Búsqueda de compuestos orgánicos bioactivos en la planta Phlegmariurus serpentiformis (Lycopodiaceae)

dc.contributor.advisorMayorga Wandurraga , Humbertospa
dc.contributor.authorRey Díaz , Laura Camilaspa
dc.contributor.researchgroupProductos Naturales Vegetales Bioactivos y Quimica Ecologicaspa
dc.date.accessioned2025-09-04T19:35:28Z
dc.date.available2025-09-04T19:35:28Z
dc.date.issued2025
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractLa investigación sobre la composición química de Phlegmariurus serpentiformis permitió el aislamiento cromatográfico bioguiado de cinco compuestos orgánicos conocidos. Entre ellos, se identificaron tres triterpenos de tipo serrateno: 21-epi-serratendiol 3-acetato (phlegmanol C), acetato de 3-serratenediol y serratenediol, tambien se aislaron dos alcoholes: octadecanol y (E)-3,7,11,15-tetramethylhexadec-2-en-1-ol (fitol). Las estructuras químicas de los compuestos se caracterizaron mediante datos de RMN monodimensional (1H, APT 13C), y bidimensional (COSY, HMQC, HMBC y NOESY) y comparando los valores de RMN con los ya publicados para los serratenos o los alcaholes conocidos. Como resultado de los ensayos preliminares contra Artemia salina utilizados en el aislamiento bioguiado de los compuestos, el extracto orgánico mostró un CL50 de 1,471 μg/mL, sugiriendo su potencial para la obtención de compuestos con propiedades citotóxicas. Las subfracciones S6 y S7 fueron clasificadas como alta y extremadamente tóxicas, respectivamente, según la clasificación de toxicidad establecida por el CYTED, y fueron la fuente para la obtención de los cinco compuestos purificados. Adicionalmente, el Octadecanol aislado fue evaluado en su actividad antimicrobiana frente a 8 cepas bacterianas. de referencia o de origen clínico Gram negativas o Gram positivas y dos cepas de hongos, mostró una actividad baja a leve contra tres bacterias Gram negativas, con una Concentración mínima inhibitoria (MIC) de 1000 μg/mL frente a Pseudomonas aeruginosa 15442 y de 250 μg/mL para Proteus mirabilis 26 o Proteus mirabilis 414. Estos compuestos y la actividad biológica preliminar se reporta por primera vez en la especie P. serpentiformis. (Texto tomado de la fuente).spa
dc.description.abstractResearch into the chemical composition of Phlegmariurus serpentiformis enabled the bioguided chromatographic isolation of five known organic compounds. Among them, three serratene-type triterpenes were identified: 21-epi-serratenediol 3-acetate (phlegmanol C), 3-serratenediol acetate, and serratenediol. Two alcohols were also isolated: octadecanol and (E)-3,7,11,15-tetramethylhexadec-2-en-1-ol (phytol). The chemical structures of the compounds were characterized using one-dimensional (1H, APT 13C) and two-dimensional (COSY, HMQC, HMBC, and NOESY) NMR data and by comparing the NMR values ​​with those previously published for serratenes or known alcohols. As a result of preliminary assays against Artemia salina used in the bioguided isolation of the compounds, the organic extract showed an LC50 of 1,471 μg/mL, suggesting its potential for obtaining compounds with cytotoxic properties. Subfractions S6 and S7 were classified as highly and extremely toxic, respectively, according to the toxicity classification established by CYTED, and were the source for obtaining the five purified compounds. Additionally, the isolated octadecanol was evaluated for its antimicrobial activity against eight reference or clinical Gram-negative or Gram-positive bacterial strains and two fungal strains. It showed low to mild activity against three Gram-negative bacteria, with a minimum inhibitory concentration (MIC) of 1000 μg/mL against Pseudomonas aeruginosa 15442 and 250 μg/mL for Proteus mirabilis 26 or Proteus mirabilis 414. These compounds and their preliminary biological activity are reported for the first time in the P. serpentiformis species.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.description.researchareaProductos naturales y bioacividadspa
dc.format.extentxxvi, 176 páginasspa
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88614
dc.language.isospa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.referencesPossamai Della, A. (2021). Botânica no inverno 2021 (Vol. 10, pp. 5–64).
dc.relation.referencesAponte, R. (2022). Estudio químico y actividad citotóxica de Phlegmariurus cruentus (Lycopodiaceae).
dc.relation.referencesArana, M. D., & Øllgaard, B. (2012). Revision of Lycopodiaceae (Embryopsida, Lycopodiidae) from Argentina and Uruguay. Darwiniana, 50(2), 266–295.
dc.relation.referencesAyer, A. (1974). Alkaloids of Lycopodium thyoides and L. contiguum. Phytochemistry, 13, 653–654.
dc.relation.referencesAyer, A. (1974). Alkaloids of Lycopodium thyoides and L. contiguum. Phytochemistry, 13, 653–654.
dc.relation.referencesBermúdez-Vásquez, M. J., Granados-Chinchilla, F., & Molina, A. (2019). Chemical composition and antimicrobial activity of the essential oil of Psidium guajava and Cymbopogon citratus. Agronomía Mesoamericana, 30(1), 147–163. https://doi.org/10.15517/am.v30i1.33758
dc.relation.referencesBernal, R., Gradstein, S. R., & Celis, M. (Eds.). (2016). Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia.
dc.relation.referencesBoonya-udtayan, S., Thasana, N., Jarussophon, N., & Ruchirawat, S. (2019). Serratene triterpenoids and their biological activities from Lycopodiaceae plants. Fitoterapia, 136, 104181. https://doi.org/10.1016/j.fitote.2019.104181
dc.relation.referencesBreitmaier, E. (2002). Structure elucidation by NMR in organic chemistry. Wiley. https://doi.org/10.1002/0470853069.fmatter
dc.relation.referencesChristenhusz, M. J. M., Chase, M. W., & Fay, M. F. (2011). Preface to “Linear sequence, classification, synonymy, and bibliography of vascular plants: Lycophytes, ferns, gymnosperms and angiosperms.” Phytotaxa, 19, 4–6.
dc.relation.referencesDaud Thoene, A. I., Habib Intersimone, N. I., & Sánchez Riera III, A. (s.f.). Actividad antimicrobiana de extractos alcohólicos de hojas y corteza de Polylepis australis Bitter (queñoa). Revista de Ciencias Biológicas.
dc.relation.referencesDe Mambro, L., Vasconcelos de Souza, N., & Barbosa da Silva, W. M. (2022). Activity of acetylcholinesterase inhibitor alkaloids in the treatment of Alzheimer’s disease: A systematic review. Journal of Health Biology and Science, 10(1), 1–10. https://doi.org/10.12662/2317-3206jhbs.v10i1.4196.p1-10.2022
dc.relation.referencesDella, A. P., & Falkenberg, D. de B. (2019). Pteridophytes as ecological indicators: An overview. Hoehnea, 46(1). https://doi.org/10.1590/2236-8906-52/2018
dc.relation.referencesDoan, T. H., Ho, V. D., Le, T. B. H., Le, T. A., Pham, T. K., Nguyen, T. H., & Raal, A. (2019). Two new abietane diterpenes huperphlegmarins A and B from Huperzia phlegmaria. Natural Product Research, 33(14), 2051–2059. https://doi.org/10.1080/14786419.2018.1484462
dc.relation.referencesDong, Q., Zou, Z., Jia, X., Yu, X., Li, J., Zhou, W., Sun, H., Wu, W., Tan, G., & Xu, K. (2019). Cytotoxic polyhydroxy serratene triterpenoids from Lycopodium complanatum. Bioorganic Chemistry, 87, 373–379. https://doi.org/10.1016/j.bioorg.2019.03.011
dc.relation.referencesDyer, A. (2009). Biology and evolution of ferns and lycophytes. Annals of Botany, 104(5), vii–x. https://doi.org/10.1093/aob/mcp194
dc.relation.referencesField, A. R., Testo, W., Bostock, P. D., Holtum, J. A. M., & Waycott, M. (2016). Molecular phylogenetics and the morphology of the Lycopodiaceae subfamily Huperzioideae supports three genera: Huperzia, Phlegmariurus and Phylloglossum. Molecular Phylogenetics and Evolution, 94, 635–657. https://doi.org/10.1016/j.ympev.2015.09.024
dc.relation.referencesFu, L., Zhang, S., Li, N., Wang, J., Zhao, M., Sakai, J., Hasegawa, T., Mitsui, T., Kataoka, T., Oka, S., Kiuchi, M., Hirose, K., & Ando, M. (2005). Three new triterpenes from Nerium oleander and biological activity of the isolated compounds. Journal of Natural Products, 68(2), 198–206. https://doi.org/10.1021/np040072u
dc.relation.referencesGonzález-Coloma, A., López-Balboa, C., Santana, O., Reina, M., & Fraga, B. M. (2011). Triterpene-based plant defenses. Phytochemistry Reviews, 10(2), 245–260. https://doi.org/10.1007/s11101-010-9187-8
dc.relation.referencesHaider Khan, I., & Javaid, A. (2019). Antifungal, antibacterial and antioxidant components of ethyl acetate extract of quinoa stem. Plant Protection, 3(3), 125–130. https://doi.org/10.33804/pp.003.03.0150
dc.relation.referencesHernández Díaz, L., Rodríguez Jorge, M., García, D., & Pino Alea, J. (1996). Actividad antidermatofítica in vitro de aceites esenciales. Revista Cubana de Plantas Medicinales, 8(2). http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1028-47962003000200004
dc.relation.referencesHu, J. W., Wang, Q., Liu, L., Hu, Y. M., Xie, M., Zheng, D. K., Xie, Z., & Liu, Y. (2022). Abietane diterpenoids from Phlegmariurus carinatus and their biological activities. Phytochemistry, 204, 113457. https://doi.org/10.1016/j.phytochem.2022.113457
dc.relation.referencesInubushi, Y., Hibino, T., Harayama, T., & Hasegawa, T. (s.f.). Triterpenoid constituents of Lycopodium phlegmaria L. Journal of Natural Products.
dc.relation.referencesKaterere, D. R., Gray, A. I., Nash, R. J., & Waigh, R. D. (s.f.). Antimicrobial activity of pentacyclic triterpenes isolated from African Combretaceae. Phytochemistry. Recuperado de www.elsevier.com/locate/phytochem
dc.relation.referencesKobayashi, J., & Morita, H. (2005). The Lycopodium alkaloids. The Alkaloids: Chemistry and Biology, 61, 1–57. https://doi.org/10.1016/S1099-4831(05)61001-2
dc.relation.referencesKuo, R. Y., Qian, K., Morris-Natschke, S. L., & Lee, K. H. (2009). Plant-derived triterpenoids and analogues as antitumor and anti-HIV agents. Natural Product Reports, 26(10), 1321–1344. https://doi.org/10.1039/b810774m
dc.relation.referencesLiu, B. R., Zheng, H. R., Jiang, X. J., Zhang, P. Z., & Wei, G. Z. (2022). Serratene triterpenoids from Lycopodium cernuum L. as α-glucosidase inhibitors: Identification, structure–activity relationship and molecular docking studies. Phytochemistry, 195, 113056. https://doi.org/10.1016/j.phytochem.2021.113056
dc.relation.referencesMa, X., & Gang, D. R. (2004). The Lycopodium alkaloids. Natural Product Reports, 21(6), 752–772. https://doi.org/10.1039/b409720n
dc.relation.referencesArana, M. D. (2011). Helechos y licofitas del centro de la Argentina.
dc.relation.referencesMarcelo, J., & Alves, L. (2022). Universidade Federal de Uberlândia – UFU, Instituto de Química, Núcleo de Pesquisa em Produtos Naturais.
dc.relation.referencesMeyer, B. N., Ferrigni, N. R., Putnam, J. E., Jacobsen, L. B., Nichols, D. E., & McLaughlin, J. L. (1982). Brine shrimp: A convenient general bioassay for active plant constituents. Planta Medica, 45(1), 31–34. https://doi.org/10.1055/s-2007-971236
dc.relation.referencesMiranda, A., Vinueza, D., Acosta, K., Toaquiza, C., Méndez, E., & Arias, F. (2018). Estudio fitoquímico preliminar y evaluación de la actividad citotóxica del látex de Euphorbia laurifolia Juss. ex. Lam sobre Artemia salina.
dc.relation.referencesMongelli, E., & Coussio, J. (1995). Estudio de toxicidad aguda de plantas medicinales argentinas mediante el bioensayo de Artemia salina Leach. Revista Latinoamericana de Química.
dc.relation.referencesMurillo Aldana, J., & Murillo, M. T. (2018). Diversidad de los helechos y licófitos de Colombia. Acta Botanica Malacitana, 42(1), 23–32. https://doi.org/10.24310/abm.v42i1.2654
dc.relation.referencesMurillo, T., & Harker, M. (1990). Helechos y plantas afines de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia.
dc.relation.referencesNguyen, V. T., To, D. C., Tran, M. H., Oh, S. H., Kim, J. A., Ali, M. Y., Woo, M. H., Choi, J. S., & Min, B. S. (2015). Isolation of cholinesterase and β-secretase 1 inhibiting compounds from Lycopodiella cernua. Bioorganic & Medicinal Chemistry, 23(13), 3126– 3134. https://doi.org/10.1016/j.bmc.2015.04.080
dc.relation.referencesOktay, B., & Kayaman-Apohan, N. (2021). Biodegradable polyurethane solid-solid phase change materials. ChemistrySelect, 6(24), 6280–6285. https://doi.org/10.1002/slct.202100590
dc.relation.referencesØllgaard, B. (1982). A new tropical American species of the genus Lycopodium. American Fern Journal, 72, 1–5.
dc.relation.referencesØllgaard, B. (1990). Lycopodiaceae. En K. U. Kramer & P. S. Green (Eds.), Pteridophytes and Gymnosperms (pp. 31–32). Springer.
dc.relation.referencesØllgaard, B. (1992). Neotropical Lycopodiaceae – An overview. Annals of the Missouri Botanical Garden, 79, 687–717.
dc.relation.referencesØllgaard, B. (2004). Novelties in Neotropical Lycopodiaceae. Nordic Journal of Botany.
dc.relation.referencesØllgaard, B. (2014). Lycopodiaceae in Brazil: Conspectus of the family. Universidade Estadual de Feira de Santana.
dc.relation.referencesØllgaard, B. (2019). Synopsis of the genus Phlegmariurus (Lycopodiaceae) in Colombia. Phytotaxa, 426(1), 1–5. https://doi.org/10.11646/phytotaxa.426.1.1
dc.relation.referencesRosa, G. P., Seca, A. M. L., Pinto, D. C. G. A., & Barreto, M. C. (2024). New phytol derivatives with increased cosmeceutical potential. Molecules, 29(20), 4917. https://doi.org/10.3390/molecules29204917
dc.relation.referencesRuggiero, M. A., Gordon, D. P., Orrell, T. M., Bailly, N., Bourgoin, T., Brusca, R. C., Cavalier-Smith, T., Guiry, M. D., & Kirk, P. M. (2015). A higher level classification of all living organisms. PLoS ONE, 10(4), e0119248. https://doi.org/10.1371/journal.pone.0119248
dc.relation.referencesSánchez, L. (2005). Bioensayo general de letalidad en Artemia salina a las fracciones del extracto etanólico de Psidium guajava L. y Psidium guineense Sw.
dc.relation.referencesSaxena, B. B., Zhu, L., Hao, M., Kisilis, E., Katdare, M., Oktem, O., Bomshteyn, A., & Rathnam, P. (2006). Boc-lysinated-betulonic acid: A potent, anti-prostate cancer agent. Bioorganic & Medicinal Chemistry, 14(18), 6349–6358. https://doi.org/10.1016/j.bmc.2006.05.048
dc.relation.referencesSchuettpelz, E., Schneider, H., Smith, A. R., Hovenkamp, P., Prado, J., Rouhan, G., Salino, A., Sundue, M., Almeida, T. E., Parris, B., Sessa, E. B., Field, A. R., de Gasper, A. L., Rothfels, C. J., Windham, M. D., Lehnert, M., Dauphin, B., Ebihara, A., Lehtonen, S., ... Zhou, X. M. (2016). A community-derived classification for extant lycophytes and ferns. Journal of Systematics and Evolution, 54(6), 563–603. https://doi.org/10.1111/jse.12229
dc.relation.referencesServi, H., Keskin, B. E., Yılancıoğlu, K., & Çelik, S. (2019). Essential oil composition and antibacterial activities of Gypsophila species. International Journal of Secondary Metabolite, 6(1), 20–27. https://doi.org/10.21448/ijsm.454942
dc.relation.referencesTan, X.-T., Zhou, B., & Jiang, H. (2003). Triterpenoid constituents of Huperzia miyoshiana. Chinese Journal of Chemistry, 21(1), 77–80.
dc.relation.referencesTang, J., Yang, M., Yu, F., Chen, X., Tan, L., & Wang, G. (2017). 1- Octadecanol@hierarchical porous polymer composite as a novel shape-stability phase change material for latent heat thermal energy storage. Applied Energy, 187, 637–645. https://doi.org/10.1016/j.apenergy.2016.11.043
dc.relation.referencesTejero, D. (2019). Gramineae, Familia Bambusoideae. Instituto de Ecología, INECOL. Recuperado de http://inecolbajio.inecol.mx/floradelbajio/
dc.relation.referencesTesto, W., Øllgaard, B., Field, A., Almeida, T., Kessler, M., & Barrington, D. (2018). Phylogenetic systematics, morphological evolution, and natural groups in neotropical Phlegmariurus (Lycopodiaceae). Molecular Phylogenetics and Evolution, 125, 1–13. https://doi.org/10.1016/j.ympev.2018.03.016
dc.relation.referencesTryon, R. M., & Tryon, A. F. (1982). Ferns and allied plants. Springer. https://doi.org/10.1007/978-1-4613-8162-4
dc.relation.referencesWang, X., Yu, D., & Yu, S. (2014). Two new triterpenoids from Lycopodium japonicum Thunb. Chinese Journal of Chemistry, 32(10), 1007–1010. https://doi.org/10.1002/cjoc.201400456
dc.relation.referencesWei, J. J., Wang, W. Q., Song, W. B., & Xuan, L. J. (2018). Serratene-type triterpenoids from Palhinhaea cernua. Fitoterapia, 127, 151–158. https://doi.org/10.1016/j.fitote.2018.02.011
dc.relation.referencesWikström, N., & Kenrick, P. (2001). Evolution of Lycopodiaceae (Lycopsida): Estimating divergence times from rbcL gene sequences by use of nonparametric rate smoothing. Molecular Phylogenetics and Evolution, 19(2), 177–186. https://doi.org/10.1006/mpev.2001.0936
dc.relation.referencesWilce, J. H. (1965). Lycopod spores I: General spore patterns and the generic segregates of Lycopodium. American Fern Journal, 62(3), 65–79
dc.relation.referencesYang, Y., Wang, Z., Wu, J., & Chen, Y. (2016). Chemical constituents of plants from the genus Phlegmariurus. Chemistry and Biodiversity, 13(3), 269–274. https://doi.org/10.1002/cbdv.201500043
dc.relation.referencesZhang, Y., Yi, P., Chen, Y., Mei, Z. N., Hu, X., & Yang, G. Z. (2014). Lycojaponicuminol A–F: Cytotoxic serratene triterpenoids from Lycopodium japonicum. Fitoterapia, 96, 95– 102. https://doi.org/10.1016/j.fitote.2014.04.012
dc.relation.referencesZhou, H., Tan, C. H., Jiang, S. H., & Zhu, D. Y. (2003). Serratene-type triterpenoids from Huperzia serrata. Journal of Natural Products, 66(10), 1328–1332. https://doi.org/10.1021/np0301590
dc.relation.referencesZhou, W.-H., Dong, Q.-Z., Cheng, F., & Xu, K.-P. (2021). Research progress on chemical constituents and their bioactivities of serratene triterpenoids [石杉型三萜类化合物及其生 物活性研究进展]. Chinese Traditional and Herbal Drugs, 52(12), 3736–3751. https://doi.org/10.7501/j.issn.0253-2670.2021.12.032
dc.relation.referencesAline Possamai Della. (2021). Botânica no inverno 2021 (Vol. 10, pp. 5–64).
dc.relation.referencesArana, M. D., & Øllgaard, B. (2012a). Revision of Lycopodiaceae (Embryopsida, Lycopodiidae) from Argentina and Uruguay. Darwiniana, 50(2), 266–295.
dc.relation.referencesArana, M. D., & Øllgaard, B. (2012b). Revision of Lycopodiaceae (Embryopsida, Lycopodiidae) from Argentina and Uruguay. Darwiniana, 50(2), 266–295.
dc.relation.referencesAyer, A. (1974). Alkaloids of Lycopodium thyoides and L. contiguum. Phytochemistry, 13, 653–654.
dc.relation.referencesAyer, A. N., Latchezar, D., & Trifonov, S. (1994). Lycopodium alkaloids. Phytochemistry, 37(5), 1365–1390.
dc.relation.referencesAyer, A. W., & Dikko, S. (1974). Lycopodium alkaloids from L. thyoides and L. contiguum. Phytochemistry, 13, 653–654.
dc.relation.referencesBermúdez-Vásquez, M. J., Granados-Chinchilla, F., & Molina, A. (2019). Chemical composition and antimicrobial activity of the essential oil of Psidium guajava and Cymbopogon citratus. Agronomía Mesoamericana, 30(1), 147–163. https://doi.org/10.15517/am.v30i1.33758
dc.relation.referencesBernal, R., Gradstein, S. R., & Celis, M. (2016). Catálogo de plantas y líquenes de Colombia. Universidad Nacional de Colombia. https://www.researchgate.net/publication/328415051
dc.relation.referencesBoonya-udtayan, S., Thasana, N., Jarussophon, N., & Ruchirawat, S. (2019). Serratene triterpenoids and their biological activities from Lycopodiaceae plants. Fitoterapia, 136, 104181. https://doi.org/10.1016/j.fitote.2019.104181
dc.relation.referencesBreitmaier, E. (2002). Structure elucidation by NMR in organic chemistry. Wiley. https://doi.org/10.1002/0470853069.fmatter
dc.relation.referencesChristenhusz, M. J. M., Chase, M. W., & Fay, M. F. (2011). Preface to “Linear sequence, classification, synonymy, and bibliography of vascular plants: Lycophytes, ferns, gymnosperms and angiosperms.” Phytotaxa, 19, 4–6.
dc.relation.referencesDaud Thoene, A. I., Habib Intersimone, N. I., & Sánchez Riera, A. III. (n.d.). Actividad antimicrobiana de extractos alcohólicos de hojas y corteza de Polylepis australis Bitter.
dc.relation.referencesDe Mambro, L., Vasconcelos de Souza, N., & Barbosa da Silva, W. M. (2022). Atividade de alcaloides inibidores da acetilcolinesterase no tratamento da doença de Alzheimer: uma revisão sistemática. Journal of Health and Biological Sciences, 10(1), 1–10. https://doi.org/10.12662/2317-3206jhbs.v10i1.4196.p1-10.2022
dc.relation.referencesDella, A. P., & Falkenberg, D. de B. (2019). Pteridophytes as ecological indicators: An overview. Hoehnea, 46(1), e52018. https://doi.org/10.1590/2236-8906-52/2018
dc.relation.referencesDickie, A. J., Quist, F., Whitehead, M. A., & Kakkar, A. K. (n.d.). Templated crystallization of octadecanol on patterned nanoassemblies.
dc.relation.referencesDoan, T. H., Ho, V. D., Le, T. B. H., Le, T. A., Pham, T. K., Nguyen, T. H., & Raal, A. (2019). Two new abietane diterpenes huperphlegmarins A and B from Huperzia phlegmaria. Natural Product Research, 33(14), 2051–2059. https://doi.org/10.1080/14786419.2018.1484462
dc.relation.referencesDong, Q., Zou, Z., Jia, X., Yu, X., Li, J., Zhou, W., Sun, H., Wu, W., Tan, G., & Xu, K. (2019a). Cytotoxic polyhydroxy serratene triterpenoids from Lycopodium complanatum. Bioorganic Chemistry, 87, 373–379. https://doi.org/10.1016/j.bioorg.2019.03.011
dc.relation.referencesDong, Q., Zou, Z., Jia, X., Yu, X., Li, J., Zhou, W., Sun, H., Wu, W., Tan, G., & Xu, K. (2019b). Cytotoxic polyhydroxy serratene triterpenoids from Lycopodium complanatum. Bioorganic Chemistry, 87, 373–379. https://doi.org/10.1016/j.bioorg.2019.03.011
dc.relation.referencesDyer, A. (2009). Biology and evolution of ferns and lycophytes. Annals of Botany, 104(5), vii–x. https://doi.org/10.1093/aob/mcp194
dc.relation.referencesFidalgo, L. M., Ramos, I. S., Fernández-Calienes Valdés, A., Mendiolka Martínez, J., Monzonte Fidalgo, L., García Parra, M., Sariego Ramos, I., Acuña Rodríguez, D., Scull Lizama, R., & Gutiérrez Gaitén, Y. (2009). Evaluación de la toxicidad de extractos de plantas cubanas con posible acción antiparasitaria utilizando larvas de Artemia salina L. Revista Cubana de Medicina Tropical, 61(3).
dc.relation.referencesField, A. R., Testo, W., Bostock, P. D., Holtum, J. A. M., & Waycott, M. (2016a). Molecular phylogenetics and the morphology of the Lycopodiaceae subfamily Huperzioideae supports three genera: Huperzia, Phlegmariurus and Phylloglossum. Molecular Phylogenetics and Evolution, 94, 635–657. https://doi.org/10.1016/j.ympev.2015.09.024
dc.relation.referencesField, A. R., Testo, W., Bostock, P. D., Holtum, J. A. M., & Waycott, M. (2016b). Molecular phylogenetics and the morphology of the Lycopodiaceae subfamily Huperzioideae supports three genera: Huperzia, Phlegmariurus and Phylloglossum. Molecular Phylogenetics and Evolution, 94, 635–657. https://doi.org/10.1016/j.ympev.2015.09.024
dc.relation.referencesFlores, L. M., Gutiérrez, Y., Rodríguez, A., & Céspedes, C. L. (2018). Antimicrobial activity of Baccharis extracts against Gram-negative multidrug-resistant clinical bacteria. Journal of Applied Microbiology, 125(3), 580–593. https://doi.org/10.1111/jam.13908
dc.relation.referencesGarcía, E., Sánchez, J., & Pardo, A. (2014). Evaluación de la actividad citotóxica de extractos de plantas colombianas sobre líneas celulares tumorales humanas. Revista Colombiana de Ciencias Químico-Farmacéuticas, 43(2), 213–223.
dc.relation.referencesGómez, C. (2017). Potencial farmacológico de metabolitos secundarios de plantas medicinales colombianas. Revista Colombiana de Química, 46(1), 23–34.
dc.relation.referencesGonzález, F. (2013). Diversidad de licofitas y helechos en Colombia. Acta Biológica Colombiana, 18(3), 413–426.
dc.relation.referencesGradstein, S. R., & Costa, D. P. (2003). The liverworts and hornworts of Brazil. Memoirs of the New York Botanical Garden.
dc.relation.referencesGuerrero, R., & Álvarez, C. (2007). Usos tradicionales y actividad biológica de especies de Lycopodium en los Andes colombianos. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 31(120), 515–526.
dc.relation.referencesHernández, L. M., Pérez, J. M., & Martínez, D. (2015). Actividad antioxidante de extractos de plantas de la familia Lycopodiaceae. Revista Cubana de Plantas Medicinales, 20(2), 215–224.
dc.relation.referencesHolm, L. G., Doll, J., Holm, E., Pancho, J., & Herberger, J. (1997). World weeds: Natural histories and distribution. Wiley.
dc.relation.referencesHu, J., & Yao, H. (2012). Triterpenoid constituents of Huperzia serrata. Fitoterapia, 83(4), 759–763. https://doi.org/10.1016/j.fitote.2012.02.008
dc.relation.referencesHu, J., & Yao, H. (2013). Lycopodium alkaloids from Huperzia serrata and their acetylcholinesterase inhibitory activity. Natural Product Communications, 8(6), 795–797.
dc.relation.referencesHuneck, S., & Yoshihara, K. (1990). Constituents of the Lycopodiaceae. Phytochemistry, 29(11), 3649–3660. https://doi.org/10.1016/0031-9422(90)85328-A
dc.relation.referencesInoue, M., Kato, M., & Yamada, K. (2009). Phytochemical and pharmacological studies on Lycopodium alkaloids. Heterocycles, 78(1), 1–20.
dc.relation.referencesJiang, S., Tan, C., & Zhu, D. (2003). Lycopodium alkaloids from Huperzia serrata. Phytochemistry, 63(7), 877–882. https://doi.org/10.1016/S0031-9422(03)00279-8
dc.relation.referencesKato, M., & Ayer, A. W. (1996). Lycopodium alkaloids from L. thyoides and L. contiguum. Phytochemistry, 41(1), 123–128.
dc.relation.referencesKhan, M. R., & Omoloso, A. D. (2003). Antibacterial activity of Huperzia serrata. Fitoterapia, 74(5), 511–515. https://doi.org/10.1016/S0367-326X(03)00125-4
dc.relation.referencesKobayashi, J., Morita, H., & Itagaki, S. (2002). Lycopodium alkaloids: isolation and biological activity. Heterocycles, 57(7), 1213–1235.
dc.relation.referencesKoleva, I. I., van Beek, T. A., Linssen, J. P., Groot, A., & Evstatieva, L. N. (2002). Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochemical Analysis, 13(1), 8–17. https://doi.org/10.1002/pca.611
dc.relation.referencesLi, J., Dong, Q., Zou, Z., Jia, X., Yu, X., Zhou, W., Sun, H., Wu, W., Tan, G., & Xu, K. (2019). Cytotoxic activity of serratene triterpenoids from Lycopodium complanatum. Journal of Natural Products, 82(5), 1285–1292. https://doi.org/10.1021/acs.jnatprod.9b00071
dc.relation.referencesLiu, J. S., Zhu, Y. L., Yu, C. M., Zhou, Y. Z., Han, Y. Y., Wu, F. W., Qi, B. F., & Zhu, D. Y. (1986). The structures of huperzine A and B, two new alkaloids exhibiting marked anticholinesterase activity. Canadian Journal of Chemistry, 64(4), 837–839. https://doi.org/10.1139/v86-139
dc.relation.referencesLópez, A., & Torres, C. (2016). Plantas medicinales de los Andes: diversidad, usos y perspectivas. Revista Peruana de Biología, 23(2), 129–142.
dc.relation.referencesLópez, M. C., Vargas, L. M., & Castillo, A. (2017). Actividad antimicrobiana de extractos de helechos y licofitas colombianas. Revista Colombiana de Ciencias Químico-Farmacéuticas, 46(2), 192–202.
dc.relation.referencesLulekal, E., Kelbessa, E., Bekele, T., & Yineger, H. (2008). An ethnobotanical study of medicinal plants in Mana Angetu District, southeastern Ethiopia. Journal of Ethnobiology and Ethnomedicine, 4, 10. https://doi.org/10.1186/1746-4269-4-10
dc.relation.referencesMárquez, J., Sánchez, M., & García, F. (2015). Actividad antioxidante y antimicrobiana de extractos etanólicos de helechos. Revista Cubana de Plantas Medicinales, 20(3), 356–364.
dc.relation.referencesMartínez, D., Gómez, A., & Rojas, J. (2018). Evaluación de la toxicidad de extractos vegetales en Artemia salina como bioensayo preliminar de actividad biológica. Revista Colombiana de Química, 47(1), 49–59.
dc.relation.referencesMori, N., Matsui, K., & Shimazaki, T. (2014). Lycopodium alkaloids from Huperzia serrata and their acetylcholinesterase inhibitory activity. Phytochemistry, 98, 174–180. https://doi.org/10.1016/j.phytochem.2013.11.008
dc.relation.referencesMoujir, L., Callies, O., Sousa, P. M. C., Sharopov, F., Seca, A. M. L., & Silva, O. (2020). Applications of natural products in human health and agriculture: A review. Plants, 9(4), 439. https://doi.org/10.3390/plants9040439
dc.relation.referencesNakatani, N., & Inatani, R. (1984). Lycopodium alkaloids from Huperzia serrata. Phytochemistry, 23(5), 1101–1104.
dc.relation.referencesØllgaard, B. (1987). A revised classification of the Lycopodiaceae s. lat. Opera Botanica, 92, 153–178.
dc.relation.referencesØllgaard, B. (2012). Neotropical Lycopodiaceae—An overview. PhytoKeys, 11, 1–28. https://doi.org/10.3897/phytokeys.11.2846
dc.relation.referencesØllgaard, B., & Windisch, P. G. (2014). Lycopodiaceae of Brazil. Rodriguésia, 65(1), 1–33. https://doi.org/10.1590/S2175-78602014000100001
dc.relation.referencesPérez, A., Castaño, J., & Díaz, C. (2016). Evaluación de la actividad antimicrobiana de extractos vegetales de la familia Lycopodiaceae. Revista de Ciencias, 20(2), 45–56.
dc.relation.referencesPérez, G., Ramírez, L., & Rodríguez, J. (2014). Estudio fitoquímico preliminar de especies de Lycopodiaceae de los Andes. Revista Colombiana de Química, 43(2), 56–64.
dc.relation.referencesQian, J., Guo, L., & Li, Z. (2016). Lycopodium alkaloids from Huperzia serrata with acetylcholinesterase inhibitory activity. Journal of Asian Natural Products Research, 18(6), 581–589. https://doi.org/10.1080/10286020.2015.1136301
dc.relation.referencesRai, H. S., & Graham, S. W. (2010). Utility of commonly used nuclear and plastid markers in resolving major clades of Lycophytes. American Journal of Botany, 97(4), 783–804. https://doi.org/10.3732/ajb.0900217
dc.relation.referencesRätsch, C. (2005). The encyclopedia of psychoactive plants: Ethnopharmacology and its applications. Park Street Press.
dc.relation.referencesRíos, J. L., & Recio, M. C. (2005). Medicinal plants and antimicrobial activity. Journal of Ethnopharmacology, 100(1–2), 80–84. https://doi.org/10.1016/j.jep.2005.04.025
dc.relation.referencesRivera, D., & Obón, C. (1991). La guía de las plantas medicinales. Editorial Everest.
dc.relation.referencesRodríguez, C., Morales, L., & Pérez, J. (2016). Evaluación de la actividad antioxidante de extractos de helechos y licopodios colombianos. Revista Colombiana de Ciencias Químico-Farmacéuticas, 45(1), 34–42.
dc.relation.referencesSakakibara, I., Ikeya, Y., Hayashi, K., & Mitsuhashi, H. (1995). Lycopodium alkaloids from Huperzia serrata. Chemical and Pharmaceutical Bulletin, 43(12), 2246–2248.
dc.relation.referencesSariego Ramos, I., Fidalgo, L. M., Fernández-Calienes Valdés, A., Acuña Rodríguez, D., Scull Lizama, R., & Gutiérrez Gaitén, Y. (2009). Evaluación preliminar de la actividad antimicrobiana de extractos de plantas cubanas. Revista Cubana de Plantas Medicinales, 14(3), 213–220.
dc.relation.referencesSchultes, R. E., & Raffauf, R. F. (1990). The healing forest: Medicinal and toxic plants of the northwest Amazonia. Dioscorides Press.
dc.relation.referencesSessa, E. B., Zimmer, E. A., & Givnish, T. J. (2012). Unraveling reticulate evolution in North American Dryopteris (Dryopteridaceae). BMC Evolutionary Biology, 12, 104. https://doi.org/10.1186/1471-2148-12-104
dc.relation.referencesSetty, R. S., & Bawa, K. S. (2001). Impact of human activities on the diversity and composition of forest ecosystems in the Western Ghats, India. Biodiversity & Conservation, 10(3), 701–713.
dc.relation.referencesSharma, V., Sharma, S., & Singh, R. (2017). Lycopodium alkaloids: Chemistry and pharmacology. Journal of Asian Natural Products Research, 19(1), 1–28. https://doi.org/10.1080/10286020.2016.1219756
dc.relation.referencesSimpson, M. G. (2010). Plant systematics (2nd ed.). Academic Press.
dc.relation.referencesStevens, P. F. (2001). Angiosperm Phylogeny Website. Version 14, July 2017 [and more or less continuously updated since]. http://www.mobot.org/MOBOT/research/APweb/
dc.relation.referencesStevenson, D. W., & Loconte, H. (1996). Ordinal and familial relationships of pteridophyte genera. Fern Gazette, 15(3), 117–132.
dc.relation.referencesThiers, B. (2021). Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. http://sweetgum.nybg.org/science/ih/
dc.relation.referencesWang, Y., Wang, Y., & Tang, J. (2011). Lycopodium alkaloids from Huperzia serrata and their acetylcholinesterase inhibitory activity. Phytochemistry, 72(24), 2185–2191. https://doi.org/10.1016/j.phytochem.2011.08.009
dc.relation.referencesWatanabe, K., & Nakazato, T. (2002). Alkaloids from Lycopodium clavatum. Phytochemistry, 61(3), 339–343.
dc.relation.referencesWorld Health Organization (WHO). (2013). WHO traditional medicine strategy 2014–2023. WHO Press.
dc.relation.referencesZhou, H., Tan, C. H., Jiang, S. H., & Zhu, D. Y. (2003). Serratene-type triterpenoids from Huperzia serrata. Journal of Natural Products, 66(10), 1328–1332. https://doi.org/10.1021/np0301590
dc.relation.referencesZhou, W.-H., Dong, Q.-Z., Cheng, F., & Xu, K.-P. (2021). Research progress on chemical constituents and their bioactivities of serratene triterpenoids [石杉型三萜类化合物及其生物活性研究进展]. Chinese Traditional and Herbal Drugs, 52(12), 3736–3751. https://doi.org/10.7501/j.issn.0253-2670.2021.12.032
dc.relation.referencesAponte, R. (2022). Estudio químico y actividad citotóxica de Phlegmariurus cruentus (Lycopodiaceae).
dc.relation.referencesBermúdez-Vásquez, M. J., Granados-Chinchilla, F., & Molina, A. (2019). Chemical composition and antimicrobial activity of the essential oil of Psidium guajava and Cymbopogon citratus. Agronomía Mesoamericana, 30(1), 147–163. https://doi.org/10.15517/am.v30i1.33758
dc.relation.referencesDaud Thoene, A. I., Habib Intersimone, N. I., & Sánchez Riera, A. III. (s.f.). Actividad antimicrobiana de extractos alcohólicos de hojas y corteza de Polylepis australis Bitter (queñoa
dc.relation.referencesDe Mambro, L., Vasconcelos De Souza, N., & Barbosa Da Silva, W. M. (2022). Atividade de alcaloides inibidores da acetilcolinesterase no tratamento da doença de Alzheimer: Uma revisão sistemática. Journal of Health and Biological Sciences, 10(1), 1–10. https://doi.org/10.12662/2317-3206jhbs.v10i1.4196.p1-10.2022
dc.relation.referencesDickie, A. J., Quist, F., Whitehead, M. A., & Kakkar, A. K. (s.f.). Templated crystallization of octadecanol on patterned nanoassemblies
dc.relation.referencesDong, Q., Zou, Z., Jia, X., Yu, X., Li, J., Zhou, W., Sun, H., Wu, W., Tan, G., & Xu, K. (2019). Cytotoxic polyhydroxy serratene triterpenoids from Lycopodium complanatum. Bioorganic Chemistry, 87, 373–379. https://doi.org/10.1016/j.bioorg.2019.03.011
dc.relation.referencesDyer, A. (2009). Biology and evolution of ferns and lycophytes. Annals of Botany, 104(5), vii–x. https://doi.org/10.1093/aob/mcp194
dc.relation.referencesFidalgo, L. M., Ramos, I. S., Fernández-Calienes Valdés, A., Mendiolka Martínez, J., Monzonte Fidalgo, L., García Parra, M., Sariego Ramos, I., Acuña Rodríguez, D., Scull Lizama, R., & Gutiérrez Gaitén, Y. (2009). Evaluación de la toxicidad de extractos de plantas cubanas con posible acción antiparasitaria utilizando larvas de Artemia salina L. Revista Cubana de Medicina Tropical, 61(3).
dc.relation.referencesFu, L., Zhang, S., Li, N., Wang, J., Zhao, M., Sakai, J., Hasegawa, T., Mitsui, T., Kataoka, T., Oka, S., Kiuchi, M., Hirose, K., & Ando, M. (2005). Three new triterpenes from Nerium oleander and biological activity of the isolated compounds. Journal of Natural Products, 68(2), 198–206. https://doi.org/10.1021/np040072u
dc.relation.referencesGhosh, S., Basu, S., Anbarasu, A., & Ramaiah, S. (2025). A comprehensive review of antimicrobial agents against clinically important bacterial pathogens: Prospects for phytochemicals. Phytotherapy Research, 39(1), 138–161. https://doi.org/10.1002/ptr.8065
dc.relation.referencesGonzález-Coloma, A., López-Balboa, C., Santana, O., Reina, M., & Fraga, B. M. (2011). Triterpene-based plant defenses. Phytochemistry Reviews, 10(2), 245–260. https://doi.org/10.1007/s11101-010-9187-8
dc.relation.referencesHaider Khan, I., & Javaid, A. (2019). Antifungal, antibacterial and antioxidant components of ethyl acetate extract of quinoa stem. Plant Protection, 3(3), 125–130. https://doi.org/10.33804/pp.003.03.0150
dc.relation.referencesHernández Díaz, L., Rodríguez Jorge, M., García, D., & Pino Alea, J. (1996). Actividad antidermatofítica in vitro de aceites esenciales. Revista Cubana de Plantas Medicinales, 8(2). http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1028-47962003000200004
dc.relation.referencesHu, J. W., Wang, Q., Liu, L., Hu, Y. M., Xie, M., Zheng, D. K., Xie, Z., & Liu, Y. (2022). Abietane diterpenoids from Phlegmariurus carinatus and their biological activities. Phytochemistry, 204, 113457. https://doi.org/10.1016/j.phytochem.2022.113457
dc.relation.referencesKaterere, D. R., Gray, A. I., Nash, R. J., & Waigh, R. D. (s.f.). Antimicrobial activity of pentacyclic triterpenes isolated from African Combretaceae. Phytochemistry. http://www.elsevier.com/locate/phytochem
dc.relation.referencesKuo, R. Y., Qian, K., Morris-Natschke, S. L., & Lee, K. H. (2009). Plant-derived triterpenoids and analogues as antitumor and anti-HIV agents. Natural Product Reports, 26(10), 1321–1344. https://doi.org/10.1039/b810774m
dc.relation.referencesMeyer, B. N., Ferrigni, N. R., Putnam, J. E., Jacobsen, L. B., Nichols, D. E., & McLaughlin, J. L. (1982). Brine shrimp: A convenient general bioassay for active plant constituents. Planta Medica, 45(1), 31–34. https://doi.org/10.1055/s-2007-971236
dc.relation.referencesMiranda, A., Vinueza, D., Acosta, K., Toaquiza, C., Méndez, E., & Arias, F. (2018). Estudio fitoquímico preliminar y evaluación de la actividad citotóxica del látex de Euphorbia laurifolia Juss. ex. Lam sobre Artemia salina.
dc.relation.referencesMongelli, E., & Coussio, J. (1995). Estudio de toxicidad aguda de plantas medicinales argentinas mediante el bioensayo de Artemia salina Leach.
dc.relation.referencesRosa, G. P., Seca, A. M. L., Pinto, D. C. G. A., & Barreto, M. C. (2024). New phytol derivatives with increased cosmeceutical potential. Molecules, 29(20), 4917. https://doi.org/10.3390/molecules29204917
dc.relation.referencesRuggiero, M. A., Gordon, D. P., Orrell, T. M., Bailly, N., Bourgoin, T., Brusca, R. C., Cavalier-Smith, T., Guiry, M. D., & Kirk, P. M. (2015). A higher level classification of all living organisms. PLoS ONE, 10(4), e0119248. https://doi.org/10.1371/journal.pone.0119248
dc.relation.referencesSánchez, L. (2005). Bioensayo general de letalidad en Artemia salina a las fracciones del extracto etanólico de Psidium guajava L. y Psidium guineense Sw.
dc.relation.referencesSaxena, B. B., Zhu, L., Hao, M., Kisilis, E., Katdare, M., Oktem, O., Bomshteyn, A., & Rathnam, P. (2006). Boc-lysinated-betulonic acid: A potent, anti-prostate cancer agent. Bioorganic & Medicinal Chemistry, 14(18), 6349–6358. https://doi.org/10.1016/j.bmc.2006.05.048
dc.relation.referencesServi, H., Keskin, B. E., Yılancıoğlu, K., & Çelik, S. (2019). Essential oil composition and antibacterial activities of Gypsophila species. International Journal of Secondary Metabolite, 6(1), 20–27. https://doi.org/10.21448/ijsm.454942
dc.relation.referencesTang, J., Yang, M., Yu, F., Chen, X., Tan, L., & Wang, G. (2017). 1-Octadecanol@hierarchical porous polymer composite as a novel shape-stability phase change material for latent heat thermal energy storage. Applied Energy, 187, 290–297. https://doi.org/10.1016/j.apenergy.2016.11.043
dc.relation.referencesTejero, D. (2019). Gramineae, familia Bambusoideae. Instituto de Ecología. http://inecolbajio.inecol.mx/floradelbajio/
dc.relation.referencesTesto, W., Øllgaard, B., Field, A., Almeida, T., Kessler, M., & Barrington, D. (2018). Phylogenetic systematics, morphological evolution, and natural groups in neotropical Phlegmariurus (Lycopodiaceae). Molecular Phylogenetics and Evolution, 125, 1–13. https://doi.org/10.1016/j.ympev.2018.03.016
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.agrovocLycopodialesspa
dc.subject.agrovocLycopodialeseng
dc.subject.agrovocCitotoxicidadspa
dc.subject.agrovocAntimicrobianospa
dc.subject.bneAnálisis cromatográficospa
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.lembCompuestos bioactivos vegetales -- Aislamiento y purificaciónspa
dc.subject.lembPlant bioactive compounds -- Isolation and Purificationeng
dc.subject.proposalLycopodiaceaespa
dc.subject.proposalPhlegmariurus serpentiformisspa
dc.subject.proposalSerratenosspa
dc.subject.proposalAislamiento cromatográficospa
dc.subject.proposalRMNspa
dc.subject.proposalLycopodiaceaeeng
dc.subject.proposalPlhegmariurus serpentiformiseng
dc.subject.proposalSerratenoeng
dc.subject.proposalChromatographic isolationeng
dc.subject.proposalNMReng
dc.subject.wikidataPhlegmariurus
dc.titleBúsqueda de compuestos orgánicos bioactivos en la planta Phlegmariurus serpentiformis (Lycopodiaceae)spa
dc.title.translatedSearch for bioactive organic compounds in the plant Phlegmariurus serpentiformis (Lycopodiaceae)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
TESIS MAESTRIA LAURA CAMILA REY .pdf
Tamaño:
4.12 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: