On the section conjecture in anabelian geometry

dc.contributor.advisorCruz Morales, John Alexanderspa
dc.contributor.authorRíos Moreno, Andrés Ríosspa
dc.date.accessioned2021-10-28T15:22:15Z
dc.date.available2021-10-28T15:22:15Z
dc.date.issued2020-11
dc.descriptionilustraciones, gráficasspa
dc.description.abstractIn this work, we study and present in detail some ground ideas of anabelian geometry, from its origin in number field and arithmetic results to the statements proposed by Grothendieck, studying theory of fundamental groups in algebraic geometry. We do emphasis in study of section conjecture.eng
dc.description.abstractEn este trabajo estudiamos y presentamos en detalle algunas ideas de geometría anabeliana, desde su origen en teoría de cuerpos y aritmética a los enunciados propuestos Grothendieck, estudiando la teoría de grupos fundamentales en geometría algebraica. Hacemos énfasis en estudiar la conjetura de secciones. (Texto tomado de la fuente).spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Matemáticasspa
dc.format.extentix, 96 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80630
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Matemáticasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Matemáticasspa
dc.relation.referencesBalakrishnan, J. S., Dan-Cohen, I., Kim, M., Wewers, S. (2018). A non-abelian conjec- ture of Tateˆa€“Shafarevich type for hyperbolic curves. Mathematische Annalen, 372(1- 2), 369-428.spa
dc.relation.referencesBombieri, E. (1990). The Mordell conjecture revisited. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 17(4), 615-640.spa
dc.relation.referencesDeligne, P. (1980). La conjecture de Weil: II. Publications Math ́ematiques de l’IH ́eS, 52, 137-252.spa
dc.relation.referencesEsnault, H., Hai, P. H. (2008). Packets in Grothendieck’s section conjecture. Advances in Mathematics, 218(2), 395-416.spa
dc.relation.referencesGirondo, E., GonzA¡lez-Diez, G. (2012). Introduction to compact Riemann surfaces ̃ and dessins d’enfants (Vol. 79). Cambridge University Press.spa
dc.relation.referencesGrothendieck, A. (1958, August). The cohomology theory of abstract algebraic varieties. In Proceedings of the International Congress of Mathematicians (pp. 1)spa
dc.relation.referencesGrothendieck, A. (1983). Letter to Faltings. Geometric Galois Actions, 1.spa
dc.relation.referencesGrothendieck, A. (1997). Sketch of a Programme. Lond. Math. Soc. Lect. Note Ser, 242, 243-283.spa
dc.relation.referencesGrothendieck, A., Raynaud, M. (2002). Revˆetements ́etales et groupe fondamental (SGA 1). arXiv preprint math/0206203.spa
dc.relation.referencesHartshorne, R. (2013). Algebraic geometry (Vol. 52). Springer Science Business Media.spa
dc.relation.referencesHatcher, A. (2002). Algebraic Topology. Cambridge University Press.spa
dc.relation.referencesIhara, Y. (1997). Some illustrative examples for anabelian geometry in high dimensions. London Math. Soc. Lect. Note Ser., 1, 127-138.spa
dc.relation.referencesJacobson, N. (1964). Lectures In Abstract Algebra; Volume 3: Theory Of Fields And Galois Theory.spa
dc.relation.referencesKoenigsmann, J. (2005). On the section conjecture in anabelian geometry. Journal fur die reine und angewandte Mathematik, 2005(588), 221-235.spa
dc.relation.referencesKock, B. (2001). Belyi’s theorem revisited. arXiv preprint math/0108222.spa
dc.relation.referencesLandesman, A. (2020). Invariance of the fundamental group under base change between algebraically closed fields. arXiv preprint arXiv:2005.09690.spa
dc.relation.referencesLenstra, H. (2003). Profinite groups. Lecture notes available on the web.spa
dc.relation.referencesMcLarty, C. (2007). The Rising Sea: Grothendieck on simplicity and generality. na.spa
dc.relation.referencesMAEHARA, K. (2001). Conjectures on birational geometry. The Academic Reports, the Faculty of Engineering, Tokyo Polytechnic University, 24(1), 9-18.spa
dc.relation.referencesMurre, J. P., Anantharaman, S. (1967). Lectures on an introduction to Grothendieck’s theory of the fundamental group. Bombay: Tata Institute of Fundamental Research.spa
dc.relation.referencesMarcus, D. A., Sacco, E. (1977). Number fields (Vol. 2). New York: Springer.spa
dc.relation.referencesMilne, J. S. (2009). Algebraic number theory (v3. 07).spa
dc.relation.referencesMilne, JS (1997). Class field theory. reading notes available at http: // www. math. lsa. umich. edu / jmilne .spa
dc.relation.referencesMilne, J. S. (1998). Lectures on ́etale cohomology. Available on-line at http://www. jmilne. org/math/CourseNotes/LEC. pdf.spa
dc.relation.referencesMilne, J. S., Milne, J. S. (1980). Etale cohomology (PMS-33) (Vol. 5657). Princeton university press.spa
dc.relation.referencesMochizuki, S. (1996). The profinite Grothendieck conjecture for closed hyperbolic curves over number fields. Journal of Mathematical Sciences-University of Tokyo, 3(3), 571-628.spa
dc.relation.referencesMochizuki, S. (1999). The local pro-p anabelian geometry of curves. Inventiones math- ematicae, 138(2), 319-423.spa
dc.relation.referencesMochizuki, S. (2002). The absolute anabelian geometry of canonical curves. Kyoto Uni- versity. Research Institute for Mathematical Sciences [RIMS].spa
dc.relation.referencesMochizuki, S. (2003). Topics surrounding the anabelian geometry of hyperbolic curves. Galois groups and fundamental groups, Math. Sci. Res. Inst. Publ, 41, 119-165.spa
dc.relation.referencesMochizuki, S. (2008). Topics in Absolute Anabelian Geometry: Generalities. I. Kyoto University, Research Institute for Mathematical Sciences.spa
dc.relation.referencesMochizuki, S. (2013). Topics in absolute anabelian geometry II: decomposition groups and endomorphisms. J. Math. Sci. Univ. Tokyo, 20(2), 171-269.spa
dc.relation.referencesMochizuki, S. (2015). Topics in absolute anabelian geometry III: global reconstruction algorithms. J. Math. Sci. Univ. Tokyo, 22(4), 939-1156.spa
dc.relation.referencesNakamura, H. (1990). Galois rigidity of the ́etale fundamental groups of punctured projective lines. J. reine angew. Math, 411, 205-216.spa
dc.relation.referencesNakamura, H. (1994). Galois rigidity of pure sphere braid groups and profinite calculus. J. Math. Sci. Univ. Tokyo, 1(1), 71-136.spa
dc.relation.referencesNakamura, H. (1997). Galois rigidity of profinite fundamental groups. Sugaku Exposi- tions, 10(2).spa
dc.relation.referencesNakamura, H., Tamagawa, A., Mochizuki, S. (2001). The conjecture on the fundamental groups of algebraic curves. Sugaku Expositions, 14(1), 31-54.spa
dc.relation.referencesNeukirch, J., Schmidt, A., Wingberg, K. (2013). Cohomology of number fields (Vol. 323). Springer Science Business Media.spa
dc.relation.referencesNeukirch, J. (2013). Algebraic number theory (Vol. 322). Springer Science Business Media.spa
dc.relation.referencesNeukirch, J. (1986). Class field theory (Vol. 280). Berlin: Springer.spa
dc.relation.referencesOort, F. (1997). The algebraic fundamental group. LONDON MATHEMATICAL SO- CIETY LECTURE NOTE SERIES, 67-84.spa
dc.relation.referencesPoonen, B. (2017). Rational points on varieties (Vol. 186). American Mathematical Soc.spa
dc.relation.referencesPop, F. (1990). On the Galois theory of function fields of one variable over number fields. J. reine angew. Math, 406, 200-218.spa
dc.relation.referencesPop, F. (1994). On Grothendieck’s conjecture of birational anabelian geometry. Annals of Mathematics, 139(1), 145-182. Pop 4 Pop, F. (1997). Glimpses of Grothendieck’s anabelian geometry. London Mathematical Society Lecture Note Series, 113-126.spa
dc.relation.referencesPop, F. (2005). Anabelian Phenomena in Geometry and Arithmetic. Lecture Notes of the AWS.spa
dc.relation.referencesPop, F. (2010). On the birational p-adic section conjecture. Compositio Mathematica, 146(3), 621-637.spa
dc.relation.referencesSaidi, M. (2010). Good sections of arithmetic fundamental groups. arXiv preprint arXiv:1010.1313.spa
dc.relation.referencesSaidi, M. (2011). Around the Grothendieck anabelian section conjecture. Non-abelian Fundamental Groups and Iwasawa Theory, 393, 72.spa
dc.relation.referencesSzamuely, T. (2009). Galois groups and fundamental groups (Vol. 117). Cambridge University Press.spa
dc.relation.referencesSzamuely, T. (2012). Heidelberg lectures on fundamental groups. In The Arithmetic of Fundamental Groups (pp. 53-74). Springer, Berlin, Heidelberg.spa
dc.relation.referencesSchneps, L., Lochak, P. (Eds.). (1997). Geometric Galois actions: around Grothendieck’s esquisse d’un programme. Cambridge University Press.spa
dc.relation.referencesSerre, J. P. (2016). Topics in Galois theory. AK Peters/CRC Press.spa
dc.relation.referencesSilverman, J. H. (2009). The arithmetic of elliptic curves (Vol. 106). Springer Science Business Media.spa
dc.relation.referencesStix, J. (2011). The Brauer Manin obstruction for sections of the fundamental group. Journal of Pure and Applied Algebra, 215(6), 1371-1397.spa
dc.relation.referencesStix, J. (2012). Rational points and arithmetic of fundamental groups: Evidence for the section conjecture (Vol. 2054). Springer.spa
dc.relation.referencesTamagawa, A. (1997). The Grothendieck conjecture for a ne curves. Compositio Math- ematica, 109(2), 135-194.spa
dc.relation.referencesUchida, K. (1976). Isomorphisms of Galois groups. Journal of the Mathematical Society of Japan, 28(4), 617-620.spa
dc.relation.referencesUchida, K. (1977). Isomorphisms of Galois groups of algebraic function fields. Annals of Mathematics, 106(3), 589-598.spa
dc.relation.referencesUchida, K. (1981). Homomorphisms of Galois groups of solvably closed Galois exten- sions. Journal of the Mathematical Society of Japan, 33(4), 595-604.spa
dc.relation.referencesUchida, K. (1982). Galois groups of unramified solvable extensions. Tohoku Mathemat- ical Journal, Second Series, 34(2), 311-317.spa
dc.relation.referencesVoevodsky, V. A. (1991). Galois representations connected with hyperbolic curves. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 55(6), 1331-1342.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc510 - Matemáticasspa
dc.subject.lembGeometryeng
dc.subject.lembGeometríaspa
dc.subject.lembGalois theoryeng
dc.subject.lembTeoría de Galoisspa
dc.subject.lembNumbers, Theory ofeng
dc.subject.lembTeoría de los númerosspa
dc.subject.proposalAnabelian geometryeng
dc.subject.proposalSection conjectureeng
dc.subject.proposalGalois theoryeng
dc.subject.proposalFundamental groupseng
dc.subject.proposalArithmetic geometryeng
dc.subject.proposalConjetura de seccionesspa
dc.subject.proposalTeoría de Galoisspa
dc.subject.proposalGrupos fundamentalesspa
dc.subject.proposalGeometría anabelianaspa
dc.subject.proposalGeometría aritméticaspa
dc.titleOn the section conjecture in anabelian geometryeng
dc.title.translatedSobre la conjetura de secciones en geometría anabelianaspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1015463368.2020.pdf
Tamaño:
683.01 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: