Evaluación de la sostenibilidad orientada a experimentos agrícolas asociados al suelo

dc.contributor.advisorHenao Toro, Martha Ceciliaspa
dc.contributor.authorMonsalve Camacho, Oscar Ivánspa
dc.date.accessioned2021-04-14T20:48:09Z
dc.date.available2021-04-14T20:48:09Z
dc.date.issued2021-02
dc.descriptionilustraciones, gráficas, tablasspa
dc.description.abstractA escala finca, región, país o planeta, existe un considerable número de instrumentos que evalúan cualitativa o cuantitativamente el nivel de sostenibilidad de los sistemas de producción agrícola. Las opciones se reducen si la evaluación se quiere realizar a nivel ultra detallado, donde el sistema productivo está a escala de parcela o unidad experimental; es decir, en investigación agrícola aplicada. En este contexto, es común que los mejores tratamientos sean identificados a través de las diferencias significativas que resulten del análisis estadístico de variables como rendimiento, pero no se definen desde la sostenibilidad del sistema de producción agrícola, conectando al ambiente, la sociedad y la economía como un todo. Por otra parte, muchos de los estudios de sostenibilidad agrícola se realizan sin tener en cuenta las características del suelo. Esto contrasta con el efecto directo y determinante que este recurso tiene sobre la agricultura. Además de la restricción de detalle geográfico y la escasa importancia que se le da al suelo, las actuales herramientas no abordan cuantitativamente la sostenibilidad a largo plazo. Teniendo en cuenta estas tres limitaciones, se diseñó, construyó y evaluó MSEAS (Metodología de Evaluación de la Sostenibilidad Orientada a Experimentos Agrícolas Asociados al Suelo), una herramienta de análisis de la sostenibilidad agrícola basada en indicadores, que reúne las tres dimensiones de la sostenibilidad: ambiental, social y económica, y a través de un índice cuantitativo mide el nivel actual o futuro de la sostenibilidad de los tratamientos evaluados en experimentos sobre manejo del suelo. MSEAS se construyó con cuatro características importantes: 1) adaptable a experimentos asociados a actividades de manejo del suelo con diversas características espaciales, temporales y de medición. 2) modulable: dependiendo de la cantidad y calidad de los datos, se tiene la opción de evaluar solo la sostenibilidad actual o la sostenibilidad actual y futura. 3) cuantificable: el nivel de sostenibilidad de los tratamientos se determina a través de un índice cuantitativo. 4) inferencial: es posible estimar un importante número de indicadores mediante herramientas de modelación y simulación, como LCA (Life Cicle Assessment) y DSSAT (Decision Support System for Agrotechnology Transfer). Antes de construir MSEAS, se plantearon cuatro documentos de línea base: 1) Revisión sobre indicadores de sostenibilidad agrícola asociados a propiedades, procesos y manejo del suelo 2) Evaluación de indicadores de calidad del suelo con posibilidad de uso a escala de parcela o unidad experimental 3) Esfuerzo de labor. Indicador para estimar la magnitud del esfuerzo físico en las labores agrícolas 4) Marco de selección del conjunto mínimo de indicadores para evaluaciones de sostenibilidad agrícola a escala de parcela. Estos trabajos sirvieron de línea base y sustento técnico para la puesta a punto de MSEAS, la cual se desarrolló a través de tres procesos: diseño, construcción y evaluación con datos simulados, uso en condiciones actuales y uso en escenarios futuros. Se utilizaron datos de experimentos reales (estudios de caso) para evaluar la metodología. La principal conclusión que se desprende de esta evaluación es que es viable el uso de MSEAS con experimentos agrícolas orientados al suelo, ya que se evidenció su capacidad para identificar los tratamientos ambiental, social y económicamente más sostenibles en los experimentos evaluados. (Texto tomado de la fuente).spa
dc.description.abstractAt the farm, region, country, or global scale, there are many instruments that qualitatively or quantitatively assess the level agricultural production systems sustainability. The options are reduced if the evaluation is to be carried out at the ultra-detailed level, where the production system is at the plot or experimental unit scale, i.e., in applied agricultural research. In this context, it is common for the best treatments to be identified through the significant differences resulting from the statistical analysis of variables such as yield. However, they are not defined from the sustainability of the agricultural production system, connecting the environment, society, and the economy. On the other hand, many agricultural sustainability studies are conducted without considering soil characteristics. This contrasts with the direct and determining effect that this resource has on agriculture. In addition to the restriction of geographic detail and the low importance given to soil, current tools do not quantitatively address long-term sustainability. With these three limitations in mind, MSEAS (Methodology for Sustainability Evaluation oriented to Soil Associated Agricultural Experiments), an indicator-based agricultural sustainability analysis tool, was designed, constructed, and evaluated. It brings together the three dimensions of sustainability: environmental, social, and economical, and through a quantitative index measures the current or future level of sustainability of the treatments evaluated in soil management experiments. MSEAS was constructed with four essential characteristics: 1) Adaptable to experiments associated with soil management activities with diverse spatial, temporal, and measurement characteristics. 2) Modular, since depending on the quantity and quality of the data, there is the option of evaluating only current sustainability or current and future sustainability. 3) Quantifiable: the level of sustainability of treatments is determined through a quantitative index. 4) Inferential, since it is possible to estimate many indicators using modeling and simulation tools, such as LCA (Life Cycle Assessment) and DSSAT (Decision Support System for Agrotechnology Transfer). Before building MSEAS, four baseline documents were proposed: 1) Review of agricultural sustainability indicators associated with soil properties, processes, and management 2) Evaluation of soil quality indicators with the possibility of use at plot or experimental unit scale 3) Labour effort. Indicator to estimate the magnitude of physical effort in agricultural work. 4) Framework for the selection of the minimum set of indicators for agricultural sustainability evaluations at the plot scale. These works served as a baseline and technical support for the development of MSEAS, which was developed through three processes: design, construction and evaluation with simulated data, use in current conditions, and future scenarios. Data from real experiments (case studies) were used to evaluate the methodology. The main conclusion drawn from this evaluation is that the use of MSEAS with soil-oriented agricultural experiments is feasible. Its ability to identify the most environmentally, socially, and economically sustainable treatments in the evaluated experiments was evidenced.eng
dc.description.curricularareaCiencias Agronómicasspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias Agrariasspa
dc.description.methodsSe realizó una revisión preliminar en Google Scholar y posteriormente se consultaron y descargaron las publicaciones de webs científicas. La búsqueda se realizó tratando de ligar los términos “suelo”, “agricultura” y “sostenibilidad”spa
dc.description.notesIncluye anexosspa
dc.description.researchareaSuelos y aguasspa
dc.format.extentxxii, 228 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79401
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentEscuela de posgradosspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Doctorado en Ciencias Agrariasspa
dc.relation.referencesAbbona, E.A., Sarandón, S.J., Marasas, M.E., Astier, M., 2007. Ecological sustainability evaluation of traditional management in different vineyard systems in Berisso, Argentina. Agric. Ecosyst. Environ. 119, 335–445. https://doi.org/10.1016/j.agee.2006.08.001spa
dc.relation.referencesAcar, M., Celik, I., Günal, H., 2018. Effects of long-term tillage systems on aggregate-associated organic carbon in the eastern Mediterranean region of Turkey. Eurasian Eurasian J Soil Sci. 7 (1) 51 - 58, http://doi.org/10.18393/ejss.335329spa
dc.relation.referencesActon, D.F., L.J. Gregorich., 1995. The health of our soils: Toward sustainable agriculture in Canada. Centre for Land and Biological Resources Research, Research Branch, Agriculture and Agri-Food Canada, Ottawa. Publication 1906/E, 138 p.spa
dc.relation.referencesAcuña, G. A. C. 2009. Formulación y evaluación financiera de proyectos de inversión con aplicaciones en Excel. Bogotá, Colombia: Universidad Nacional de Colombia. Facultad de Ciencias Económicas.spa
dc.relation.referencesAdavi, Z., Moradi, R., Saeidnejad, A.H., Tadayon, M.R., Mansouri, H., 2018. Assessment of potato response to climate change and adaptation strategies. Sci. Hortic. (Amsterdam). 228, 91–102. https://doi.org/10.1016/j.scienta.2017.10.017spa
dc.relation.referencesAdhikari, K., Hartemink, A.E., 2016. Linking soils to ecosystem services - A global review. Geoderma 262, 101–111. https://doi.org/10.1016/j.geoderma.2015.08.009spa
dc.relation.referencesAgronet - Colombian Ministry of Agriculture and Rural Development, 2017. Statistics for the Agricultural Sector. Available at: http://www.agronet.gov.co (accessed 20.02.20). Agronet- Colombian Ministry of Agriculture and Rural Development., 2019. Reporte: Área, Producción y Rendimiento Nacional por Cultivo (Papa). Ministerio de Agricultura y Desarrollo Rural, Colombia. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1. Accessed 19 Sept 2019spa
dc.relation.referencesAharonov-Nadborny, R., Tsechansky, L., Raviv, M., Graber, E.R., 2018. Mechanisms governing the leaching of soil metals as a result of disposal of olive mill wastewater on agricultural soils. Sci. Total Environ. 630, 1115–1123. https://doi.org/10.1016/j.scitotenv.2018.02.270spa
dc.relation.referencesAllahyari, M.S., Daghighi Masouleh, Z., Koundinya, V., 2016. Implementing Minkowski fuzzy screening, entropy, and aggregation methods for selecting agricultural sustainability indicators. Agroecol. Sustain. Food Syst. 40, 277–294. https://doi.org/10.1080/21683565.2015.1133467spa
dc.relation.referencesAltieri, M y Nicholls, C. 2008. Los impactos del cambio climático sobre las comunidades campesinas y de agricultores tradicionales y sus respuestas adaptativas. Agroecología. 3: 7–28. http://revistas.um.es/agroecologia/article/view/95471spa
dc.relation.referencesAltieri, M.A., 2018. Agroecology. The science of sustainable agriculture, 2nd ed. Taylor y Francis Group, United Kingdom.spa
dc.relation.referencesAmacher, M. C., O’Neil, K. P., Perry, C. H., 2007. Soil vital signs: A new Soil Quality Index (SQI) for assessing forest soil health. Res. Pap. RMRS-RP-65. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 12 p. https://doi.org/10.2737/RMRS-RP-65spa
dc.relation.referencesAndrews, S.S., Karlen, D.L., Cambardella, C.A., 2004. The Soil Management Assessment Framework. Soil Sci. Soc. Am. J. 68, 1945. https://doi.org/10.2136/sssaj2004.1945spa
dc.relation.referencesAndrews, S.S., Karlen, D.L., Mitchell, J.P., 2002. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agric. Ecosyst. Environ. 90, 25–45. https://doi.org/10.1016/S0167-8809(01)00174-8spa
dc.relation.referencesAntón, A., 2004. Utilización del análisis del ciclo de vida en la evaluación del impacto ambiental del cultivo bajo invernadero mediterráneo. Barcelona. Universitat Politècnica de Catalunya. PhD Thesis. http://tdx.cat/handle/10803/6827.spa
dc.relation.referencesAñez, B., Espinoza, W., 2006. Respuesta de la papa a la aplicación fraccionada de nitrógeno y potasio. Agric. Andin. 11, 28–38.spa
dc.relation.referencesArias, M.E., Gonzáles- Pérez, J.A., González-Vila, F.J., Ball, A.S., 2005. Soil health — a new challenge for microbiologists and. Int. Microbiol. 8, 13–21. https://doi.org/http://hdl.handle.net/10261/2130spa
dc.relation.referencesArizpe, N., Giampietro, M., Ramos-Martin, J., 2011. Food security and fossil energy dependence: An international comparison of the use of fossil energy in agriculture (1991-2003). CRC. Crit. Rev. Plant Sci. 30, 45–63. https://doi.org/10.1080/07352689.2011.554352spa
dc.relation.referencesAstier, M., Speelman, E.N., López-Ridaura, S., Masera, O.R., Gonzalez-Esquivel, C.E., 2011. Sustainability indicators, alternative strategies and trade-offs in peasant agroecosystems: Analysing 15 case studies from Latin America. Int. J. Agric. Sustain. 9, 409–422. https://doi.org/10.1080/14735903.2011.583481spa
dc.relation.referencesAudsley, E., Alber, S., Clift, R., Cowell, S., Crettaz, P., Gaillard, G., Hausheer, J., Jolliett, O., Kleijn, R., Mortensen, B., Pearce, D., Roger, E., Teulon, H., Weidema, B., Van Zeijts, H., 2003. Harmonisation of environmental life cycle assessment for agriculture, European Commission DG VI Agriculture. Retrieved from http://jurcom5.juris.de/bundesrecht/bbodschg/spa
dc.relation.referencesBaggs, E.M., 2011. Soil microbial sources of nitrous oxide: Recent advances in knowledge, emerging challenges and future direction. Curr. Opin. Environ. Sustain. 3, 321–327. https://doi.org/10.1016/j.cosust.2011.08.011spa
dc.relation.referencesBai, Z., Caspari, T., Gonzalez, M.R., Batjes, N.H., Mäder, P., Bünemann, E.K., de Goede, R., Brussaard, L., Xu, M., Ferreira, C.S.S., Reintam, E., Fan, H., Mihelič, R., Glavan, M., Tóth, Z., 2018. Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China. Agric. Ecosyst. Environ. 265, 1–7. https://doi.org/10.1016/j.agee.2018.05.028spa
dc.relation.referencesBailey, V. L., Bond-Lamberty, B., DeAngelis, K., Grandy, A. S., Hawkes, C. V., Heckman, K., Lajtha, K., Phillips, R. P., Sulman, B. N., Todd-Brown, K. E.O., Wallenstein, M. D., 2018. Soil carbon cycling proxies: Understanding their critical role in predicting climate change feedbacks. Global Change Biology, 24(3), 895–905. http://doi.org/10.1111/gcb.13926spa
dc.relation.referencesBalaguera-López, H., Álvarez-Herrera, J., Martínez-Arévalo, G., Balaguera, W., 2011. El contenido de arcilla del suelo influye en el rendimiento de un cultivo de tomate (Solanum lycopersicum L.). Rev. Colomb. Cienc. Hortic, 3(2), 199-209. https://doi.org/10.17584/rcch.2009v3i2.1213spa
dc.relation.referencesBarrera, L. 1998. Fertilización del cultivo de la papa en los departamentos de Cundinamarca y Boyacá. in: Guerrero, R (Ed), Fertilización de cultivos en clima frío. Monómeros Colombo Venezolanos S.A.spa
dc.relation.referencesBarto, E.K., Alt, F., Oelmann, Y., Wilcke, W., Rillig, M.C., 2010. Contributions of biotic and abiotic factors to soil aggregation across a land use gradient. Soil Biol. Biochem. 42, 2316–2324. https://doi.org/10.1016/j.soilbio.2010.09.008spa
dc.relation.referencesBattilani, A., Plauborg, F.L., Hansen, S., Dolezal, F., Mazurczyk, W., Bizik, J., 2008. Nitrogen uptake and nitrogen use efficiency of fertigated potatoes. Acta Hortic. 792, 61–67. https://doi.org/http://dx.doi.org/10.17660/ActaHortic.2008.792.4 10spa
dc.relation.referencesBaush, J.C., Bojórquez, L.T., Eakin, H., 2014. Agro-environmental sustainability assessment using multicriteria decision analysis and system analysis. Sustainable Science. 1–17. https://doi.org/10.1007/s11625-014-0243-yspa
dc.relation.referencesBélanger, V., Vanasse, A., Parent, D., Allard, G., y Pellerin, D., 2012. Development of agri-environmental indicators to assess dairy farm sustainability in Quebec, Eastern Canada. Ecological Indicators, 23, 421-430. http://doi.org/10.1016/j.ecolind.2012.04.027spa
dc.relation.referencesBell, S., Morse, S., 2008. Sustainability Indicators: Measuring the Immeasurable?, second ed. Earthscan.London.Sterling,VA. https://doi.org/10.1016/S0743-0167(99)00036-4spa
dc.relation.referencesBenoît, C., Norris, G.A., Valdivia, S., Ciroth, A., Moberg, A., Bos, U., Prakash, S., Ugaya, C., Beck, T., 2010. The guidelines for social life cycle assessment of products: Just in time! Int. J. Life Cycle Assess. 15, 156–163. https://doi.org/10.1007/s11367-009-0147-8spa
dc.relation.referencesBentrup, F., Küsters, J., Lammel, J., Kuhlmann, H. 2000. Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. Int. J. Life Cycle Assess. 5 (6): 349e357. https://doi.org/10.1007/BF02978670spa
dc.relation.referencesBergström, L. F., y Kirchmann, H. 2010. Leaching of Total Nitrogen from Nitrogen-15-Labeled Poultry Manure and Inorganic Nitrogen Fertilizer. Journal of Environment Quality, 28(4), 1283. https://doi.org/10.2134/jeq1999.00472425002800040032xspa
dc.relation.referencesBernard, E., Larkin, R.P., Tavantzis, S., Erich, M.S., Alyokhin, A., Sewell, G., Lannan, A., Gross, S.D., 2012. Compost, rapeseed rotation, and biocontrol agents significantly impact soil microbial communities in organic and conventional potato production systems. Appl. Soil Ecol. 52, 29–41. https://doi.org/10.1016/j.apsoil.2011.10.002spa
dc.relation.referencesBernard, F., Van Noordwijk, M., Luedeling, E., Villamor, G. B., Sileshi, G. W., Namirembe, S., 2014. Social actors and unsustainability of agriculture. Curr. Opin. Environ. Sustain. 6, 155–161, http://doi.org/10.1016/j.cosust.2014.01.002spa
dc.relation.referencesBeyer, L., Sieling, K., Pingpank, K., 1999. The impact of a low humus level in arable soils on microbial properties, soil organic matter quality and crop yield. Biol. Fertil. Soils 28, 156–161. https://doi.org/10.1007/s003740050478spa
dc.relation.referencesBinder, C.R., Feola, G., Steinberger, J.K., 2010. Considering the normative, systemic and procedural dimensions in indicator-based sustainability assessments in agriculture. Environ. Impact Assess. Rev. 30, 71–81. https://doi.org/10.1016/j.eiar.2009.06.002spa
dc.relation.referencesBlanco-Canqui, H., Lal, R., 2004. Mechanisms of carbon sequestration in soil aggregates. CRC. Crit. Rev. Plant Sci. 23, 481–504. https://doi.org/10.1080/07352680490886842spa
dc.relation.referencesBlum, W., 2005. Soils and climate change. Soils y Sediments. 5 (2): 67 – 68. https://doi.org/10.1065/jss2005.02.006spa
dc.relation.referencesBockstaller, C., Feschet, P., y Angevin, F., 2015. Issues in evaluating sustainability of farming systems with indicators. Oilseeds y Fats Crops and Lipids, 22(1), D102. http://doi.org/10.1051/ocl/2014052spa
dc.relation.referencesBockstaller, C., Guichard, L., Keichinger, O., Girardin, P., Galan, M. B., y Gaillard, G. 2009. Comparison of methods to assess the sustainability of agricultural systems. A review. Agronomy for Sustainable Development, 29, 223–235. http://doi.org/10.1051/agro:2008058spa
dc.relation.referencesBodirsky, B.L., Popp, A., Lotze-Campen, H., Dietrich, J.P., Rolinski, S., Weindl, I., Schmitz, C., Müller, C., Bonsch, M., Humpenöder, F., Biewald, A., Stevanovic, M., 2014. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 5. https://doi.org/10.1038/ncomms4858spa
dc.relation.referencesBoeckx, P., Van Cleemput, O., 2001. Estimates of N2Oand CH4 fluxes fromagricultural lands in various regions in Europe. Nutr. Cycl. agroecosystems 60, 35–47.spa
dc.relation.referencesBogotá trade chamber (CCB)., 2019. Steps to create company. In: www.ccb.org.co; (accessed 25.06.19).spa
dc.relation.referencesBojacá, C.R., A. Cooman y H. Ubaque. 2009. Ecofisiología del cultivo y manejo del clima. pp. 65–83. En: Escobar, H y Lee, R (Ed). Manual de producción de tomate bajo invernadero. Fundación Universidad Jorge Tadeo Lozano.spa
dc.relation.referencesBojacá, C.R., Wyckhuys, K.A.G., Schrevens, E., 2014. Life cycle assessment of Colombian greenhouse tomato production based on farmer-level survey data. J. Clean. Prod. 69, 26–33. https://doi.org/10.1016/j.jclepro.2014.01.078spa
dc.relation.referencesBone, J., Head, M., Barraclough, D., Archer, M., Scheib, C., Flight, D., Voulvoulis, N., 2010. Soil quality assessment under emerging regulatory requirements. Environ. Int. 36, 609–622. https://doi.org/10.1016/j.envint.2010.04.010spa
dc.relation.referencesBorg, G. (1990). Psychophysical scaling with applications in physical work and the perception of exertion. Scandinavian Journal of Work, Environment y Health, 16, 55-58. Recuperado de www.jstor.org/stable/40965845spa
dc.relation.referencesBorg, G. A. V. (1982). Psychophysical bases of perceived exertion. Medicine y Science in Sports y Exercise, 14(5), 377–381. https://doi.org/10.1249/00005768-198205000-00012spa
dc.relation.referencesBoshell, J. F., 2008. Elementos de análisis para el manejo de las amenazas del cambio climáticas en la agricultura colombiana. Revista de Innovación y Cambio tecnológico. 7: 38-50. http://documentacion.ideam.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=24511yshelfbrowse_itemnumber=25693spa
dc.relation.referencesBouma, J., Montanarella, L., Evanylo, G., 2019. The challenge for the soil science community to contribute to the implementation of the UN Sustainable Development Goals. Soil Use Manag. 35, 538–546. https://doi.org/10.1111/sum.12518spa
dc.relation.referencesBouwman, A.F., Van Der Hoek, K.W., Olivier, J.G.J., 1995. Uncertainties in the global source distribution of nitrous oxide. J. Geophys. Res. 100, 2785–2800. https://doi.org/10.1029/94JD02946spa
dc.relation.referencesBrentrup, F., Kusters, J., Lammel, J., Kuhlmann, H., 2000. Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. Int. J. Life Cycle Assess. 5, 349–357. https://doi.org/10.1006/bbrc.2000.4000spa
dc.relation.referencesBrouder, S. M., y Volenec, J. J., 2008. Impact of climate change on crop nutrient and water use efficiencies. Physiol Plant. 133: 705–724. https://doi.org/10.1111/j.1399-3054.2008.01136.xspa
dc.relation.referencesBrunett Pérez, L., González Esquivel, C., García Hernández, L.A., 2005. Evaluación de la sustentabilidad de dos agroecosistemas campesinos de producción de maíz y leche, utilizando indicadores. Livest. Res. Rural Dev. 17.spa
dc.relation.referencesBurger, J.A., Kelting, D.L., 1999. Using soil quality indicators to assess forest stand management. For. Ecol. Manage. 122, 155–166. https://doi.org/https://doi.org/10.1016/S0378-1127(99)00039-0spa
dc.relation.referencesBurton, D.L., Zebarth, B.J., Gillam, K.M., Macleod, J.A., 2008. Effect of split application of fertilizer nitrogen on N2O emissions from potatoes.spa
dc.relation.referencesCan. J. Soil Sci. 99, 117–125. https://doi.org/10.1139/cjss-2018-0150 Camargo, J.A., Alonso, Á., 2006. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ. Int. 32, 831–849. https://doi.org/10.1016/j.envint.2006.05.002spa
dc.relation.referencesCampbell, B.M., Thornton, P., Zougmoré, R., van Asten, P., Lipper, L., 2014. Sustainable intensification: What is its role in climate smart agriculture? Curr. Opin. Environ. Sustain. 8, 39–43. https://doi.org/10.1016/j.cosust.2014.07.002spa
dc.relation.referencesCano-Betancur, S, M., Gallego-Becerra, M., Chavarriaga-Montoya, W., 2011. Efecto de la aplicación de calcio y fósforo en un suelo ácido y la respuesta en el cultivo de tomate chonto (Solanum lycopersicum L. Mill). Agronomía 19 (1): 77-87. Retrieved of: http://agronomia.ucaldas.edu.co/downloads/Agronomia%2019(1)%20Completa.pdf#page=77spa
dc.relation.referencesCastellini, C., Boggia, A., Cortina, C., Dal Bosco, A., Paolotti, L., Novelli, E., y Mugnai, C., 2012. A multicriteria approach for measuring the sustainability of different poultry production systems. Journal of Cleaner Production, 37, 192-201. http://doi.org/10.1016/j.jclepro.2012.07.006spa
dc.relation.referencesCellura, M., Longo, S., Mistretta, M., 2012. Life Cycle Assessment (LCA) of protected crops: An Italian case study. J. Clean. Prod. 28, 56–62. https://doi.org/10.1016/j.jclepro.2011.10.021spa
dc.relation.referencesChen, Y., Camps-Arbestain, M., Shen, Q., Singh, B., Cayuela, M.L., 2018. The long-term role of organic amendments in building soil nutrient fertility: a meta-analysis and review. Nutr. Cycl. Agroecosystems 111, 103–125. https://doi.org/10.1007/s10705-017-9903-5spa
dc.relation.referencesCherubin, M.R., Karlen, D.L., Cerri, C.E.P., Franco, A.L.C., Tormena, C.A., Davies, C.A., Cerri, C.C., 2016a. Soil quality indexing strategies for evaluating sugarcane expansion in Brazil. PLoS One 11, 1–26. https://doi.org/10.1371/journal.pone.0150860spa
dc.relation.referencesCherubin, M.R., Karlen, D.L., Franco, A.L.C., Cerri, C.E.P., Tormena, C.A., Cerri, C.C., 2016b. A soil management assessment framework (SMAF) evaluation of brazilian sugarcane expansion on soil quality. Soil Sci. Soc. Am. J. 80, 215–226. https://doi.org/10.2136/sssaj2015.09.0328spa
dc.relation.referencesChong, I.G., Jun, C.H., 2005. Performance of some variable selection methods when multicollinearity is present. Chemom. Intell. Lab. Syst. 78, 103–112. https://doi.org/10.1016/j.chemolab.2004.12.011spa
dc.relation.referencesCiais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Quéré, C. L., Myneni, R. B, Piao, S., Thornton, P., 2013. Carbon and other biogeochemical cycles, in: Stocker, T.F., Qin. D., Plattner, G-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M. (Eds.), Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Chapter 6. Cambridge University Press, pp 465–570.spa
dc.relation.referencesClarke, L., Edmonds, J., Jacoby, H., Pitcher, H., Reilly, J., Richels, R., 2007. Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations. Sub-report 2.1A of Synthesis and Assessment Product 2.1 by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. Department of Energy, Office of Biological y Environmental Research, Washington, 7 DC., USA, 154 pp.spa
dc.relation.referencesCordell, D., Drangert, J.O., White, S., 2009. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 19, 292–305. https://doi.org/10.1016/j.gloenvcha.2008.10.009spa
dc.relation.referencesDaccache, A., Keay, C., Jones, R.J.A., Waterhead, E.K., Stalhman, M.A., Knox, J.W., 2012. Climate change and land suitability for potato production in England and Wales: impacts and adaptation. J. Agric. Sci. 150, 161–177. https://doi.org/10.1017/S0021859611000839spa
dc.relation.referencesDane, J.H., Hopmans, J.H., 2002. Water retention and storage. In: Dane, J.H., Topp, G.C (Editors). Methods of soil analysis Part 4, SSSA Book Ser 5. Madison, WI.: SSSA. pp. 671–717.spa
dc.relation.referencesDantsis, T., Douma, C., Giourga, C., Loumou, A., Polychronaki, E.A., 2010. A methodological approach to assess and compare the sustainability level of agricultural plant production systems. Ecol. Indic. 10, 256–263. https://doi.org/10.1016/j.ecolind.2009.05.007spa
dc.relation.referencesDavidson, E.A., Janssens, I.A., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. Reviews. 440 (9): 165-173. https://doi.org/10.1038/nature04514spa
dc.relation.referencesDe Jager, a., Onduru, D., van Wijk, M.S., Vlaming, J., Gachini, G.N., 2001. Assessing sustainability of low-external-input farm management systems with the nutrient monitoring approach: a case study in Kenya. Agric. Syst. 69, 99–118. https://doi.org/10.1016/S0308-521X(01)00020-8spa
dc.relation.referencesDe Jong, S., 1993. SIMPLS: an alternative approach to partial least squares regression. Chemom. Intell. Lab. Syst. 18, 251–263. https://doi.org/10.1016/0169-7439(93)85002-Xspa
dc.relation.referencesDe La Rosa, D., Mayol, F., Diaz-Pereira, E., Fernandez, M., 2004. A land evaluation decision support system (MicroLEIS DSS) for agricultural soil protection: With Special reference to the Mediterranean region. Environmental Modelling y Software. 19(10): 929-942spa
dc.relation.referencesDe Luca, A.I., Falcone, G., Stillitano, T., Iofrida, N., Strano, A., Gulisano, G., 2018. Evaluation of sustainable innovations in olive growing systems: A Life Cycle Sustainability Assessment case study in southern Italy. J. Clean. Prod. 171, 1187–1202. https://doi.org/10.1016/j.jclepro.2017.10.119spa
dc.relation.referencesDe Luca, A.I., Iofrida, N., Leskinen, P., Stillitano, T., Falcone, G., Strano, A., Gulisano, G., 2017. Life cycle tools combined with multi-criteria and participatory methods for agricultural sustainability: Insights from a systematic and critical review. Sci. Total Environ. 595, 352–370. https://doi.org/10.1016/j.scitotenv.2017.03.284spa
dc.relation.referencesDe Luca, A.I., Molari, G., Seddaiu, G., Toscano, A., Bombino, G., Ledda, L., Milani, M., Vittuari, M., 2015. Multidisciplinary and innovative methodologies for sustainable management in agricultural systems. Environ. Eng. Manag. J. 14 (7):1–11 Retrieved from: http://omicron.ch.tuiasi.ro/EEMJ/pdfs/vol14/no7/11_1052_De_Luca_14.pdf.spa
dc.relation.referencesDe Luca, A.I., Molari, G., Seddaiu, G., Toscano, A., Bombino, G., Ledda, L., Milani, M., Vittuari, M., 2015. Multidisciplinary and Innovative Methodologies for Sustainable Management in Agricultural Systems: the Mimesmas Project. Environ. Eng. Manag. J. 14, 1571–1581.spa
dc.relation.referencesDe Olde, E. M., Oudshoorn, F., Bokkers, E., Stubsgaard, A., Sørensen, C., y de Boer, I., 2016a. Assessing the Sustainability Performance of Organic Farms in Denmark. Sustainability, 8(9), 957. http://doi.org/10.3390/su8090957spa
dc.relation.referencesDe Olde, E., Moller, H., Marchand, F., McDowell, R.W., MacLeod, C.J., Sautier, M., Halloy, S., Barber, A., Benge, J., Bockstaller, C., Bokkers, E.A.M., De Boer, I.J.M., Legun, K.A., Le Quellec, I., Merfield, C., Oudshoorn, F.W., Reid, J., Shader, C., Szymanski, E., Sorensen, C.A.G., Whitehead, J., Manhire, J., 2016b. When experts disagree: the need to rethink indicator selection for assessing sustainability of agriculture. Environ. Dev. Sustain. 1–16. https://doi.org/10.1007/s10668-016-9803-xspa
dc.relation.referencesDe Olde, E.M., Oudshoorn, F.W., Sørensen, C.A.G., Bokkers, E.A.M., De Boer, I.J.M., 2016c. Assessing sustainability at farm-level: Lessons learned from a comparison of tools in practice. Ecol. Indic. 66, 391–404. https://doi.org/10.1016/j.ecolind.2016.01.047spa
dc.relation.referencesDe Paul Obade, V., Lal, R., 2016. A standardized soil quality index for diverse field conditions. Sci. Total Environ. 541, 424–434. https://doi.org/10.1016/j.scitotenv.2015.09.096spa
dc.relation.referencesDempster, D.N., Jones, D.L., Murphy, D. V., 2012. Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil. Soil Res. 50, 216–221. https://doi.org/10.1071/SR11316spa
dc.relation.referencesDepartamento Administrativo Nacional de Estadística (DANE)., 2017. El cultivo de la papa (Solanum tuberosum L.) y un estudio de caso de los costos de producción de papa Pastusa Suprema. Insumos y factores asociados a la producción agropecuaria. Boletín mensual No 15. Recuperado de https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/Bol_Insumos_ene_2017.pdfspa
dc.relation.referencesDeytieux, V., Munier-Jolain, N., Caneill, J., 2016. Assessing the sustainability of cropping systems in single- and multi-site studies. A review of methods. European Journal of Agronomy, 72, 107–126. http://doi.org/10.1016/j.eja.2015.10.005 Dirección de Impuestos y Aduanas Nacionales (DIAN)., 2019. Estatuto tributario. www.dian.gov.co; consulta: junio de 2019.spa
dc.relation.referencesDizdaroglu, D., y Yigitcanlar, T., 2014. A parcel-scale assessment tool to measure sustainability through urban ecosystem components: The MUSIX model. Ecological Indicators, 41, 115-130. http://doi.org/10.1016/j.ecolind.2014.01.037spa
dc.relation.referencesDong, F., Mitchell, P. D., y Colquhoun, J. 2015. Measuring farm sustainability using data envelope analysis with principal components: The case of Wisconsin cranberry. Journal of Environmental Management, 147, 175–183. http://doi.org/10.1016/j.jenvman.2014.08.025spa
dc.relation.referencesDoran, J. W., Zeiss, M. R., 2000. Soil health and sustainability: managing the biotic component of soil quality. Life Sci. 62(16), 1433–1441. https://doi.org/10.1016/S0024-3205(98)00082-4spa
dc.relation.referencesDoran, J.W., Parkin, T.B., 1994. Defining an assesing soil quality, in: Doran, J.W. (Ed.), Defining Soil Quality for a Sustainable Environment. Soil Science Society of America, Madison, USA, pp. 3–21.spa
dc.relation.referencesDrechsel, P., Heffer, P., Magen, H., Mikkelsen, R., Singh, H., Wichelns, D., 2015. Managing water and nutrients to ensure global food security, while sustaining ecosystem services, in: Drechsel, P., Heffer, P., Magen, H., Mikkelsen, R., Wichelns, D (Eds), Managing Water and Fertilizer for Sustainable Agricultural Intensification. International Fertilizer Industry Association (IFA), International Water Management Institute (IWMI), International Plant Nutrition Institute (IPNI), and International Potash Institute (IPI). First edition, Paris, France, pp 1-8spa
dc.relation.referencesDzotsi, K.A., Jones, J.W., Adiku, S.G.K., Naab, J.B., Singh, U., Porter, C.H., Gijsman, A.J., 2010. Modeling soil and plant phosphorus within DSSAT. Ecol. Modell. 221, 2839–2849. https://doi.org/10.1016/j.ecolmodel.2010.08.023spa
dc.relation.referencesEcoinvent Centre. 2017. Ecoinvent Data V. 2.0. Version 3.4. Swiss centre for life cycle inventories. Available from: http://www.ecoinvent.org.spa
dc.relation.referencesElkington, J., 1997. Cannibals With Forks. The Triple Bottom Line of 21st Century Business. Capstone Publishing, Oxford.spa
dc.relation.referencesElkington, J., 1998. Partnerships from cannibals with forks: The triple bottom line of 21st-century business. Environ. Qual. Manag. 8, 37–51. https://doi.org/10.1002/tqem.3310080106spa
dc.relation.referencesEngels, C., Kirkby, E., White, P., 2012. Mineral nutrition, yield and source–sink relationships, in: Marschner, P (Ed), Mineral nutrition of higher plants. Third edition. Elsevier. P: 347-368spa
dc.relation.referencesEuropean Comission., 2001. A Framework for Indicators for the Economic and Social Dimensions of Sustainable Agriculture and Rural Development. https://doi.org/10.1021/jacs.6b12944spa
dc.relation.referencesFAO (Food and Agriculture Organization of the United Nations)., 2009. International year of the potato 2008: new light on a hidden treasure. http://www.potato2008.org/en/events/book.htmlspa
dc.relation.referencesFAOSTAT., 2019. World potato production quantity, yields and harvested areas for 2017. http://www.fao.org/faostat/en/#data/QC. Accessed 19 Sept 2019spa
dc.relation.referencesFarahani, E., Emami, H., Keller, T., 2018. Impact of monovalent cations on soil structure. Part II. Results of two Swiss soils. Int. Agrophysics 32, 69–80. https://doi.org/10.1515/intag-2016-0092spa
dc.relation.referencesFederación colombiana de productores de papa (Fedepapa); Ministerio de Ambiente, Vivienda y Desarrollo Territorial (Minambiente)., 2004. Guía ambiental para el cultivo de la papa. Federación Colombiana de Productores de Papaspa
dc.relation.referencesFernandes, J. C., Gamero, C. A., Rodrigues, J. G. L., Mirás-Avalos, J, M., 2011. Determination of the quality index of a Paleudult under sunflower culture and different management systems. Soil and Tillage Research 112: 167–174. https://doi.org/10.1016/j.still.2011.01.001 Filzmoser, P y Gschwandtner, M. 2017. Mvoutlier: Multivariate outlier detection based on robust methods. R package version 2.0.8. https://CRAN.R-project.org/package=mvoutlierspa
dc.relation.referencesFinkbeiner, M., Schau, E. M., Lehmann, A., y Traverso, M., 2010. Towards life cycle sustainability assessment. Sustainability. 2(10), 3309-3322. http://doi.org/10.3390/su2103309spa
dc.relation.referencesFleisher, D.H., Barnaby, J., Sicher, R., Resop, J.P., Timlin, D.J., Reddy, V.R., 2013. Effects of elevated CO2 and cyclic drought on potato under varying radiation regimes. Agric. For. Meteorol. 171–172, 270–280. https://doi.org/10.1016/j.agrformet.2012.12.011spa
dc.relation.referencesFleisher, D.H., Timlin, D.J., Reddy, V.R., 2008. Interactive effects of carbon dioxide and water stress on potato canopy growth and development. Agron. J. 100, 711–719. https://doi.org/10.2134/agronj2007.0188spa
dc.relation.referencesFoley J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connel, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D., Zaks, D. P. M., 2011. Solutions for a cultivated planet. Nature, 478, 337–342, http://doi.org/10.1038/nature10452spa
dc.relation.referencesFood and Agriculture Organization (FAO)., 2011. The State of the World’s Land and Water Resources for Food and Agriculture. Managing Systems at Risk. Lancet, 2(7929), 285, http://doi.org/10.4324/9780203142837spa
dc.relation.referencesFood and Agriculture Organization (FAO)., 2013. Sustainability Assessment Of Food and Agriculture Systems. Guidelines Version 3.0. Retrieved from http://www.fao.org/nr/sustainability/sustainability-assessments-safa/en/spa
dc.relation.referencesFood and Agriculture Organization of the United Nations (FAO). AquaCrop training handbooks. Book I. Anderstanding AquaCrop. FAO. P: 59.spa
dc.relation.referencesForero, H. D., y Garzón, M. E. 2000. Validación del modelo de simulación del crecimiento “Substor-potato V. 35” para cuatro variedades mejoradas de papa (Solanum tuberosum ssp. andígena) bajo condiciones de cultivo comercial. Tesis de pregrado. Universidad Nacional de Colombia. Facultad de Ciencias Agrarias. Bogotá., Colombia. https://repository.agrosavia.co/handle/20.500.12324/16894spa
dc.relation.referencesFreudenberg, M., 2003. Composite indicators of country performance: a critical assessment. OECD Sci. Technol. Ind. Work. Pap. 16, 35. https://doi.org/10.1787/405566708255spa
dc.relation.referencesGalloway, J.N., Aer, J.D., Erisman, J.W., Seitzinger, S.P., Howarth, R.W., Cowling, E.B., Cosby, B.J., 2003. The Nitrogen Cascade. Bioscience 53, 341. https://doi.org/10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2spa
dc.relation.referencesGarrigues, E., Corson, M.S., Angers, D.A., Van Der Werf, H.M.G., Walter, C., 2012. Soil quality in Life Cycle Assessment: Towards development of an indicator. Ecol. Indic. 18, 434–442. https://doi.org/10.1016/j.ecolind.2011.12.014spa
dc.relation.referencesGasparatos, A., 2010. Embedded value systems in sustainability assessment tools and their implications. Journal of Environmental Management, 91(8), 1613–1622. https://doi:10.1016/j.jenvman.2010.03.014spa
dc.relation.referencesGattinger, A., Muller, A., Haeni, M., Skinner, C., Fliessbach, A., Buchmann, N., Mader, P., Stolze, M., Smith, P., Scialabba, N.E.-H., Niggli, U., 2012. Enhanced top soil carbon stocks under organic farming. Proc. Natl. Acad. Sci. 109, 18226–18231. https://doi.org/10.1073/pnas.1209429109spa
dc.relation.referencesGaudino, S., Goia, I., Borreani, G., Tabacco, E., Sacco, D., 2014. Cropping system intensification grading using an agro-environmental indicator set in northern Italy. Ecol. Indic. 40, 76–89. https://doi.org/10.1016/j.ecolind.2014.01.004spa
dc.relation.referencesGavrilov, I., Pusev, R., 2014. Normtest: Tests for normality. R package version 1.1. https://CRAN.R-project.org/package=normtestspa
dc.relation.referencesGerdessen, J.C., Pascucci, S., 2013. Data envelopment analysis of sustainability indicators of european agricultural systems at regional level. Agric. Syst. 118, 78–90. https://doi.org/10.1016/j.agsy.2013.03.004spa
dc.relation.referencesGerik, T., Williams, J., Dagitz, S., Magre, M., Meinardus, A., Steglich, E., Taylor, R., 2015. Environmental Policy Integrated Climate. Texas AyM Agri Life, United States. P: 102spa
dc.relation.referencesGerrard, C., Smith, L.G., Pearce, B., Padel, S., Hitchings, R., y Measures, M., 2012. Public Goods and Farming. En: Lichtfouse, E. 2012. Farming for Food and Water Security. Sustainable agriculture reviews (Vol. 5). Springer. http://doi.org/10.1016/S1573-4285(04)80400-9spa
dc.relation.referencesGhisellini, P., Zucaro, A., Viglia, S., Ulgiati, S., 2014. Monitoring and evaluating the sustainability of Italian agricultural system. An emergy decomposition analysis. Ecol. Modell. 271, 132–148. https://doi.org/10.1016/j.ecolmodel.2013.02.014spa
dc.relation.referencesGiampietro, M., Aspinall, R. J., Ramos-Martin, J., y Bukkens, S. G. F. 2014. Resource accounting for sustainability assessment. The nexus between energy, food, water and land use (1st ed.). London and New York: Routledge. Taylor and Francis Group. Recuperado de: https://www.routledge.com/Resource-Accounting-for-Sustainability-Assessment-The-Nexus-between-Energy/Giampietro-Aspinall-Ramos-Martin-Bukkens/p/book/9780415720595spa
dc.relation.referencesGiles, J., 2005. Nitrogen study fertilizes fears of pollution. Nature 433, 791. https://doi.org/10.1038/433791aspa
dc.relation.referencesGlobal Strategy (GSARS)., 2014. Handbook on Agricultural Cost of Production Statistics. Technical report series. Improving agricultural y rural statistics. DRAFT Guidelines for Data Collection, Compilation Glover, J.D., Reganold, J.P., Andrews, P.K., 2000. Systematic method for rating soil quality of conventional, organic, and integrated apple orchards in Washington State. Agric. Ecosyst. Environ. 80, 29–45. https://doi.org/10.1016/S0167-8809(00)00131-6spa
dc.relation.referencesGodfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M., Toulmin, C., 2010. Food security: The challenge of feeding 9 billion people. Science. 327, 812–818. https://doi.org/10.1126/science.1185383spa
dc.relation.referencesGodwin, D. C., Singh, U., 1998. Nitrogen balance and crop response to nitrogen in upland and lowland cropping systems, in: Tsuji, G. Y., Hoogenboom, G., Thornton, P. K (Eds), Understanding options for agricultural production. Kluwer Academic Publ., Dordrecht, the Netherlands. p. 55–78. https://doi.org/10.1007/978-94-017-3624-4_4spa
dc.relation.referencesGómez, H. L. 1997. Estadística experimental aplicada a las ciencias agrícolas. Universidad Nacional de Colombia.spa
dc.relation.referencesGómez, L. J. A., y Arriaza, B. M. 2011. La construcción de indicadores sintéticos de sostenibilidad agrícola. En: Evaluación de la sostenibilidad de las explotaciones de olivar en Andalucía. Premios agrarios Unicaja.spa
dc.relation.referencesGómez, L. J. A., y Riesgo, L., 2009. Alternative approaches to the construction of a composite indicator of agricultural sustainability: An application to irrigated agriculture in the Duero basin in Spain. Journal of Environmental Management, 90(11), 3345-3362. http://doi.org/10.1016/j.jenvman.2009.05.023spa
dc.relation.referencesGómez, L. J. A., y Sanchez, F. G., 2010. Empirical evaluation of agricultural sustainability using composite indicators. Ecological Economics, 69(5), 1062–1075. http://doi.org/10.1016/j.ecolecon.2009.11.027spa
dc.relation.referencesGómez-Limón, J.A., Arriaza, B.M., 2011. Evaluación de la sostenibilidad de las explotaciones de olivar en Andalucía, premios agrarios Unicaja. Gómez-Macpherson, H., Gómez, J.A., Orgaz, F., Villalobos, F.J., Fereres, E. 2016. Soil conservation. In: Villalobos, F.J., Fereres, E (Eds), Principles of agronomy for sustainable agriculture. Springer. p 241-254. Recuperado de: https://link.springer.com/book/10.1007%2F978-3-319-46116-8spa
dc.relation.referencesGomiero, T., Pimentel, D., Paoletti, M.G., 2011. Is There a Need for a More Sustainable Agriculture? CRC. Crit. Rev. Plant Sci. 30, 6–23. https://doi.org/10.1080/07352689.2011.553515spa
dc.relation.referencesGrabowski, P., Musumba, M., Palm, C., 2018. Sustainable agricultural intensification and measuring the immeasurable: Do we have a choice?, in: Bell, S., Mors, S. (Eds.), Routledge Handbook of Sustainability Indicators. Taylor y Francis Group, p. 568.spa
dc.relation.referencesGrassini, P., van Bussel, L. G.J., Wart, J. V., Wolf, J., Claessens, L., Yanga, H., Boogaard, H., de Groote, H., van Ittersumb, M. K., y Cassman, K. G., 2015. How good is good enough? Data requirements for reliable crop yield simulations and yield-gap analysis. Field Crops Research. 177: 49–63. http://dx.doi.org/10.1016/j.fcr.2015.03.004spa
dc.relation.referencesGu, Y.J., Han, C.L., Fan, J.W., Shi, X.P., Kong, M., Shi, X.Y., Siddique, K.H.M., Zhao, Y.Y., Li, F.M., 2018. Alfalfa forage yield, soil water and P availability in response to plastic film mulch and P fertilization in a semiarid environment. F. Crop. Res. 215, 94–103. https://doi.org/10.1016/j.fcr.2017.10.010spa
dc.relation.referencesGuerrero, R. 1998. Fertilización de cultivos de clima frío. Segunda edición. Monómeros Colombo-venezolanos, Bogotá. 370 p. Guinée, J.B., Gorree, M., Heijungs, R., Huppes, G., Kleijn, R., De Koning, A., Wegener Sleeswijk, A., Suh, S., Udo de Haes, H.A., De Bruijn, J.A., Van Duin, R., Huijbregts, M.A.J., 2004. Handbook on Life Cycle Assessment. Operational Guide to the ISO Standards. Kluwer, The Netherlands.spa
dc.relation.referencesHaberern, J., 1992. A soil health index. J. Soil Water Conserv. 47, 6. Recuperado de https://www.jswconline.org/content/47/1/6.full.pdfspa
dc.relation.referencesHaitovsky, Y., 1968. Missing Data in regression analysis. Journal of the Royal Statistical Society: Series B (Methodological). 30, 67–82. https://doi.org/10.1111/j.2517-6161.1968.tb01507.xspa
dc.relation.referencesHäni, F., Braga, F., Stämpfli, A., Keller, T., Fischer, M., y Porsche, H. 2003. RISE, a tool for holistic sustainability assessment at the farm level. International Food and Agribusiness Management Review, 6(4).spa
dc.relation.referencesHavlin, J. L., Beaton, J. D., Tisdale, S. L., Nelson, W. L., 2014. Soil Fertility and Fertilizers, an introduction to nutrient management. 8th ed. Pearson Education, Inc, Upper Saddle River.spa
dc.relation.referencesHayakawa, A., Akiyama, H., Sudo, S., Yagi, K., 2009. N2O and NO emissions from an Andisol field as influenced by pelleted poultry manure. Soil Biol. Biochem. 41, 521–529. https://doi.org/10.1016/j.soilbio.2008.12.011spa
dc.relation.referencesHayati, D., Ranjbar, Z., Karami, E., 2010. Measuring agricultural sustainability. En Sustainable Agriculture Reviews, 5, 73–100, http://doi.org/10.1007/978-90-481-9513-8spa
dc.relation.referencesHe, Z., Honeycutt, W. C., Olanya, M, O., Larkin, R, P., Halloran, J. M., Frantz, J. M.,2012. Comparison of soil phosphorus status and organic matter composition in potato fields with different crop rotation systems, in: He, Z., Larkin, R., Honeycutt, W (Eds). Sustainable potato production: Global case studies, 1st ed, Springer, New York, London. https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesHeijungs, R., Guinée, J. B. 2012. An overview of the life cycle assessment method - Past, Present, and Future, in: Curran, M. A (Ed), Life cycle assessment handbook. A guide for environmentally sustainable products. Willey. USA. P: 15-42spa
dc.relation.referencesHerrick, J.E., 2000. Soil quality: An indicator of sustainable land management? Appl. Soil Ecol. 15, 75–83. https://doi.org/10.1016/S0929-1393(00)00073-1spa
dc.relation.referencesHigueras, P., Campos, J.A., Esbrí, J.M., García-noguero, E.M., Elmayel, I., 2019. Petrogenesis and Exploration of the Earth’s Interior. Springer International Publishing. https://doi.org/10.1007/978-3-030-01575-6spa
dc.relation.referencesHirel, B., Tétu, T., Lea, P.J., Dubois, F., 2011. Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 3, 1452–1485. https://doi.org/10.3390/su3091452spa
dc.relation.referencesHoang, V.N., Alauddin, M., 2010. Assessing the eco-environmental performance of agricultural production in OECD countries: The use of nitrogen flows and balance. Nutr. Cycl. Agroecosystems 87, 353–368. https://doi.org/10.1007/s10705-010-9343-yspa
dc.relation.referencesHoogenboom, G., C.H. Porter, V. Shelia, K.J. Boote, U. Singh, J.W. White, L.A. Hunt, R. Ogoshi, J.I. Lizaso, J. Koo, S. Asseng, A. Singels, L.P. Moreno, and J.W. Jones. 2017. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7. DSSAT Foundation, Gainesville, Florida, USA. https://DSSAT.netspa
dc.relation.referencesHoogenboom, G., Jones, J. W., Traore, P. C. S., Boote, K. J., 2012. Experiments and Data for Model Evaluation and Application. En: Kijara, J., Fatondji, D., Jones, J. W., Hoogenboom, G., Tabo, R., Bationo, A. 2012. Inproving soil fertility recomendations in Africa using the Decision Support System for Agrothecnology Transfer (DSSAT). Springer, 9-18spa
dc.relation.referencesHoogenboom, G., Porter, C.H., Shelia, V., Boote, K.J., Singh, U., White, J.W., Hunt, L.A., Ogoshi, R., Lizaso, J.I., Koo, J., Asseng, S., Singels, A., Moreno, L.P., Jones, J.W., 2019. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7 (www.DSSAT.net). DSSAT Foundation, Gainesville, Florida, USA.spa
dc.relation.referencesHosiny, E. I., Khafagy, E. E., Mosaad, I. S. M., y Seadh, A. K. 2017. Interaction effect between mineral zinc-nitrogen fertilization mixture and organic fertilization as compost on yield, nutrients uptake of rice and some soil properties. Agric.Eng.Int, 302–309. Recuperado de http://www.cigrjournal.org/index.php/Ejounral/article/view/4647spa
dc.relation.referencesHubeau, M., Marchand, F., Coteur, I., Mondelaers, K., Debruyne, L., Van Huylenbroeck, G., 2017. A new agri-food systems sustainability approach to identify shared transformation pathways towards sustainability. Ecol. Econ. 131, 52–63. https://doi.org/10.1016/j.ecolecon.2016.08.019spa
dc.relation.referencesHünnemeyer, A. J., de Camino, R., Müller, S. 1997. Analisis de desarrollo sostenible en Centroamerica. Indicadores para la agricultura y los recursos naturales. IICA, BMZ GTZ.spa
dc.relation.referencesHussain, I., Olson, K.R., Wander, M.M., Karlen, D.L., 1999. Adaptation of soil quality indices and application to three tillage systems in southern Illinois. Soil Till. Res. 50, 237–249. https://doi.org/10.1016/S0167-1987(99)00012-4spa
dc.relation.referencesIDEAM, PNUD, MADS, DNP, CANCILLERÍA., 2015. Escenarios de Cambio Climático para Precipitación y Temperatura para Colombia 2011-2100. Herramientas Científicas para la Toma de Decisiones. Estudio Técnico Completo: Tercera Comunicación Nacional de Cambio Climático. http://documentacion.ideam.gov.co/openbiblio/bvirtual/022964/documento_nacional_departamental.pdfspa
dc.relation.referencesInstituto Geográfico Agustín Codazzi (IGAC). (2014). Códigos para los levantamientos de suelos. Instructivo. Grupo interno de trabajo de levantamientos agrológicos. Recuperado de http://igacnet2.igac.gov.co/intranet/UserFiles/File/procedimientos/instructivos/I40100-06-14.V1Codigos%20para%20los%20levantamientos%20de%20suelos.pdfspa
dc.relation.referencesInstituto Interamericano de Cooperación para la Agricultura (IICA)., 2015. Modelos de simulación y herramientas de modelaje: elementos conceptuales y sistematización de herramientas para apoyar el análisis de impactos de la variabilidad y el cambio climático sobre las actividades agrícolas. IICA. www.iica.intspa
dc.relation.referencesIntergovernmental Panel on Climate Change (IPCC), 2013. Climate Change 2013 - The Physical Science Basis, Intergovernmental Panel on Climate Change. https://doi.org/10.1038/446727aspa
dc.relation.referencesInternational Organization for Standardization (ISO). 2006a. Environmental Management. Life Cycle Assessment. Principles and Framework. ISO 14040spa
dc.relation.referencesInternational Organization for Standardization (ISO). 2006b. Environmental Management. Life Cycle Assessment. Principles and Framework. ISO 14044spa
dc.relation.referencesIvushkin, K., Bartholomeus, H., Bregt, A.K., Pulatov, A., Bui, E.N., Wilford, J., 2018. Soil salinity assessment through satellite thermography for different irrigated and rainfed crops. Int. J. Appl. Earth Obs. Geoinf. 68, 230–237. https://doi.org/10.1016/j.jag.2018.02.004spa
dc.relation.referencesJaramillo, J. 2009. The state of research in tomato in Colombia. Acta Hort. 821, 47–52. https://10.17660/ActaHortic.2009.821.3spa
dc.relation.referencesJoice, L.A., 2003. Improving the flow of scientific information across the interface of forest science and policy. Forest Policy Econ. 5, 339–347.spa
dc.relation.referencesJones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A., Wilkens, P.W., Singh, U., Gijsman, A.J., Ritchie, J.T., 2003. The DSSAT cropping system model. Eur. J. Agron. 18, 235–265. https://doi.org/10.1016/S1161-0301(02)00107-7spa
dc.relation.referencesJones, J.W., Jianqiang, H., Boote, K.J., Wilkens, P., Porter, C.H., Hu, Z., 2011. Estimating DSSAT cropping system cultivar-specific parameters using Bayesian techniques. In: Ahuja, L.R., Liwang, M. (Eds.), Methods of Introducing SystemModels into Agricultural Research. American Society of Agronomy, CropScience Society of America, Soil Science Society of America Madison, WI, USA.spa
dc.relation.referencesKachanoski, R.G., Carter, M.R., 1999. Landscape position and soil redistribution under three soil types and land use practices in Prince Edward Island. Soil Tillage Res. 51, 211–217. https://doi.org/10.1016/S0167-1987(99)00038-0spa
dc.relation.referencesKanter, D.R., Musumba, M., Wood, S.L.R., Palm, C., Antle, J., Balvanera, P., Dale, V.H., Havlik, P., Kline, K.L., Scholes, R.J., Thornton, P., Tittonell, P., Andelman, S., 2016. Evaluating agricultural trade-offs in the age of sustainable development. Agric. Syst. In Press. https://doi.org/10.1016/j.agsy.2016.09.010spa
dc.relation.referencesKaraca, S., Gürses, A., Ejder, M., Açikyildiz, M., 2004. Kinetic modeling of liquid-phase adsorption of phosphate on dolomite. J. Colloid Interface Sci. 277, 257–263. https://doi.org/10.1016/j.jcis.2004.04.042spa
dc.relation.referencesKarlen, D.L., Stott, D.E., 1994. A Framework for Evaluating Physical and Chemcial Indicators of Soil Quality. Soil Sci. Soc. Am. 264, 53–72. https://doi.org/10.1126/science.264.5156.281spa
dc.relation.referencesKarlen, D.L., Stott, D.E., Cambardella, C.A., Kremer, R.J., King, K.W., McCarty, G.W., 2014. Surface soil quality in five midwestern cropland Conservation Effects Assessment Project watersheds. J. Soil Water Conserv. 69:393–401. https://doi:10.2489/jswc.69.5.393spa
dc.relation.referencesKeating, B.A., Carberry, P.S., Hammer, G.L., Probert, M.E., Robertson, M.J., Holzworth, D., Huth, N.I., Hargreaves, J.N.G., Meinke, H., Hochman, Z., McLean, G., Verburg, K., Snow, V., Dimes, J.P., Silburn, M., Wang, E., Brown, S., Bristow, K.L., Asseng, S., Chapman, S., McCown, R.L., Freebairn, D.M., Smith, C.J., 2003. An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 18, 267–288. https://doi.org/10.1016/S1161-0301(02)00108-9spa
dc.relation.referencesKeesstra, S.D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J.N., Pachepsky, Y., Van Der Putten, W.H., Bardgett, R.D., Moolenaar, S., Mol, G., Jansen, B., Fresco, L.O., 2016. The significance of soils and soil science towards realization of the United Nations sustainable development goals. Soil 2, 111–128. https://doi.org/10.5194/soil-2-111-2016spa
dc.relation.referencesKhakbazan, M., Mohr, R.M., Huang, J., Xie, R., Volkmar, K.M., Tomasiewicz, D.J., Moulin, A.P., Derksen, D.A., Irvine, B.R., Mclaren, D.L., Nelson, A., 2019. Effects of crop rotation on energy use e ffi ciency of irrigated potato with cereals, canola, and alfalfa over a 14-year period in Manitoba, Canada. Soil Tillage Res. 195, 104357. https://doi.org/10.1016/j.still.2019.104357spa
dc.relation.referencesKhodaverdiloo, H., Momtaz, H., Liao, K., 2018. Performance of Soil Cation Exchange Capacity Pedotransfer Function as Affected by the Inputs and Database Size. Clean - Soil, Air, Water 46. https://doi.org/10.1002/clen.201700670spa
dc.relation.referencesKibblewhite, M.G., Ritz, K., Swift, M.J., 2008. Soil health in agricultural systems. Philos. Trans. R. Soc. B Biol. Sci. 363, 685–701. https://doi.org/10.1098/rstb.2007.2178spa
dc.relation.referencesKleinwechter, U., Gastelo, M., Ritchie, J., Nelson, G., Asseng, S., 2016. Simulating cultivar variations in potato yields for contrasting environments. Agric. Syst. 145, 51–63. https://doi.org/10.1016/j.agsy.2016.02.011spa
dc.relation.referencesKucukvar, M., Egilmez, G., Tatari, O., 2014. Sustainability assessment of U.S. final consumption and investments: triple-bottom-line input-output analysis. J. Clean. Prod. 81, 234–243. https://doi.org/10.1016/j.jclepro.2014.06.033spa
dc.relation.referencesKuisma, P., 2002. Efficiency of split nitrogen fertilization with adjusted irrigation on potato. Agricultural and food science in Finland. 11: 59–74. https://doi.org/10.23986/afsci.5713spa
dc.relation.referencesKumar, S.N., Govindakrishnan, P.M., Swarooparani, D.N., Nitin, C., Surabhi, J., Aggarwal, P.K., 2015. Assessment of impact of climate change on potato and potential adaptation gains in the Indo-Gangetic Plains of India. Int. J. Plant Prod. 9, 151–170. https://doi.org/https://dx.doi.org/10.5958/2231-3915.2015.00011.5spa
dc.relation.referencesKutílek, M., 2011. Soils and climate change. Soil y Tillage Research. 117: 1–7. https://doi.org/10.1016/j.still.2011.08.009spa
dc.relation.referencesLaird, D., Fleming, P., Wang, B., Horton, R., Karlen, D., 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158, 436–442. https://doi.org/10.1016/j.geoderma.2010.05.012spa
dc.relation.referencesLal, R., 1994. Methods and guidelines for assessing sustainable use of soil and water resources in the tropics; Washington D.C.: USDA/SMSS Technical Monograph 21spa
dc.relation.referencesLal, R., 2009. Soil carbon sequestration impacts on global climate change and food security. Science (New York, N.Y.), 304(5677), 1–184. http://doi.org/10.1126/science.1097396spa
dc.relation.referencesLal, R., 2015. Restoring soil quality to mitigate soil degradation. Sustain. 7, 5875–5895. https://doi.org/10.3390/su7055875 Lanfranco, B. C., y Helguera, L. P. 2006. Óptimo técnico y económico. Diversificación, costos ocultos y los estímulos para mejorar los procreos en la ganadería nacional. Revista INIA, 8, 2–5. Retrieved from http://www.ainfo.inia.uy/digital/bitstream/item/846/1/111219220807165946.pdfspa
dc.relation.referencesLarkin, R.P., Honeycutt, C.W., 2006. Effects of different 3-year cropping systems on soil microbial communities and rhizoctonia diseases of potato. Phytopathology 96, 68–79. https://doi.org/10.1094/PHYTO-96-0068spa
dc.relation.referencesLarson, W.E., Pierce, F.J., 1994. The dynamics of soil quality as a measure of sustainable management, in: Doran, J.W. (Ed.), Defining Soil Quality for a Sustainable Environment. Soil Science Society of America, pp. 37–51.spa
dc.relation.referencesLebacq, T., Baret, P. V, Stilmant, D., 2013. Sustainability indicators for livestock farming. A review. Agron. Sustain. Dev. 33, 311–327. https://doi.org/10.1007/s13593-012-0121-xspa
dc.relation.referencesLemtiri, A., Colinet, G., Alabi, T., Bodson, B., Olivier, C., Brostaux, Y., Pierreux, J., Haubruge, E., Cluzeau, D., Francis, F., 2018. Short-Term Effects of Tillage Practices and Crop Residue Exportation on Soil Organic Matter and Earthworm Communities in Silt Loam Arable Soil, in: Soil Management and Climate Change: Effects on Organic Carbon, Nitrogen Dynamics, and Greenhouse Gas Emissions. Elsevier Inc., pp. 53–71. https://doi.org/10.1016/B978-0-12-812128-3.00005-7spa
dc.relation.referencesLi, L., Du, S., Wu, L., Liu, G., 2009. An overview of soil loss tolerance. Catena 78, 93–99. https://doi.org/10.1016/j.catena.2009.03.007spa
dc.relation.referencesLiang, K., Jiang, Y., Nyiraneza, J., Fuller, K., Murnaghan, D., Meng, F.-R., 2019. Nitrogen dynamics and leaching potential under conventional and alternative potato rotations in Atlantic Canada. F. Crop. Res. 242, 107603. https://doi.org/10.1016/j.fcr.2019.107603spa
dc.relation.referencesLima, A.C.R., Brussaard, L., Totola, M.R., Hoogmoed, W.B., de Goede, R.G.M., 2013. A functional evaluation of three indicator sets for assessing soil quality. Applied Soil Ecology 64, 194–200. http://dx.doi.org/10.1016/j.apsoil.2012.12.009spa
dc.relation.referencesLisboaa, I.P., Cherubin, M.R., Satiro, L.S., Siqueira-Neto, M., Lima, R.P., Gmach, M.R., Wienhold, B.J., Schmer, M.R., Jin, V.L., Cerri, C.C., Cerri, C.E.P., 2019. Applying Soil Management Assessment Framework (SMAF) on short-term sugarcane straw removal in Brazil. Industrial Crops y Products 129, 175–184. https://doi.org/10.1016/j.indcrop.2018.12.004spa
dc.relation.referencesLitke, L., Gaile, Z., y Ruza, A., 2018. Effect of Nitrogen Fertilization on Winter Wheat Quality. Cereal Research Communications, 38(2), 243–249. http://doi.org/10.1556/CRC.38.2010.2.10spa
dc.relation.referencesLiu, E.Y., Li, S., Lantz, V., Olale, E., 2019. Impacts of Crop Rotation and Tillage Practices on Potato Yield and Farm Revenue. Agron. J. 111, 1838. https://doi.org/10.2134/agronj2018.05.0325spa
dc.relation.referencesLiu, H. L., Yang, J. Y., Tan, C. S., Drury, C. F., Reynolds, W. D., Zhang, T. Q., Hoogenboom, G., 2011. Simulating wáter content, crop yield and nitrate‐N loss under free and controlled tile drainage with subsurface irrigation using the DSSAT model. Agricultural Water Management. 98(6): 1105‐1111.spa
dc.relation.referencesLizana, X.C., Avila, A., Tolaba, A., Pablo, J., 2017. Agricultural and Forest Meteorology Field responses of potato to increased temperature during tuber bulking : Projection for climate change scenarios , at high-yield environments of Southern Chile. Agric. For. Meteorol. 239, 192–201. https://doi.org/10.1016/j.agrformet.2017.03.012spa
dc.relation.referencesLoaiza, P. V, Pujol, P.E.I., Wittwer, R., van der Heijden, M., Six, J., 2018. Improvement of soil structure through organic crop management, conservation tillage and grass-clover ley. Soil Tillage Res. 180, 1–9. https://doi.org/10.1016/j.still.2018.02.007spa
dc.relation.referencesLori, M., Symnaczik, S., Mäder, P., De Deyn, G., Gattinger, A., 2017. Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-Regression. PLoS One 12, 1–25. https://doi.org/10.1371/journal.pone.0180442spa
dc.relation.referencesLutz, A.F., ter Maat, H.W., Biemans, H., Shrestha, A.B., Wester, P., Immerzeel, W.W., 2016. Selecting representative climate models for climate change impact studies: an advanced envelope-based selection approach. Int. J. Climatol. 36, 3988–4005. https://doi.org/10.1002/joc.4608spa
dc.relation.referencesLynch, J., Marschner, P., Z, Rangel., 2012. Effect of internal and external factors on root growth and development, in: Marschner, P (Ed), Mineral nutrition of higher plants. Third edition. Elsevier. P: 331-346spa
dc.relation.referencesMeadows, D. H. 2009. Thinking in Systems. Journal of Chemical Information and Modeling (Vol. 53). http://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesMaltas, A., Dupuis, B., y Sinaj, S., 2018. Yield and Quality Response of Two Potato Cultivars to Nitrogen Fertilization. Potato Research, 1–18. http://doi.org/10.1007/s11540-018-9361-8spa
dc.relation.referencesMarchand, F., Debruyne, L., Triste, L., Gerrard, C., Padel, S., Lauwers, L., 2014. Key characteristics for tool choice in indicator-based sustainability assessment at farm level. Ecol. Soc. 19(3), 46–56. https://doi.org/10.5751/ES-06876-190346spa
dc.relation.referencesMarinari, S., Mancinelli, R., Campiglia, E., Grego, S., 2006. Chemical and biological indicators of soil quality in organic and conventional farming systems in Central Italy. Ecol. Indic. 6, 701–711. https://doi.org/10.1016/j.ecolind.2005.08.029spa
dc.relation.referencesMarschner, P., 2012. Mineral nutrition of higher plants (Third edit). USA: Academic Press is an imprimint of Elsevier.spa
dc.relation.referencesMarschner, P., Z, Rangel., 2012. Nutrient availability in soils, in: Marschner, P (Ed). Mineral nutrition of higher plants. Third edition. Elsevier. P: 315-328spa
dc.relation.referencesMartinez, R., Martinez, N. R., y Martinez, M. V. M., 2011. Diseño de experimentos en ciencias agropecuarias y biológicas con SAS, SPSS, R y Statistix. Tomi I. Fondo Nacional Universitario.spa
dc.relation.referencesMartínez-Blanco, J., Lehmann, A., Muñoz, P., Antón, A., Traverso, M., Rieradevall, J., Finkbeiner, M., 2014. Application challenges for the social Life Cycle Assessment of fertilizers within life cycle sustainability assessment. J. Clean. Prod. 69, 34–48. https://doi.org/10.1016/j.jclepro.2014.01.044spa
dc.relation.referencesMascarenhas, A., Coelho, P., Subtil, E., Ramos, T.B., 2010. The role of common local indicators in regional sustainability assessment. Ecol. Indic. 10, 646–656. https://doi.org/10.1016/j.ecolind.2009.11.003spa
dc.relation.referencesMehmood, T., Liland, K.H., Snipen, L., Saebo, S., 2012. A review of variable selection methods in Partial Least Squares Regression. Chemom. Intell. Lab. Syst. 118, 62–69. https://doi.org/10.1016/j.chemolab.2012.07.010spa
dc.relation.referencesMehmood, T., Martens, H., Saebo, S.,Warringer, J., Snipen, L., 2011. A Partial Least Squares based algorithm for parsimonious variable selection. Algorithms Mol. Biol. 6. https://doi.org/10.1186/1748-7188-6-27spa
dc.relation.referencesMendiburu, F. 2017. Agricolae: Statistical Procedures for Agricultural Research. R package version 1.2-6. https://CRAN.R-project.org/package=agricolae.spa
dc.relation.referencesMeul, M., Passel, S., Nevens, F., Dessein, J., Rogge, E., Mulier, A., Hauwermeiren, A., 2008. MOTIFS: a monitoring tool for integrated farm sustainability. Agron. Sustain. Dev. 28, 321–332. https://doi.org/10.1051/agro:2008001spa
dc.relation.referencesMevik, B. H., Wehrens, R., Hovde, L. K., 2019. pls: partial least squares and principal component regression. R package version 2.7-2. https://CRAN.R-project.org/package=plsspa
dc.relation.referencesMilder, J.C., Arbuthnot, M., Blackman, A., Brooks, S.E., Giovannucci, D., Gross, L., Kennedy, E.T., Komives, K., Lambin, E.F., Lee, A., Meyer, D., Newton, P., Phalan, B., Schroth, G., Semroc, B., Van Rikxoort, H., Zrust, M., 2014. An agenda for assessing and improving conservation impacts of sustainability standards in tropical agriculture. Conserv. Biol. 29, 309–320. https://doi.org/10.1111/cobi.12411spa
dc.relation.referencesMonsalve, O.I., Casilimas, H.A. y Bojacá, C.R. 2011. Evaluación técnica y económica del pepino y el pimentón como alternativas al tomate bajo invernadero. Rev. Colomb. Cienc. Hortic, Vol 5. P: 69-82. https://doi.org/10.17584/rcch.2011v5i1.1254spa
dc.relation.referencesMtengeti, E. J., Brentrup, F., Mtengeti, E., Olav, E. L., Chambuya, R., 2015. Sustainable intensification of maize and rice in smallholder farming systems under climate change in Tanzania, in: Mwaseba, D. L., Kraybill, D., Hansen, D. O., Olav, L., Editors, E. (Eds), Sustainable Intensification to Advance Food Security and Enhance Climate Resilience in Africa (1st ed.). Springer. http://doi.org/10.1007/978-3-319-09360-4spa
dc.relation.referencesMuckel, G. B., Mausbach, M. J., 1996. Soil quality information sheets, in: Methods for Assessing Soil Quality, edited by: Doran, J. W., Jones, A. J., Soil Sci. Soc. Am., Special Publication 49, Madison, WI, 393–400. Mukherjee, A., Lal, R., 2014. Comparison of soil quality index using three methods. PLoS One 9. https://doi.org/10.1371/journal.pone.0105981spa
dc.relation.referencesMunda, G. 2005. “Measuring sustainability”: A multi-criterion framework. Environment, Development and Sustainability. 7(1): 117–134. http://doi.org/10.1007/s10668-003-4713-0spa
dc.relation.referencesMuthoni, J., Kabira, J.N., 2010. Effects of crop rotation on soil macronutrient content and pH in potato producing areas in Kenya: Case study of KARI Tigoni station. J. Soil Sci. Environ. Manag. 1, 227–233.spa
dc.relation.referencesNambiar, K.K.M., Gupta, A.P., Fu, Q., Li, S., 2001. Biophysical, chemical and socio-economic indicators for assessing agricultural sustainability in the Chinese coastal zone. Agric. Ecosyst. Environ. 87, 209–214. https://doi.org/10.1016/S0167-8809(01)00279-1spa
dc.relation.referencesNannipieri, P., 1984. Microbial biomass and activity measurement in soils: ecological significance, in: Klug, M.J., Reddy, C.A. (Eds), Current Perspectives in Microbial Ecology. American Society of Microbiology, Washington, pp. 512–521spa
dc.relation.referencesNannipieri, P., Grego, S., Ceccanti, B., 1990. Ecological significance of the biological activity in soils, in: Bollag, J. M., Stotzky, G., Marcel Dekker (Eds), Soil Biochemical, New York, 293–355.spa
dc.relation.referencesNdiaye, E.L., Sandeno, J.M., McGrath, D., Dick, R.P., 2000. Integrative biological indicators for detecting change in soil quality. Am. J. Altern. Agric. 15, 26–36. https://doi.org/10.1017/s0889189300008432spa
dc.relation.referencesNelson, K.L., Lynch, D.H., Boiteau, G., 2009. Assessment of changes in soil health throughout organic potato rotation sequences. Agric. Ecosyst. Environ. 131, 220–228. https://doi.org/10.1016/j.agee.2009.01.014spa
dc.relation.referencesNeugebauer, S., Martinez-Blanco, J., Finkbeiner, M., 2015. Enhancing the practical implementation of life cycle sustainability assessment - proposal of a Tiered approach. J. Clean. Prod. 102, 165–176. https://doi.org/10.1016/j.jclepro.2015.04.053spa
dc.relation.referencesNeumann, G., Römheld, V., 2012. Rhizosphere chemistry in relation to plant nutrition, in: Marschner, P (Ed). Mineral nutrition of higher plants. Third edition. Elsevier. P: 347-368spa
dc.relation.referencesNieder, R., Benbi, D.K., 2008. Carbon and Nitrogen in the Terrestrial Environment. Springer Science, 430 pp. https://doi.org/10.1007/978-1-4020-8433-1spa
dc.relation.referencesNyiraneza, J., Peters, R.D., Rodd, V.A., Grimmett, M.G., Jiang, Y., 2015. Improving productivity of managed potato cropping systems in Eastern Canada: Crop rotation and nitrogen source effects. Agron. J. 107, 1447–1457. https://doi.org/10.2134/agronj14.0430spa
dc.relation.referencesObade, V.P., Lal, R., 2016. A standardized soil quality index for diverse field conditions. Science of the Total Environment 541, 424–434. https://doi.org/10.1016/j.scitotenv.2015.09.096spa
dc.relation.referencesOECD (Organization for Economic Co-operation and Development) — JRC (Joint Research Centre)., 2008. Handbook on constructing composite indicators. Methodology and user guide. OECD, Paris.spa
dc.relation.referencesOertel, C., Matschullat, J., Zurba, K., Zimmermann, F., Erasmi, S., 2016. Greenhouse gas emissions from soils—A review. Chemie der Erde - Geochemistry 76, 327–352. https://doi.org/10.1016/j.chemer.2016.04.002spa
dc.relation.referencesOgle, S.M., Breidt, F.J., Paustian, K., 2005. Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry. 72: 87–121. https://doi.org/10.1007/s10533-004-0360-2spa
dc.relation.referencesOkalebo, J.R., Gathua, K.W.K.W., Woomer, P.L.P.L., 2002. Laboratory methods of soil and plant analysis: a working manual, second ed. TSBF-CIAT, Africa.spa
dc.relation.referencesOldeman, L., 1994. The global extent of soil degradation. Soil Resil. Sustain. L. use 19–36. https://doi.org/10.1016/j.apsoil.2013.10.002 Ordoñez, D.N., Bolivar, G.A., 2014. Levantamiento agrológico del Centro Agropecuario (CAM), 1st ed. Instituto Geográfico Agustin Codazzi (IGAC), Bogotá, Colombia.spa
dc.relation.referencesOrtíz, R. 2012. El cambio climático y la producción agrícola. Banco Interamericano de Desarrollo. Notas técnicas. ESG-TN-383. http://asocam.org/biblioteca/files/original/e7a4a8a00d9ba9390d273d6dc1bb5666.pdfspa
dc.relation.referencesPacini, C., Wossink, A., Giesen, G., Vazzana, C., Huirne, R., 2003. Evaluation of sustainability of organic, integrated and conventional farm systems: a farm and field scale analysis. Agriculture, Ecosystems and Environment, 95, 273–288.spa
dc.relation.referencesPanell, D. J., Schilizzi, S., 1993. Sustainable agriculture: a matter of ecology, equity, economic, efficiency or expedience. Journal of Sustainable Agriculture. 13: 57-66spa
dc.relation.referencesPansau, M., Gautheyrou, J., 2006. Handbook of soil analysis. Mineralogical, organic and inorganic Methods. Springer, Germany, p 995.spa
dc.relation.referencesPapadopoulos, I., 1988. Nitrogen fertigation of trickle-irrigated potato. Fertil. Res. 167, 157–167. https://doi.org/https://doi.org/10.1007/BF01049771spa
dc.relation.referencesPapendick, R. I., Parr. J. F., 1992. Soil quality—The key to a sustainable agriculture. Am. J. Altern. Agric. 7 (1-2): 2–3. https://doi.org/10.1017/S0889189300004343spa
dc.relation.referencesParacchini, M.L., Bulgheroni, C., Borreani, G., Tabacco, E., Banterle, A., Bertoni, D., Rossi, G., Parolo, G., Origgi, R., De Paola, C., 2015. A diagnostic system to assess sustainability at a farm level: The SOSTARE model. Agric. Syst. 133, 35–53. https://doi.org/10.1016/j.agsy.2014.10.004spa
dc.relation.referencesParris, T.M., Kates, R.W., 2003. Characterizing and measuring sustainable development. Annu. Rev. Environ. Resour. 28, 559–586. https://doi.org/10.1146/annurev.energy.28.050302.105551spa
dc.relation.referencesParton, W., Schimel, D., Ojima, D., Cole, C., 1994. A general model for soil organic matter dynamics: sensitivity to litter chemistry, texture and management. Pages 147-167 in R.B. Bryant and R.W. Arnold, editors. Quantitative modeling of soil forming processes. SSSA Spec. Publ. 39. Passam, H.C., Karapanos, I.C., Bebeli, P.J. y Savvas, D. 2007. A review of recent research on tomato nutrition, breeding and post-harvest technology with reference to fruit quality. The european journal of plant science and biotechnology. Vol 1(1). P: 1-21. file:///D:/descargas/A_Review_of_Recent_Research_on_Tomato_Nu%20(2).pdfspa
dc.relation.referencesPeano, C., Migliorini, P., y Sottile, F., 2014. A methodology for the sustainability assessment of agri-food systems: An application to the slow food presidia project. Ecology and Society, 19(4), 24. http://doi.org/10.5751/ES-06972-190424spa
dc.relation.referencesPeltre, C., Christensen, B.T., Dragon, S., Icard, C., Katterer, T., Houot, S. 2012. RothC simulation of carbon accumulation in soil after repeated application of widely different organic amendments. Soil Biol. Biochem. 52, 49–60. http://dx.doi.org/10.1016/j.soilbio.2012.03.023spa
dc.relation.referencesPeña, M. Y., CAsierra-Posada, F., Monsalve, O. I., 2013. Producción hidropónica de tomate (Solanum lycopersicum L.) en cascarilla de arroz mezclada con materiales minerales y orgánicos. Rev. Colomb. Cienc. Hortic., 7 (2), 217-227. https://doi.org/10.17584/rcch.2013v7i2.2236spa
dc.relation.referencesPérez, L.C., Rodríguez, L.E., Gómez, M.I., 2008. Efecto del fraccionamiento de la fertilización con N, P, K y Mg y la aplicación de los micronutrientes B, Mn y Zn en el rendimiento y calidad de papa criolla (Solanum phureja) variedad Criolla Colombia. Agron. Colomb. 26, 477–486.spa
dc.relation.referencesPergola, M., D’Amico, M., Celano, G., Palese, A.M., Scuderi, A., Di Vita, G., Pappalardo, G., Inglese, P., 2013. Sustainability evaluation of Sicily’s lemon and orange production: Anenergy, economic and environmental analysis. J. Environ. Manage. 128, 674–682. https://doi.org/10.1016/j.jenvman.2013.06.007spa
dc.relation.referencesPintér, L., Hardi, P., Martinuzzi, A., Hall, J., 2012. Bellagio STAMP: Principles for sustainability assessment and measurement. Ecol. Indic. 17, 20–28. https://doi.org/10.1016/j.ecolind.2011.07.001spa
dc.relation.referencesPollesch, N., Dale, V. H., 2015. Applications of aggregation theory to sustainability assessment. Ecological Economics, 114, 117–127. http://doi.org/10.1016/j.ecolecon.2015.03.011spa
dc.relation.referencesPorras, R.P.D., Herrera, H.C.A., 2015. Modelo productivo de la papa variedad Diacol Capiro para el departamento de Antioquia, 1st ed. Corporación Colombiana de Investigación Agropecuaria (Corpoica), Mosquera, Colombia.spa
dc.relation.referencesPraneetvatakul, S., Janekarnkij, P., Potchanasin, C., Prayoonwong, K., 2001. Assessing the sustainability of agriculture: A case of Mae Chaem Catchment, northern Thailand. Environ. Int. 27, 103–109. https://doi.org/10.1016/S0160-4120(01)00068-Xspa
dc.relation.referencesPretty, J., Bharucha, Z.P., 2014. Sustainable intensification in agricultural systems. Ann. Bot. 114, 1571–1596. https://doi.org/10.1093/aob/mcu205spa
dc.relation.referencesQadir, M., Oster, J.D., 2004. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. Sci. Total Environ. 323, 1–19. https://doi.org/10.1016/j.scitotenv.2003.10.012spa
dc.relation.referencesR Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/spa
dc.relation.referencesRao, N.H., Rogers, P.P., 2006. Assessment of agricultural sustainability. Curr. Sci. 91, 439–448. www.jstor.org/stable/24093944spa
dc.relation.referencesRawashdeh, R.A., Maxwell, P., 2014. Analysing the world potash industry. Resour. Policy 41, 143–151. https://doi.org/10.1016/j.resourpol.2014.05.004spa
dc.relation.referencesRawashdeh, R.A., Xavier-Oliveira, E., Maxwell, P., 2016. The potash market and its future prospects. Resour. Policy 47, 154–163. https://doi.org/10.1016/j.resourpol.2016.01.011spa
dc.relation.referencesRaymundo, R., Asseng, S., Prassad, R., Kleinwechter, U., Concha, J., Condori, B., Bowen, W., Wolf, J., Olesen, J.E., Dong, Q., Zotarelli, L., Gastelo, M., Alva, A., Travasso, M., Quiroz, R., Arora, V., Graham, W., Porter, C., 2017. Field Crops Research Performance of the SUBSTOR-potato model across contrasting growing conditions. F. Crop. Res. 202, 57–76. https://doi.org/10.1016/j.fcr.2016.04.012spa
dc.relation.referencesRaymundo, R., Asseng, S., Robertson, R., Petsakos, A., Hoogenboom, G., Quiroz, R., Hareau, G., Wolf, J., 2018. Climate change impact on global potato production. Eur. J. Agron. 100, 87–98. https://doi.org/10.1016/j.eja.2017.11.008spa
dc.relation.referencesReed, M.S., Fraser, E.D.G., Dougill, A.J., 2006. An adaptive learning process for developing and applying sustainability indicators with local communities. Ecol. Econ. 59, 406–418. https://doi.org/10.1016/j.ecolecon.2005.11.008spa
dc.relation.referencesRees, H.W., Chow, T.L., Zebarth, B.J., Xing, Z., Toner, P., Lavoie, J., Daigle, J.L., 2011. Effects of supplemental poultry manure applications on soil erosion and runoff water quality from a loam soil under potato production in northwestern New Brunswick. Can. J. Soil Sci. 91, 595–613. https://doi.org/10.4141/cjss10093spa
dc.relation.referencesRennenberg, H., Dannenmann, M., Gessler, A., Kreuzwieser, J., Simon, J., Papen, H., 2009. Nitrogen balance in forest soils: nutritional limitation of plants under climate change stresses. Plant Biology. 11 (Suppl. 1): 4–23. https://doi.org/10.1111/j.1438-8677.2009.00241.xspa
dc.relation.referencesRepar, N., Jan, P., Dux, D., Nemecek, T., Doluschitz, R., 2017. Implementing farm-level environmental sustainability in environmental performance indicators: A combined global-local approach. J. Clean. Prod. 140, 692–704. https://doi.org/10.1016/j.jclepro.2016.07.022spa
dc.relation.referencesRiahi, K., Gruebler, A., Nakicenovic, N., 2007. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technological Forecasting and Social Change 74, 7, 887-935.spa
dc.relation.referencesRigby, D., Howlett, D., Woodhouse, P., 2000. A Review of Indicators of Agricultural and Rural Livelihood Sustainability. FAO. AGRIS.spa
dc.relation.referencesRinne, J., Lyytimäki, J., Kautto, P., 2013. From sustainability to well-being: Lessons learned from the use of sustainable development indicators at national and EU level. Ecol. Indic. 35, 35–42. https://doi.org/10.1016/j.ecolind.2012.09.023spa
dc.relation.referencesRipley, B., Venables, B., Douglas, M. B., Hornik, K., Gebhardt, A., Firth, D. 2017. MASS: Support functions and datasets. R package version 7.3-47. https://CRAN.R-project.org/package=MASSspa
dc.relation.referencesRitchie, J. T., 1981. Water dynamics in the Soil-Plant-athmosphere system. In Plant and Soil (Vol. 96, pp. 81–96). ICARDA. https://doi.org/https://doi.org/10.1007/BF02180050spa
dc.relation.referencesRockström, J., Williams, J., Daily, G., Noble, A., Matthews, N., Gordon, L., Wetterstrand, H., DeClerck, F., Shah, M., Steduto, P., de Fraiture, C., Hatibu, N., Unver, O., Bird, J., Sibanda, L., Smith, J., 2017. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 46, 4–17. https://doi.org/10.1007/s13280-016-0793-6spa
dc.relation.referencesRodrigues, G.S., Rodrigues, I.A., Buschinelli, C.C. de A., de Barros, I., 2010. Integrated farm sustainability assessment for the environmental management of rural activities. Environ. Impact Assess. Rev. 30, 229–239. https://doi.org/10.1016/j.eiar.2009.10.002spa
dc.relation.referencesRodríguez, A., 2012. Evaluación de las simulaciones de precipitación y temperatura de los modelos climáticos globales del proyecto CMIP5 con el clima presente en Colombia. Ideam-Meteo 34.spa
dc.relation.referencesRojas, B.E.O., 2011. Evaluación del desarrollo del cultivo de papa bajo escenarios de variabilidad climática interanual y cambio climático, en el sur oeste de la Sabana de Bogotá. Tesis de maestría. Universidad Nacional de Colombia. Facultad de Ciencias. Departamento de Geociencias. http://www.bdigital.unal.edu.co/5242/spa
dc.relation.referencesRojas, E. O. B., 2011. Evaluación del desarrollo del cultivo de papa bajo escenarios de variabilidad climática interaunal y cambio climático, en el sur oeste de la Sabana de Bogotá. Tesis de maestría. Universidad Nacional de Colombia. Facultad de Ciencias, Departamento de Geociencias. Bogotá., Colombia. http://www.bdigital.unal.edu.co/5242/spa
dc.relation.referencesRömheld, V., Kirkby, E.A., 2010. Research on potassium in agriculture: Needs and prospects. Plant Soil 335, 155–180. https://doi.org/10.1007/s11104-010-0520-1spa
dc.relation.referencesRosegrant, M.W., Cline, S.A., 2003. Global Food Security: Challenges and Policies. Science 302, 1917–1919. https://doi.org/10.1126/science.1092958spa
dc.relation.referencesRossi, J. P., Franc, A., y Rousseau, G. X. 2009. Indicating soil quality and the GISQ. Soil Biology and Biochemistry, 41(2), 444–445. https://doi.org/10.1016/j.soilbio.2008.10.004spa
dc.relation.referencesRoy, R., Chan, N.W., 2012. An assessment of agricultural sustainability indicators in Bangladesh: review and synthesis. Environmentalist 32, 99–110. https://doi.org/10.1007/s10669-011-9364-3spa
dc.relation.referencesRuser, R., Flessa, H., Schilling, R., Steindl, H., Beese, F., 1998. Soil compaction and fertilization effects on nitrous oxide and methane fluxes in potato fields. Soil Sci. Soc. Am. J. 62, 1587–1595. https://doi.org/10.2136/sssaj1998.03615995006200060016xspa
dc.relation.referencesRyan, M., Hennessy, T., Buckley, C., Dillon, E. J., Donnellan, T., Hanrahan, K., y Moran, B., 2016. Developing farm-level sustainability indicators for Ireland using the Teagasc National Farm Survey. Irish Journal of Agricultural and Food Research, 55(2), 112-125. http://doi.org/10.1515/ijafr-2016-0011spa
dc.relation.referencesSadok, W., Angevin, F., Bergez, J.E., Bockstaller, C., Colomb, B., Guichard, L., Reau, R., Messéan, A., Doré, T., 2009. MASC, a qualitative multi-attribute decision model for ex ante assessment of the sustainability of cropping systems. Agron. Sustain. Dev. 29, 447–461. https://doi.org/10.1051/agro/2009006spa
dc.relation.referencesSarkar, D., Haldar, A., 2005. Physical and chemical methods in soil analysis. Fundamental concepts of analytical chemistry and instrumental thecniques, vol 1. New Age International Publishers, New Delhi. http://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesSchader, C., Baumgart, L., Landert, J., Muller, A., Ssebunya, B., Blockeel, J., Weisshaidinger, R., Petrasek, R., Mészáros, D., Padel, S., Gerrard, C., Smith, L., Lindenthal, T., Niggli, U., y Stolze, M., 2016. Using the Sustainability Monitoring and Assessment Routine (SMART) for the systematic analysis of trade-offs and synergies between sustainability dimensions and themes at farm level. Sustainability, 8(3), 1-20. http://doi.org/10.3390/su8030274spa
dc.relation.referencesSchader, C., Grenz, J., Meier, M. S., Stolze, M., 2014. Scope and precision of sustainability assessment approaches to food systems. Ecology and Society, 19(3), 42–57. http://doi.org/10.5751/ES-06866-190342spa
dc.relation.referencesSchaufler, G., Kitzler, B., Schindlbacher, A., Skiba, U., Sutton, M.A., Zechmeister-Boltenstern, S., 2010. Greenhouse gas emissions from European soils under different land use: Effects of soil moisture and temperature. Eur. J. Soil Sci. 61, 683–696. https://doi.org/10.1111/j.1365-2389.2010.01277.xspa
dc.relation.referencesScheffer, F., Schachtschabel, P., 2016. Soil Science. Springer. 16th edition. Germany. http://doi.org/10.1007/978-3-642-30942-7spa
dc.relation.referencesSchimel, D.S., Braswell, B.H., Holland, E.A., McKeown, R., Ojima, D.S. Painter, T.H., Parton, W.J., Townsend, A.R., 2007. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global biogeochemical cycles. 8(3): 279-293. https://doi.org/10.1029/94GB00993spa
dc.relation.referencesSchindler, J., Graef, F., König, H. J., 2015). Methods to assess farming sustainability in developing countries. A review. Agronomy for Sustainable Development, 35, 1043-1057. http://doi.org/10.1007/s13593-015-0305-2spa
dc.relation.referencesSchmitz, A., Moss, C.B. (2015). Mechanized agriculture: Machine adoption, farm size, and labor displacement. AgBioForum 18, 278–296. Recuperado de https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/48143/MechanizedAgriculture.pdf?sequence=1spa
dc.relation.referencesShahbazi, F., y Jafarzadeh, A. 2010. Integrated assessment of rural land for sustainable development using MicroLEIS DSS in west Azerbaijan, Iran. Geoderma, 157(3): 175‐184.spa
dc.relation.referencesSharifi, M., Lynch, D.H., Hammermeister, A., Burton, D.L., Messiga, A.J., 2014. Effect of green manure and supplemental fertility amendments on selected soil quality parameters in an organic potato rotation in Eastern Canada. Nutr. Cycl. Agroecosystems 100, 135–146. https://doi.org/10.1007/s10705-014-9633-xspa
dc.relation.referencesShayler, H., McBride, M., Harrison, E., 2009. Sources and Impacts of Contaminants in Soils. Soil Sciences, CornelL Waste Management Institute. p: 1–6. http://cwmi.css.cornell.edu/sourcesandimpacts.pdfspa
dc.relation.referencesShibabaw, A., Alemayehu, G., Adgo, E., Asch, F., Freyer, B., 2018. Effects of organic manure and crop rotation system on potato (Solanum tuberosum L.) tuber yield in the highlands of Awi Zone. Ethiop. J. Sci. Technol. 11, 1. https://doi.org/10.4314/ejst.v11i1.1spa
dc.relation.referencesShukla, M.K., Lal, R., Ebinger, M., 2006. Determining soil quality indicators by factor analysis. Soil Tillage Res. 87, 194–204. https://doi.org/10.1016/j.still.2005.03.011spa
dc.relation.referencesShukla, S. K., Yadav, R. L., Gupta, R., Singh, A. K., Awasthi, S. K., Gaur, A., 2018. Deep Tillage, Soil Moisture Regime, and Optimizing N Nutrition for Sustaining Soil Health and Sugarcane Yield in Subtropical India. Communications in Soil Science and Plant Analysis, 49(4), 444–462. http://doi.org/10.1080/00103624.2018.1431263spa
dc.relation.referencesSingh, R. K., Murty, H. R., Gupta, S. K., Dikshit, A. K., 2012. An overview of sustainability assessment methodologies. Ecological Indicators, 15, 281–299. http://doi.org/10.1016/j.ecolind.2011.01.007spa
dc.relation.referencesSmith, A., Snapp, S., Chikowo, R., Thorne, P., Bekunda, M., Glover, J., 2017. Measuring sustainable intensification in smallholder agroecosystems: A review. Global Food Security, 12, 127–138, http://doi.org/10.1016/j.gfs.2016.11.002spa
dc.relation.referencesSmith, A.J., Dumanski, J. 1994. FESLM: An international framework for evaluating sustainable land management. World Soil Resources Report No 73. FAO. Roma.spa
dc.relation.referencesSmith, P., 2012. Soils and climate change. Current Opinion in Environmental Sustainability. 4: 539–544. http://dx.doi.org/10.1016/j.cosust.2012.06.005spa
dc.relation.referencesSmith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O’Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., Towprayoon, S., Wattenbach, M., Smith, J., 2008. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B Biol. Sci. 363, 789–813. https://doi.org/10.1098/rstb.2007.2184spa
dc.relation.referencesSmith, P., Smith, J.U., Powlson, D.S., Mcgill, W.B., Arah, J.R.M., Chertov, O.G., Coleman, K., Franko, U., Frolking, S., Jenkinson, D.S., Jensen, L.S., Kelly, R.H., Klein-gunnewiek, H., Komarov, A.S., Li, C., Molina, J.A.E.J., Mueller, T., Parton, W.J., Thornley, J.H.M., Whitmore, A.P., 1997. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81, 153–225. https://doi.org/https://doi.org/10.1016/S0016-7061(97)00087-6spa
dc.relation.referencesSmith, S.J., Wigley, T.M.L., 2006. Multi-Gas Forcing Stabilization with the MiniCAM. Energy Journal (Special Issue #3) pp 373-391. Soussana, J.F., 2014. Research priorities for sustainable agri-food systems and life cycle assessment. J. Clean. Prod. 73, 19–23. https://doi.org/10.1016/j.jclepro.2014.02.061spa
dc.relation.referencesSparks, A.H., Forbes, G.A., Hijmans, R.J., Garrett, K.A., 2014. Climate change may have limited effect on global risk of potato late blight. Glob. Chang. Biol. 20, 3621–3631. https://doi.org/10.1111/gcb.12587spa
dc.relation.referencesSparrow, L.A., 2015. Six years of results from a potato rotation and green manure trial in Tasmania, Australia. Acta Hortic. 1076, 29–36. Spiertz, J.H.J., 2010. Nitrogen , sustainable agriculture and food security . A review. Agron. Sustain. Dev. 30, 43–55. https://doi.org/10.1051/agro:2008064spa
dc.relation.referencesSt. Clair, S.B. y Lynch, J.P. 2010. The opening of Pandora’s Box: climate change impacts on soil fertility and crop nutrition in developing countries. Plant Soil. 335: 101–115. https://doi.org/10.1007/s11104-010-0328-zspa
dc.relation.referencesStackhouse, P.W., Kusterer, J.M., 2019. NASA -POWER Data Access Viewer. NASA Langley ASDC User Serv. 1. https://power.larc.nasa.gov/ Stavi, I., Lal, R., 2013. Agriculture and greenhouse gases, a common tragedy. A review. Agron. Sustain. Dev. 33, 275–289. https://doi.org/10.1007/s13593-012-0110-0spa
dc.relation.referencesSwart, R.J., Raskin, P., Robinson, J., 2004. The problem of the future: Sustainability science and scenario analysis. Glob. Environ. Chang. 14, 137–146. https://doi.org/10.1016/j.gloenvcha.2003.10.002spa
dc.relation.referencesTan, G., Shibasaki, R., 2003. Global estimation of crop productivity and the impacts of global warming by GIS and EPIC integration. Ecological Modelling. 168(3): 357-370.spa
dc.relation.referencesTherond, O., Duru, M., Roger-Estrade, J., Richard, G., 2017. A new analytical framework of farming system and agriculture model diversities. A review. Agron. Sustain. Dev. 37. https://doi.org/10.1007/s13593-017-0429-7spa
dc.relation.referencesThoumazeau, A., Bessou, C., Renevier, M.S., Panklang, P., Puttaso, P., Peerawat, M., Heepngoen, P., Polwong, P., Koonklang, N., Sdoodee, S., Chantuma, P., Lawongsa, P., Nimkingrat, P., Thaler, P., Gay, F., Brauman, A., 2019. Biofunctool®: a new framework to assess the impact of land management on soil quality. Part B: investigating the impact of land management of rubber plantations on soil quality with the Biofunctool® index. Ecol. Indic. 97, 429–437. https://doi.org/10.1016/j.ecolind.2018.10.028spa
dc.relation.referencesTilman, D., Cassman, K. G., Matson, P. A., Naylor, R., y Polasky, S. 2002. Agricultural sustainability and intensive production practices. Nature, 418(6898), 671–677. http://doi.org/10.1038/nature01014spa
dc.relation.referencesTimsina, J., Godwin, D., Humphreys, E., Kukal, S. S., Smith, D., 2008. Evaluation of options for increasing yield and wáter productivity of wheat in Punjab, India Using the DSSAT‐CSM-CERES-Wheat model. Agricultural Wáter management. 95(9): 1099‐1110.spa
dc.relation.referencesTittonell, P., 2014. Ecological intensification of agriculture-sustainable by nature. Current Opinion in Environmental Sustainability, 8, 53–61. http://doi.org/10.1016/j.cosust.2014.08.006spa
dc.relation.referencesTorrellas, M., Antón, A., Montero, J.I. 2013. An environmental calculator for greenhouse production systems. J. Environ. Manag. 118, 186e195. https://doi.org/10.1016/j.jenvman.2013.01.011spa
dc.relation.referencesTóth, G., Hermann, T., da Silva, M.R., Montanarella, L., 2018. Monitoring soil for sustainable development and land degradation neutrality. Environ. Monit. Assess. 190. https://doi.org/10.1007/s10661-017-6415-3spa
dc.relation.referencesTricase, C., Lamonaca, E., Ingrao, C., Bacenetti, J., Lo Giudice, A., 2018. A comparative Life Cycle Assessment between organic and conventional barley cultivation for sustainable agriculture pathways. J. Clean. Prod. 172, 3747–3759. https://doi.org/10.1016/j.jclepro.2017.07.008spa
dc.relation.referencesTriste, L., Marchand, F., Debruyne, L., Meul, M., Lauwers, L., 2014. Reflection on the development process of a sustainability assessment tool: learning from a Flemish case. Eclogy Soc. 19, 47–57. https://doi.org/10.5751/ES-06789-190347spa
dc.relation.referencesUlén, B., Larsbo, M., Koestel, J., Hellner, Q., Blomberg, M., Geranmayeh, P., 2018. Assessing strategies to mitigate phosphorus leaching from drained clay soils. Ambio 47, 114–123. https://doi.org/10.1007/s13280-017-0991-xspa
dc.relation.referencesUmar A. S., Iqbal, M., 2007. Nitrate accumulation in plants, factors affecting the process and human health implications. A review. Agron Sustain Dev, 27, 45–57, http://doi.org/10.1051/agro:2006021spa
dc.relation.referencesUSEPA., 1972. Quality of life indicators: A review of state-of-the-art and guidelines derived to assist in developing environmental indicators. USEPA Environmental Studies Division, Office of Research and Monitoring. Washington, DC.spa
dc.relation.referencesUsman, M., Ibrahim, F., Oyetola, S.O., 2018. Sustainable agriculture in relation to problems of soil degradation and how to amend such soils for optimum crop production in Nigeria. Int. J. Res. Agric. Food Sci. 4, 1–17.spa
dc.relation.referencesVakhnyi, S., Khakhula, V., Fedoruk, Y., Panchenko, T., Herasymenko, L., 2018. The efficiency increase of the nutrition element uptake by various potato cultivars grown in one-crop system and in crop rotation. EurAsian J. Biosci. 12, 1–7.spa
dc.relation.referencesVan Asselt, E. D., Van Bussel, L. G. J., Van der Voet, H., Van der Heijden, G. W. A. M., Tromp, S. O., Rijgersberg, H., Van Efert, F., Van Wagenberg, C. P. A., 2014. A protocol for evaluating the sustainability of agri-food production systems-A case study on potato production in peri-urban agriculture in The Netherlands. Ecological Indicators, 43, 315–321. http://doi.org/10.1016/j.ecolind.2014.02.027spa
dc.relation.referencesVan Capelle, C., Schrader, S., Brunotte, J., 2012. Tillage-induced changes in the functional diversity of soil biota - A review with a focus on German data. Eur. J. Soil Biol. 50, 165–181. https://doi.org/10.1016/j.ejsobi.2012.02.005spa
dc.relation.referencesVan Passel, S., y Meul, M. (2012). Multilevel and multi-user sustainability assessment of farming systems. Environmental Impact Assessment Review, 32, 170-180. http://doi.org/10.1016/j.eiar.2011.08.005spa
dc.relation.referencesVargas, C. Z. R., 2009. La investigación aplicada: una forma de conocer las realidades con evidencia científica. Revista Educación, 33(1), 155–165. http://doi.org/0379-7082spa
dc.relation.referencesVelasquez, E., Lavelle, P., Andrade, M., 2007. GISQ, a multifunctional indicator of soil quality. Soil Biol. Biochem. 39, 3066–3080. https://doi.org/10.1016/j.soilbio.2007.06.013spa
dc.relation.referencesVerheijen, F.G.A., Jones, R.J.A., Rickson, R.J., Smith, C.J., 2009. Tolerable versus actual soil erosion rates in Europe. Earth-Science Rev. 94, 23–38. https://doi.org/10.1016/j.earscirev.2009.02.003spa
dc.relation.referencesVerhulst, N., François, I., Govaerts, B., 2010. Conservation agriculture, improving soil quality for sustainable production systems?, in: Rattan, L., Stewart, B.A. (Eds.), Food Security and Soil Quality. Taylor y Francis Group, London and New York, p. 418.spa
dc.relation.referencesXing, Y., Niu, X., Wang, N., Jiang, W., Gao, Y., Wang, X. 2020. The correlation between soil nutrient and potato quality in Loess Plateau of China based on PLSR. Sustainability. 12, 1588. https://doi.org/10.3390/su12041588spa
dc.relation.referencesWaas, T., Hugé, J., Block, T., Wright, T., Benitez-Capistros, F., Verbruggen, A., 2014. Sustainability assessment and indicators: Tools in a decision-making strategy for sustainable development. Sustainability 6, 5512–5534. https://doi.org/10.3390/su6095512spa
dc.relation.referencesWalkley, A., Black, I.A., 1934. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. https://doi.org/10.1097/00010694-193401000-00003spa
dc.relation.referencesWalraevens, K., Tewolde, T.G., Amare, K., Hussein, A., Berhane, G., Baert, R., Ronsse, S., Kebede, S., Van Hulle, L., Deckers, J., Martens, K., Van Camp, M., 2015. Water balance components for sustainability assessment of groundwater-dependent agriculture: example of the mendae plain (Tigray, Ethiopia). L. Degrad. Dev. 26, 725–736. https://doi.org/10.1002/ldr.2377spa
dc.relation.referencesWang, L., Palta, J. A., Chen, W., Chen, Y., Deng, X., 2018. Nitrogen fertilization improved water-use efficiency of winter wheat through increasing water use during vegetative rather than grain filling. Agricultural Water Management, 197, 41–53. http://doi.org/10.1016/j.agwat.2017.11.010spa
dc.relation.referencesWang, Y., Fan, J., Cao, L., Zheng, X., Ren, P., Zhao, S., 2018. The influence of tillage practices on soil detachment in the red soil region of China. Catena 165, 272–278. https://doi.org/10.1016/j.catena.2018.02.011spa
dc.relation.referencesWayne, W. D. 2002., Bioestatistics: A foundation for analysis in the health sciences. John Wiley and Sons, Inc. New York.spa
dc.relation.referencesWCED (World Comission on Environment and Develpment). 1987. Our common future. Oxford University Pressspa
dc.relation.referencesWeidema, B. P., 2000. Agricultural data for life Cycle Assessments, Vol 2. Agricultural Economics Research Institute (LEI). La Haya.spa
dc.relation.referencesWeldeslassie, T., Naz, H., Singh, S., Oves, M., 2018. Chemical contaminants for soil, air and aquatic ecosystem, in: Oves, M., Khan, M. Z., Ismail, I. M. I. (Eds), Modern age environmental problems and their remediation. Springer (1st ed.). http://doi.org/10.1007/978-3-319-64501-8spa
dc.relation.referencesWest, T.O., Marland, G., 2002. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 91, 217–232. https://doi.org/10.1016/S0167-8809(01)00233-Xspa
dc.relation.referencesWise, MA., Calvin, K.V., Thomson, A.M., Clarke, L.E., Bond-Lamberty, B., Sands, R.D., Smith, S.J., Janetos, A.C., Edmonds, J.A., 2009. Implications of Limiting CO2 Concentrations for Land Use and Energy. Science. 324:1183-1186. May 29, 2009spa
dc.relation.referencesWorld Comission on Environment and Development WCED., 1987. Our common future. Oxford University Pressspa
dc.relation.referencesWszelaczyńska, E., Pobereżny, J., Spychaj-Fabisiak, E., Janowiak, J., 2012. Effect of organic and nitrogen fertilization on selected components in potato tubers grown in a simplified crop rotation. J. Elemntology 1153–1165. https://doi.org/10.5601/jelem.2014.19.3.381spa
dc.relation.referencesYang, J.M., Yang, J.Y., Dou, S., Yang, X.M., Hoogenboom, G., 2013. Simulating the effect of long-term fertilization on maize yield and soil C/N dynamics in northeastern China using DSSAT and CENTURY-based soil model. Nutr. Cycl. Agroecosystems 95, 287–303. https://doi.org/10.1007/s10705-013-9563-zspa
dc.relation.referencesYang, Q., Meng, F.R., Zhao, Z., Chow, T.L., Benoy, G., Rees, H.W., Bourque, C.P.A., 2009. Assessing the impacts of flow diversion terraces on stream water and sediment yields at a watershed level using SWAT model. Agric. Ecosyst. Environ. 132, 23–31. https://doi.org/10.1016/j.agee.2009.02.012spa
dc.relation.referencesYao, Y., Gao, B., Zhang, M., Inyang, M., Zimmerman, A.R., 2012. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89, 1467–1471. https://doi.org/10.1016/j.chemosphere.2012.06.002spa
dc.relation.referencesYli-Viikari, A., Risku-Norja, H., Aakkula, J., 2012. Sustainability Indicators: Providing Policy Indications or Just Adding Informative Chaos? J. Sustaible Agric. 36, 127–150. https://doi.org/10.1080/10440046.2011.611749spa
dc.relation.referencesYli-Viikari, A., Risku-Norja, H., Aakkula, J., 2012. Sustainability Indicators: Providing Policy Indications or Just Adding Informative Chaos? J. Sustaible Agric. 36, 127–150. https://doi.org/10.1080/10440046.2011.611749spa
dc.relation.referencesYouker, R. E., McGuinness, J. L., 1957. A short method of obtaining mean weightdiameter values of aggregate analyses of soils. Soil Science 83(4), 291–294. Recuperado de https://journals.lww.com/soilsci/Citation/1957/04000/A_SHORT_METHOD_OF_OBTAINING_MEAN_WEIGHT_DIAMETER.4.aspxspa
dc.relation.referencesZahm, F., Viaux, P., Vilain, L., Girardin, P., y Mouchet, C. 2008. Assessing farm sustainability with the IDEA method - From the concept of agriculture sustainability to case studies on farms. Sustainable Development, 16(4), 271–281. http://doi.org/10.1002/sd.380spa
dc.relation.referencesZegada-lizarazu, W., Monti, A., 2010. Energy crops in rotation. A review. Biomass and Bioenergy 35, 12–25. https://doi.org/10.1016/j.biombioe.2010.08.001spa
dc.relation.referencesZhang, T.Q., Zheng, Z.M., Lal, R., Lin, Z.Q., Sharpley, A.N., Shober, A.L., Smith, D., Tan, C.S., Van Cappellen, P., 2018. Environmental Indicator Principium with Case References to Agricultural Soil, Water, and Air Quality and Model-Derived Indicators. J. Environ. Qual. 47, 191. https://doi.org/10.2134/jeq2017.10.0398spa
dc.relation.referencesZhang, X., Xu, M., Sun, N., Xiong, W., Huang, S., Wu, L., 2016. Modelling and predicting crop yield, soil carbon and nitrogen stocks under climate change scenarios with fertiliser management in the North China Plain. Geoderma 265, 176–186. https://doi.org/10.1016/j.geoderma.2015.11.027spa
dc.relation.referencesZörb, C., Senbayram, M., 0|Peiter, E., 2014. Potassium in agriculture - Status and perspectives. J. Plant Physiol. 171, 656–669. https://doi.org/10.1016/j.jplph.2013.08.008spa
dc.relation.referencesZornoza, R., Acosta, J.A., Bastida, F., Domínguez, S.G., Toledo, D.M., Faz, A., 2015. Identification of sensitive indicators to assess the interrelationship between soil quality, management practicesand human health. Soil 1, 173–185. https://doi.org/10.5194/soil-1-173-2015spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.agrovocFactores edáficosspa
dc.subject.agrovocEdaphic factorseng
dc.subject.agrovocRelaciones planta suelospa
dc.subject.agrovocPlant soil relationseng
dc.subject.agrovocRelaciones planta aguaspa
dc.subject.agrovocPlant water relationseng
dc.subject.agrovocCalidad del suelospa
dc.subject.agrovocSoil qualityeng
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::631 - Técnicas específicas, aparatos, equipos, materialesspa
dc.subject.proposalMSEASspa
dc.subject.proposalIndicador de sostenibilidadspa
dc.subject.proposalCalidad del suelospa
dc.subject.proposalRelación suelo-plantaspa
dc.subject.proposalRelación suelo-aguaspa
dc.subject.proposalRelación suelo-atmósferaspa
dc.subject.proposalDSSATeng
dc.subject.proposalLCAeng
dc.subject.proposalSustainability indicatoreng
dc.subject.proposalSoil qualityeng
dc.subject.proposalSoil-plant relationshipeng
dc.subject.proposalSoil-water relationshipeng
dc.subject.proposalSoil-athmosphere relationshipeng
dc.titleEvaluación de la sostenibilidad orientada a experimentos agrícolas asociados al suelospa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80221019.2021.pdf
Tamaño:
3.95 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: