Estudio del potencial fitosanitario de aceites esenciales para el control de thrips (Thysanoptera : Thripidae)

dc.contributor.advisorPatiño Ladino, Oscar Javier
dc.contributor.advisorPrieto Rodríguez, Juliet Angélica
dc.contributor.authorDelgado Bogotá, Natalia Viviana
dc.contributor.orcidDelgado Bogotá, Natalia Viviana [0009000503147096]
dc.contributor.researchgroupGrupo de Investigación en Química de Productos Naturales Vegetales Bioactivos (Quipronab)
dc.date.accessioned2025-08-25T15:56:32Z
dc.date.available2025-08-25T15:56:32Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractFrankliniella occidentalis (Thysanoptera: Thripidae), conocido comúnmente como thrips occidental de las flores, es un insecto polífago de distribución cosmopolita que causa significativas pérdidas económicas en cultivos alimentarios y ornamentales. Estos insectos afectan principalmente los órganos florales causando daño y deformación foliar. Entre sus hospederos más vulnerables se encuentran hortalizas como tomate, lechuga, cebolla, berenjena y flores como rosas, crisantemo y pompones. El control químico es el método más utilizado para el manejo de F. occidentalis, sin embargo, muchos de estos productos presentan problemas de toxicidad para los seres humanos y los ecosistemas, favorecen la aparición de insectos resistentes por su uso indiscriminado y generan residuos que superan los límites máximos permitidos para la comercialización. En la búsqueda de alternativas eficaces y seguras, los aceites esenciales (AEs) se perfilan como una herramienta promisoria, debido a que son una fuente de diversos tipos de metabolitos especializados, algunos con propiedades insecticidas, y que presentan propiedades fisicoquímicas que les permiten actuar mediante diversos modos y mecanismos de acción. En la literatura son limitados los estudios del potencial insecticida de los AEs para el control de F. occidentalis, por lo que el presente estudio contribuye a la caracterización del potencial insecticida de AEs y de algunos de sus constituyentes químicos frente a este insecto. En la primera fase se determinó el potencial de algunos AEs para el control de F. occidentalis. La metodología comprendió la evaluación de la actividad fumigante de AEs frente a este insecto. A los AEs que mostraron actividad insecticida promisoria se les estimaron las concentraciones letales (CL₅₀ y CL₉₀) y se caracterizaron químicamente mediante cromatografía de gases acoplada a espectrometría de masas (CG-EM). Adicionalmente, a algunos de los AEs más activos (CL50 < 3 µL L -1) se les determinó su potencial repelente mediante ensayos conductuales en olfatómetro tipo Y, y se les determinó su efecto fitotóxico sobre la germinación de Lactuca sativa. El estudio reporta por primera vez la toxicidad fumigante de 49 AEs frente a F. occidentalis. Los resultados revelaron que 34 AEs mostraron toxicidad fumigante significativa con valores de CL₅₀ entre 0.91 y 29.96 µL L -1 de aire, todos más activos que el insecticida de referencia (diclorvos, CL₅₀ = 45.05 µL L-1). En particular, los aceites con valores de CL₅₀ inferiores a 3 μL/L fueron clasificados como altamente activos, destacándose especies como Minthostachys mollis (CL₅₀ = 0.91 µL L-1), Satureja viminea (1.29  µL L-1), Tagetes verticillata (1.56  µL L-1), Ruta graveolens (1.73 µL L-1), Anethum graveolens (2.21  µL L -1), Tagetes zypaquirensis (2.60  µL L-1) y P. auritum (2.80 µL L-1). El análisis por CG-EM permitió determinar de manera tentativa la composición química de los AEs bioactivos con porcentajes mayores al 90%, destacándose en los más activos la presencia de monoterpenoides y cetonas alifáticas. Se reporta por primera vez la composición química de los AEs provenientes de P. tenue y T. verticillata. En términos de repelencia, los siete aceites evaluados mostraron porcentajes de repelencia (PR) superiores al 40 %, destacándose P. auritum (59.4 %), T. verticillata (58.2 %) y S. viminea (55.0 %). En cuanto a las pruebas de fitotoxicidad, las semillas de L. sativa exhibieron tasas de germinación mayores a 90% al exponerse a los AEs en un rango de concentraciones de 200 a 0.091 µL L⁻¹, lo cual sugiere un efecto fitotóxico bajo a las concentraciones evaluadas. La segunda fase consistió en la determinación del potencial insecticida y repelente frente a F. occidentalis de algunos constituyentes químicos presentes en los AEs bioactivos. Para ello, se seleccionaron 36 compuestos representativos de los AEs bioactivos (29 monoterpenoides, 3 fenilpropanoides, 2 sesquiterpenoides y 2 cetonas alifáticas), los cuales fueron obtenidos comercialmente o purificados mediante técnicas cromatográficas. A los compuestos que mostraron actividad insecticida promisoria se les estimaron las concentraciones letales (CL₅₀ y CL₉₀). Adicionalmente, a algunos de los compuestos con menor CL50 (< 3µL L-1) se les determinó su potencial repelente y su efecto fitotóxico de forma similar a los AEs. El estudio reporta por primera vez la toxicidad fumigantes de 32 compuestos frente a F. occidentalis. Los resultados revelaron 18 compuestos con actividad insecticida superior a la del diclorvos. Se resalta la actividad de R-pulegona (CL₅₀=1.41 µL L⁻¹), R-carvona (1.41 µL L⁻¹) y 2-nonanona (1.43 µL L⁻¹). El análisis de estructura-actividad reveló que la presencia de grupos carbonilo α,β-insaturados en monoterpenoides oxigenados se asocia con una mayor toxicidad fumigante. En las pruebas de repelencia, R-pulegona (PR = 82.7 %), R-carvona (74.1 %) y 2-nonanona (61.0 %) mantuvieron altos niveles de eficacia aún a bajas concentraciones (0.01 %). Sin embargo, en los ensayos de fitotoxicidad estos tres compuestos redujeron la germinación de L. sativa a 200 µL L⁻¹, a un 80.3 - 83.3% de la germinación indicando un riesgo fitotóxico más elevado que el observado con los AEs en los que estaban presentes. En la tercera fase se desarrolló y caracterizó una formulación insecticida granulada con AEs y compuestos de alta acción fumigante contra F. occidentalis. Los gránulos, elaborados con alginato de sodio y almidón de maíz, incluyeron individualmente los 7 AEs más activos de la primera fase y los 3 compuestos más eficaces de la segunda. Se optimizaron concentraciones y tiempos de carga para lograr una liberación controlada superior a siete días, evaluada mediante el método vial en vial. Las cuatro formulaciones más prometedoras fueron caracterizadas por extracción en fase sólida en espacio de cabeza (HS-SPME) y microscopía electrónica de barrido (SEM), y luego evaluadas en condiciones de vivero simulado. Los ensayos iniciales permitieron descartar los gránulos con el AE de R. graveolens, P. auritum, A. graveolens, T. zypaquirensis, T. verticillata y 2nonanona por su rápida pérdida de actividad. En contraste, los formulados con M. mollis, S.viminea, R-carvona y R-pulegona mantuvieron una eficacia insecticida superior al 90 % por más de siete días. El análisis mediante HS-SPME confirmó que a las 24 horas se produjo la desorción de compuestos volátiles, observándose perfiles químicos en general similares a los AEs y compuestos químicos sin granulado. Las variaciones detectadas se asociaron principalmente a diferencias en los porcentajes de área de algunos compuestos. La caracterización por SEM reveló gránulos con superficie lisa, sin grietas ni porosidades notables, y una morfología poliédrica e irregular sin alteraciones estructurales atribuibles a los AEs y compuestos activos incorporados. Bajo condiciones simuladas de vivero, los gránulos lograron tasas de mortalidad superiores a 92% durante 10 días de ensayo. En conjunto, los resultados confirman que varios AEs y compuestos volátiles presentan alto potencial para el control F. occidentalis. La formulación granulada permitió extender su liberación y eficacia, consolidándose como una alternativa promisoria para el desarrollo de bioinsecticidas sostenibles en agricultura. (Texto tomado de la fuente)spa
dc.description.abstractFrankliniella occidentalis (Thysanoptera: Thripidae), commonly known as the western flower thrips, is a polyphagous insect with a cosmopolitan distribution that causes significant economic losses in both food and ornamental crops. These insects primarily damage floral organs, leading to foliar injury and deformation. Among the most vulnerable hosts are vegetables such as tomato, lettuce, onion, and eggplant, as well as flowers like roses, chrysanthemums, and pompons. Chemical control is the most widely used method for managing F. occidentalis; however, many of these products pose toxicity risks to humans and ecosystems, promote the emergence of resistant insect populations due to indiscriminate use, and generate residues that exceed maximum limits allowed for international trade. In the search for effective and safe alternatives, essential oils (EOs) have emerged as a promising tool, as they are a source of diverse specialized metabolites, some with insecticidal properties, and exhibit physicochemical characteristics that enable various modes and mechanisms of action. The insecticidal potential of EOs for F. occidentalis control is still poorly studied in the literature, and this study contributes to the characterization of both the insecticidal potential of EOs and some of their chemical constituents against this insect. In the first phase, the insecticidal potential of several EOs against F. occidentalis was determined. The methodology involved evaluating the fumigant activity of 53 EOs. For EOs that exhibited promising insecticidal activity, lethal concentrations (LC₅₀ and LC₉₀) were estimated, and chemical profiles were analyzed using gas chromatography–mass spectrometry (GC-MS). Additionally, some of the most active EOs (LC₅₀ < 3 µL L⁻¹) were evaluated for repellent potential in Y-tube olfactometer assays, and their phytotoxic effects on Lactuca sativa germination were assessed. This study reports, for the first time, the fumigant toxicity of 49 EOs against F. occidentalis. Results revealed that 34 EOs showed significant fumigant toxicity, with LC₅₀ values ranging from 0.91 to 29.96 µL L⁻¹ of air, all more active than the reference insecticide (dichlorvos, LC₅₀ = 45.05 µL L⁻¹). Particularly, oils with LC₅₀ values below 3 µL L⁻¹ were classified as highly active, including Minthostachys mollis (LC₅₀ = 0.91 µL L⁻¹), Satureja viminea (1.29 µL L⁻¹), Tagetes verticillata (1.56 µL L⁻¹), Ruta graveolens (1.73 µL L⁻¹), Anethum graveolens (2.21 µL L⁻¹), Tagetes zypaquirensis (2.60 µL L⁻¹), and Piper auritum (2.80 µL L⁻¹). GC-MS analysis tentatively identified the chemical composition of the bioactive EOs, with over 90% of components identified. The most active oils were rich in monoterpenoids and aliphatic ketones. The chemical profiles of EOs from Piper tenue, and T. verticillata are reported for the first time. Regarding repellency, all seven EOs tested showed repellency percentages (RP) above 40%, with P. auritum (59.4%), T. verticillata (58.2%), and S. viminea (55.0%) standing out. In phytotoxicity tests, L. sativa seeds showed germination rates above 90 % when exposed to EO concentrations ranging from 200 to 0.091 µL L⁻¹, suggesting low phytotoxicity at the evaluated doses. The second phase aimed to determine the insecticidal and repellent potential of some chemical constituents found in the bioactive EOs. A total of 36 representative compounds were selected (29 monoterpenoids, 3 phenylpropanoids, 2 sesquiterpenoids, and 2 aliphatic ketones), either purchased commercially or purified by chromatographic techniques. Lethal concentrations (LC₅₀ and LC₉₀) were estimated for compounds showing promising insecticidal activity. Additionally, for those with LC₅₀ values below 3 µL L⁻¹, repellent potential and phytotoxicity were evaluated similarly to the EOs. This study reports, for the first time, the fumigant toxicity of 32 compounds against F. occidentalis. Eighteen compounds showed higher insecticidal activity than dichlorvos. Notably, R-pulegone (LC₅₀ = 1.41 µL L⁻¹), R-carvone (1.41 µL L⁻¹), and 2-nonanone (1.43 µL L⁻¹) stood out. Structure–activity relationship analysis revealed that the presence of α,β-unsaturated carbonyl groups in oxygenated monoterpenoids is associated with higher fumigant toxicity. In repellency assays, R-pulegone (RP = 82.7%), R-carvone (74.1%), and 2-nonanone (61.0%) remained effective even at low concentrations (0.01%). However, in phytotoxicity tests, these three compounds reduced L. sativa germination to 80.3-83.3% at 200 µL L⁻¹, indicating a higher phytotoxic risk than the EOs in which they were present. In the third phase, a granular insecticidal formulation was developed and characterized using EOs and compounds with strong fumigant action against F. occidentalis. The granules, made of sodium alginate and corn starch, individually incorporated the 7 most active EOs from phase one and the 3 most effective compounds from phase two. Concentrations and loading times were optimized to achieve controlled release for more than seven days, as evaluated using the vial-in-vial method. The four most promising formulations were characterized by headspace solid-phase microextraction (HS-SPME) and scanning electron microscopy (SEM), and then assessed under simulated greenhouse conditions. Initial assays allowed the exclusion of granules containing R. graveolens, P. auritum, A. graveolens, T. zypaquirensis, T. verticillata, and 2-nonanone due to rapid activity loss. In contrast, granules with M. mollis, S. viminea, R-carvone, and R-pulegone maintained insecticidal efficacy above 90% for more than seven days. HS-SPME analysis confirmed desorption of volatile compounds at 24 hours, with chemical profiles generally similar to those of the original EOs and individual compounds. Detected variations were mainly associated with differences in peak area percentages of specific compounds. SEM characterization revealed granules with smooth surfaces, no cracks or visible pores, and irregular polyhedral morphology without structural alterations attributable to the incorporated EOs and active compounds. Under simulated nursery conditions, granules achieved mortality rates above 92% over 10 days. Altogether, the results confirm that several EOs and volatile compounds possess high potential against F. occidentalis. The granular formulation extended their release and efficacy, emerging as a promising alternative for developing sustainable bioinsecticides in agriculture.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Ciencias Química
dc.format.extentxxi, 182 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88450
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá D.C.
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Química
dc.relation.referencesFood and Agriculture Organization of the United Nations: La alimentación y la agricultura. Claves para la ejecución de la Agenda 2030 para el Desarrollo Sostenible. (2016)
dc.relation.referencesGrupo Banco Mundial: Agricultura, silvicultura y pesca, valor agregado (% del PIB) - Colombia
dc.relation.referencesBielza, P.: La resistencia a insecticidas en Frankliniella occidentalis (Pergande), (2005)
dc.relation.referencesStepanycheva, E., Petrova, M., Chermenskaya, T., Pavela, R.: Fumigant effect of essential oils on mortality and fertility of thrips Frankliniella occidentalis Perg. Environmental Science and Pollution Research. 26, 30885–30892 (2019). https://doi.org/10.1007/s11356-019-06239-y
dc.relation.referencesReitz, S.R.: Biology and ecology of the western flower thrips (Thysanoptera: Thripidae): The making of a pest. Florida Entomologist. 92, 7–13 (2009). https://doi.org/10.1653/024.092.0102
dc.relation.referencesArthurs, S., Heinz, K.M.: Thrips parasitic nematode Thripinema nicklewoodi (Tylenchida: Allantonematidae) reduces feeding, reproductive fitness, and tospovirus transmission by its host, Frankliniella occidentalis (Thysanoptera: Thripidae). Environ Entomol. 32, 853–858 (2003). https://doi.org/10.1603/0046225X-32.4.853
dc.relation.referencesGilbertson, R.L., Batuman, O., Webster, C.G., Adkins, S.: Role of the Insect Supervectors Bemisia tabaci and Frankliniella occidentalis in the Emergence and Global Spread of Plant Viruses. Annu Rev Virol. 2, 67–93 (2015). https://doi.org/10.1146/annurev-virology-031413-085410
dc.relation.referencesRodriguez, D.: Alternativas de control biológico para thrips (Frankliniella occidentalis) (Pergande) (Thysanoptera: Thripidae) en el cultivo de rosa (Rosa sp.), (2015)
dc.relation.referencesZepa-Coradini, C., Petrescu, I., Petolescu, C., Coradini, R.: The attack produced by californian thrips in the cucumbers crop from protected spaces. (2010)
dc.relation.referencesGhidiu, G.M., Hitchner, E.M., Funderburk, J.E.: Goldfleck Damage to Tomato Fruit Caused by Feeding of Frankliniella occidentalis. (2006)
dc.relation.referencesLiu, Y.B.: Ultralow oxygen treatment for postharvest control of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae), on iceberg lettuce. I. Effects of temperature, time, and oxygen level on insect mortality and lettuce quality. Postharvest Biol Technol. 49, 129–134 (2008). https://doi.org/10.1016/j.postharvbio.2007.12.009
dc.relation.referencesPest Management of Hemp in Enclosed Production Thrips, https://www.colorado.gov/pacific/agplants/pesticide-use-cannabis-production-
dc.relation.referencesHoddle, M.: Western Flower Thrips in Greenhouses: A Review of its Biological Control and Other Methods
dc.relation.referencesRiley, D.G., Joseph, S. V., Srinivasan, R., Diffie, S.: Thrips vectors of Tospoviruses. J Integr Pest Manag. 2, (2011). https://doi.org/10.1603/IPM10020
dc.relation.referencesEuropean and Mediterranean Plant Protection Organization: Chrysanthemum stem necrosis tospovirus, (2005)
dc.relation.referencesOchoa, M.D.L., Zavaleta‐Mejía, E., Soriano, E.C., Johansen, N.R.M., Herrera, G.A.: Tospoviruses, weeds and thrips associated with chrysanthemum (dendranthema grandiflora tzvelev cv. polaris). Int J Pest Manag. 42, 157–159 (1996). https://doi.org/10.1080/09670879609371988
dc.relation.referencesZhen, H., Jing, G., Reitz, S.R., Lei, Z.R., Wu, S.Y.: A global invasion by the thrip, Frankliniella occidentalis: Current virus vector status and its management, (2019)
dc.relation.referencesCano Calle, D.: Caracterización Molecular de trips (Thysanoptera: Thripidae) procedentes de cultivos comerciales de aguacate (Persea americana Mill) del oriente antioqueño y estudio de la diversidad microbiana asociada. (2020)
dc.relation.referencesAvellaneda, J., Díaz, M., Coy-Barrera, E., Rodríguez, D., Osorio, C.: Rose volatile compounds allow the design of new control strategies for the western flower thrips (Frankliniella occidentalis). J Pest Sci (2004). 94, 129–142 (2021). https://doi.org/10.1007/s10340-019-01131-7
dc.relation.referencesCardenas Estrella, Corredor, D.: Thrips Species (Thysanoptera thripidae) more common in cut flower greenhouse in Bogotá plateau. Agron Colomb. 132–143 (1993)
dc.relation.referencesKirk, W.D.J., Terry, L.I.: The spread of the western flower thrips Frankliniella occidentalis (Pergande). Agric For Entomol. (2003)
dc.relation.referencesMound, L.A.: Thysanoptera: Diversity and interactions. Annu Rev Entomol. 50, 247– 269 (2005). https://doi.org/10.1146/annurev.ento.49.061802.123318
dc.relation.referencesRodriguez I, Durán, I., Morales, H., Cardona, C.: Baseline data, diagnostic doses, and monitoring of resistence to imidacloprid, spinosad and carbosulfan in adult populations of Thrips palmi (Thysanoptera:Thripidae) in the Cauca Valley, Colombia. (2003)
dc.relation.referencesLópez, N.: Evaluación de mecanismos de resistencia a insecticidas de Frankliniella occidentalis (Pergrande): Implicación de carboxilesterasas y acetilcolinesterasas. (2008)
dc.relation.referencesGobierno de méxico: Alternativas agroecológicas para el control de Trips en limón
dc.relation.referencesSeipasa: Control de trips: todo lo que debes saber para mantenerlos a raya
dc.relation.referencesPavela, R., Benelli, G.: Essential Oils as Ecofriendly Biopesticides? Challenges and Constraints, (2016)
dc.relation.referencesIsman, M.B.: Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world, (2006)
dc.relation.referencesStashenko, E.: Aceites Esenciales. Centro Nacional de Investigaciones para la Agroindustrialización de Especies Vegetales Aromáticas y Medicinales Tropicales.
dc.relation.referencesLópez, M.: Toxicidad volátil de monoterpenoides y mecanismos bioquimicos en insectos plaga del arroz almacenado, (2008)
dc.relation.referencesEbadollahi, A., Jalali Sendi, J.: A review on recent research results on bio-effects of plant essential oils against major Coleopteran insect pests. Toxin Rev. 34, 76–91 (2015). https://doi.org/10.3109/15569543.2015.1023956
dc.relation.referencesDe Oliveira, J.L., Campos, E.V.R., Bakshi, M., Abhilash, P.C., Fraceto, L.F.: Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: Prospects and promises. Biotechnol Adv. 32, 1550–1561 (2014). https://doi.org/10.1016/j.biotechadv.2014.10.010
dc.relation.referencesCosta, A., Fontes Pinheiro, P., Queiroz, V.T.: Cymbopogon citratus (Poaceae) essential oil on Frankliniella schultzei (Thysanoptera: Thripidae) and Myzus persicae (Hemiptera: Aphididae). Biosci. J., Uberlândia. 29, 1840–1847 (2013)
dc.relation.referencesDiabate, S., Martin, T., Murungi, L.K., Fiaboe, K.K.M., Subramanian, S., Wesonga, J., Deletre, E.: Repellent activity of Cymbopogon citratus and Tagetes minuta and their specific volatiles against Megalurothrips sjostedti. Journal of Applied Entomology. 143, 855–866 (2019). https://doi.org/10.1111/jen.12651
dc.relation.referencesYammine, J., Chihib, N.-E., Gharsallaoui, A., Ismail, A., Karam, L.: Advances in essential oils encapsulation: development, characterization and release mechanisms. Polymer Bulletin. 81, 3837–3882 (2024). https://doi.org/10.1007/s00289-023-04916-0
dc.relation.referencesSaturno, J.F., Salazar, M.: Optimization of wet granulation to obtain monohydrated lactose granulates using nonlinear programming methods. Revista Facultad de Farmacia. 73 (2), (2010)
dc.relation.referencesSaturno, J., Salazar, M.: Development of a mathematical model to optimize the wetgranulation process in a Sigma type blender. Revista Facultad de Farmacia. 75, (2012)
dc.relation.referencesPino, J., Araguez, Y.: Current knowledge about the encapsulation of essential oils. Revista CENIC Ciencias Químicas. 52, 10–25 (2021). https://doi.org/https://www.redalyc.org/journal/1816/181669387003/html/
dc.relation.referencesKoschier, E.H., Sedy, K.A., Novak, J.: Influence of plant volatiles on feeding damage caused by the onion thrips Thrips tabaci. (2002)
dc.relation.referencesNiu, Y., Pei, T., Zhao, Y., Zhou, C., Liu, B., Shi, S., Xu, M.L., Gao, Y.: Exploring the Efficacy of Four Essential Oils as Potential Insecticides against Thrips flavus. Agronomy. 14, (2024). https://doi.org/10.3390/agronomy14061212
dc.relation.referencesM. Domingues, P., Santos, L.: Essential oil of pennyroyal (Mentha pulegium): Composition and applications as alternatives to pesticides—New tendencies, (2019)
dc.relation.referencesRodrigues, M., Lopes, A.C., Vaz, F., Filipe, M., Alves, G., Ribeiro, M.P., Coutinho, P., Araujo, A.R.T.S.: Thymus mastichina: Composition and biological properties with a focus on antimicrobial activity, (2020)
dc.relation.referencesThielmann, J., Muranyi, P.: Review on the chemical composition of Litsea cubeba essential oils and the bioactivity of its major constituents citral and limonene, (2019)
dc.relation.referencesDe Benassuti, L., Garanti, L., Molteni, G.: Oxygenated monoterpenes as dipolarophiles for nitrilimine cycloadditions. Tetrahedron. 60, 4627–4633 (2004). https://doi.org/10.1016/j.tet.2004.03.077
dc.relation.referencesDa Silva Moura, E., D’Antonino, L., Zinato, A., Fernandes, F., Lopes, M., Oliveira, A.: Evaluation of the Persistence of Linalool and Estragole in Maize Grains via Headspace Solid-Phase Microextraction and Gas Chromatography. Food Anal Methods. 14, 217–229 (2021). https://doi.org/10.1007/s12161-020-01862-9
dc.relation.referencesChang, C.L., Cho, I.L.K., Li, Q.X.: Insecticidal activity of basil oil, trans-anethole, estragole, and linalool to adult fruit flies of Ceratitis capitata, Bactrocera dorsalis, and Bactrocera cucurbitae. J Econ Entomol. 102, 203–209 (2009). https://doi.org/10.1603/029.102.0129
dc.relation.referencesCristina e Santos, P., Granero, F.O., Junior, J.L.B., Pavarini, R., Pavarini, G.M.P., Chorilli, M., Zambom, C.R., Silva, L.P., Silva, R.M.G. da: Insecticidal activity of Tagetes erecta and Tagetes patula extracts and fractions free and microencapsulated. Biocatal Agric Biotechnol. 45, (2022). https://doi.org/10.1016/j.bcab.2022.102511
dc.relation.referencesLópez, A., Castro, S., Andina, M.J., Ures, X., Munguía, B., Llabot, J.M., Elder, H., Dellacassa, E., Palma, S., Domínguez, L.: Insecticidal activity of microencapsulated Schinus molle essential oil. Ind Crops Prod. 53, 209–216 (2014). https://doi.org/10.1016/j.indcrop.2013.12.038
dc.relation.referencesChristofoli, M., Costa, E.C.C., Bicalho, K.U., de Cássia Domingues, V., Peixoto, M.F., Alves, C.C.F., Araújo, W.L., de Melo Cazal, C.: Insecticidal effect of nanoencapsulated essential oils from Zanthoxylum rhoifolium (Rutaceae) in Bemisia tabaci populations. Ind Crops Prod. 70, 301–308 (2015). https://doi.org/10.1016/j.indcrop.2015.03.025
dc.relation.referencesLai, F., Wissing, S.A., Müller, R.H., Fadda, A.M.: Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agricultural application: Preparation and characterization. AAPS PharmSciTech. 7, (2006). https://doi.org/10.1208/pt070102
dc.relation.referencesAbreu, F.O.M.S., Oliveira, E.F., Paula, H.C.B., De Paula, R.C.M.: Chitosan/cashew gum nanogels for essential oil encapsulation. Carbohydr Polym. 89, 1277–1282 (2012). https://doi.org/10.1016/j.carbpol.2012.04.048
dc.relation.referencesHashem, A.S., Ramadan, M.M., Abdel-Hady, A.A.A., Sut, S., Maggi, F., Dall’Acqua, S.: Pimpinella anisum essential oil nanoemulsion toxicity against tribolium castaneum? shedding light on its interactions with aspartate aminotransferase and alanine aminotransferase by molecular docking. Molecules. 25, (2020). https://doi.org/10.3390/molecules25204841
dc.relation.referencesEbadollahi, A., Sendi, J.J., Aliakbar, A.: Efficacy of Nanoencapsulated Thymus eriocalyx and Thymus kotschyanus Essential Oils by a Mesoporous Material MCM41 Against Tetranychus urticae (Acari: Tetranychidae). J Econ Entomol. 110, 2413– 2420 (2017). https://doi.org/10.1093/jee/tox234
dc.relation.referencesIbrahim, S.S., Salem, N.Y., Si, S., Elnaby, A., Adel, M.M.: Characterization of Nanoparticles Loaded with Garlic Essential Oil and Their Insecticidal Activity Against Phthorimaea Operculella (Zeller) (PTM) (Lepidoptera: Gelechiidae). (2021)
dc.relation.referencesGrupo banco mundial: Agricultura valor agregado
dc.relation.referencesOrgnizacíon de las naciones unidas para la alimentación y la agricultura: Agricultura, expansión del comercio y equidad de género
dc.relation.referencesOECD: Review of Agricultural Policies: Colombia 2015. OECD (2015)
dc.relation.referencesRamírez, J.A., Lacasaña, M.: Plaguicidas: clasificación, uso, toxicología y medición de la exposición, (2001)
dc.relation.referencesBisset, A.: Uso correcto de insecticidas: control de la resistencia, (2002)
dc.relation.referencesKakkar, G., Seal, D.R., Stansly, P.A., Liburd, O.E., Kumar, V.: Abundance of Frankliniella schultzei (Thysanoptera: Thripidae) in flowers on major vegetable crops of South Florida. Florida Entomologist. 95, 468–475 (2012). https://doi.org/10.1653/024.095.0231
dc.relation.referencesFood and Agriculture Organization of the United Nations: El carácter multifuncional de la agricultura y la tierra. , Maastricht (1999)
dc.relation.referencesCéspedes, C., Alarcon, J.: Biopesticidas de origen botánico, fitoquímicos y extractos de Celastraceae, Rhamnaceae y Scrophulariaceae. Boletil latinoamericano y del caribe de plantas medicinales y aromáticas. 10, 175–181 (2011)
dc.relation.referencesGoldarazena, A.: Clase insecta: Orden Thysanóptera. Revista IDE@-SEA. 52, 1–20 (2015)
dc.relation.referencesDepartamento administrativo nacional de estadística: Censo de fincas productoras de flores. (2010)
dc.relation.referencesLewis, T.: Thrips as crop pests. (1997)
dc.relation.referencesCárdenas, E., Corredor, D.: Biologia del Trips Frankliniella occidentalis (Pergrande)(Thysanoptera:Thripidae) sobre crisantemo Chysanthemum morifolium L. Bajo condiciones de laboratorio. Agron Colomb. 1, 71–77 (1989)
dc.relation.referencesHeming, B.S.: Metamorphosis of the pretarsus in Frankliniella fusca (Hinds)(Thripidae) and Haplothrips verbasci (Osborn)(Phlaeothripidae)(Thysanoptera). J. Zool. 51, (1973)
dc.relation.referencesCao, Y., Li, C., Yang, W.J., Meng, Y.L., Wang, L.J., Shang, B.Z., Gao, Y.L.: Effects of Temperature on the Development and Reproduction of Thrips hawaiiensis (Thysanoptera: Thripidae). J Econ Entomol. 111, 755–760 (2018). https://doi.org/10.1093/jee/tox359
dc.relation.referencesBustillo, A.: Evaluation of chemical and biological insecticides to control Frankliniella occidentalis (Thysanoptera: Thripidae) in asparagus crops. Rev Colomb Entomol. 1, 12–17 (2009)
dc.relation.referencesElimem, M., Brahim, C.: Frankliniella occidentalis (Pergande) (Thysanoptera; Thripidae) Sensitivity to Two Concentrations of a Herbal Insecticide “Baicao 2” in a Tunisian Rose Crop Greenhouse. Floriculture and Ornamental Biotechnology. 5, (2011)
dc.relation.referencesCarpio, C.A., Pérez Ramírez, A., Carapia Ruiz, V.E., Rojas, S.R.: Chemical control of Thrips tabaci (Thysanoptera: Thripidae) in onion crop of Morelos, Mexico. Acta Zool Mex. 33, 39–44 (2017)
dc.relation.referencesGuerra, L., Cuellar, L., Miranda, , I, Sánchez, A., Baños, H., Suris, M.: Influence of climatic variables on population fluctuation of thrips (Megalurothrips usitatus Bagnall) in common bean. Rev Prot Veg. 36, (2021)
dc.relation.referencesVandijken, F.R., Dik, M.T.A., Gebala, B., De Jong, J., Mollema, A.: Western Flower Thrips (Thysanoptera: Thripidae) Effects on Chrysanthemum Cultivars: Plant Growth and Leaf Scarring in NonHowering Plants. Entomological society of América. 87, 1312–1317 (1994)
dc.relation.referencesLacasa, A., Lorca, M., Martines, M., Bielza, P., Guirao, P.: Thrips parvispinus (Karny, 1922), un nuevo trips en cultivos de plantas ornamentales. Phytoma España. (2019)
dc.relation.referencesMacLeod, A., Head, J., Gaunt, A.: An assessment of the potential economic impact of Thrips palmi on horticulture in England and the significance of a successful eradication campaign. Crop Protection. 23, 601–610 (2004). https://doi.org/10.1016/j.cropro.2003.11.010
dc.relation.referencesDe Aguiar, C.V.S., Alencar, J.B.R., da Silva Santana, G., Teles, B.R.: Predicting the Potential Global Distribution of Scirtothrips dorsalis (Hood) (Thysanoptera: Thripidae) with Emphasis on the Americas Using an Ecological Niche Model. Neotrop Entomol. 52, 512–520 (2023). https://doi.org/10.1007/s13744-023-01038-0
dc.relation.referencesBuenaventura, A., Delgadillo, D., Gomez, J., Varón, E.: Manejo de Neohydatothrips signifer Priesner (Thysanoptera: Thripidae) en maracuyá (Passiflora edulis f. flavicarpa Degener) en el departamento del Huila (Colombia). Ciencia & Tecnología Agropecuaria. 13, 21–30 (2012). https://doi.org/10.21930/rcta.vol13_num1_art:236
dc.relation.referencesAlvarez, I., Rengifo, P.: Evaluación del nivel de daño económico por thrips (Thysanoptera) en Aguacate ‘Hass’ (Persea americana Mill.) en Abejorral, Antioquia. Encuentro Sennova del Oriente Antioqueño,. (2020)
dc.relation.referencesAgencia UNAL: Exportación de flores, aromáticas y banano, la más afectada por las plagas, (2015)
dc.relation.referencesLezaun, J.: Chaetanaphothrips signipennis” Distribución geográfica de la plaga e Impacto económico. , South América (2024)
dc.relation.referencesAlmeida, P.: Determinación de la actividad insecticida, repelente y antialimentaria del aceite esencial del molle (Schinus molle) en trips (Frankliniella occidentalis). (2019)
dc.relation.referencesWang, Z., Xu, D., Liao, W., Xu, Y., Zhuo, Z.: Predicting the Current and Future Distributions of Frankliniella occidentalis (Pergande) Based on the MaxEnt Species Distribution Model. Insects. 14, (2023). https://doi.org/10.3390/insects14050458
dc.relation.referencesLi, D.Y., Zhou, D., Zhi, J.R., Yue, W.B., Li, S.X.: Effects of Different Parts of the Rose Flower on the Development, Fecundity, and Life Parameters of Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Insects. 14, (2023). https://doi.org/10.3390/insects14010088
dc.relation.referencesWu, S., Xing, Z., Ma, T., Xu, D., Li, Y., Lei, Z., Gao, Y.: Competitive interaction between Frankliniella occidentalis and locally present thrips species: a global review, (2021)
dc.relation.referencesStrzyzewski, I.L., Funderburk, J.E., Renkema, J.M., Smith, H.A.: Characterization of Frankliniella occidentalis and Frankliniella bispinosa (Thysanoptera: Thripidae) Injury to Strawberry. J Econ Entomol. 114, 794–800 (2021). https://doi.org/10.1093/jee/toaa311
dc.relation.referencesWelter, S.C., Rosenheim,’, J.A., Johnson, M.W., Mau, I.R.F.L., And, ], GusukumaMinuto·, L.R.: Effects of Thrips palmi and Western Flower Thrips (Thysanoptera: Thripidae) on the Yield~ Growth~ and Carbon Allocation Pattern in Cucumbers Downloaded from. (1990)
dc.relation.referencesAdachi-Fukunaga, S., Tomitaka, Y., Sakurai, T.: Effects of melon yellow spot orthotospovirus infection on the preference and developmental traits of melon thrips, Thrips palmi, in cucumber. PLoS One. 15, (2020). https://doi.org/10.1371/journal.pone.0233722
dc.relation.referencesRazzak, M.A., Seal, D.R., Stansly, P.A., Liburd, O.E., Schaffer, B.: Host preference and plastic mulches for managing melon thrips (Thysanoptera: Thripidae) on fieldgrown vegetable crops. Environ Entomol. 48, 434–443 (2019). https://doi.org/10.1093/ee/nvz010
dc.relation.referencesLarral, P., Ripa, R., Funderburk, J., Lopez, E.: Population Abundance, Phenology, Spatial Distribution and a Binominal Sampling Plan for Heliothrips haemorrhoidalis (Thysanoptera: Thripidae) in Avocado. Florida Entomologist. 101, 166–171 (2018). https://doi.org/10.1653/024.101.0203
dc.relation.referencesChhagan, A., Stevens, P.S.: Effect of temperature on the development, longevity and ovoposition of greenhouse thrips(Heliothips haemorrhoidalis) on lemon fruit. New Zealand Plant Protection. 60, 50–55 (2007)
dc.relation.referencesScott-Brown, A.S., Gregory, T., Farrell, I.W., Stevenson, P.C.: Leaf trichomes and foliar chemistry mediate defence against glasshouse thrips; Heliothrips haemorrhoidalis (Bouché) in Rhododendron simsii. Functional Plant Biology. 43, 1170–1182 (2016). https://doi.org/10.1071/FP16045
dc.relation.referencesAtakan, E., Pehlivan, S.: First report of the chilli thrips, scirtothrips dorsalis hood, 1919 (Thysanoptera: Thripidae) in turkey. Turkish Journal of Zoology. 45, 156–160 (2021). https://doi.org/10.3906/zoo-2012-14
dc.relation.referencesPanthi, B.R., Renkema, J.M., Lahiri, S., Liburd, O.E.: Spatio-temporal distribution and fixed-precision sampling plan of scirtothrips dorsalis (Thysanoptera: Thripidae) in florida blueberry. Insects. 12, (2021). https://doi.org/10.3390/insects12030256
dc.relation.referencesKumar, V., Seal, D.R., Kakkar, G., McKenzie, C.L., Osborne, L.S.: New tropical fruit hosts of Scirtothrips dorsalis (Thysanoptera: Thripidae) and its relative abundance on them in South Florida. Florida Entomologist. 95, 205–207 (2012). https://doi.org/10.1653/024.095.0134
dc.relation.referencesKumar, V., Kakkar, G., Palmer, C., Myers, W., McKenzie, C.L., Osborne, L.S.: Chilli thrips, Scirtothrips dorsalis (Thysanoptera: Thripidae) – small player with big damage. Acta Hortic. 1232, 247–251 (2019). https://doi.org/10.17660/ActaHortic.2019.1232.36
dc.relation.referencesWarpechowski, L.F., Steinhaus, E.A., Moreira, R.P., Godoy, D.N., Preto, V.E., Braga, L.E., Wendt, A. de F., Reis, A.C., Lima, É.F.B., Farias, J.R., Bernardi, O.: Why does identification matter? Thrips species (Thysanoptera: Thripidae) found in soybean in southern Brazil show great geographical and interspecific variation in susceptibility to insecticides. Crop Protection. 178, (2024). https://doi.org/10.1016/j.cropro.2024.106592
dc.relation.referencesFernandes, M., Spessoto, R., Degrande, P., Rodrigues, T.: Sequen al Sampling of Aphis gossypii Glover (Hemiptera: Aphididae) and Frankliniella schultzei Trybom (Thysanoptera: Thripidae) on Co on Crop. Neotrop Entomol. 40, 258–263 (2011)
dc.relation.referencesDos Santos, J.L., Sarmento, R.A., Pereira, P.S., Noleto, L.R., Reis, K.H.B., Pires, W.S., Peluzio, J.M., Medeiros, J.G., Santos, A.A., Picanço, M.C.: Assessing the temporal dynamics of Frankliniella schultzei (Thysanoptera: Thripidae) in commercial soybean crops in North Brazil. Agric For Entomol. 24, 97–103 (2022). https://doi.org/10.1111/afe.12471
dc.relation.referencesWoldemelak, W.A.: The Major Biological Approaches in the Integrated Pest Management of Onion Thrips, Thrips Tabaci (Thysanoptera: Thripidae), (2020)
dc.relation.referencesShelton, A.M., Plate, J., Chen, M.: Advances in Control of Onion Thrips (Thysanoptera: Thripidae) in Cabbage. (2008)
dc.relation.referencesDiaz-Montano, J., Fuchs, M., Nault, B.A., Fail, J., Shelton, A.M.: Onion thrips (Thysanoptera: Thripidae): A global pest of increasing concern in onion, (2011)
dc.relation.referencesGagnon, A.È., Fortier, A.M., Audette, C.: Biological Control and Habitat Management for the Control of Onion Thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), in Onion Production in Quebec, Canada. Insects. 15, (2024). https://doi.org/10.3390/insects15040232
dc.relation.referencesElimem, M., Navarro-Campos, C., Chermiti, B.: First record of black vine thrips, Retithrips syriacus Mayet, in Tunisia.
dc.relation.referencesMannaa, S.H., Embarak, ; M Z, Omran, Y.A.M.M.: Incidence of black vine thrips, Retithrips syriacus Mayed and redeuropear mite, Pananychus ulmi (Koch) infesting grapevines in assiut governorate in relation to yield. Assiut J. of Agric. Sci. 39, 161– 170 (2009)
dc.relation.referencesBragard, C., Baptista, P., Chatzivassiliou, E., Di Serio, F., Gonthier, P., Jaques Miret, J.A., Justesen, A.F., MacLeod, A., Magnusson, C.S., Milonas, P., Navas-Cortes, J.A., Parnell, S., Potting, R., Reignault, P.L., Stefani, E., Thulke, H.H., van der Werf, W., Yuen, J., Zappalà, L., Bezerra Lima, É.F., Makowski, D., Crotta, M., Gobbi, A., Golic, D., Maiorano, A., Mosbach-Schulz, O., Rossi, E., Terzidou, A., Vicent Civera, A.: Risk assessment of Retithrips syriacus for the EU. EFSA Journal. 22, (2024). https://doi.org/10.2903/j.efsa.2024.8741
dc.relation.referencesGoldarazena, A., Matsumoto, M., Ranarilalatiana, T., Dianzinga, N.T., Frago, E., Michel, B.: Dendrothripoides moundi (Thysanoptera, Thripidae), a new species from Madagascar, (2020)
dc.relation.referencesBelaam-Kort, I., Mansour, R., Attia, S., Boulahia Kheder, S.: Thrips (Thysanoptera: Thripidae) in northern Tunisian citrus orchards: population density, damage and insecticide trial for sustainable pest management. Phytoparasitica. 49, 527–538 (2021). https://doi.org/10.1007/s12600-021-00906-y
dc.relation.referencesVillegas, N.: Evolución de la dinámica de plagas y enfermedades y alternativas de manejo para la resiliencia de los cafetales. (2021)
dc.relation.referencesUrdanivia, Y.: First report of cienfuegos of megaluro-Thrips usitatus Bagnall (Thysanoptera: Thripidae) in the cultivation of beans (Phaseolus vulgaris L.). Revista Científica Agroecosistemas. 9, 3–46 (2021)
dc.relation.referencesPérez, W.., Forbes, G..: Guía de identificación de plagas que afectan a la papa en la zona Andina. D - FAO (2000)
dc.relation.referencesLi, X.W., Zhang, Z.J., Hafeez, M., Huang, J., Zhang, J.M., Wang, L.K., Lu, Y. Bin: Rosmarinus officinialis L. (Lamiales: Lamiaceae), a Promising Repellent Plant for Thrips Management. J Econ Entomol. 114, 131–141 (2021). https://doi.org/10.1093/jee/toaa288
dc.relation.referencesArévalo P., E., Quintero-F., O.X., Correa-L., G.: Reconocimiento de trips ( Insecta: Thysanoptera) en floricultivos de tres corregimientos del municipio de Medellín, Antioquia (Colombia). Rev Colomb Entomol. 29, 169–175 (2003). https://doi.org/10.25100/socolen.v29i2.9601
dc.relation.referencesGomez, A., Orozco, J., Valdespino, R.: Thrips (Insecta: Thysanoptera) associated with onion, lettuce, sweet pepper, and associated weeds in El Zamorano, Honduras. Ciencia Tecnologia Agropecuaria. 25, (2024). https://doi.org/10.21930/rcta.vol25_num1_art:3412
dc.relation.referencesZhang, Z., Zheng, C., Keyhani, N.O., Gao, Y., Wang, J.: Infection of the western flower thrips, frankliniella occidentalis, by the insect pathogenic fungus beauveria bassiana. Agronomy. 11, (2021). https://doi.org/10.3390/agronomy11101910
dc.relation.referencesSchreiter, G., Butt, T.M., Beckett, A., Vestergaard, S., Moritz, G.: Invasion and development of Verticillium lecanii in the western flower thrips, Frankliniella occidentalis. Mycol Res. 98, 1025–1034 (1994). https://doi.org/10.1016/S09537562(09)80429-2
dc.relation.referencesLabanowski, G.S., Soika, G.: Effectiveness of microbial and botanical insecticides in the control of Bemisia tabaci and Frankliniella occidenfalis on ornamental plants. Bulletin OEPP/EPPO. 29, 77–80 (1999)
dc.relation.referencesManiania, N.K., Ekesi, S., Löhr, B., Mwangi, F.: Prospects for biological control of the western flower thrips, Frankliniella occidentalis, with the entomopathogenic fungus, Metarhizium anisopliae, on chrysanthemum. (2001)
dc.relation.referencesLoomans, A.J.M., Tolsma, J., Fransen, J.J., Van Lenteren, J.C.: Releases of parasitoids (Ceranisus spp.) as biological control agents of western flower thrips (Frankliniella occidentalis) in experimental glasshouses. Bull Insectology. 59, 85–97 (2006)
dc.relation.referencesLi, J., Xie, J., Zeng, D., Xia, Y., Peng, G.: Effective control of Frankliniella occidentalis by Metarhizium anisopliae CQMa421 under field conditions. J Pest Sci (2004). 94, 111–117 (2021). https://doi.org/10.1007/s10340-020-01223-9
dc.relation.referencesSu, J., Dong, F., Liu, S.M., Lu, Y.H., Zhang, J.P.: Productivity of Neoseiulus bicaudus (Acari: Phytoseiidae) reared on natural prey, alternative prey, and artificial diet. J Econ Entomol. 112, 2604–2613 (2019). https://doi.org/10.1093/jee/toz202
dc.relation.referencesGonzalez, E., Orjuela, J., Trujillo, J., Becerra, M.: Description of the productive chain of flowers in the area of Bogotá and Cundinamarca. Semilleros. 1, 5–16 (2014)
dc.relation.referencesSalas, J.: Evaluation of cultural practices to control Thrips palmi (Thysanoptera: Thripidae) on green pepper. Boletín de Entomología Venezolana. 19, 39–46 (2004)
dc.relation.referencesJiménez, E.: Métodos de Control de Plagas, (2009)
dc.relation.referencesPotting, R.P.J., Perry, J.N., Powell, W.: Insect behavioural ecology and other factors affecting the control efficacy of agro-ecosystem diversification strategies. Ecol Modell. 182, 199–216 (2005). https://doi.org/10.1016/j.ecolmodel.2004.07.017
dc.relation.referencesDuran Trujillo, Y., Otero, G., Ortega, L., Arriola, V., Mora, J., Damián, A., García, P.: Evaluation of insecticides for pest control in mango (Mangifera indica L.) in tierra caliente, guerrero, Mexico. Tropical and Subtropical Agroecosystems. 20, 381–394 (2017)
dc.relation.referencesEspinosa, P.J., Bielza, P., Contreras, J., Lacasa, A.: Field and laboratory selection of Frankliniella occidentalis (Pergande) for resistance to insecticides. In: Pest Management Science. pp. 920–927 (2002)
dc.relation.referencesLara, G., Aparicio, J., Lauzardo, A., Matrinez, Y.: Pyrethrins and Pyrethroids. (2018)
dc.relation.referencesChen, X., Yuan, L., Du, Y., Zhang, Y., Wang, J.: Cross-resistance and biochemical mechanisms of abamectin resistance in the western flower thrips, Frankliniella occidentalis. Pestic Biochem Physiol. 101, 34–38 (2011). https://doi.org/10.1016/j.pestbp.2011.07.001
dc.relation.referencesZhao, G., Liu, W., O´knowles: Mechanisms Conferring Resistance of Western Flower Thrips to Bendiocarb. Pestic. Sci. 44, 293–297 (1995)
dc.relation.referencesBielza, P., Quinto, V., Grávalos, C., Fernández, E., Abellán, J., Contreras, J.: Stability of spinosad resistance in Frankliniella occidentalis (Pergande) under laboratory conditions. Bull Entomol Res. 98, 355–359 (2008). https://doi.org/10.1017/S0007485308005658
dc.relation.referencesIRAC: Susceptibility Test Methods Series. (2009)
dc.relation.referencesGammon, D.W., Liu, Z., Chandrasekaran, A., El-Naggar, S.F., Kuryshev, Y.A., Jackson, S.: Pyrethroid neurotoxicity studies with bifenthrin indicate a mixed Type I/II mode of action. Pest Manag Sci. 75, 1190–1197 (2019). https://doi.org/10.1002/ps.5300
dc.relation.referencesRathod, A.L., Garg, R.K.: Chlorpyrifos poisoning and its implications in human fatal cases: A forensic perspective with reference to Indian scenario. J Forensic Leg Med. 47, 29–34 (2017). https://doi.org/10.1016/j.jflm.2017.02.003
dc.relation.referencesZhao, G., Liu, W., O¨knowles, C.: Mechanisms Associated with Diazinon Resistence in Western Flower Thrips. Pestic Biochem Physiol. 49, 13–23 (1994)
dc.relation.referencesMaier-Bode, H.: Properties, effect, residues and analytics of the insecticide endosulfan. (1968)
dc.relation.referencesJensen, S.E.: Acetylcholinesterase Activity Associated with Methiocarb Resistance in a Strain of Western Flower Thrips, Frankliniella occidentalis (Pergande). (1998)
dc.relation.referencesVan Scoy, A.R., Yue, M., Deng, X., Tjeerdema, R.S.: Environmental fate and toxicology of methomyl. Rev Environ Contam Toxicol. 222, 93–109 (2013). https://doi.org/10.1007/978-1-4614-4717-7_3
dc.relation.referencesMonteon, A., Damián, A., Hernandez, E., Cruz, B., Romero, T., San juan, J.: Biorational and conventional insecticides efficacy to control thrips (Frankliniella occidentalis Perg.) on strawberries (Fragaria x ananassa Duch.) at Morelos state, Mexico. Agro Productividad. (2021). https://doi.org/https://doi.org/10.32854/agrop.v14i9.1980
dc.relation.referencesMarchiori, C.H.: Thrips (Insecta: Thysanoptera: Thripidae). Definitions. (2024). https://doi.org/10.32388/7rgrx4.4
dc.relation.referencesMuñoz, C.: Caracterización taxonómica de la especie Frankliniella occidentalis(Thisanoptera: Thripidae), plaga del cultivo de rosa para exportación. Revista Inventum No. 4 Facultad de Ingeniería Uniminuto -. (2008)
dc.relation.referencesMoritz, G. o’donnell, C.P.M.: Pest thrips of north america. Associated with domestic and imported crops
dc.relation.referencesBryan, D.E.; S.R.F.: The Frankliniella occidentalis (Pergande) complex in California (Thysanoptera: Thripidae). University of California, Publications in Entomology. (1956)
dc.relation.referencesLeyva-Silva, M.I., French, L., Pino, O., Montada, D., Morejón, G., Marquetti, M. del C.: Plantas con actividad insecticida: una alternativa natural contra mosquitos. REVISTA BIOMÉDICA. 28, (2017). https://doi.org/10.32776/revbiomed.v28i3.571
dc.relation.referencesWasimmAhmad Editors, M., Eco, A.: Sustainability in Plant and Crop Protection Microbes for Sustainable lnsect Pest Management.
dc.relation.referencesAyilara, M.S., Adeleke, B.S., Akinola, S.A., Fayose, C.A., Adeyemi, U.T., Gbadegesin, L.A., Omole, R.K., Johnson, R.M., Uthman, Q.O., Babalola, O.O.: Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides, (2023)
dc.relation.referencesSantana, A. da S., Baldin, E.L.L., Santos, T.L.B. dos, Baptista, Y.A., Santos, M.C. dos, Lima, A.P.S., Tanajura, L.S., Vieira, T.M., Crotti, A.E.M.: Synergism between essential oils: A promising alternative to control Sitophilus zeamais (Coleoptera: Curculionidae). Crop Protection. 153, (2022). https://doi.org/10.1016/j.cropro.2021.105882
dc.relation.referencesGonzalez, A., Reina, M., Diaz, C.E., Fraga, B.M.: Natural Product-Based Biopesticides for Insect Control. (2010)
dc.relation.referencesLopez.T: Los aceites esenciales, aplicaciones farmacológicas, cosméticas y alimentarias. (2004)
dc.relation.referencesMartínez, A.: Aceites esenciales. Presented at the (2001)
dc.relation.referencesRegnault-Roger, C., Vincent, C., Arnason, J.T.: Essential oils in insect control: Lowrisk products in a high-stakes world. Annu Rev Entomol. 57, 405–424 (2012). https://doi.org/10.1146/annurev-ento-120710-100554
dc.relation.referencesNerio, L.S., Olivero-Verbel, J., Stashenko, E.: Repellent activity of essential oils: A review. Bioresour Technol. 101, 372–378 (2010). https://doi.org/10.1016/j.biortech.2009.07.048
dc.relation.referencesDr. Killigan’s, Inc.A.: Six feet under. Plant-powered insect killer
dc.relation.referencesecoSMART: Home pest control for indoor & outdoor use
dc.relation.referencesKoschier, E.H., Jan Kogel, W. DE, Hans Visser, J., Kogel, D.: Assessing the attractiveness of volatile plant compounds to western flower thripsFrankliniella occidentalis. (2000)
dc.relation.referencesKoschier, E.H.: Essential Oil Compounds for Thrips Control-A Review. (2008)
dc.relation.referencesYi, C.-G., Choi, B.-R., Park, H.-M., Park, C.-G., Ahn, Y.-J.: Fumigant Toxicity of Plant Essential Oils to Thrips palmi (Thysanoptera: Thripidae) and Orius strigicollis (Heteroptera: Anthocoridae). J Econ Entomol. 99, 1733–1738 (2009). https://doi.org/10.1603/0022-0493-99.5.1733
dc.relation.referencesAgro Research International: Thyme Guard. Systemic bactericide and fungicide, with insecticidal activity on sucking insects for use in all crops: food and non-food
dc.relation.referencesecoSMART. ARBICO organics: ecoSMART. Garden insect killer
dc.relation.referencesKim, K.H., Yi, C.G., Ahn, Y.J., Kim, S. Il, Lee, S.G., Kim, J.R.: Fumigant toxicity of basil oil compounds and related compounds to Thrips palmi and Orius strigicollis. Pest Manag Sci. 71, 1292–1296 (2015). https://doi.org/10.1002/ps.3925
dc.relation.referencesARBICO Organics: Orange Guard® Home Pest Control
dc.relation.referencesidainature-Arovensa company-: Bioinsecticida Agrícola Orocide
dc.relation.referencesPreedy, V.: Essential Oils in Food Preservation, Flavor and Safety. (2015)
dc.relation.referencesPark, Y.L., Tak, J.H.: Essential Oils for Arthropod Pest Management in Agricultural Production Systems. In: Essential Oils in Food Preservation, Flavor and Safety. pp. 61–70. Elsevier (2015)
dc.relation.referencesJaramillo Colorado, B.E., Martelo, I.P., Duarte, E.: Antioxidant and repellent activities of the essential oil from Colombian Triphasia trifolia (Burm. f.) P. Wilson. J Agric Food Chem. 60, 6364–6368 (2012). https://doi.org/10.1021/jf300461k
dc.relation.referencesBarreto, N.: La chinche de los pastos: Principal problema tecnológico de la ganadería de leche. Congreso Sociedad colombiana de Entomología. 175–188
dc.relation.referencesCastro, D., Diaz, J., Serna, R., Martínez, M., Urrea, P., Muñoz, K., Osorio, E.: Cultivo y producción de plantas aromáticas y medicinales. Rionegro, Universidad católica de Oriente (2013)
dc.relation.referencesMahecha, L., Gallego, L., Peláez, F.: Situación actual de la ganadería de carne en Colombia y alternativas para impulsar su competitividad y sostenibilidad. Rev Col Cienc Pec. 15, (2002)
dc.relation.referencesYu, J.: Chemical Composition of Essential Oils and Their Potential Applications in Postharvest Storage of Cereal Grains. Molecules. 30, 683, (2025). https://doi.org/10.3390/molecules30030683
dc.relation.referencesStejskal, V., Vendl, T., Aulicky, R., Athanassiou, C.: Synthetic and natural insecticides: Gas, liquid, gel and solid formulations for stored‐product and food‐ industry pest control, (2021)
dc.relation.referencesRodrigues, d, Ambrosi, A., Luccio, M.: Encapsulated essential oils: A perspective in food preservation. Future Foods. 5, (2022). https://doi.org/10.1016/j.fufo.2022.100126
dc.relation.referencesFoglio Bonda, A., Regis, L., Giovannelli, L., Segale, L.: Alginate/maltodextrin and alginate/shellac gum core-shell capsules for the encapsulation of peppermint essential oil. Int J Biol Macromol. 162, 1293–1302 (2020). https://doi.org/10.1016/j.ijbiomac.2020.06.194
dc.relation.referencesCáceres, L.M., Chamorro, E., Dagnino, E.P.: Microencapsulación de aceite esencial de pomelo en matriz de alginato-almidón y alginato-sílice. AJEA. (2020). https://doi.org/10.33414/ajea.5.732.2020
dc.relation.referencesMaes, C., Bouquillon, S., Fauconnier, M.L.: Encapsulation of essential oils for the development of biosourced pesticides with controlled release: A review. Molecules. 24, (2019). https://doi.org/10.3390/molecules24142539
dc.relation.referencesSousa, V.I., Parente, J.F., Marques, J.F., Forte, M.A., Tavares, C.J.: Microencapsulation of Essential Oils: A Review. Polymers (Basel). 14, (2022). https://doi.org/10.3390/polym14091730
dc.relation.referencesMohammed, N.K., Tan, C.P., Manap, Y.A., Muhialdin, B.J., Hussin, A.S.M.: Spray Drying for the Encapsulation of Oils—A Review, (2020)
dc.relation.referencesNapiórkowska, A., Kurek, M.: Coacervation as a Novel Method of Microencapsulation of Essential Oils—A Review, (2022)
dc.relation.referencesLombardo, D., Kiselev, M.A.: Methods of Liposomes Preparation: Formation and Control Factors of Versatile Nanocarriers for Biomedical and Nanomedicine Application, (2022)
dc.relation.referencesOrtiz, N., Ochoa, L.A., González, S.M., Rutiaga, O.M., Gallegos, J.A.: Avances en las investigaciones sobre la encapsulación mediante gelación iónica: una revisión sistemática. TecnoLógicas. 24, e1962 (2021). https://doi.org/10.22430/22565337.1962
dc.relation.referencesMarcela, F., Lucía, C., Eva, B., David, G., Ángeles, B.M., Luis, B.: Microencapsulation of Essential Oils by Interfacial Polimerization Using Polyurea as a Wall Material. Journal of Encapsulation and Adsorption Sciences. 05, 165–177 (2015). https://doi.org/10.4236/jeas.2015.54014
dc.relation.referencesKlettenhammer, S., Ferrentino, G., Morozova, K., Scampicchio, M.: Novel technologies based on supercritical fluids for the encapsulation of food grade bioactive compounds. Foods. 9, (2020). https://doi.org/10.3390/foods9101395
dc.relation.referencesKfoury, M., Auezova, L., Greige-Gerges, H., Fourmentin, S.: Encapsulation in cyclodextrins to widen the applications of essential oils. Environ Chem Lett. 17, 129– 143 (2019). https://doi.org/10.1007/s10311-018-0783-y
dc.relation.referencesAugustin, M.A., Hemar, Y.: Nano- and micro-structured assemblies for encapsulation of food ingredients. Chem Soc Rev. 38, 902–912 (2009). https://doi.org/10.1039/b801739p
dc.relation.referencesBáez, J., Vernon, E.: Eficiencia de encapsulación del aceite de linaza utilizando goma de mezquite y quitosano como materiales de pared. (2010)
dc.relation.referencesParis, M.J., Ramírez-Corona, N., Palou, E., López-Malo, A.: Modelling release mechanisms of cinnamon (Cinnamomum zeylanicum) essential oil encapsulated in alginate beads during vapor-phase application. J Food Eng. 282, (2020). https://doi.org/10.1016/j.jfoodeng.2020.110024
dc.relation.referencesDubey, N.: Natural products in plant pest management. , India (2011)
dc.relation.referencesSilva, A.F., Brochero, H.L.: Abundance and flight activity of Frankliniella occidentalis (Thysanoptera: Thripidae) in a female chrysanthemum crop for seeding, Colombia. Agron Colomb. 39, 216–225 (2021). https://doi.org/10.15446/AGRON.COLOMB.V39N2.95978
dc.relation.referencesPrieto, J.: Estudio fitoquímico de Compsoneura capitellata (Myristicaceae), Zanthoxylum rigidum (Rutaceae) y Ocotea longifolia (Lauraceae) y evaluación de su posible aplicación como biocontroladores de Sitophilus sp, (2012)
dc.relation.referencesAdams, R.P.: Identification of essential oil components by gas chromatography/mass spectrometry. Carol Stream, USA (2012)
dc.relation.referencesJennings, W.G., Shibamoto, T.: Qualitative analysis of flavor and fragrance volatiles by glass capillary gas chromatography. (1980)
dc.relation.referencesStashenko, E., Martinez, J.: Algunos aspectos prácticos para la identificación de analistos por cromatografia de gases acoplada a espectrometría de masas. Scientia Chromatographica. 2, 29–47 (2010)
dc.relation.referencesWagner, L.S., Sequin, C.J., Foti, N., Campos-Soldini, M.P.: Insecticidal, fungicidal, phytotoxic activity and chemical composition of Lavandula dentata essential oil. Biocatal Agric Biotechnol. 35, (2021). https://doi.org/10.1016/j.bcab.2021.102092
dc.relation.referencesSobrero, M.C., Ronco, A.: Ensayo de toxicidad aguda con semiillas de lechuga Lactuca Sativa L. , Canadá (2004)
dc.relation.referencesNagles Galeano, L.: Estudio de la acción insecticida de constituyentes químicos presentes en aceites esenciales y su efecto sobre enzimas desintoxicantes y de función motora para Sitophilus zeamais.
dc.relation.referencesSierra, A., Prieto, J., Patiño, O.: Insecticidal Activity of Monoterpenoids Against Sitophilus zeamais Motschulsky and Tribolium castaneum Herbst: Preliminary Structure–Activity Relationship Study. Int J Mol Sci. 26, (2025). https://doi.org/10.3390/ijms26073407
dc.relation.referencesVila, J.: Tecnología farmacéutica. , Madrid (2001)
dc.relation.referencesSinha, A., Ischia, G., Straffelini, G., Gialanella, S.: A new sample preparation protocol for SEM and TEM particulate matter analysis. Ultramicroscopy. 230, (2021). https://doi.org/10.1016/j.ultramic.2021.113365
dc.relation.referencesBarrera, G.N., Calderón-Domínguez, G., Chanona-Pérez, J., Gutiérrez-López, G.F., León, A.E., Ribotta, P.D.: Evaluation of the mechanical damage on wheat starch granules by SEM, ESEM, AFM and texture image analysis. Carbohydr Polym. 98, 1449–1457 (2013). https://doi.org/10.1016/j.carbpol.2013.07.056
dc.relation.referencesMonje, B., Delgadillo, D., Gómez, J., Herney, E.: Manejo de Neohydatothrips signifer Priesner (Thysanoptera: Thripidae) en maracuyá (Passiflora edulis f. flavicarpa Degener) en el departamento del Huila (Colombia). Corpoica. Ciencia y Tecnología Agorpecuaria. 13, 21–30 (2012)
dc.relation.referencesRobertson, J., Russell, R., Preisler, H., Savin, N.: Bioassays with Arthropods. Second Edition. (2007)
dc.relation.referencesBakkali, F., Averbeck, S., Averbeck, D., Idaomar, M.: Biological effects of essential oils - A review. Food and Chemical Toxicology. 46, 446–475 (2008). https://doi.org/10.1016/j.fct.2007.09.106
dc.relation.referencesMuñoz-Acevedo, A., Stashenko, E.: Estudio de la composición química y la actividad biológica de los aceites esenciales de diez plantas aromáticas colombianas. Scientia et Technica. (2007)
dc.relation.referencesBorotová, P., Galovičová, L., Vukovic, N.L., Vukic, M., Tvrdá, E., Kačániová, M.: Chemical and Biological Characterization of Melaleuca alternifolia Essential Oil. Plants. 11, (2022). https://doi.org/10.3390/plants11040558
dc.relation.referencesNahar, L., El-Seedi, H.R., Khalifa, S.A.M., Mohammadhosseini, M., Sarker, S.D.: Ruta essential oils: Composition and bioactivities. Molecules. 26, (2021). https://doi.org/10.3390/molecules26164766
dc.relation.referencesZapata, C., Serrato, M., Ibarra, e, Naranjo, B.: Chemical compounds of essential oil of Tagetes species of Ecuador. Ecorfan Journal. 1, 19–26 (2015)
dc.relation.referencesObolskiy, D., Pischel, I., Feistel, B., Glotov, N., Heinrich, M.: Artemisia dracunculus L. (tarragon): A critical review of its traditional use, chemical composition, pharmacology, and safety. J Agric Food Chem. 59, 11367–11384 (2011). https://doi.org/10.1021/jf202277w
dc.relation.referencesMuñoz, A., González, M.C., De Moya, Y.S., Rodríguez, J.D.: Volatile Metabolites of Piper eriopodon (Miq.) C.DC. from Northern Region of Colombia and Assessment of In Vitro Bioactivities of the Leaf Essential Oil. Molecules. 28, (2023). https://doi.org/10.3390/molecules28062594
dc.relation.referencesHudz, N., Kobylinska, L., Pokajewicz, K., Horčinová Sedláčková, V., Fedin, R., Voloshyn, M., Myskiv, I., Brindza, J., Wieczorek, P.P., Lipok, J.: Mentha piperita: Essential Oil and Extracts, Their Biological Activities, and Perspectives on the Development of New Medicinal and Cosmetic Products. Molecules. 28, (2023). https://doi.org/10.3390/molecules28217444
dc.relation.referencesKakouri, E., Daferera, D., Kanakis, C., Revelou, P.K., Kaparakou, E.H., Dervisoglou, S., Perdikis, D., Tarantilis, P.A.: Origanum majorana Essential Oil—A Review of Its Chemical Profile and Pesticide Activity. Life. 12, (2022). https://doi.org/10.3390/life12121982
dc.relation.referencesChahal, K., Kaur, R., Kumar, A., Bhardwaj, U.: Chemistry and biological activities of Anethum graveolens L. (dill) essential oil: A review. J Pharmacogn Phytochem. 6, (2017)
dc.relation.referencesAttique Babri, R., Khokhar, I., Mahmood, Z., Mahmud, S.: Chemical composition and insecticidal activity of the essential oil of Anethum graveolens L. Sci.Int.(Lahore). 24, 453–455 (2012)
dc.relation.referencesAprotosoaie, A.C., Şpac, A., Hăncianu, M., Miron, A., Tănăsescu, V.F., Dorneanu, V., Stănescu, U.: The chemical profile of essential oilobtained form fennel fruits (Foenuculum vulgare Mill.). Farmacia. 58, 1 (2010)
dc.relation.referencesPineda, R., Vizcaíno, S., García, C.M., Gil, J.H., Durango, D.: Antifungal activity of extracts, essential oil and constituents from Petroselinum crispum against Colletotrichum acutatum. Rev Fac Nac Agron Medellin. 71, 8563–8572 (2018). https://doi.org/10.15446/rfnam.v71n3.68284
dc.relation.referencesAnwar, F., Abbas, A., Alkharfy, K.M., Anwar-ul-Hassan Gilani: Cardamom (Elettaria cardamomum Maton) Oils. In: Essential Oils in Food Preservation, Flavor and Safety. pp. 295–301. Elsevier (2015)
dc.relation.referencesGende, L.B., Maggi, M.D., Fritz, R., Eguaras, M.J., Bailac, P.N., Ponzi, M.I.: Antimicrobial activity of pimpinella anisum and foeniculum vulgare essential oils against paenibacillus larvae. Journal of Essential Oil Research. 21, 91–93 (2009). https://doi.org/10.1080/10412905.2009.9700120
dc.relation.referencesPiaru, S.P., Mahmud, R., Abdul Majid, A.M.S., Ismail, S., Man, C.N.: Chemical composition, antioxidant and cytotoxicity activities of the essential oils of Myristica fragrans and Morinda citrifolia. J Sci Food Agric. 92, 593–597 (2012). https://doi.org/10.1002/jsfa.4613
dc.relation.referencesPatiño, W.R., Nagles Galeano, L.J., Bustos Cortes, J.J., Delgado Ávila, W.A., Herrera Daza, E., Suárez, L.E.C., Prieto-Rodríguez, J.A., Patiño-Ladino, O.J.: Effects of essential oils from 24 plant species on sitophilus zeamais motsch (Coleoptera, curculionidae). Insects. 12, (2021). https://doi.org/10.3390/insects12060532
dc.relation.referencesAntonio Sánchez-Tito, J., Cartagena-Cutipa, R., Flores-Valencia, E.: Chemical composition and antimicrobial activity of essential oil from Minthostachys mollis against oral pathogens Composición química y actividad antimicrobiana del aceite esencial de Minthostachys mollis frente a patógenos orales. Rev Cuba Estomatología. 58, 3647 (2021)
dc.relation.referencesElechosa, M., Molina, A., Juarez, M., Baren, C., Di leo, P., Bandoni, A.: Comparative study on the essential oils of “peperina” Minthostachys mollis (Kunth.) Griseb. obtained from twenty one samples in populations from Tucumán, Córdoba, San Luis and Catamarca, Argentina. Bol Latinoam Caribe Plantas Med Aromat. 6, 244–245 (2007)
dc.relation.referencesTucker, A.O., Libbey, L.M.: Essential oil of satureja viminea L. (lamiaceae). Journal of Essential Oil Research. 12, 283–284 (2000). https://doi.org/10.1080/10412905.2000.9699516
dc.relation.referencesColeman, W.K., Lonergan, G., Silk ’ ~, P.: Potato Sprout Growth Suppression by Menthone and Neomenthol, Volatile Oil Components of Minthostachys, Satureja, Bystropogon, and Mentha Species. Amer J of Potato Res. 78, 345–354 (2001)
dc.relation.referencesMarques, M.M.M., Morais, S.M., Vieira, Í.G.P., Vieira, M.G.S., Silva, A.R.A., De Almeida, R.R., Guedes, M.I.F.: Larvicidal activity of tagetes erecta against aedes aegypti. J Am Mosq Control Assoc. 27, 156–158 (2011). https://doi.org/10.2987/106056.1
dc.relation.referencesLeyva, M., Del, M., Marquetti, C., Montada, D., Payroll, J., Scull, R., Morejón, G., Pino, O.: Insecticidal activity of essential oils of Piper aduncum subsp. ossanum and Ocimum basilicum against Aedes aegypti, Aedes albopictus and Culex quinquefasciatus. Novit Caribaea. 16, 122–132 (2020)
dc.relation.referencesVanholme, B., El Houari, I., Boerjan, W.: Bioactivity: phenylpropanoids’ best kept secret, (2019)
dc.relation.referencesHarmatha, J., Dinan, L.: Biological activities of lignans and stilbenoids associated with plant-insect chemical interactions. (2003)
dc.relation.referencesBhardwaj, A., Kumar Tewary, D., Kumar, R., Kumar, V., Sinha, A.K., Shanker, A.: Larvicidal and Structure-Activity Studies of Natural Phenylpropanoids and Their Semisynthetic Derivatives against the Tobacco Armyworm Spodoptera litura (Fab.) (Lepidoptera: Noctuidae) 1 ). Chem Biodivers. (2010)
dc.relation.referencesUnited States Environmental Protection Agency: 2-undecanone
dc.relation.referencesHong, T. kyun, Perumalsamy, H., Jang, K. hwa, Na, E. shik, Ahn, Y.J.: Ovicidal and larvicidal activity and possible mode of action of phenylpropanoids and ketone identified in Syzygium aromaticum bud against Bradysia procera. Pestic Biochem Physiol. 145, 29–38 (2018). https://doi.org/10.1016/j.pestbp.2018.01.003
dc.relation.referencesQasim, M., Islam, W., Rizwan, M., Hussain, D., Noman, A., Khan, K.A., Ghramh, H.A., Han, X.: Impact of plant monoterpenes on insect pest management and insectassociated microbes. Heliyon. 10, (2024). https://doi.org/10.1016/j.heliyon.2024.e39120
dc.relation.referencesHuang, Y., Ho, S.-H., Lee, H.-C., Yap, Y.-L.: Insecticidal properties of eugenol, isoeugenol and methyleugenol and their effects on nutrition of Sitophilus zeamais Motsch. (Coleoptera: Curculionidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) 0 0 2 2-4 7 4 X ( 0 1 ) 0 0 0 4 2-X. (2002)
dc.relation.referencesPolatoğlu, K., Karakoç, Ö.C., Yücel Yücel, Y., Gücel, S., Demirci, B., Başer, K.H.C., Demirci, F.: Insecticidal activity of edible Crithmum maritimum L. essential oil against Coleopteran and Lepidopteran insects. Ind Crops Prod. 89, 383–389 (2016). https://doi.org/10.1016/j.indcrop.2016.05.032
dc.relation.referencesRamos, C.S., Barbosa, Q.P.S., Vanin, S.A.: Metabolism of safrole by heraclides thoas brasiliensis (Papilionidae). J Lepid Soc. 68, 283–285 (2014). https://doi.org/10.18473/lepi.v68i4.a6
dc.relation.referencesHuang, Y., Ho, S.H., Kini, R.M.: Bioactivities of Safrole and Isosafrole on Sitophilus zeamais (Coleoptera: Curculionidae) and Tribolium castaneum (Coleoptera: Tenebrionidae). J Econ Entomol. 92, 676–683 (1999)
dc.relation.referencesMarcela, E., Rueda, S., Leandra Rodríguez Ruiz, Y., Chamorro, N.L., Landázuri, P.: Extractos de Tagetes patula L. (Asteraceae): un potencial bactericida contra el Moko.
dc.relation.referencesWang S, L.S.C.F.R.T.F.-L.M.D.G.K.S.QY.: Antifungal, Repellency, and Insecticidal Activities of Cymbopogon distans and Ruta graveolens Essential Oils and Their Main Chemical Constituents. Chemistry & Biodiversity. 19, (2024)
dc.relation.referencesGarg, S.N., Mehta, V.K.: Acyclic monoterpenes from the essenctial oil of Tagetes minuta flowers. (1998)
dc.relation.referencesGharbi, K., Tay, J.W.: Fumigant Toxicity of Essential Oils against Frankliniella occidentalis and F. insularis (Thysanoptera: Thripidae) as Affected by Polymer Release and Adjuvants. Insects. 13, (2022). https://doi.org/10.3390/insects13060493
dc.relation.referencesJanmaat, A.F., Kogel, W.J. de, Woltering, E.J.: Enhanced fumigant toxicity of pcymene against Frankliniella occidentalis by simultaneous application of elevated levels of carbon dioxide. Pest Manag Sci. 58, 167–173 (2002). https://doi.org/10.1002/ps.432
dc.relation.referencesJong Han, Ki Ahn, Chong Lee, Gil Kim: Fumigant toxicity of Pennyroyal an Spearmint oils against Western flower Thrips, Frankliniella occidentalis. Korean J. Appl. Entomol. 45, 45–49 (2006)
dc.relation.referencesMoorthy, B., Madyastha, P., Madhava Madyastha, K.: Hepatoxicity of pulegone in rats: its effects on microsomal enzymes, in vitro. Toxicology. 55, 327–337 (1989)
dc.relation.referencesZuo, Z., Wang, B., Ying, B., Zhou, L., Zhang, R.: Monoterpene emissions contribute to thermotolerance in Cinnamomum camphora. Trees - Structure and Function. 31, 1759–1771 (2017). https://doi.org/10.1007/s00468-017-1582-y
dc.relation.referencesHerrera, J.M., Zunino, M.P., Dambolena, J.S., Pizzolitto, R.P., Gañan, N.A., Lucini, E.I., Zygadlo, J.A.: Terpene ketones as natural insecticides against Sitophilus zeamais. Ind Crops Prod. 70, 435–442 (2015). https://doi.org/10.1016/j.indcrop.2015.03.074
dc.relation.referencesThrone, J.: Insect and Mite Pests of Durum Wheat. In: Durum Wheat: Chemistry and Technology. pp. 73–83 (2012)
dc.relation.referencesAndrés, M.F., Rossa, G.E., Cassel, E., Vargas, R.M.F., Santana, O., Díaz, C.E., González-Coloma, A.: Biocidal effects of Piper hispidinervum (Piperaceae) essential oil and synergism among its main components. Food and Chemical Toxicology. 109, 1086–1092 (2017). https://doi.org/10.1016/j.fct.2017.04.017
dc.relation.referencesChu, S.S., Wang, C.F., Du, S.S., Liu, S.L., Liu, Z.L.: Toxicity of the essential oil of Illicium difengpi stem bark and its constituent compounds towards two grain storage insects. Journal of Insect Science. 11, (2011). https://doi.org/10.1673/031.011.15201
dc.relation.referencesYu, C.-S., Huang, A.-C., Yang, J.-S., Yu, C.-C., Lin, C.-C., Chung, H.-K., Huang, Y.P., Chueh, F.-S., Chung, J.-G.: Safrole Induces G0/G1 Phase Arrest via Inhibition of Cyclin E and Provokes Apoptosis through Endoplasmic Reticulum Stress and Mitochondrion-dependent Pathways in Human Leukemia HL-60 Cells. Anticancer Res. 32, 1671–1680 (2012)
dc.relation.referencesMossa, A.T.H.: Green Pesticides: Essential oils as biopesticides in insect-pest management. Journal of Environmental Science and Technology. 9, 354–378 (2016). https://doi.org/10.3923/jest.2016.354.378
dc.relation.referencesClayden, J., Greeves, N., Warren, S.: Organic Chemistry Organic Chemistry. , Ner York (2012)
dc.relation.referencesZhao, N.N., Zhou, L., Liu, Z.L., Du, S.S., Deng, Z.W.: Evaluation of the toxicity of the essential oils of some common Chinese spices against Liposcelis bostrychophila. Food Control. 26, 486–490 (2012). https://doi.org/10.1016/j.foodcont.2012.02.021
dc.relation.referencesDos Santos, V.L.P., Rodrigues, I.C.G., Berté, R., Raman, V., Messias-Reason, I.J., Budel, J.M.: Review of Piper species growing in the Brazilian State of Paraná with emphasize on the vegetative anatomy and biological activities. Botanical Review. 87, 23–54 (2021). https://doi.org/10.1007/s12229-020-09239-7
dc.relation.referencesThe United States Pharmacopeial Convention: Powder flow. (2024)
dc.relation.referencesAulton M: Pharmaceutics. The Science of Dosage Form Design. (2021)
dc.relation.referencesWang, B., Sun, X., Xiang, J., Guo, X., Cheng, Z., Liu, W., Tan, S.: A critical review on granulation of pharmaceuticals and excipients: Principle, analysis and typical applications, (2022)
dc.relation.referencesRowe, R.C., S.P.J., & Q.M.E.: Handbook of Pharmaceutical Excipients. Pharmaceutical Press. (2009)
dc.relation.referencesJiang, H., Chen, Q., Ge, J., Zhang, Y.: Efficient extraction and characterization of polymeric hemicelluloses from hybrid poplar. Carbohydr Polym. 101, 1005–1012 (2014). https://doi.org/10.1016/j.carbpol.2013.10.030
dc.relation.referencesMajeed, H., Bian, Y.-Y., Ali, B., Jamil, A., Majeed, U., Farid Khan, Q., Javed Iqbal, K., Shoemaker, C.F., Fang, Z., Khan, F., Iqbal, J.: Essential Oil Encapsulations: Uses, Procedures, and Trends. Royal Society of Chemistry. (2015)
dc.relation.referencesPereira, C., Barros, L., Carvalho, A.M., Ferreira, I.C.F.R.: Nutritional composition and bioactive properties of commonly consumed wild greens: Potential sources for new trends in modern diets. Food Research International. 44, 2634–2640 (2011). https://doi.org/10.1016/j.foodres.2011.05.012
dc.relation.referencesWoolfe, M., Gurung, T., Walker, M.J.: Can analytical chemists do molecular biology? A survey of the up-skilling of the UK official food control system in DNA food authenticity techniques. Food Control. 33, 385–392 (2013). https://doi.org/10.1016/j.foodcont.2013.03.015
dc.relation.referencesSingh, A., Dhiman, N., Kar, A.K., Singh, D., Purohit, M.P., Ghosh, D., Patnaik, S.: Advances in controlled release pesticide formulations: Prospects to safer integrated pest management and sustainable agriculture, (2020)
dc.relation.referencesPavoni, L., Perinelli, D.R., Bonacucina, G., Cespi, M., Palmieri, G.F.: An overview of micro-and nanoemulsions as vehicles for essential oils: Formulation, preparation and stability, (2020)
dc.relation.referencesCampos, E.V.R., de Oliveira, J.L., Fraceto, L.F.: Applications of Controlled Release Systems for Fungicides, Herbicides, Acaricides, Nutrients, and Plant Growth Hormones: A Review. Adv Sci Eng Med. 6, 373–387 (2014). https://doi.org/10.1166/asem.2014.1538
dc.relation.referencesMohammad, S., Rodriguez, S., Salgado, M., Cocero, M., Talebi, K., Amoabediny, G.: Insecticidal activity of spray dried microencapsulated essential oils of Rosmarinus officinalis and Zataria multiflora against Tribolium confusum. Crop protectiono. 128, (2020). https://doi.org/https://doi.org/10.1016/j.cropro.2019.104996
dc.relation.referencesAlinaqi, Z., Khezri, A., Rezaeinia, H.: Sustained release modeling of clove essential oil from the structure of starch-based bio-nanocomposite film reinforced by electrosprayed zein nanoparticles. Int J Biol Macromol. 173, 193–202 (2021). https://doi.org/10.1016/j.ijbiomac.2021.01.118
dc.relation.referencesMontoya-Yepes, D.F., Jiménez-Rodríguez, A.A., Aldana-Porras, A.E., VelásquezHolguin, L.F., Méndez-Arteaga, J.J., Murillo-Arango, W.: Starches in the encapsulation of plant active ingredients: state of the art and research trends, (2024)
dc.relation.referencesRosenberg, M., Sheu, T.-Y.: Microencapsulation of Volatiles by Spray-Drying inWhey Protein-Based Wall Systems. (1996)
dc.relation.referencesWang, S.: Multivariate and Probabilistic Analyses of Sensory Science Problems. Trends Food Sci Technol. 20, 107–108 (2009). https://doi.org/10.1016/j.tifs.2008.10.006
dc.relation.referencesMoure, A., Sineiro, J., Domínguez, H., Parajó, J.C.: Functionality of oilseed protein products: A review, (2006)
dc.relation.referencesZhu, Z., Yu, C., Zhou, X., Wang, L.: Starch modification for slow release of herbicide encapsulated with concentrated starch paste. Wuhan University Journal of Natural Sciences. 12, 515–521 (2007). https://doi.org/10.1007/s11859-006-0052-y
dc.relation.referencesIhegwuagu, N.E., Sha’Ato, R., Tor-Anyiin, T.A., Nnamonu, L.A., Buekes, P., Sone, B., Maaza, M.: Facile formulation of starch-silver-nanoparticle encapsulated dichlorvos and chlorpyrifos for enhanced insecticide delivery. New Journal of Chemistry. 40, 1777–1784 (2016). https://doi.org/10.1039/c5nj01831e
dc.relation.referencesWeyerstalrl P, Zombik W, Gansau C. Thermische und AlCI3-katalysierte Reaktion von Ocimenon. Gansau Liebigs Ann. Chem. (1986).
dc.relation.referencesTelci I, Demirtas I, Bayram E, Arabaci O, Kacar O. Environmental variation on aroma components of pulegone/piperitone rich spearmint (Mentha spicata L.). Ind Crops Prod Nov;32(3):588–92. . (2010)
dc.relation.referencesKumar R, Maurya SK. Synthesis of γ-Butyrolactone Derivatives from Dihydrotagetone and Evaluation of Their Antidiabetic Activity. ChemistrySelect. Oct 20;7(39). (2022)
dc.relation.referencesKon Y, Hachiya H, Ono Y, Matsumoto T, Sato K. An effective synthesis of acid-sensitive epoxides via oxidation of terpenes and styrenes using hydrogen peroxide under organic solvent-free conditions. Synthesis (Stuttg).(7):1092–8. (2011).
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-CompartirIgual 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-sa/4.0/
dc.subject.ddc660 - Ingeniería química::668 - Tecnología de otros productos orgánicos
dc.subject.lembBiological pest control agentseng
dc.subject.lembESENCIASspa
dc.subject.lembEssences and essential oilseng
dc.subject.lembINSECTICIDASspa
dc.subject.lembInsecticideseng
dc.subject.lembAGENTES BIOLOGICOS PARA EL CONTROL DE PLAGASspa
dc.subject.proposalAceites esencialesspa
dc.subject.proposalFrankliniella occidentalisspa
dc.subject.proposalToxicidad fumigantespa
dc.subject.proposalActividad repelentespa
dc.subject.proposalFitotoxicidadspa
dc.subject.proposalFormulación granuladaspa
dc.subject.proposalEssential oilseng
dc.subject.proposalFumigant toxicityeng
dc.subject.proposalRepellent activityeng
dc.subject.proposalPhytotoxicityeng
dc.subject.proposalGranulated formuationeng
dc.titleEstudio del potencial fitosanitario de aceites esenciales para el control de thrips (Thysanoptera : Thripidae)spa
dc.title.translatedStudy of the phytosanitary potential of essential oils for the control of thrips (Thysanoptera: Thripidae)eng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1022436311_2024.pdf
Tamaño:
12.28 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: