as Photocatalysts for the Degradation of Agricultural Pollutants in Water, ACS ES&T Engineering 1 (2021) 804–826. https://doi.org/10.1021/acsestengg.1c00051.
dc.relation.referencesJ.A. Claudio-Rizo, L.F.C. Salazar, T.E. Flores-Guia, D.A. Cabrera-Munguia, Estructuras metal-orgánicas (MOFs) nanoestructuradas para la liberación controlada de fármacos, Mundo Nano. Revista Interdisciplinaria En Nanociencias y Nanotecnología 14 (2021) 1e–29e. https://doi.org/10.22201/CEIICH.24485691E.2021.26.69634.
dc.relation.referencesA. Abbasnia, A. Zarei, M. Yeganeh, H.R. Sobhi, M. Gholami, A. Esrafili, Removal of tetracycline antibiotics by adsorption and photocatalytic-degradation processes in aqueous solutions using metal organic frameworks (MOFs): A systematic review, Inorg Chem Commun 145 (2022) 109959. https://doi.org/10.1016/J.INOCHE.2022.109959.
dc.relation.referencesS.D. Cabrera González, Preparación de dispositivos de película delgada en soportes de celulosa basados en redes metal-orgánicas, Universidad de la Laguna, 2021. https://riull.ull.es/xmlui/handle/915/27862 (accessed August 1, 2025).
dc.relation.referencesL. Carina Camargo Orduño, S. Loera Serna, Adsorción de alizarina S en redes metal orgánicas, Revista Tendencias En Docencia e Investigación En Química 7 (2021). www.cd-bioparticles.net/p/9159/hkust-1.
dc.relation.referencesA. Hossein Vahabi, F. Norouzi, E. Sheibani, M. Rahimi-Nasrabadi, Functionalized Zr-UiO-67 metal-organic frameworks: Structural landscape and application, Coord Chem Rev (2021). https://doi.org/10.1016/j.ccr.2021.214050.
dc.relation.referencesJ. Jiang, Synthesis and Characterization of New Metal-Organic Frameworks for Gas Adsorption Studies and as Solid Superacids, UC Berkeley (2016). https://escholarship.org/uc/item/3ts7p1z5 (accessed March 11, 2024).
dc.relation.referencesC. Du, Z. Zhang, G. Yu, H. Wu, H. Chen, L. Zhou, Y. Zhang, Y. Su, S. Tan, L. Yang, J. Song, S. Wang, A review of metal organic framework (MOFs)-based materials for antibiotics removal via adsorption and photocatalysis, Chemosphere 272 (2021) 129501. https://doi.org/10.1016/j.chemosphere.2020.129501.
dc.relation.referencesX.-D. Du, X.-H. Yi, P. Wang, W. Zheng, J. Deng, C.-C. Wang, Robust photocatalytic reduction of Cr(VI) on UiO-66-NH2(Zr/Hf) metal-organic framework membrane under sunlight irradiation, Chemical Engineering Journal 356 (2019) 393–399. https://doi.org/10.1016/j.cej.2018.09.084.
dc.relation.referencesX. Mu, J. Jiang, F. Chao, Y. Lou, J. Chen, Ligand modification of UiO-66 with an unusual visible light photocatalytic behavior for RhB degradation, Dalton Transactions 47 (2018) 1895–1902. https://doi.org/10.1039/C7DT04477A.
dc.relation.referencesS. Wang, X. Teng, C. Liu, H. Zhu, H. Cheng, J. Yan, L. Wang, Z. Liang, J. Ouyang, Ultrafast piezo-photocatalytic degradation of dye pollutants using UiO-66-NH2(Hf) metal-organic framework-based nanoparticles, Opt Mater (Amst) 147 (2024) 114758. https://doi.org/10.1016/j.optmat.2023.114758.
dc.relation.referencesMengdie Wu, Feifan Qi, Ren Qiu, Jing Feng, Xinshui Ren, Shengzhong Rong, Hongkun Ma, Hongzhi Pan, Dong Chang, Electrochemical Detection of Nuciferine in the Lotus Leaf Based on Efficient Catalysis by Zirconium-MOFs, J AOAC Int 105 (2022) 1175–1182. https://doi.org/https://doi.org/10.1093/jaoacint/qsac024.
dc.relation.referencesA. Kumar, A. Swatantra, P. Singh, A. Tarun, G. Shihabudheen, M. Maliyekkal Editors, New Trends in Emerging Environmental Contaminants, Springer Singapore, 2022. https://doi.org/https://doi.org/10.1007/978-981-16-8367-1.
dc.relation.referencesF. García-Ávila, A. Zambrano-Jaramillo, C. Velecela-Garay, K. Coronel-Sánchez, L. Valdiviezo-Gonzalez, Effectiveness of membrane technologies in removing emerging contaminants from wastewater: Reverse Osmosis and Nanofiltration, Water Cycle (2024). https://doi.org/10.1016/J.WATCYC.2024.12.004.
dc.relation.referencesW. Sim, K.E. Muambo, J. Choi, S. Park, J.E. Oh, Occurrence, distribution, and prioritization of unregulated emerging contaminants including battery-related chemicals in drinking water systems across South Korea, Science of The Total Environment 967 (2025) 178799. https://doi.org/10.1016/J.SCITOTENV.2025.178799.
dc.relation.referencesY. Du, T. Tang, D. Song, R. Wang, H. Liu, X. Du, Z. Dang, G. Lu, Prediction of chlorination degradation rate of emerging contaminants based on machine learning models, Environmental Pollution 372 (2025) 125976. https://doi.org/10.1016/J.ENVPOL.2025.125976.
dc.relation.referencesK. Kümmerer, Drugs in the environment: emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources – a review, Chemosphere 45 (2001) 957–969. https://doi.org/10.1016/S0045-6535(01)00144-8.
dc.relation.referencesK. Kümmerer, The presence of pharmaceuticals in the environment due to human use – present knowledge and future challenges, J Environ Manage 90 (2009) 2354–2366. https://doi.org/10.1016/J.JENVMAN.2009.01.023.
dc.relation.referencesN. Kaur, Briefing: A new wave of pollution: the challenge of emerging contaminants, Proceedings of the Institution of Civil Engineers - Civil Engineering (2025) 1–4. https://doi.org/10.1680/JCIEN.25.00039.
dc.relation.referencesA. Chiavola, C. Di Marcantonio, S. Lamberti, A. Frugis, V. Gioia, S. Leoni, M. Spizzirri, A full-scale evaluation of the effects of different disinfection methods on the removal of contaminants of emerging concern, Journal of Water Process Engineering 73 (2025) 107686. https://doi.org/10.1016/J.JWPE.2025.107686.
dc.relation.referencesR. Kumar, M. Qureshi, D.K. Vishwakarma, N. Al-Ansari, A. Kuriqi, A. Elbeltagi, A. Saraswat, A review on emerging water contaminants and the application of sustainable removal technologies, Case Studies in Chemical and Environmental Engineering 6 (2022) 100219. https://doi.org/10.1016/J.CSCEE.2022.100219.
dc.relation.referencesD.A. Birkholz, S.M. Stilson, H.S. Elliott, Analysis of Emerging Contaminants in Drinking Water – A Review, Comprehensive Water Quality and Purification (2014) 212–229. https://doi.org/10.1016/B978-0-12-382182-9.00035-9.
dc.relation.referencesS.R. Hughes, P. Kay, L.E. Brown, Global synthesis and critical evaluation of pharmaceutical data sets collected from river systems, Environ Sci Technol 47 (2013) 661–677. https://doi.org/10.1021/ES3030148/ASSET/IMAGES/LARGE/ES-2012-030148_0008.JPEG.
dc.relation.referencesT. Deblonde, C. Cossu-Leguille, P. Hartemann, Emerging pollutants in wastewater: A review of the literature, Int J Hyg Environ Health 214 (2011) 442–448. https://doi.org/10.1016/J.IJHEH.2011.08.002.
dc.relation.referencesV. Geissen, H. Mol, E. Klumpp, G. Umlauf, M. Nadal, M. van der Ploeg, S.E.A.T.M. van de Zee, C.J. Ritsema, Emerging pollutants in the environment: A challenge for water resource management, International Soil and Water Conservation Research 3 (2015) 57–65. https://doi.org/10.1016/J.ISWCR.2015.03.002.
dc.relation.referencesA.R. Bracamontes-Ruelas, D. Ibarra-Rodríguez, J. Rodríguez-Campos, J.B. Velázquez-Fernández, Y. Reyes-Vidal, L. Reynoso-Cuevas, Evaluation of the presence of emerging contaminants in a municipal wastewater treatment plant in Durango, Mexico, Case Studies in Chemical and Environmental Engineering 11 (2025) 101218. https://doi.org/10.1016/J.CSCEE.2025.101218.
dc.relation.referencesJ.C. Lancheros, C.A. Madera-Parra, A. Caselles-Osorio, W.A. Torres-López, X.M. Vargas-Ramírez, Ibuprofen and Naproxen removal from domestic wastewater using a Horizontal Subsurface Flow Constructed Wetland coupled to Ozonation, Ecol Eng 135 (2019) 89–97. https://doi.org/10.1016/J.ECOLENG.2019.05.007.
dc.relation.referencesP. Bottoni, S. Caroli, A.B. Caracciolo, Pharmaceuticals as priority water contaminants, Toxicol Environ Chem 92 (2010) 549–565. https://doi.org/10.1080/02772241003614320.
dc.relation.referencesE.A. Serna-Galvis, Y.L. Martínez-Mena, J. Porras, R.A. Torres-Palma, E.A. Serna-Galvis, Y.L. Martínez-Mena, J. Porras, R.A. Torres-Palma, Antibióticos de alto consumo en Colombia, excreción en orina y presencia en aguas residuales - una revisión bibliográfica, Ingeniería y Competitividad 24 (2022). https://doi.org/10.25100/IYC.24I1.11267.
dc.relation.referencesOMS, Controla el uso indebido de antibióticos o los medicamentos no funcionarán, advierten expertos de la OMS, (2023). https://www.who.int/europe/news/item/23-11-2023-control-antibiotic-misuse-or-the-drugs-won-t-work--warn-who-experts (accessed July 16, 2025).
dc.relation.referencesT. Wieczorko Barán, E. Rodríguez Portillo, Fármacos y desreguladores endócrinos en plantas de tratamiento de aguas residuales de ciudades brasileñas, Revista Impacto En Ciencia y Tecnología 2 (2022). https://revistas.uni.edu.py/index.php/impacto/article/view/352/391 (accessed July 16, 2025).
dc.relation.referencesA. Nikolaou, Pharmaceuticals and related compounds as emerging pollutants in water: Analytical aspects, Global Nest Journal 15 (2013) 1–12. https://doi.org/10.30955/GNJ.000969.
dc.relation.referencesA. Marchlewicz, U. Guzik, D. Wojcieszyńska, Over-the-Counter Monocyclic Non-Steroidal Anti-Inflammatory Drugs in Environment - Sources, Risks, Biodegradation, Water Air Soil Pollut 226 (2015) 1–13. https://doi.org/10.1007/S11270-015-2622-0/FIGURES/2.
dc.relation.referencesP. Barathe, K. Kaur, S. Reddy, V. Shriram, V. Kumar, Antibiotic pollution and associated antimicrobial resistance in the environment, Journal of Hazardous Materials Letters 5 (2024) 100105. https://doi.org/10.1016/j.hazl.2024.100105.
dc.relation.referencesA. Cerón-Vivas, G.A. Peñuela Mesa, Environmental risk assessment of pharmaceutical pollutants in the Oro River Sub-basin (Colombia), Environ Res 252 (2024) 118951. https://doi.org/10.1016/J.ENVRES.2024.118951.
dc.relation.referencesS. Vaz, Analytical chemistry applied to emerging pollutants, Analytical Chemistry Applied to Emerging Pollutants (2018) 1–122. https://doi.org/10.1007/978-3-319-74403-2/COVER.
dc.relation.referencesM. Patel, R. Kumar, K. Kishor, T. Mlsna, C.U. Pittman, D. Mohan, Pharmaceuticals of emerging concern in aquatic systems: Chemistry, occurrence, effects, and removal methods, Chem Rev 119 (2019) 3510–3673. https://doi.org/10.1021/ACS.CHEMREV.8B00299.
dc.relation.referencesS.D. Richardson, T.A. Ternes, Water analysis: Emerging contaminants and current issues, Anal Chem 86 (2014) 2813–2848. https://doi.org/10.1021/AC500508T/ASSET/AC500508T.FP.PNG_V03.
dc.relation.referencesD. Barceló, Emerging pollutants in water analysis, TrAC Trends in Analytical Chemistry 22 (2003) xiv–xvi. https://doi.org/10.1016/S0165-9936(03)01106-3.
dc.relation.referencesJ. Rivera-Utrilla, M. Sánchez-Polo, M.Á. Ferro-García, G. Prados-Joya, R. Ocampo-Pérez, Pharmaceuticals as emerging contaminants and their removal from water. A review, Chemosphere 93 (2013) 1268–1287. https://doi.org/10.1016/J.CHEMOSPHERE.2013.07.059.
dc.relation.referencesV. Sonkar, S.S. Sasidharan, S.C. Jambu, A.K. Rengan, J.-U. Kreft, S. Thatikonda, A multi-endpoint approach to ecotoxicological assessment of wastewater polluted rivers using zebrafish, Environ Res 282 (2025) 121996. https://doi.org/10.1016/j.envres.2025.121996.
dc.relation.referencesK. Kümmerer, Resistance in the environment, Journal of Antimicrobial Chemotherapy 54 (2004) 311–320. https://doi.org/10.1093/JAC/DKH325.
dc.relation.referencesH. Tan, Impacts of common pharmaceutical pollutants on behaviour and other fitness-related traits in freshwater fish, Monash University, 2023. https://doi.org/10.26180/24571450.v1.
dc.relation.referencesF.-A. Weber, T. Aus der Beek, A. Bergmann, A. Carius, G. Grüttner, S. Hickmann, I. Ebert, A. Hein, A. Küster, J. Rose, J. Koch-Jugl, H.-C. Stolzenberg, Fármacos en el medio ambiente – la perspectiva global Incidencia, efectos y acción cooperativa potencial bajo el SAICM, 2014. www.umweltbundesamt.de/umweltbundesamt.de/umweltbundesamt (accessed July 21, 2025).
dc.relation.referencesC. Elles-Pérez, M. Guzman-Tordecilla, Y. Ramos, M. Castillo-Ramírez, A. Moreno-Ríos, C. Garzón-Rodríguez, J. Rojas-Solano, Assessment of water quality and emerging pollutants in two fish species from the mallorquin swamp in the Colombian Caribbean, Heliyon 10 (2024) e39005. https://doi.org/10.1016/J.HELIYON.2024.E39005.
dc.relation.referencesF. Ma, D. Liu, 17β-trenbolone, an anabolic-androgenic steroid as well as an environmental hormone, contributes to neurodegeneration, Toxicol Appl Pharmacol 282 (2015) 68–76. https://doi.org/https://doi.org/10.1016/j.taap.2014.11.007.
dc.relation.referencesF. Diaz Diaz, Remoción de fármacos emergentes en aguas residuales mediante un biorreactor con biomasa inmovilizada acoplado a un sistema de filtración con membranas sumergidas., Instituto Mexicano de Tecnología del Agua, 2020. http://repositorio.imta.mx/bitstream/handle/20.500.12013/2246/T_094.pdf?sequenc e=1 (accessed July 21, 2025).
dc.relation.referencesA.S. Moreno-Barragán, C.A. Benalcázar-Pozo, A. Bermúdez-del Sol, Contaminación ambiental por productos farmacéuticos y su impacto en la salud humana, Revista de Ciencias Médicas de Pinar Del Río 27 (2023). http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1561-31942023000400021 (accessed July 21, 2025).
dc.relation.referencesM. Parolini, Toxicity of the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) acetylsalicylic acid, paracetamol, diclofenac, ibuprofen and naproxen towards freshwater invertebrates: A review, Science of The Total Environment 740 (2020) 140043. https://doi.org/10.1016/J.SCITOTENV.2020.140043.
dc.relation.referencesD. Wojcieszyńska, H. Guzik, U. Guzik, Non-steroidal anti-inflammatory drugs in the era of the Covid-19 pandemic in the context of the human and the environment, Science of The Total Environment 834 (2022) 155317. https://doi.org/10.1016/J.SCITOTENV.2022.155317.
dc.relation.referencesC. Miège, J.M. Choubert, L. Ribeiro, M. Eusèbe, M. Coquery, Fate of pharmaceuticals and personal care products in wastewater treatment plants – Conception of a database and first results, Environmental Pollution 157 (2009) 1721–1726. https://doi.org/10.1016/J.ENVPOL.2008.11.045.
dc.relation.referencesC. Salazar Montenegro, Efectos tóxicos derivados de la contaminación ambiental por fármacos. Revisión de alcance, Tesis, Universidad Nacional de Colombia, 2023. https://repositorio.unal.edu.co/handle/unal/85252 (accessed July 21, 2025).
dc.relation.referencesM. Alzola-Andrés, S. Domingo-Echaburu, M. Nogales-Garcia, I. Palacios-Zabalza, A. Urrutia-Losada, L. Arteche-Elguizabal, A. Lopez de Torre Querejazu, A. Quintana Basterra, G. Orive, U. Lertxundi, El impacto ambiental de los medicamentos: una mirada desde la farmacia hospitalaria, Farmacia Hospitalaria 48 (2024) S13–S20. https://doi.org/10.1016/J.FARMA.2023.09.010.
dc.relation.referencesJ. Choina, H. Kosslick, Ch. Fischer, G.-U. Flechsig, L. Frunza, A. Schulz, Photocatalytic decomposition of pharmaceutical ibuprofen pollutions in water over titania catalyst, Appl Catal B 129 (2013) 589–598. https://doi.org/10.1016/j.apcatb.2012.09.053.
dc.relation.referencesA.M. Botero-Coy, D. Martínez-Pachón, C. Boix, R.J. Rincón, N. Castillo, L.P. Arias-Marín, L. Manrique-Losada, R. Torres-Palma, A. Moncayo-Lasso, F. Hernández, ‘An investigation into the occurrence and removal of pharmaceuticals in Colombian wastewater,’ Science of The Total Environment 642 (2018) 842–853. https://doi.org/10.1016/J.SCITOTENV.2018.06.088.
dc.relation.referencesD. Martínez-Pachón, R.A. Echeverry-Gallego, E.A. Serna-Galvis, J.M. Villarreal, A.M. Botero-Coy, F. Hernández, R.A. Torres-Palma, A. Moncayo-Lasso, Treatment of wastewater effluents from Bogotá – Colombia by the photo-electro-Fenton process: Elimination of bacteria and pharmaceutical, Science of The Total Environment 772 (2021) 144890. https://doi.org/10.1016/J.SCITOTENV.2020.144890.
dc.relation.referencesE.M. Jiménez-Bambague, C.A. Madera-Parra, F. Machuca-Martinez, The occurrence of emerging compounds in real urban wastewater before and after the COVID-19 pandemic in Cali, Colombia, Curr Opin Environ Sci Health 33 (2023) 100457. https://doi.org/10.1016/J.COESH.2023.100457.
dc.relation.referencesF. Hernández, M. Ibáñez, T. Portoles, A. Hidalgo-Troya, J.D. Ramírez, M.A. Paredes, A.F. Hidalgo, A.M. García, L.A. Galeano, High resolution mass spectrometry-based screening for the comprehensive investigation of organic micropollutants in surface water and wastewater from Pasto city, Colombian Andean highlands, Science of The Total Environment 922 (2024) 171293. https://doi.org/10.1016/J.SCITOTENV.2024.171293.
dc.relation.referencesD.A. Martín Escobar, CONTAMINANTES EMERGENTES: ORIGEN Y DESTINO, Tesis de Maestría, Universidad Rey Juan Carlos, 2019. https://ebuah.uah.es/dspace/bitstream/handle/10017/41874/TFM_Martin_Escobar_2019.pdf?sequence=1 (accessed July 20, 2025).
dc.relation.referencesUE, DECISIÓN DE EJECUCIÓN (UE) 2025/439 DE LA COMISIÓN , Lista de Observación de Sustancias a Efectos de Seguimiento a Nivel de La Unión, de Conformidad Con El Artículo 8 Ter de La Directiva 2008/105/CE (2025) 1–6. https://www.miteco.gob.es/content/dam/miteco/es/agua/temas/estado-y-calidad-de-las-aguas/contaminantes-emergentes-1/lista-de-observaci%C3%B3n/L00001-00006.pdf (accessed July 20, 2025).
dc.relation.referencesEl Espectador, Colombia consume ibuprofeno en exceso, (2014). https://www.elespectador.com/salud/colombia-consume-ibuprofeno-en-exceso-article-506051/ (accessed October 12, 2024).
dc.relation.referencesZ. Wang, V. Srivastava, I. Ambat, Z. Safaei, M. Sillanpää, Degradation of Ibuprofen by UV-LED/catalytic advanced oxidation process, Journal of Water Process Engineering 31 (2019) 100808. https://doi.org/10.1016/J.JWPE.2019.100808.
dc.relation.referencesY. Ma, X. Zhang, Z. Zhu, Y. Wang, J. Gao, P. Cui, Process intensification and waste minimization for ibuprofen synthesis process, J Clean Prod 194 (2018) 396–405. https://doi.org/10.1016/J.JCLEPRO.2018.05.131.
dc.relation.referencesY.A. Londoño, G.A. Peñuela, Biological Removal of Different Concentrations of Ibuprofen and Methylparaben in a Sequencing Batch Reactor (SBR), . . Water, Air, & Soil Pollution 226 (2015). https://doi.org/https://doi.org/10.1007/s11270-015- 2654-5.
dc.relation.referencesS. Shanavas, A. Priyadharsan, E.I. Gkanas, R. Acevedo, P.M. Anbarasan, High efficient catalytic degradation of tetracycline and ibuprofen using visible light driven novel Cu/Bi2Ti2O7/rGO nanocomposite: Kinetics, intermediates and mechanism, Journal of Industrial and Engineering Chemistry 72 (2019) 512–528. https://doi.org/10.1016/j.jiec.2019.01.008.
dc.relation.referencesBASF, Información técnica: Lisinato de ibuprofeno racémico y Dihidrato de ibuprofeno sódico, Información Técnica (n.d.). www.pharma.basf.com (accessed July 22, 2025).
dc.relation.referencesA. Ziylan, N.H. Ince, The occurrence and fate of anti-inflammatory and analgesic pharmaceuticals in sewage and fresh water: Treatability by conventional and non-conventional processes, J Hazard Mater 187 (2011) 24–36. https://doi.org/10.1016/J.JHAZMAT.2011.01.057.
dc.relation.referencesS. Chopra, D. Kumar, Ibuprofen as an emerging organic contaminant in environment, distribution and remediation, Heliyon 6 (2020) e04087. https://doi.org/10.1016/J.HELIYON.2020.E04087/ASSET/74F69561-899B-42B5-BDF2-7D75CE9330C6/MAIN.ASSETS/GR3.JPG.
dc.relation.referencesC.M. Dorati, P.M. Buschiazzo, G.H. Marín, H.O. Buschiazzo, R. Rojas-Cortés, M.J.A. Arvez, J.M. Cardozo, D. Marin, G.I.H. de Hernández, N.L. Maldonado, H.M. Piva, J. Rego, S. Dussault, L.P. Velandia, A. Porrás, J.L. Castro, Indicadores de prescripción racional de medicamentos: factibilidad de aplicación en instituciones de las Américas, Revista Panamericana de Salud Pública 45 (2021). https://doi.org/10.26633/RPSP.2021.152.
dc.relation.referencesP.J. Saturno-Hernández, O. Poblano-Verástegui, O. Acosta-Ruiz, A.C. Bautista-Morales, P.M. Gómez-Cortez, J.L. Alcántara-Zamora, L.M. Gutiérrez-Robledo, Potentially inappropriate prescribing in older adults in Mexico, Rev Saude Publica 55 (2021) 80. https://doi.org/10.11606/S1518-8787.20210550033110.
dc.relation.referencesD. Bora, Ibuprofen Market Size, Growth, Trends & Demand Report by 2033, (2024). https://straitsresearch.com/report/ibuprofen-market (accessed July 22, 2025).
dc.relation.referencesMelek Koç Keşir, Zekeriya Bıyıklıoğlu, Peripherally tetra-substituted zinc (II) phthalocyanine sensitized TiO2 composite: Monitoring with tandem LC/MS and photocatalytic degradation of amoxicillin, J Organomet Chem 1005 (2024) 122969. https://doi.org/10.1016/J.JORGANCHEM.2023.122969.
dc.relation.referencesL.M. Ariza, B. Ochoa, H.D. Shewade, J.K. Edwards, J.T. Trujillo, C.M. Cuellar, J. Rodríguez, K. Hann, M. Sanchez, Adherence to guidelines on the use of amoxicillin for treatment of ambulatory pneumonia in children younger than 5 years, Colombia, 2017–2019, Rev Panam Salud Publica 47 (2023). https://doi.org/10.26633/RPSP.2023.52.
dc.relation.referencesData Bridge - Market reserch, Cuota de mercado de la Amoxicilina, Mercado Mundial de Amoxicilina: Tendencias de La Industria y Pronóstico Hasta 2029 (2022). https://www.databridgemarketresearch.com/es/reports/global-amoxicillin-market (accessed July 22, 2025).
dc.relation.referencesBusiness Research Insights, Cuota de mercado de amoxicilina sodio, crecimiento, pronóstico [2025 - 2033], Tamaño Del Mercado, Participación, Crecimiento y Análisis de La Industria de Amoxicilina, Por Tipo (Cápsula, Tableta e Inyección), Por Aplicación (Farmacia Hospitalaria, Farmacia Minorista y Farmacia En Línea) y Información Regional y Se Pronostican Hast… (2024). https://www.businessresearchinsights.com/es/market-reports/amoxicillin-sodium-market-114723 (accessed July 22, 2025).
dc.relation.referencesJ.P. Candido, S.J. Andrade, A.L. Fonseca, F.S. Silva, M.R.A. Silva, M.M. Kondo, Ibuprofen removal by heterogeneous photocatalysis and ecotoxicological evaluation of the treated solutions, Environmental Science and Pollution Research 23 (2016) 19911–19920. https://doi.org/10.1007/s11356-016-6947-z.
dc.relation.referencesC. Tixier, H.P. Singer, S. Oellers, S.R. Müller, Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters, Environ Sci Technol 37 (2003) 1061–1068. https://doi.org/10.1021/es025834r.
dc.relation.referencesJ. Roig Bondia, Eliminación de contaminantes emergentes mediante humedales artificiales como sistema alternativo o complementario a un tratamiento de aguas convencional, Universidad Politécnica de Valencia, 2014. https://riunet.upv.es/handle/10251/44470 (accessed July 23, 2025).
dc.relation.referencesZ. Li, J. Wang, J. Chang, B. Fu, H. Wang, Insight into advanced oxidation processes for the degradation of fluoroquinolone antibiotics: Removal, mechanism, and influencing factors, Science of The Total Environment 857 (2023) 159172. https://doi.org/10.1016/J.SCITOTENV.2022.159172.
dc.relation.referencesD. Li, W. Zhang, Y. Huang, H. Feng, Z. Wang, Z. Yang, J. Chen, X. Zhang, G. Zhang, Y. Chen, Visible light-induced catalytic performance of composite photocatalyst synthesized with nanomaterials WO 3 and two-dimensional ultrathin g-C 3 N 4, Water Science & Technology 88 (1910). https://doi.org/10.2166/wst.2023.313.
dc.relation.referencesM.G. Valladares-Cisneros, C. Valerio Cárdenas, P. de la Cruz Burelo, R.M. Melgoza Alemán, Adsorbentes no-convencionales, alternativas sustentables para el tratamiento de aguas residuales, Revista Ingenierías Universidad de Medellín 16 (2017) 55–73. https://doi.org/10.22395/rium.v16n31a3.
dc.relation.referencesI.M. Oliveira, A. Borges, F. Borges, M. Simões, Repurposing ibuprofen to control Staphylococcus aureus biofilms, Eur J Med Chem 166 (2019) 197–205. https://doi.org/10.1016/J.EJMECH.2019.01.046.
dc.relation.referencesR.A. Ramírez Moriano, Comportamiento de la adsorción de iones (en soluciones acuosas) de lantano, cerio, y europio en adsorbentes orgánicos: revisión de estudios cinéticos, isotérmicos y termodinámicos., 2021. http://repositoriodspace.unipamplona.edu.co/jspui/bitstream/20.500.12744/5547/1/Ram%C3%ADrez_2021_TG.pdf (accessed September 12, 2025).
dc.relation.referencesS. Castro, R. Cerda, N. Betanco, F. Canelo, X. López, A. García, M. Benavente., Estudio del equilibrio y cinética de adsorción de Cd(II), Ni(II) y Cr(VI) usando Quitosano y Quitosano modificado con cobre, (2013) 56–68. https://camjol.info/index.php/NEXO/article/view/1285/1111 (accessed July 16, 2025).
dc.relation.referencesR. Ragadhita, A. Bayu, D. Nandiyanto, Curcumin adsorption on zinc imidazole framework-8 particles: isotherm adsorption using langmuir, freundlich, temkin, and dubinin-radushkevich models, Journal of Engineering Science and Technology 17 (2022) 1078–1089. https://jestec.taylors.edu.my/Vol%2017%20Issue%202%20April%20%202022/17_ 2_19.pdf (accessed July 16, 2025).
dc.relation.referencesF.A. Vega, E.F. Covelo, M.L. Andrade, Applying freundlich, langmuir and Temkim Models in cu and pb soil sorption experiments, Spanish Journal of Soil Science 1 (2011) 20–37. https://doi.org/10.3232/SJSS.2011.V1.N1.02.
dc.relation.referencesJ. Wang, X. Guo, Adsorption kinetic models: Physical meanings, applications, and solving methods, J Hazard Mater 390 (2020) 122156. https://doi.org/10.1016/J.JHAZMAT.2020.122156.
dc.relation.referencesS. Chowdhury, P. Das, Mechanistic, kinetic, and thermodynamic evaluation of adsorption of hazardous Malachite Green onto conch shell powde, Sep Sci Technol 46 (2011) 1966–1976. https://doi.org/10.1080/01496395.2011.584930;JOURNAL:JOURNAL:LSST19;REQUESTEDJOURNAL:JOURNAL:LSST20;WGROUP:STRING:PUBLICATION.
dc.relation.referencesH. Qiu, L. Lv, B.C. Pan, Q.J. Zhang, W.M. Zhang, Q.X. Zhang, Critical review in adsorption kinetic models, Journal of Zhejiang University: Science A 10 (2009) 716–724. https://doi.org/10.1631/JZUS.A0820524/METRICS.
dc.relation.referencesL.C. Paredes-Quevedo, C. González-Caicedo, J.A. Torres-Luna, J.G. Carriazo, Removal of a Textile Azo-Dye (Basic Red 46) in Water by Efficient Adsorption on a Natural Clay, Water Air Soil Pollut 232 (2021) 1–19. https://doi.org/10.1007/S11270-020-04968-2/METRICS.
dc.relation.referencesN. Sultana, P. Priyadarshini, K. Parida, UiO-66-NH 2 and its functional nanohybrids: unlocking photocatalytic potential for clean energy and environmental remediation, Sustain Energy Fuels (2025). https://doi.org/10.1039/D5SE00150A.
dc.relation.referencesA. Esmaeili Nasrabadi, B. Ramavandi, Z. Bonyadi, Review on the utilization of metal organic frameworks (MOFs) for eliminating ibuprofen and naproxen from water sources, Environmental Science and Pollution Research 2025 (2025) 1–23. https://doi.org/10.1007/S11356-025-36165-1.
dc.relation.referencesS. Sağlam, F.N. Türk, H. Arslanoğlu, Use and applications of metal-organic frameworks (MOF) in dye adsorption: Review, J Environ Chem Eng 11 (2023). https://doi.org/10.1016/j.jece.2023.110568.
dc.relation.referencesC.A. Delgado-Vargas, J.S. Barreneche-Vasquez, N.G. Cógua, A.M. Botero-Coy, F. Hernández, D. Martínez-Pachón, A. Moncayo-Lasso, Optimization and application of a continuous flow photo-electro-Fenton system for the removal of pharmaceutical active compounds detected in irrigation water of Bogotá – Savanna (Colombia) Crops, J Environ Chem Eng 11 (2023) 111030. https://doi.org/10.1016/J.JECE.2023.111030.
dc.relation.referencesM. Rodríguez Peña, C.E. Barrera Díaz, Procesos de oxidación avanzada en el tratamiento de agua, © Universidad Autónoma del Estado de México, Toluca, 2020. https://core.ac.uk/download/344751791.pdf (accessed July 25, 2025).
dc.relation.referencesR. Singh, A. Sinha, A critical review of recent advancements in the photocatalysis process, mechanism, and degradation pathways for the removal of phthalates from the contaminated water matrix, J Environ Manage 377 (2025) 124663. https://doi.org/10.1016/J.JENVMAN.2025.124663.
dc.relation.referencesJ.S. Triviño-Pineda, J.E. Sánchez Ramírez, Wastewater treatment systems in Colombia: A systematic review of advanced oxidation processes for the removal of microbial agents, Case Studies in Chemical and Environmental Engineering 8 (2023) 100470. https://doi.org/10.1016/J.CSCEE.2023.100470.
dc.relation.referencesM. Ferre, M.J. Moya-Llamas, E. Dominguez, N. Ortuño, D. Prats, Advanced Oxidation Processes and Adsorption Technologies for the Removal of Organic Azo Compounds: UV, H2O2, and GAC, Water (Basel) 17 (2025) 212. https://doi.org/10.3390/W17020212.
dc.relation.referencesA. Della-Flora, M.L. Wilde, D. Lima, E.C. Lima, C. Sirtori, Combination of tertiary solar photo-Fenton and adsorption processes in the treatment of hospital wastewater: The removal of pharmaceuticals and their transformation products, J Environ Chem Eng 9 (2021) 105666. https://doi.org/10.1016/J.JECE.2021.105666.
dc.relation.referencesS. Esplugas, D.M. Bila, L.G.T. Krause, M. Dezotti, Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents, J Hazard Mater 149 (2007) 631–642. https://doi.org/10.1016/J.JHAZMAT.2007.07.073.
dc.relation.referencesM.S. Lucas, J.A. Peres, Removal of Emerging Contaminants by Fenton and UV-Driven Advanced Oxidation Processes, Water Air Soil Pollut 226 (2015).
dc.relation.referencesF. Audino, J. Arboleda, M. Petrovic, R.G. Cudinach, S.S. Pérez, Pharmaceuticals Removal by Ozone and Electro-Oxidation in Combination with Biological Treatment, Water (Basel) 15 (2023) 3180. https://doi.org/10.3390/W15183180.
dc.relation.referencesA.A.S. Maya, P. Akhtar, M.A. Hossen, M.J. Alam, H. AlMohamadi, Y. Ahmed, Heterogeneous Fenton-assisted antibiotic removal from wastewater: Effect of FeWO4 nanomaterial morphology across four Fenton processes, Water Res X 29 (2025) 100354. https://doi.org/10.1016/J.WROA.2025.100354.
dc.relation.referencesI. Carra, J.L. Casas López, L. Santos-Juanes, S. Malato, J.A. Sánchez Pérez, Iron dosage as a strategy to operate the photo-Fenton process at initial neutral pH, Chemical Engineering Journal 224 (2013) 67–74. https://doi.org/10.1016/J.CEJ.2012.09.065.
dc.relation.referencesL.I. Castaño, Revisión sistemática del proceso de degradación de contaminantes orgánicos persistentes en aguas residuales, provenientes de la industria farmacéutica por fotocatálisis , Universidad Nacional Abierta y a Distancia - UNAD, 2020. https://repository.unad.edu.co/bitstream/handle/10596/36791/licastano.pdf?sequence=3 (accessed July 22, 2025).
dc.relation.referencesY. An, L. Wang, W. Jiang, X. Lv, G. Yuan, X. Hang, H. Pang, Metal–organic framework-based materials for photocatalytic overall water splitting: Status and prospects, Polyoxometalates (2023) 9140030. https://doi.org/10.26599/POM.2023.9140030.
dc.relation.referencesN. Sultana, P. Priyadarshini, K. Parida, UiO-66-NH2 and its functional nanohybrids: unlocking photocatalytic potential for clean energy and environmental remediation, Sustain Energy Fuels 9 (2025) 3458–3494. https://doi.org/10.1039/D5SE00150A.
dc.relation.referencesC. Martínez Castillo, Diseño de un reactor fotocatalítico para la degradación de contaminantes emergentes presentes en el efluente de una Estación Depuradora de Aguas Residuales, Universitat Jaume I, 2020. https://core.ac.uk/download/344689746.pdf (accessed July 22, 2025).
dc.relation.referencesJ.F. Góngora, P. Elizondo, A. Hernández-Ramírez, Photocatalytic degradation of ibuprofen using TiO2 sensitized by Ru(ii) polyaza complexes, Photochemical and Photobiological Sciences 16 (2017) 31–37. https://doi.org/10.1039/c6pp00222f.
dc.relation.referencesM.H. Abdurahman, B. Rhimi, S.A. El-Khodary, A.Z. Abdullah, P. Okoye, M.R. Asghar, Q. Liu, Structural tailoring of metal–organic frameworks for photocatalytic degradation of contaminant emergence concern: recent advances and perspectives, Sep Purif Technol 376 (2025) 134016. https://doi.org/10.1016/J.SEPPUR.2025.134016.
dc.relation.referencesY. He, B. Chen, Metal-Organic Frameworks: Frameworks Containing Open Sites, Encyclopedia of Inorganic and Bioinorganic Chemistry (2014) 1–23. https://doi.org/10.1002/9781119951438.eibc2213.
dc.relation.referencesF. Gándara, Metal-organic frameworks: nuevos materiales con espacios llenos de posibilidades, Anales de La Real Sociedad Española de Química 108 (2012) 190–196.
dc.relation.referencesA.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang, J.T. Hupp, O.K. Farha, Chemical, thermal and mechanical stabilities of metal-organic frameworks, Nat Rev Mater 1 (2016) 1–15. https://doi.org/10.1038/natrevmats.2015.18.
dc.relation.referencesJ.L.C. Rowsell, O.M. Yaghi, Metal-organic frameworks: A new class of porous materials, Microporous and Mesoporous Materials 73 (2004) 3–14. https://doi.org/10.1016/j.micromeso.2004.03.034.
dc.relation.referencesX.L. Ni, J. Liu, Y.Y. Liu, K. Leus, H. Depauw, A.J. Wang, P. Van Der Voort, J. Zhang, Y.K. Hu, Synthesis, characterization and catalytic performance of Mo based metal- organic frameworks in the epoxidation of propylene by cumene hydroperoxide, Chinese Chemical Letters 28 (2017) 1057–1061. https://doi.org/10.1016/j.cclet.2017.01.020.
dc.relation.referencesT. Ríos Carvajal, Síntesis y caracterización de redes metal-‐orgánicas (MOF) a partir de ligantes orgánicos tipo Fenilenvinileno modificados con grupos electrodonores, Universidad Nacional de Colombia, 2014. https://repositorio.unal.edu.co/handle/unal/52813 (accessed December 10, 2025).
dc.relation.referencesK. Leus, I. Muylaert, V. Van Speybroeck, G.B. Marin, P. Van Der Voort, A coordinative saturated vanadium containing metal organic framework that shows a remarkable catalytic activity, Elsevier B.V., 2010. https://doi.org/10.1016/S0167-2991(10)75053-9.
dc.relation.referencesJ. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.Y. Su, Applications of metal-organic frameworks in heterogeneous supramolecular catalysis, Chem Soc Rev 43 (2014) 6011–6061. https://doi.org/10.1039/c4cs00094c.
dc.relation.referencesM. Dan-Hardi, C. Serre, T. Frot, L. Rozes, G. Maurin, C. Sanchez, G. Férey, A new photoactive crystalline highly porous titanium(IV) dicarboxylate, J Am Chem Soc 131 (2009) 10857–10859. https://doi.org/10.1021/ja903726m.
dc.relation.referencesY. Cui, Y. Yue, G. Qian, B. Chen, Luminescent functional metal-organic frameworks, Chem Rev 112 (2012) 1126–1162. https://doi.org/10.1021/CR200101D.
dc.relation.referencesJ. Heine, K. Müller-Buschbaum, Engineering metal-based luminescence in coordination polymers and metal-organic frameworks, Chem Soc Rev 42 (2013) 9232–9242. https://doi.org/10.1039/C3CS60232J.
dc.relation.referencesJ. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Metal-organic framework materials as catalysts, Chem Soc Rev 38 (2009) 1450–1459. https://doi.org/10.1039/b807080f.
dc.relation.referencesZ.M. Rojas, Estructuras metal orgánicas de titanio (MIL-125 y MIL-125-NH 2 ): síntesis, caracterización y evaluación de la actividad en procesos fotocatalíticos, 2017.
dc.relation.referencesY. Sun, H.C. Zhou, Recent progress in the synthesis of metal–organic frameworks, Sci Technol Adv Mater 16 (2015) 54202. https://doi.org/10.1088/1468-6996/16/5/054202.
dc.relation.referencesK.I. Bautista Cano, Degradación fotocatalítica de una mezcla de productos de cuidado personal en medio acuoso bajo radiación solar simulada empleando el catalizador UiO-67/g-C3N4, Universidad Autónoma de Nuevo León, 2022. http://eprints.uanl.mx/id/eprint/25237 (accessed March 8, 2024).
dc.relation.referencesN.A. El-Mahdy, S.R.H. El-Gharkawy, M.A. Akl, Concurrent photocatalytic degradation of organic pollutants using smart magnetically cellulose-based metal organic framework nanocomposite, Sci Rep 15 (2025) 1–33. https://doi.org/10.1038/S41598-025-03256-5;SUBJMETA=11,169,638,639,898,92;KWRD=ANALYTICAL+CHEMISTRY,CHEMICAL+BIOLOGY,CHEMICAL+ENGINEERING,ENVIRONMENTAL+CHEMISTRY.
dc.relation.referencesT.D. Doan, N.N. Vu, T.L.G. Hoang, P. Nguyen-Tri, Metal-organic framework (MOF)-based materials for photocatalytic antibacterial applications, Coord Chem Rev 523 (2025) 216298. https://doi.org/10.1016/J.CCR.2024.216298.
dc.relation.referencesD. Chen, Y.T. Zheng, N.Y. Huang, Q. Xu, Metal-organic framework composites for photocatalysis, EnergyChem 6 (2024) 100115. https://doi.org/10.1016/J.ENCHEM.2023.100115.
dc.relation.referencesJ. Gao, Q. Huang, Y. Wu, Y.Q. Lan, B. Chen, Metal–Organic Frameworks for Photo/Electrocatalysis, Advanced Energy and Sustainability Research 2 (2021) 2100033. https://doi.org/10.1002/AESR.202100033;SUBPAGE:STRING:FULL.
dc.relation.referencesY. An, Y. Liu, H. Bian, Z. Wang, P. Wang, Z. Zheng, Y. Dai, M.-H. Whangbo, B. Huang, Improving the photocatalytic hydrogen evolution of UiO-67 by incorporating Ce 4+-coordinated bipyridinedicarboxylate ligands, (2019). https://doi.org/10.1016/j.scib.2019.07.030.
dc.relation.referencesM. Gutierrez, B. Cohen, F. Sánchez, A. Douhal, Photochemistry of Zr-based MOFs: ligand-to-cluster charge transfer, energy transfer and excimer formation, what else is there?, Physical Chemistry Chemical Physics 18 (2016) 27761–27774. https://doi.org/10.1039/C6CP03791G.
dc.relation.referencesM. Chalermnon, S.R. Thomas, J.M. Chin, M.R. Reithofer, Rational design of metal–organic frameworks (MOFs) as hosts for nanoparticles in catalytic applications: concepts, strategies, and emerging trends, Inorg Chem Front (2025). https://doi.org/10.1039/D5QI01201E.
dc.relation.referencesI. Rincón, J. García-González, S. Rojas, Redes metal-orgánicas como agentes prometedores en remediación ambiental, La Revista de La Real Sociedad Española de Química 119 (2023) 1–9. https://dialnet.unirioja.es/descarga/articulo/8869677.pdf (accessed July 23, 2025).
dc.relation.referencesT. Li, Y. Li, J. Mao, Transition metal supported UiO-67 materials and their applications in catalysis, Front Chem 13 (2025) 1596868. https://doi.org/10.3389/FCHEM.2025.1596868.
dc.relation.referencesY. Sun, UiO-66 Metal-Organic Framework Membranes: Structural Engineering for Separation Applications, Membranes 2025, Vol. 15, Page 8 15 (2025) 8. https://doi.org/10.3390/MEMBRANES15010008.
dc.relation.referencesL. Paseta Martínez, Desarrollo de membranas nanocompuestas de película delgada basadas en materiales metal-orgánicos porosos y grafeno para su aplicación en nanofiltración, Universidad de Zaragoza, 2021. http://zaguan.unizar.es (accessed August 3, 2025).
dc.relation.referencesS.C. Moore, I.L. Hubble, A.L. Ritchie, J.E. Barzach, M.L. Sarazen, UiO(Zr)-based MOF catalysts for light-driven aqueous pollutant degradation, React Chem Eng 9 (2024) 2333–2344. https://doi.org/10.1039/D4RE00172A.
dc.relation.referencesJ.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, J Am Chem Soc 130 (2008) 13850–13851. https://doi.org/10.1021/JA8057953/SUPPL_FILE/JA8057953_SI_001.PDF.
dc.relation.referencesJ. Long, S. Wang, Z. Ding, S. Wang, Y. Zhou, L. Huang, X. Wanga, Amine-functionalized zirconium metal–organic framework as efficient visible-light photocatalyst for aerobic organic transformations, Chemical Communications 48 (2012) 11656–11658. https://doi.org/10.1039/C2CC34620F.
dc.relation.referencesX.D. Du, X.H. Yi, P. Wang, W. Zheng, J. Deng, C.C. Wang, Robust photocatalytic reduction of Cr(VI) on UiO-66-NH2(Zr/Hf) metal-organic framework membrane under sunlight irradiation, Chemical Engineering Journal 356 (2019) 393–399. https://doi.org/10.1016/J.CEJ.2018.09.084.
dc.relation.referencesX. Mu, J. Jiang, F. Chao, Y. Lou, J. Chen, Ligand modification of UiO-66 with an unusual visible light photocatalytic behavior for RhB degradation, Dalton Transactions 47 (2018) 1895–1902. https://doi.org/10.1039/C7DT04477A.
dc.relation.referencesC. Du, Z. Zhang, G. Yu, H. Wu, H. Chen, L. Zhou, Y. Zhang, Y. Su, S. Tan, L. Yang, J. Song, S. Wang, A review of metal organic framework (MOFs)-based materials for antibiotics removal via adsorption and photocatalysis, Chemosphere 272 (2021) 129501. https://doi.org/10.1016/J.CHEMOSPHERE.2020.129501.
dc.relation.referencesS. Wang, X. Teng, C. Liu, H. Zhu, H. Cheng, J. Yan, L. Wang, Z. Liang, J. Ouyang, Ultrafast piezo-photocatalytic degradation of dye pollutants using UiO-66-NH2(Hf) metal-organic framework-based nanoparticles, Opt Mater (Amst) 147 (2024) 114758. https://doi.org/10.1016/J.OPTMAT.2023.114758.
dc.relation.referencesY.L. Wang, S. Zhang, Y.F. Zhao, J. Bedia, J.J. Rodriguez, C. Belver, UiO-66-based metal organic frameworks for the photodegradation of acetaminophen under simulated solar irradiation, J Environ Chem Eng 9 (2021) 106087. https://doi.org/10.1016/j.jece.2021.106087.
dc.relation.referencesQ. Du, P. Wu, Y. Sun, J. Zhang, H. He, Selective photodegradation of tetracycline by molecularly imprinted ZnO@NH2-UiO-66 composites, Chemical Engineering Journal 390 (2020) 124614. https://doi.org/10.1016/j.cej.2020.124614.
dc.relation.referencesM. Peñas-Garzón, M.J. Sampaio, Y.L. Wang, J. Bedia, J.J. Rodriguez, C. Belver, C.G. Silva, J.L. Faria, Solar photocatalytic degradation of parabens using UiO-66-NH2, Sep Purif Technol 286 (2022) 120467. https://doi.org/10.1016/J.SEPPUR.2022.120467.
dc.relation.referencesS. Zhang, Y. Wang, Z. Cao, J. Xu, J. Hu, Y. Huang, C. Cui, H. Liu, H. Wang, Simultaneous enhancements of light-harvesting and charge transfer in UiO-67/CdS/rGO composites toward ofloxacin photo-degradation, Chemical Engineering Journal 381 (2020) 122771. https://doi.org/10.1016/j.cej.2019.122771.
dc.relation.referencesYang An, Yuanyuan Liu, Hongtao Bian, Zeyan Wang, Peng Wang, Zhaoke Zheng, Ying Dai, Myung-Hwan Whangbo, Baibiao Huang, Improving the photocatalytic hydrogen evolution of UiO-67 by incorporating Ce4+-coordinated bipyridinedicarboxylate ligands, Sci Bull (Beijing) 64 (2019).
dc.relation.referencesD. Haldar, P. Duarah, K. Purkait, MOFs for the treatment of arsenic, fluoride and iron contaminated drinking water: A review, (2020). https://doi.org/10.1016/j.chemosphere.2020.126388.
dc.relation.referencesL. Liu, W. Cui, C. Lu, A. Zain, W. Zhang, G. Shen, S. Hu, X. Qian, Analyzing the adsorptive behavior of Amoxicillin on four Zr-MOFs nanoparticles: Functional groups dependence of adsorption performance and mechanisms, J Environ Manage 268 (2020) 110630. https://doi.org/10.1016/j.jenvman.2020.110630.
dc.relation.referencesT. Shuxian, Y. Wang, P. He, Y. Wang, G. Wei, Recent Advances in Metal–Organic Framework (MOF)-Based Composites for Organic Effluent Remediation, Materials 17 (2024) 2660. https://doi.org/10.3390/ma17112660.
dc.relation.referencesR. Dai, H. Guo, C.Y. Tang, M. Chen, J. Li, Z. Wang, Hydrophilic Selective Nanochannels Created by Metal Organic Frameworks in Nanofiltration Membranes Enhance Rejection of Hydrophobic Endocrine-Disrupting Compounds, Environ Sci Technol 53 (2019) 13776–13783. https://doi.org/10.1021/acs.est.9b05343.
dc.relation.referencesY. Cheng, S.J. Datta, S. Zhou, J. Jia, O. Shekhah, M. Eddaoudi, Advances in metal–organic framework-based membranes, Chem Soc Rev 51 (2022) 8300–8350. https://doi.org/10.1039/D2CS00031H.
dc.relation.referencesS. Daliran, A.R. Oveisi, C.W. Kung, U. Sen, A. Dhakshinamoorthy, C.H. Chuang, M. Khajeh, M. Erkartal, J.T. Hupp, Defect-enabling zirconium-based metal–organic frameworks for energy and environmental remediation applications, Chem Soc Rev 53 (2024) 6244–6294. https://doi.org/10.1039/D3CS01057K.
dc.relation.referencesN. Exequiel, G. V Olmos, A. Devard, F. Albana Marchesini, M.C. Taleb, Desarrollo de catalizadores de cobre soportados sobre esferas de celulosa para eliminar contaminantes emergentes en agua, Repositorio Institucional CONICET Digital (2020). https://ri.conicet.gov.ar/bitstream/handle/11336/145497/CONICET_Digital_Nro.cdb a345f-edf9-40ea-821a-0a6c4fdbcfb9_A.pdf?sequence=2 (accessed August 1, 2025).
dc.relation.referencesB. Yeskendir, J.P. Dacquin, Y. Lorgouilloux, C. Courtois, S. Royer, J. Dhainaut, From metal–organic framework powders to shaped solids: recent developments and challenges, Mater Adv 2 (2021) 7139–7186. https://doi.org/10.1039/D1MA00630D.
dc.relation.referencesY. Cao, X. Chen, X. Li, B. Wang, Tuning Surface Functionalization and Pore Structure of UiO-66 Metal-Organic Framework Nanoparticles for Organic Pollutant Elimination, ACS Appl Nano Mater 4 (2021) 5486–5495. https://doi.org/10.1021/ACSANM.1C00796/SUPPL_FILE/AN1C00796_SI_001.PDF
dc.relation.referencesH.Y. Chi, S. Song, K. Zhao, K.J. Hsu, Q. Liu, Y. Shen, A.F. Sido Belin, A. Allaire, R. Goswami, W.L. Queen, K.V. Agrawal, Non-van-der-Waals Oriented Two-Dimensional UiO-66 Films by Rapid Aqueous Synthesis at Room Temperature, J Am Chem Soc 147 (2025) 46. https://doi.org/10.1021/JACS.4C11134/ASSET/IMAGES/LARGE/JA4C11134_0004.JPEG.
dc.relation.referencesM.J. Katz, Z.J. Brown, Y.J. Colón, P.W. Siu, K.A. Scheidt, R.Q. Snurr, J.T. Hupp, O.K. Farha, A facile synthesis of UiO-66, UiO-67 and their derivatives, Chemical Communications 49 (2013) 9449–9451. https://doi.org/10.1039/C3CC46105J.
dc.relation.referencesM. Stawowy, M. Róziewicz, E. Szczepańska, J. Silvestre-Albero, M. Zawadzki, M. Musioł, R. Łuzny, J. Kaczmarczyk, J. Trawczyński, A. Łamacz, The Impact of Synthesis Method on the Properties and CO2 Sorption Capacity of UiO-66(Ce), Catalysts 2019, Vol. 9, Page 309 9 (2019) 309. https://doi.org/10.3390/CATAL9040309.
dc.relation.referencesW. Ma, L. Yu, P. Kang, Z. Chu, Y. Li, Modifications and Applications of Metal-Organic-Framework-Based Materials for Photocatalysis, Molecules 2024, Vol. 29, Page 5834 29 (2024) 5834. https://doi.org/10.3390/MOLECULES29245834.
dc.relation.referencesE. Uribe Vega, Adsorción de fluoruro en HKUST-1 funcionalizada con aminoácidos, Universidad Autónoma Metropolitana (México), 2022. https://zaloamati.azc.uam.mx/collections/9ba85880-36d6-45b4-a59a-854c2679137d/browse/title?value=Adsorci%C3%B3n%20de%20fluoruro%20en%20HKUST-1%20funcionalizada%20con%20amino%C3%A1cidos (accessed August 1, 2025).
dc.relation.referencesS. Tripathi, B. Sreenivasulu, A. Suresh, C.V.S.B. Rao, N. Sivaraman, Assorted functionality-appended UiO-66-NH2 for highly efficient uranium(VI) sorption at acidic/neutral/basic pH, RSC Adv 10 (2020) 14650–14661. https://doi.org/10.1039/D0RA00410C.
dc.relation.referencesJ.S. Rodríguez Girón, Desarrollo de compósitos a base de Bi2Mo3O12 mediante molienda mecánica para la degradación fotocatalítica de tetraciclina y levofloxacino, Universidad Autónoma de Nuevo León, 2023. http://eprints.uanl.mx/id/eprint/26812 (accessed August 1, 2025).
dc.relation.referencesR. Tai, R. Wu, M. Zhang, J. Yuan, J. Tressel, Y. Tang, Q. Wang, S. Chen, Metal–organic framework–based heterojunctions for photocatalysis, Curr Opin Chem Eng 45 (2024) 101033. https://doi.org/10.1016/J.COCHE.2024.101033.
dc.relation.referencesJ. Fonseca, T. Gong, L. Jiao, H.L. Jiang, Metal-organic frameworks (MOFs) beyond crystallinity: amorphous MOFs, MOF liquids and MOF glasses, J Mater Chem A Mater 9 (2021) 10562–10611. https://doi.org/10.1039/d1ta01043c.
dc.relation.referencesN. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites, Chem Rev 112 (2012) 933–969. https://doi.org/10.1021/CR200304E.
dc.relation.referencesS. Biswas, P. Van Der Voort, A General Strategy for the Synthesis of Functionalised UiO-66 Frameworks: Characterisation, Stability and CO2 Adsorption Properties, Eur J Inorg Chem 2013 (2013) 2154–2160. https://doi.org/10.1002/EJIC.201201228.
dc.relation.referencesP. Ponce Peña, M.Á. Escobedo Bretado, M.A. González Lozano, R.H. Lara Castro, D.M. Núñez Ramírez, Espectroscopía de infrarrojo Análisis e interpretación de compuestos, UJED, Durango, 2023. https://www.researchgate.net/publication/389747263_Espectroscopia_de_infrarrojo _Analisis_e_interpretacion_de_compuestos_UNIVERSIDAD_JUAREZ_DEL_ESTA DO_DE_DURANGO (accessed December 10, 2025).
dc.relation.referencesD. Louër, A. Boultif, Some further considerations in powder diffraction pattern indexing with the dichotomy method, in: Powder Diffr, 2014: pp. S7–S12. https://doi.org/10.1017/S0885715614000906.
dc.relation.referencesCOD, Crystallography Open Database, (2024). https://www.crystallography.net/cod/new.html (accessed August 7, 2025).
dc.relation.referencesChemtube, UiO-66 Metal Organic Framework, Metal Organic Framework (n.d.). https://www.chemtube3d.com/mof-uio66/ (accessed September 11, 2025).
dc.relation.referencesL. Yang, B. Kruse, Revised Kubelka–Munk theory I Theory and application, Journal of the Optical Society of America A 21 (2004) 1933. https://doi.org/10.1364/josaa.21.001933.
dc.relation.referencesM. Nowak, B. Kauch, P. Szperlich, Determination of energy band gap of nanocrystalline SbSI using diffuse reflectance spectroscopy, Review of Scientific Instruments 80 (2009) 046107. https://doi.org/10.1063/1.3103603.
dc.relation.referencesY.S. Abdel Aziz, M.M.S. Sanad, R.M. Abdelhameed, A.H. Zaki, In-situ construction of Zr-based metal-organic framework core-shell heterostructure for photocatalytic degradation of organic pollutants, Front Chem 10 (2023) 1102920. https://doi.org/10.3389/FCHEM.2022.1102920/FULL.
dc.relation.referencesG. Healing, M. Zakharzhevskii, I. Nadinov, L. Gutiérrez-Arzaluz, S.A. Alomar, J. Gascon, O.F. Mohammed, Excited-State Rotational Dynamics of Amine-Functionalized Terephthalic Acid Derivatives as Linker Models for Metal-Organic Frameworks, Journal of Physical Chemistry A 129 (2025) 836–847. https://doi.org/10.1021/ACS.JPCA.4C03827/ASSET/IMAGES/LARGE/JP4C03827_0006.JPEG.
dc.relation.referencesS. Azizian, S. Eris, Adsorption isotherms and kinetics, Interface Science and Technology 33 (2021) 445–509. https://doi.org/10.1016/B978-0-12-818805-7.00011-4.
dc.relation.referencesJ. Zhang, Physical insights into kinetic models of adsorption, Sep Purif Technol 229 (2019) 115832. https://doi.org/10.1016/J.SEPPUR.2019.115832.
dc.relation.referencesM. Hamzaoui, Bestani B., Benderdouche N., The use of linear and nonlinear methods for adsorption isotherm optimization of basic green 4-dye onto sawdust based activated carbon, Journal of Materials and Environmental Sciences 9 (2018) 1110–1118. https://www.researchgate.net/publication/322896771_The_use_of_linear_and_nonl inear_methods_for_adsorption_isotherm_optimization_of_basic_green_4- dye_onto_sawdust-based_activated_carbon (accessed September 12, 2025).
dc.relation.referencesA. Syafiuddin, S. Salmiati, J. Jonbi, M.A. Fulazzaky, Application of the kinetic and isotherm models for better understanding of the behaviors of silver nanoparticles adsorption onto different adsorbents, J Environ Manage 218 (2018) 59–70. https://doi.org/10.1016/J.JENVMAN.2018.03.066.
dc.relation.referencesT.M. Berhane, J. Levy, M.P.S. Krekeler, N.D. Danielson, Kinetic sorption of contaminants of emerging concern by a palygorskite-montmorillonite filter medium, Chemosphere 176 (2017) 231–242. https://doi.org/10.1016/J.CHEMOSPHERE.2017.02.068.
dc.relation.referencesK.A. Babatunde, B.M. Negash, S.R. Jufar, T.Y. Ahmed, M.R. Mojid, Adsorption of gases on heterogeneous shale surfaces: A review, J Pet Sci Eng 208 (2022) 109466. https://doi.org/10.1016/J.PETROL.2021.109466.
dc.relation.referencesD. Polak, S. Kamocki, M. Szwast, Evaluation of the Potential of Metal–Organic Compounds ZIF-8 and F300 in a Membrane Filtration–Adsorption Process for the Removal of Antibiotics from Water, Antibiotics 2025, Vol. 14, Page 619 14 (2025) 619. https://doi.org/10.3390/ANTIBIOTICS14060619.
dc.relation.referencesE.D. Revellame, D.L. Fortela, W. Sharp, R. Hernandez, M.E. Zappi, Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review, Clean Eng Technol 1 (2020) 100032. https://doi.org/10.1016/J.CLET.2020.100032.
dc.relation.referencesM. Luty-Błocho, A. Podborska, The Diversity of MOF Structures and Their Impact on Photoelectrochemical Sensors for Monitoring Environmental Pollution, Crystals (Basel) 14 (2024) 626. https://doi.org/10.3390/cryst14070626.
dc.relation.referencesM. Ahmadi, S.M. Ayyoubzadeh, F. Ghorbani-Bidkorbeh, S. Shahhosseini, S. Dadashzadeh, E. Asadian, M. Mosayebnia, S. Siavashy, An investigation of affecting factors on MOF characteristics for biomedical applications: A systematic review, Heliyon 7 (2021) e06914. https://doi.org/10.1016/J.HELIYON.2021.E06914.
dc.relation.referencesH. Tong, Y. Ji, T. He, R. He, M. Chen, J. Zeng, D. Wu, Preparation and photocatalytic performance of UIO-66/La-MOF composite, Water Science and Technology 86 (2022) 95–109. https://doi.org/10.2166/WST.2022.197.
dc.relation.referencesM. Fayyazi, A.R. Solaimany Nazar, M. Farhadian, S. Tangestaninejad, Adsorptive removal of ibuprofen to binary and amine-functionalized UiO-66 in the aquatic environment: synergistic/antagonistic evaluation, Environmental Science and Pollution Research 29 (2022) 69502–69516. https://doi.org/10.1007/S11356-022- 20703-2/METRICS.
dc.relation.referencesS. Lal, P. Singh, A. Singhal, S. Kumar, A.P. Singh Gahlot, N. Gandhi, P. Kumari, Advances in metal–organic frameworks for water remediation applications, RSC Adv 14 (2024) 3413–3446. https://doi.org/10.1039/D3RA07982A.
dc.relation.referencesL. Liu, W. Cui, C. Lu, A. Zain, W. Zhang, G. Shen, S. Hu, X. Qian, Analyzing the adsorptive behavior of Amoxicillin on four Zr-MOFs nanoparticles: Functional groups dependence of adsorption performance and mechanisms, J Environ Manage 268 (2020) 110630. https://doi.org/10.1016/J.JENVMAN.2020.110630.
dc.relation.referencesI.Q. Jhovany, M. Cabrera, D. Sandra, L. Serna, M. Alejandra, S. Cruz, Adsorción de penicilina G potásica en redes metal orgánicas, (2021). https://doi.org/10.24275/UAMA.6737.9422.
dc.relation.referencesH. Liu, M. Cheng, Y. Liu, G. Zhang, L. Li, L. Du, B. Li, S. Xiao, G. Wang, X. Yang, Modified UiO-66 as photocatalysts for boosting the carbon-neutral energy cycle and solving environmental remediation issues, Coord Chem Rev 458 (2022) 214428. https://doi.org/10.1016/J.CCR.2022.214428.
dc.relation.referencesT.K. Vo, J. Kim, J. Park, D.Q. Dao, H.B. Truong, Aminobenzoate-defected UiO 66(Zr)–NH2 frameworks: Scalable synthesis and characterizations for adsorptive denitrogenation from model fuel, Chemical Engineering Journal 481 (2024) 148570. https://doi.org/10.1016/J.CEJ.2024.148570.
dc.relation.referencesM. Stojković, I.A. Pašti, Strain Engineering for Tuning the Photocatalytic Activity of Metal-Organic Frameworks-Theoretical Study of the UiO-66 Case, Catalysts 2021, Vol. 11, Page 264 11 (2021) 264. https://doi.org/10.3390/CATAL11020264.
dc.relation.referencesL. Shen, S. Liang, W. Wu, R. Liang, L. Wu, CdS-decorated UiO–66(NH2) nanocomposites fabricated by a facile photodeposition process: an efficient and stable visible-light-driven photocatalyst for selective oxidation of alcohols, J Mater Chem A Mater 1 (2013) 11473–11482. https://doi.org/10.1039/C3TA12645E.
dc.relation.referencesM. Shanmugam, N. Agamendran, K. Sekar, Efficient Charge Transfer of p-n Heterojunction UiO-66-NH2/CuFe2O4 Composite for Photocatalytic Hydrogen Production, Catalysts 14 (2024) 341. https://doi.org/10.3390/CATAL14060341/S1.
dc.relation.referencesA. Haryanto, L. Mukaromah, Y. Permana, A. Patah, Photocatalytic activity of cubdc and uio-66 mofs for methyl orange degradation, Journal of Chemical Technology and Metallurgy 56 (2021).
dc.relation.referencesM. Vandichel, J. Hajek, A. Ghysels, A. De Vos, M. Waroquier, V. Van Speybroeck, Water coordination and dehydration processes in defective UiO-66 type metal organic frameworks, CrystEngComm 18 (2016) 7056–7069. https://doi.org/10.1039/C6CE01027J.
dc.relation.referencesL. Mohammadi, M. Hosseinifard, M.R. Vaezi, Stabilization of Palladium Nanoparticle-Decorated Postsynthesis-Modified Zr-UiO-66 MOF as a Reusable Heterogeneous Catalyst in C–C Coupling Reaction, ACS Omega 8 (2023) 8505– 8518. https://doi.org/10.1021/ACSOMEGA.2C07661.
dc.relation.referencesD. Bužek, J. Demel, K. Lang, Zirconium Metal–Organic Framework UiO-66: Stability in an Aqueous Environment and Its Relevance for Organophosphate Degradation, Inorg Chem 57 (2018) 14290–14297. https://doi.org/10.1021/ACS.INORGCHEM.8B02360.
dc.relation.referencesD. Usuerguía Borja, Recuperación de metano a partir de corrientes de venteo en minas de carbón utilizando MOFs como adsorbentes, (2023). https://digibuo.uniovi.es/dspace/handle/10651/71748 (accessed September 13, 2025).
dc.relation.referencesG.L. Denisov, P. V. Primakov, A.A. Korlyukov, V. V. Novikov, Y. V. Nelyubina, Solvothermal Synthesis of the Metal-Organic Framework MOF-5 in Autoclaves Prepared by 3D Printing, Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya 45 (2019) 836–842. https://doi.org/10.1134/S1070328419120030/METRICS.
dc.relation.referencesB. Kebede Gurmessa, A.M. Taddesse, E. Teju, UiO-66 (Zr-MOF): Synthesis, Characterization, and Application for the Removal of Malathion and 2, 4-D from Aqueous Solution, Environmental Pollutants and Bioavailability 35 (2023). https://doi.org/10.1080/26395940.2023.2222910.
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseReconocimiento 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.ddc620 - Ingeniería y operaciones afines::628 - Ingeniería sanitaria
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
dc.subject.ddc540 - Química y ciencias afines::548 - Cristalografía
dc.subject.lembDEGRADACION AMBIENTALspa
dc.subject.lembEnvironmental degradationeng
dc.subject.lembIMPACTO AMBIENTALspa
dc.subject.lembEnvironmental Impacteng
dc.subject.lembMEDICAMENTOSspa
dc.subject.lembDrugseng
dc.subject.lembCONTAMINACION QUIMICAspa
dc.subject.lembChemical pollutioneng
dc.subject.lembCONTAMINANTES QUIMICOSspa
dc.subject.lembPollutioneng
dc.subject.lembEFECTOS BIOLOGICOS DE LA CONTAMINACIONspa
dc.subject.lembPollution - Physiological effecteng
dc.subject.proposalEstructuras Metal-Orgánicas (MOF)spa
dc.subject.proposalContaminantes emergentesspa
dc.subject.proposalCatálisis heterogéneaspa
dc.subject.proposalCalidad del aguaspa
dc.subject.proposalMetal-Organic Frameworks (MOFs)eng
dc.subject.proposalEmerging pollutantseng
dc.subject.proposalHeterogeneous catalysiseng
dc.subject.proposalWater qualityeng
dc.titleDegradación fotocatalítica de contaminantes emergentes empleando una estructura metal orgánica de circoniospa
dc.title.translatedPhotocatalytic degradation of emerging pollutants using a zirconium metal-organic frameworkeng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentPúblico general
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleHermes 63262
oaire.fundernameUniversidad Nacional de Colombia

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Degradación fotocatalítica de contaminantes emergentes empleando una estructura metal orgánica de Circonio.pdf
Tamaño:
3.69 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería Ambiental

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: