Cribado virtual y evaluación de la actividad tranquilizante de nuevos compuestos tiazepínicos, tiazolidínicos e isoquinolínicos

dc.contributor.advisorCuervo Prado, Paola Andrea
dc.contributor.advisorGuerrero Pabon, Mario Francisco
dc.contributor.authorArias Quiroz, Estefany
dc.contributor.researchgroupGrupo de Estudios en Síntesis y Aplicaciones de Compuestos Heterocíclicos (Gesach)spa
dc.contributor.researchgroupGrupo de Investigaciones en Farmacología Molecular (Farmol)spa
dc.date.accessioned2023-08-09T19:30:57Z
dc.date.available2023-08-09T19:30:57Z
dc.date.issued2023
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa química computacional permite el uso de múltiples herramientas para el desarrollo de nuevos fármacos. En este trabajo se exploró el enfoque de diseño de fármacos asociado a la estructura, usando el receptor GABA-A como diana para el estudio de acoplamiento molecular de tres series de compuestos orgánicos con los núcleos; espirotiazepinona, espirotiazolidona y tetrahidropirazoloquinolina. Para el docking molecular se empleó el sitio de unión de benzodiazepinas entre la interfaz α+/γ, perteneciente al receptor GABA-A. El estudio de acoplamiento fue llevado a cabo con los programas Autodock 4.2.6, AutoDock Vina y Dock6, posteriormente se realizó un consenso de puntuación con los puntajes de cada docking, lo cual permitió hacer una selección de los compuestos más promisorios, en conjunto con la predicción de las propiedades fisicoquímicas, farmacocinéticas y toxicológicas. Mediante el cribado virtual fueron seleccionados seis compuestos (dos por cada serie), dichas sustancias fueron evaluadas en un modelo murino a través de pruebas neurofarmacológicas comportamentales de tipo coordinación motora, ansiolítica, antidepresiva, anticonvulsivante y sedante-hipnótica. El cribado virtual reveló que los seis compuestos seleccionados presentaron interacciones de diferentes tipos con los aminoácidos Phe100D, Tyr58C, His102D, Tyr160D, Tyr210D, Ser205D, Phe77C, donde las interacciones más comunes fueron apilamiento pi-pi, pi-alquilo, pi en forma de T, pi-sulfuro y pi-sigma, las cuales presentaron correspondencia con aquellas interacciones entre el receptor y los fármacos de referencia. Adicionalmente se presentaron interacciones con halógeno cuando el compuesto de prueba contenía un sustituyente de este tipo en posición para del sistema bencenoide. Posteriormente, se realizaron pruebas comportamentales en ratones de laboratorio con los seis compuestos seleccionados; los resultados obtenidos no revelaron una actividad de tipo tranquilizante en las dosis evaluadas. Es necesario proseguir con bioensayos a dosis más altas y continuar con el estudio de la correspondencia de los resultados in silico e in vivo. (Texto tomado de la fuente)spa
dc.description.abstractComputational chemistry allows the use of multiple tools for the development of new drugs. In this work, the structure-associated drug design approach was explored using the GABA-A receptor as a target for the molecular docking study of three series of organic compounds with the nuclei; spirothiazepinone, spirothiazolidone and tetrahydropyrazoloquinoline. For molecular docking, the benzodiazepine binding site between the α+/γ interface belonging to the GABA-A receptor was used. The docking study was carried out with the programs Autodock 4.2.6, AutoDock Vina and Dock6, subsequently a consensus scoring was performed with the scores of each docking, which allowed making a selection of the most promising compounds, in conjunction with the prediction of physicochemical, pharmacokinetic and toxicological properties. By means of virtual screening, six compounds were selected (two for each series), and these substances were evaluated in a murine model through behavioral neuropharmacological tests of motor coordination, anxiolytic, antidepressant, anticonvulsant and sedative-hypnotic type. Virtual screening revealed that the six selected compounds exhibited interactions of different types with the amino acids Phe100D, Tyr58C, His102D, Tyr160D, Tyr210D, Ser205D, Phe77C, where the most common interactions were pi-pi, pi-alkyl, T-shaped pi, pi-sulfide and pi-sigma stacking, which showed correspondence with those interactions between the receptor and the reference drugs. In addition, halogen interactions occurred when the test compound contained a halogen substituent in the para position of the benzenoid system. Subsequently, behavioral tests were performed on laboratory mice with the six selected compounds; the results obtained did not reveal a tranquilizer-type activity at the doses evaluated. It is necessary to continue with bioassays at higher doses and to continue with the study of the correspondence of the in silico and in vivo results.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Farmacologíaspa
dc.description.researchareaFarmacologiaspa
dc.description.researchareaDiseño de fármacos asistido por computadoraspa
dc.description.sponsorshipMINCIENCIASspa
dc.format.extent201 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84510
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Farmacologíaspa
dc.relation.referencesAdamson, R. H. (2016). The acute lethal dose 50 ( LD 50 ) of caffeine in albino rats. Regulatory Toxicology and Pharmacology, 80, 274–276. https://doi.org/10.1016/j.yrtph.2016.07.011spa
dc.relation.referencesAllen, W. J., Balius, T. E., Mukherjee, S., Brozell, S. R., Moustakas, D. T., Lang, P. T., Case, D. A., Kuntz, I. D., & Rizzo, R. C. (2015). DOCK 6: Impact of new features and current docking performance. Journal of Computational Chemistry, 36(15), 1132–1156. https://doi.org/10.1002/jcc.23905spa
dc.relation.referencesArmstrong, S. G., & Springs, O. F. B. (1887). United States Patent O-Ffice ~. 806, 5–7. https://patentimages.storage.googleapis.com/3b/f8/97/9257e4510e24fa/US2444536.pdfspa
dc.relation.referencesBabaev, O., Piletti Chatain, C., & Krueger-Burg, D. (2018). Inhibition in the amygdala anxiety circuitry. Experimental and Molecular Medicine, 50(4). https://doi.org/10.1038/s12276-018-0063-8spa
dc.relation.referencesBallón Paucara, W. G., & Grados Torrez, R. E. (2019). Acomplamiento molecular: criterios prácticos para la selección de ligandos biológicamente activos e identificación de nuevos blancos terapéuticos. Revista CON-CIENCIA, 7(2), 55–72. http://www.scielo.org.bo/scielo.php?script=sci_arttext&pid=S2310-02652019000200006&lng=es&nrm=iso&tlng=esspa
dc.relation.referencesBansal, Y., & Silakari, O. (2014). European Journal of Medicinal Chemistry Multifunctional compounds : Smart molecules for multifactorial diseases. European Journal of Medicinal Chemistry, 76, 31–42. https://doi.org/10.1016/j.ejmech.2014.01.060spa
dc.relation.referencesBarker-Haliski, M., & Steve White, H. (2020). Validated animal models for antiseizure drug (ASD) discovery: Advantages and potential pitfalls in ASD screening. Neuropharmacology, 167(August 2019), 107750. https://doi.org/10.1016/j.neuropharm.2019.107750spa
dc.relation.referencesBecerra-Rivas, C., Cuervo-Prado, P., & Orozco-Lopez, F. (2019). Efficient catalyst-free tricomponent synthesis of new spiro[cyclohexane-1,4′-pyrazolo[3,4-e][1, 4]thiazepin]-7′(6′H)-ones. Synthetic Communications, 49(3), 367–376. https://doi.org/10.1080/00397911.2018.1554143spa
dc.relation.referencesBermejo, P. E., Dorado, R., Zea-Sevilla, M. A., & Sánchez Menéndez, V. (2011). Neuroanatomía de las decisiones financieras. Neurologia, 26(3), 173–181. https://doi.org/10.1016/j.nrl.2010.09.015spa
dc.relation.referencesBirhan, Y. S., Bekhit, A. A., & Hymete, A. (2015). In vivo antimalarial evaluation of some derivatives. BMC Research Notes, 4–9. https://doi.org/10.1186/s13104-015-1578-xspa
dc.relation.referencesBitencourt-Ferreira, G. O. V. F. W. (2019). Docking with AutoDock4. Methods in Molecular Biology, 2053(Figure 1), 44–45.spa
dc.relation.referencesBogdanovaa, O., Kanekara, S., D’Ancid, K. E., & Renshawa, P. F. (2013). Factors influencing behavior in the forced swim test. Physiology & Behavior, 176(5), 139–148. https://doi.org/10.1016/j.physbeh.2013.05.012.Factorsspa
dc.relation.referencesBongarzone, S., & Bolognesi, M. L. (2011). The concept of privileged structures in rational drug design : focus on acridine and quinoline scaffolds in neurodegenerative and protozoan diseases. 251–268.spa
dc.relation.referencesBormann, J. (2000). The ‘ ABC ’ of GABA receptors. 21(January), 151–153.spa
dc.relation.referencesBouarab, C., Thompson, B., & Polter, A. M. (2019). VTA GABA Neurons at the Interface of Stress and Reward. Frontiers in Neural Circuits, 13(December), 1–12. https://doi.org/10.3389/fncir.2019.00078spa
dc.relation.referencesBouayyadi, A. (2020). Molecular docking analysis of α2-containing GABAA receptors with benzimidazoles derivatives. Bioinformation, 16(8), 611–619. https://doi.org/10.6026/97320630016611spa
dc.relation.referencesBrozell, S. R., Mukherjee, S., Balius, T. E., Roe, D. R., Case, D. A., & Rizzo, R. C. (2012). Evaluation of DOCK 6 as a pose generation and database enrichment tool. Journal of Computer-Aided Molecular Design, 26(6), 749–773. https://doi.org/10.1007/s10822-012-9565-yspa
dc.relation.referencesBrylinski, M. (2018). Aromatic interactions at the ligand-protein interface: Implications for the development of docking scoring functions Michal. Chemical Biology & Drug Design, 176(5), 139–148. https://doi.org/10.1111/cbdd.13084.Aromaticspa
dc.relation.referencesCan, A., Dao, D. T., Terrillion, C. E., Piantadosi, S. C., Bhat, S., & Gould, T. D. (2012). The tail suspension test. Journal of Visualized Experiments, 58, 3–7. https://doi.org/10.3791/3769spa
dc.relation.referencesCaron, G., Digiesi, V., Solaro, S., & Ermondi, G. (2020). Flexibility in early drug discovery: focus on the beyond-Rule-of-5 chemical space. Drug Discovery Today, 25(4), 621–627. https://doi.org/10.1016/j.drudis.2020.01.012spa
dc.relation.referencesCastel-Branco, M. M., Alves, G. L., Figueiredo, I. V., Falcão, A. C., & Caramona, M. M. (2009). The maximal electroshock seizure (MES) model in the preclinical assessment of potential new antiepileptic drugs. Methods and Findings in Experimental and Clinical Pharmacology, 31(2), 101–106. https://doi.org/10.1358/mf.2009.31.2.1338414spa
dc.relation.referencesChen, H., & Shi, D. (2011). Efficient one-pot synthesis of spiro[indoline-3,4′-pyrazolo[3,4-e][1, 4]thiazepine]dione via three-component reaction. Tetrahedron, 67(31), 5686–5692. https://doi.org/10.1016/j.tet.2011.05.069spa
dc.relation.referencesCheng, F., Shen, J., Yu, Y., Li, W., Liu, G., Lee, P. W., & Tang, Y. (2011). Chemosphere In silico prediction of Tetrahymena pyriformis toxicity for diverse industrial chemicals with substructure pattern recognition and machine learning methods. Chemosphere, 82(11), 1636–1643. https://doi.org/10.1016/j.chemosphere.2010.11.043spa
dc.relation.referencesCryan, J. F., Mombereau, C., & Vassout, A. (2005). The tail suspension test as a model for assessing antidepressant activity: Review of pharmacological and genetic studies in mice. Neuroscience and Biobehavioral Reviews, 29(4–5), 571–625. https://doi.org/10.1016/j.neubiorev.2005.03.009spa
dc.relation.referencesDanel, A., Gondek, E., Kucharek, M., Gut, A., Danel, A., Gondek, E., Kucharek, M., & Gut, A. (2022). 1H-Pyrazolo[3,4-b]quinolines: Synthesis and Properties over 100 Years of Research. Molecules. https://doi.org/10.3390/molecules27092775spa
dc.relation.referencesDeng, X. Q., Song, M. X., Wang, S. Ben, & Quan, Z. S. (2014). Synthesis and evaluation of the anticonvulsant activity of 8-alkoxy-4,5-dihydrobenzo[b][1,2,4]triazolo[4,3-d][1,4]thiazepine derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 29(2), 272–280. https://doi.org/10.3109/14756366.2013.776555spa
dc.relation.referencesDing, K., Han, Z., & Wang, Z. (2009). Spiro Skeletons : A Class of Privileged Structure for Chiral Ligand Design. 32–41. https://doi.org/10.1002/asia.200800192spa
dc.relation.referencesEberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203spa
dc.relation.referencesFalco-Walter, J. (2020). Epilepsy-Definition, Classification, Pathophysiology, and Epidemiology. Seminars in Neurology, 40(6), 617–623. https://doi.org/10.1055/s-0040-1718719spa
dc.relation.referencesFan, J., & De Lannoy, I. A. M. (2014). Pharmacokinetics. Biochemical Pharmacology, 87(1), 93–120. https://doi.org/10.1016/j.bcp.2013.09.00spa
dc.relation.referencesFox, M. E. (2019). The molecular and cellular mechanisms of depression: a focus on reward circuitry. Mol Psychiatry, 176(1), 100–106. https://doi.org/10.1038/s41380-019-0415-3.spa
dc.relation.referencesFradley, R. L., Guscott, M. R., Bull, S., Hallett, D. J., Goodacre, S. C., Wafford, K. A., Garrett, E. M., Newman, R. J., O’Meara, G. F., Whiting, P. J., Rosahl, T. W., Dawson, G. R., Reynolds, D. S., & Atack, J. R. (2007). Differential contribution of GABAA receptor subtypes to the anticonvulsant efficacy of benzodiazepine site ligands. Journal of Psychopharmacology, 21(4), 384–391. https://doi.org/10.1177/0269881106067255spa
dc.relation.referencesGallina, A. M., Bork, P., & Bordo, D. (2014). Structural analysis of protein-ligand interactions: The binding of endogenous compounds and of synthetic drugs. Journal of Molecular Recognition, 27(2), 65–72. https://doi.org/10.1002/jmr.2332spa
dc.relation.referencesGao, G., Liang, N., Geng, H., Jiang, W., Fu, H., Feng, J., Hou, J., Feng, X., & Wang, Z. (2017). Spiro-Fused Perylene Diimide Arrays. 15914–15920. https://doi.org/10.1021/jacs.7b09140spa
dc.relation.referencesGhit, A., Assal, D., Al-shami, A. S., & Hussein, D. E. E. (2021). GABA A receptors : structure , function , pharmacology , and related disorders. 0.spa
dc.relation.referencesGolani, L. K., Platt, D. M., Rüedi-Bettschen, D., Edwanker, C., Huang, S., Poe, M. M., Furtmüller, R., Sieghart, W., Cook, J. M., & Rowlett, J. K. (2021). 8-Substituted Triazolobenzodiazepines: In Vitro and In Vivo Pharmacology in Relation to Structural Docking at the α1 Subunit-Containing GABAA Receptor. Frontiers in Pharmacology, 12(April), 1–15. https://doi.org/10.3389/fphar.2021.625233spa
dc.relation.referencesGuedes, I. A., Pereira, F. S. S., & Dardenne, L. E. (2018). Empirical Scoring Functions for Structure-Based Virtual Screening : Applications , Critical Aspects , and Challenges. 9(September), 1–18. https://doi.org/10.3389/fphar.2018.01089spa
dc.relation.referencesGuo, L., Wei, C., Jia, J., Zhao, L., & Quan, Z. (2009). European Journal of Medicinal Chemistry anticonvulsant activity. European Journal of Medicinal Chemistry, 44(3), 954–958. https://doi.org/10.1016/j.ejmech.2008.07.010spa
dc.relation.referencesHanrahan, J. R., Chebib, M., & Johnston, G. A. R. (2015). Interactions of flavonoids with ionotropic GABA receptors. In Advances in Pharmacology (1st ed., Vol. 72). Elsevier Inc. https://doi.org/10.1016/bs.apha.2014.10.007spa
dc.relation.referencesHolguin, J. (2019). DISEÑO, SÍNTESIS Y CARACTERIZACIÓN DE COMPUESTOS ESPIROTIAZAHETEROCÍCLICOS CON POTENCIAL ACTIVIDAD SOBRE SISTEMA NERVIOSO CENTRAL (SNC). Universidad Nacional de Colombia, 1–9. https://doi.org/.1037//0033-2909.I26.1.78spa
dc.relation.referencesJain, V. S., Vora, D. K., & Ramaa, C. S. (2013). Bioorganic & Medicinal Chemistry Thiazolidine-2 , 4-diones : Progress towards multifarious applications. BIOORGANIC & MEDICINAL CHEMISTRY. https://doi.org/10.1016/j.bmc.2013.01.029spa
dc.relation.referencesKim, J. J., Anant, G., Jinfeng, T., Yuxuan, Z., Rebecca J., H., Shaotong, Z., Colleen M., N., Richard M., W. J., Erik, L., & Ryan E., H. (2020). Shared structural mechanisms of general anesthetics and benzodiazepines. Journal of Adolescent Health, 65(4), 303–308. https://doi.org/10.1038/s41586-020-2654-5.spa
dc.relation.referencesKim, J. J., & Hibbs, R. E. (2021). Direct Structural Insights into GABAA Receptor Pharmacology. Trends in Biochemical Sciences, 46(6), 502–517. https://doi.org/10.1016/j.tibs.2021.01.011spa
dc.relation.referencesKomada, M., Takao, K., & Miyakawa, T. (2008). Elevated plus maze for mice. Journal of Visualized Experiments, 22, 1–4. https://doi.org/10.3791/1088spa
dc.relation.referencesKraeuter, A. K., Guest, P. C., & Sarnyai, Z. (2019). The Open Field Test for Measuring Locomotor Activity and Anxiety-Like Behavior. Methods in Molecular Biology, 1916, 99–103. https://doi.org/10.1007/978-1-4939-8994-2_9spa
dc.relation.referencesLa-Vu, M., Tobias, B. C., Schuette, P. J., & Adhikari, A. (2020). To Approach or Avoid: An Introductory Overview of the Study of Anxiety Using Rodent Assays. Frontiers in Behavioral Neuroscience, 14(August), 1–7. https://doi.org/10.3389/fnbeh.2020.00145spa
dc.relation.referencesLapa, A. J., Souccar, C., Lima, M. T., & Lima, T. C. M. (2002). Métodos farmacológicos para el estudio de actividad sobre el sistema nervioso central. Métodos de Evaluación de La Actividad Farmacológica de Plantas Medicinales. Florianópolis, Santa Catarina, 70–90.spa
dc.relation.referencesLi, J., Fu, A., & Zhang, L. (2019). An Overview of Scoring Functions Used for Protein–Ligand Interactions in Molecular Docking. Interdisciplinary Sciences: Computational Life Sciences, 11(2), 320–328. https://doi.org/10.1007/s12539-019-00327-wspa
dc.relation.referencesLi, Q., & Salim, S. (2017). Structure-based virtual screening. Methods in Molecular Biology, 1558, 20–46. https://doi.org/10.2174/978160805142711101010020spa
dc.relation.referencesLi, X., Du, Z., Wang, J., Wu, Z., Li, W., Liu, G., Shen, X., & Tang, Y. (2015). In Silico Estimation of Chemical Carcinogenicity with Binary and Ternary Classification Methods. 228–235. https://doi.org/10.1002/minf.201400127spa
dc.relation.referencesLipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings i. Advanced Drug Delivery Reviews, 64, 4–17. https://doi.org/10.1016/j.addr.2012.09.019spa
dc.relation.referencesMaramai, S., Benchekroun, M., Ward, S. E., & Atack, J. R. (2020). Subtype Selective γ ‑ Aminobutyric Acid Type A Receptor ( GABA A R ) Modulators Acting at the Benzodiazepine Binding Site : An Update. https://doi.org/10.1021/acs.jmedchem.9b01312spa
dc.relation.referencesMasiulis, S., Desai, R., Uchański, T., Martin, I. S., Karia, D., Malinauskas, T., Zivanov, J., & Pardon, E. (2019). GABA A receptor signalling mechanisms revealed by structural pharmacology. 565(7740), 454–459. https://doi.org/10.1038/s41586-018-0832-5.GABAspa
dc.relation.referencesMathiasen, J. R., & Moser, V. C. (2018). The Irwin Test and Functional Observational Battery (FOB) for Assessing the Effects of Compounds on Behavior, Physiology, and Safety Pharmacology in Rodents. Current Protocols in Pharmacology, 83(1), 1–18. https://doi.org/10.1002/cpph.43spa
dc.relation.referencesMishra, C. B., Kumari, S., & Tiwari, M. (2015). European Journal of Medicinal Chemistry Thiazole : A promising heterocycle for the development of potent CNS active agents. European Journal of Medicinal Chemistry, 92, 1–34. https://doi.org/10.1016/j.ejmech.2014.12.031spa
dc.relation.referencesMoniruzzaman, M., Atikur Rahman, M., & Ferdous, A. (2015). Evaluation of sedative and hypnotic activity of ethanolic extract of Scoparia dulcis Linn. Evidence-Based Complementary and Alternative Medicine, 2015. https://doi.org/10.1155/2015/873954spa
dc.relation.referencesMoore, G., Us, D. E., & Pierson, E. (2007). ( 12 ) Patent Application Publication ( 10 ) Pub . No .: US 2007 / 0010526 A1. 1(19).spa
dc.relation.referencesMoreira, de Brito, A. F., Fontana, C., de Carvalho, F. S., Sanz, G., Vaz, B. G., Lião, L. M., da Rocha, F. F., Verli, H., Menegatti, R., & Costa, E. A. (2020). Neuropharmacological assessment in mice and molecular docking of piperazine derivative LQFM212. Behavioural Brain Research, 394(June), 112827. https://doi.org/10.1016/j.bbr.2020.112827spa
dc.relation.referencesMoreira, L. K. da S., de Brito, A. F., da Silva, D. M., Siqueira, L., da Silva, D. P. B., Cardoso, C. S., Florentino, I. F., de Carvalho, P. M. G., Ghedini, P. C., Menegatti, R., & Costa, E. A. (2021). Potential antidepressant-like effect of piperazine derivative LQFM212 in mice: Role of monoaminergic pathway and brain-derived neurotrophic factor. Behavioural Brain Research, 401(July 2020). https://doi.org/10.1016/j.bbr.2020.113066spa
dc.relation.referencesMorris, G. M., Ruth, H., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256spa
dc.relation.referencesMortelmans, K., & Zeiger, E. (2000). The Ames Salmonella/microsome mutagenicity assay. Mutation Research, 29–60.spa
dc.relation.referencesMuegge, I. (2016). Computer-aided drug design at Boehringer Ingelheim. Journal of Computer-Aided Molecular Design. https://doi.org/10.1007/s10822-016-9975-3spa
dc.relation.referencesNepali, K., Lee, H., & Liou, J. (2018). Nitro-Group-Containing Drugs. Journal of Medical Chemistry. https://doi.org/10.1021/acs.jmedchem.8b00147spa
dc.relation.referencesOda, A., Tsuchida, K., Takakura, T., Yamaotsu, N., & Hirono, S. (2006). Comparison of consensus scoring strategies for evaluating computational models of protein-ligand complexes. Journal of Chemical Information and Modeling, 46(1), 380–391. https://doi.org/10.1021/ci050283kspa
dc.relation.referencesPardridge, W. M. (1995). Transport of small molecules through the blood-brain biology and methodology barrier : 310, 3–8.spa
dc.relation.referencesPisula, W., Modlinska, K., Goncikowska, K., & Chrzanowska, A. (2021). Can the hole–board test predict a rat’s exploratory behavior in a free-exploration test? Animals, 11(4). https://doi.org/10.3390/ani11041068spa
dc.relation.referencesQu, N., He, Y., Wang, C., Xu, P., Yang, Y., Cai, X., Yu, K., Pei, Z., Hyseni, I., Sun, Z., Fukuda, M., Li, Y., Xu, Y., Plaza, B., Plaza, O. B., Mental, W., Sciences, H., Biology, C., & Plaza, O. B. (2020). A POMC-originated circuit regulates stress-induced hypophagia, depression and anhedonia. Mol Psychiatry, 25(5), 1006–1021. https://doi.org/10.1038/s41380-019-0506-1.Aspa
dc.relation.referencesRedfern, W. S., Dymond, A., Strang, I., Storey, S., Grant, C., Marks, L., Barnard, C., Heys, C., Moyser, K., Greenwood, K., Cobey, D., Moore, N., Karp, N. A., & Prior, H. (2019). The functional observational battery and modified Irwin test as global neurobehavioral assessments in the rat: Pharmacological validation data and a comparison of methods. Journal of Pharmacological and Toxicological Methods, 98(May), 106591.spa
dc.relation.referencesRomanelli, M. N., & Gualtieri, F. (2007). The quest for the treatment of cognitive impairment : a 7 nicotinic and a 5 GABA A. 1365–1378.spa
dc.relation.referencesSah, P. (2017). Fear, Anxiety, and the Amygdala. Neuron, 96(1), 1–2. https://doi.org/10.1016/j.neuron.2017.09.013spa
dc.relation.referencesSaldívar-González, F., Prieto-Martínez, F. D., & Medina-Franco, J. L. (2017). Descubrimiento y desarrollo de fármacos: un enfoque computacional. Educacion Quimica, 28(1), 51–58. https://doi.org/10.1016/j.eq.2016.06.002spa
dc.relation.referencesSantomauro, D. F., Mantilla Herrera, A. M., Shadid, J., Zheng, P., Ashbaugh, C., Pigott, D. M., Abbafati, C., Adolph, C., Amlag, J. O., Aravkin, A. Y., Bang-Jensen, B. L., Bertolacci, G. J., Bloom, S. S., Castellano, R., Castro, E., Chakrabarti, S., Chattopadhyay, J., Cogen, R. M., Collins, J. K., … Ferrari, A. J. (2021). Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. The Lancet, 398(10312), 1700–1712. https://doi.org/10.1016/S0140-6736(21)02143-7spa
dc.relation.referencesSargsyan, K., Grauffel, C., & Lim, C. (2017). How Molecular Size Impacts RMSD Applications in Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 13(4), 1518–1524. https://doi.org/10.1021/acs.jctc.7b00028spa
dc.relation.referencesShamma, M. (2012). The Isoquinoline Alkaloids: Chemistry and Pharmacology. In Elsevier.spa
dc.relation.referencesShimada, T., & Yamagata, K. (2018). Pentylenetetrazole-induced kindling mouse model. Journal of Visualized Experiments, 2018(136), 1–10. https://doi.org/10.3791/56573spa
dc.relation.referencesSieghart, W. (2006). Structure , Pharmacology , and Function of GABA A Receptor Subtypes. 54(06). https://doi.org/10.1016/S1054-3589(06)54010-4spa
dc.relation.referencesSieghart, W. (2015). Allosteric Modulation of GABA A Receptors via Multiple Drug-Binding Sites. In Diversity and Functions of GABA Receptors: A Tribute to Hanns Möhler, Part A (1st ed.). Elsevier Inc. https://doi.org/10.1016/bs.apha.2014.10.002spa
dc.relation.referencesSolomon, V R, & Lee, H. (2011). Quinoline as a Privileged Scaffold in Cancer Drug Discovery. 1488–1508.spa
dc.relation.referencesSolomon, Viswas Raja, Tallapragada, V. J., Chebib, M., Johnston, G. A. R., & Hanrahan, J. R. (2019). GABA allosteric modulators: An overview of recent developments in non-benzodiazepine modulators. European Journal of Medicinal Chemistry, 171, 434–461. https://doi.org/10.1016/j.ejmech.2019.03.043spa
dc.relation.referencesTripathi, A. C., Ji, S., Naz, G., Kumar, P., & Verma, A. (2014). European Journal of Medicinal Chemistry 4-Thiazolidinones : The advances continue . 72, 52–77. https://doi.org/10.1016/j.ejmech.2013.11.017spa
dc.relation.referencesTrott,O., Olson, A. J. (2019). Autodock vina: improving the speed and accuracy of docking. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334.AutoDockspa
dc.relation.referencesValencia, E. (2014). DISEÑO RACIONAL DE COMPUESTOS ESPIROTIAZOLIDÓNICOS, PIRAZOLOTIAZOLIDÓNICOS Y PIRAZOLO ß-LACTÁMICOS CON POTENCIAL ACTIVIDAD ANTIMICROBIANA. https://repositorio.unal.edu.co/handle/unal/54055spa
dc.relation.referencesVeber, D. F., Johnson, S. R., Cheng, H., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular Properties That Influence the Oral Bioavailability of Drug Candidates. 2615–2623. https://doi.org/10.1021/jm020017nspa
dc.relation.referencesWalters, W. P. (2012). Expert Opinion on Drug Discovery Going further than Lipinski ’ s rule in drug design Going further than Lipinski ’ s rule in drug design. 0441. https://doi.org/10.1517/17460441.2012.648612spa
dc.relation.referencesWatanabe, M., Maernura, K., Kanbara, K., Tamayama, T., & Hayasaki, H. (2002). GABA and GABA Receptors in the Central Nervous System and Other Organs. 213.spa
dc.relation.referencesZhu, H., Martin, T. M., Ye, L., Sedykh, A., Young, D. M., & Tropsha, A. (2009). Quantitative Structure - Activity Relationship Modeling of Rat Acute Toxicity by Oral Exposure. 1913–1921.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.decsComposición de medicamentosspa
dc.subject.decsDrug Compoundingeng
dc.subject.lembMedicamentosspa
dc.subject.lembDrugseng
dc.subject.proposalGABAAspa
dc.subject.proposalTiazepínicosspa
dc.subject.proposalTiazolidínicosspa
dc.subject.proposalIsoquinolínicosspa
dc.subject.proposalAcoplamiento molecularspa
dc.subject.proposalAnsiedadspa
dc.subject.proposalDepresionspa
dc.subject.proposalAntidepresivospa
dc.subject.proposalAnsioliticospa
dc.subject.proposalMolecular Dockingeng
dc.subject.proposalThiazepinseng
dc.subject.proposalThiazolidinseng
dc.subject.proposalIsoquinolineseng
dc.subject.proposalAnxietyeng
dc.subject.proposalDepressioneng
dc.subject.proposalAntidepressanteng
dc.subject.proposalAnxiolyticeng
dc.titleCribado virtual y evaluación de la actividad tranquilizante de nuevos compuestos tiazepínicos, tiazolidínicos e isoquinolínicos
dc.title.translatedVirtual screening and evaluation of the tranquilizing activity of new thiazepine, thiazolidine and isoquinoline compounds
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentConsejerosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitlesíntesis multicomponente, cribado virtual y evaluación de la actividad tranquilizante de nuevos compuestos tiazepínicos, tiazolidínicos y quinolínicosspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1143381986.2023.pdf
Tamaño:
8.36 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Farmacología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: