Análisis funcional del gen aquaporina1 en respuesta a estrés oxidativo y antimonio en Leishmania (Viannia) brazilienis
dc.contributor.advisor | Tellez Meneses, Jair Alexander | |
dc.contributor.advisor | Contreras Rodriguez, Luis Ernesto | |
dc.contributor.author | Riaño Cocunubo, Leydi Johana | |
dc.contributor.researchgroup | Zajuna jwa samu (Semilla del conocimiento) del Cesar | spa |
dc.date.accessioned | 2025-03-17T20:07:41Z | |
dc.date.available | 2025-03-17T20:07:41Z | |
dc.date.issued | 2025-03-12 | |
dc.description | ilustraciones, diagramas, fotografías, tablas | spa |
dc.description.abstract | La leishmaniasis es una enfermedad parasitaria causada por protozoarios pertenecientes al género Leishmania. El tratamiento de primera línea para esta patología incluye el uso de antimoniales, ante los cuales el parásito ha desarrollado mecanismos de resistencia, en los que participa la aquaporina 1 (AQP1). En consecuencia, la implementación de estrategias robustas de edición génica para el análisis funcional de genes asociados con fenómenos de resistencia como AQP1 resulta necesario, permitiendo iniciar el desarrollo de potenciales nuevas estrategias de control. En este trabajo se analizó la participación del gen multicopia AQP1 en respuesta ante el estrés oxidativo y el antimonio trivalente en promastigotes de Leishmania (Viannia) braziliensis editados genéticamente por CRISPR/Cas9. La edición génica consistió en el diseño de plantillas para obtener un ARN guía (sgARN) contra el gen AQP1 y casetes de reparación con los marcadores mCherry y mNeonGreen, con el propósito de generar parásitos Knockout (KO). Las plantillas obtenidas mediante PCR se transfectaron por electroporación en promastigotes de L. braziliensis que expresan constitutivamente las proteínas Cas9 de Streptococcus pyogenes (SpCas9) y T7 ARN polimerasa (LbCas9/T7). La edición exitosa se evaluó por PCR diagnóstico y secuenciación de ADN, confirmándose la edición específica de todas las copias del gen AQP1 y, por lo tanto, la generación de parásitos KO-AQP1, usando el marcador mNeonGreen. El análisis de las curvas de crecimiento de los promastigotes editados KO-AQP1 no evidenció diferencias significativas en comparación con los parásitos control LbCas9/T7. Adicionalmente, los parásitos KO-AQP1 indicaron valores mayores de IC50 ante el peróxido de hidrógeno y el antimonio trivalente. De esta manera, la implementación de estrategias de edición génica robustas como CRISPR/Cas9 en parásitos de Leishmania, constituye un aporte novedoso para Colombia, permitiendo enfocar el análisis de genes multicopia relacionados con fenómenos de resistencia desde una perspectiva de edición de ADN dirigida, lo cual potenciaría el desarrollo de nuevas estrategias terapéuticas para el tratamiento de la leishmaniasis (Texto tomado de la fuente) | spa |
dc.description.abstract | Leishmaniasis is a parasitic disease caused by protozoa belonging to the genus Leishmania. The first-line treatment for this pathology includes the use of antimonials, against which the parasite has developed resistance mechanisms, in which aquaporin 1 (AQP1) participates. Consequently, the implementation of robust gene editing strategies for the functional analysis of genes associated with resistance phenomena such as AQP1 is necessary to initiate the development of potential new control strategies. In this work we analyzed the involvement of the multicopy AQP1 gene in response to oxidative stress and trivalent antimony in Leishmania (Viannia) braziliensis promastigotes gene-edited by CRISPR/Cas9. Gene editing consisted in the design of templates to obtain a guide RNA (sgRNA) against the AQP1 gene and repair cassettes with the mCherry and mNeonGreen markers, with the purpose of generating knockout (KO) parasites. PCR-derived templates were transfected by electroporation into L. braziliensis promastigotes constitutively expressing Streptococcus pyogenes Cas9 (SpCas9) and T7 RNA polymerase (LbCas9/T7) proteins. Successful editing was assessed by diagnostic PCR and DNA sequencing, confirming specific editing of all copies of the AQP1 gene and, therefore, generation of KOAQP1 parasites, using the mNeonGreen marker. Analysis of the growth curves of the KOAQP1-edited promastigotes showed no significant differences compared to the LbCas9/T7 control parasites. Additionally, KO-AQP1 parasites showed higher IC50 values against hydrogen peroxide and trivalent antimony. Thus, the implementation of robust gene editing strategies such as CRISPR/Cas9 in Leishmania parasites constitutes a novel contribution for Colombia, allowing to focus the analysis of multicopy genes related to resistance phenomena from a perspective of targeted DNA editing, which would enhance the development of new therapeutic strategies for the treatment of leishmaniasis. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Microbiología | spa |
dc.description.researcharea | Enfermedades infecciosas | spa |
dc.format.extent | xv, 137 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87679 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Microbiología | spa |
dc.relation.references | Abdelkrim, Y. Z., Harigua-Souiai, E., Bassoumi-Jamoussi, I., Barhoumi, M., Banroques, J., Essafi-Benkhadir, K., Nilges, M., Blondel, A., Tanner, N. K., & Guizani, I. (2022). Enzymatic and Molecular Characterization of Anti-Leishmania Molecules That Differently Target Leishmania and Mammalian eIF4A Proteins, LieIF4A and eIF4AMus. Molecules, 27(18), Article 18. https://doi.org/10.3390/molecules27185890 | spa |
dc.relation.references | Adaui, V., Castillo, D., Zimic, M., Gutierrez, A., Decuypere, S., Vanaerschot, M., De Doncker, S., Schnorbusch, K., Maes, I., Van der Auwera, G., Maes, L., Llanos-Cuentas, A., Arevalo, J., & Dujardin, J.-C. (2011). Comparative Gene Expression Analysis throughout the Life Cycle of Leishmania braziliensis: Diversity of Expression Profiles among Clinical Isolates. PLoS Neglected Tropical Diseases, 5(5), e1021. https://doi.org/10.1371/journal.pntd.0001021 | spa |
dc.relation.references | Altamura, F., Rajesh, R., Catta-Preta, C. M. C., Moretti, N. S., & Cestari, I. (2020). The current drug discovery landscape for trypanosomiasis and leishmaniasis: Challenges and strategies to identify drug targets. Drug Development Research. https://doi.org/10.1002/ddr.21664 | spa |
dc.relation.references | Aslett, M., Aurrecoechea, C., Berriman, M., Brestelli, J., Brunk, B. P., Carrington, M., Depledge, D. P., Fischer, S., Gajria, B., Gao, X., Gardner, M. J., Gingle, A., Grant, G., Harb, O. S., Heiges, M., Hertz-Fowler, C., Houston, R., Innamorato, F., Iodice, J., … Wang, H. (2010). TriTrypDB: A functional genomic resource for the Trypanosomatidae. Nucleic Acids Research, 38(Database issue), D457-D462. https://doi.org/10.1093/nar/gkp851 | spa |
dc.relation.references | Andrade, J. M., Baba, E. H., Machado-de-Avila, R. A., Chavez-Olortegui, C., Demicheli, C. P., Frézard, F., Monte-Neto, R. L., & Murta, S. M. F. (2016). Silver and Nitrate Oppositely Modulate Antimony Susceptibility through Aquaglyceroporin 1 in Leishmania (Viannia) Species. Antimicrobial Agents and Chemotherapy, 60(8), 4482-4489. https://doi.org/10.1128/AAC.00768-16 | spa |
dc.relation.references | Aslett, M., Aurrecoechea, C., Berriman, M., Brestelli, J., Brunk, B. P., Carrington, M., Depledge, D. P., Fischer, S., Gajria, B., Gao, X., Gardner, M. J., Gingle, A., Grant, G., Harb, O. S., Heiges, M., Hertz-Fowler, C., Houston, R., Innamorato, F., Iodice, J., … Wang, H. (2010). TriTrypDB: A functional genomic resource for the Trypanosomatidae. Nucleic Acids Research, 38(Database issue), D457-D462. https://doi.org/10.1093/nar/gkp851 | spa |
dc.relation.references | Bagher KHADEM ERFAN, M., MOHEBALI, M., KAZEMI-RAD, E., HAJJARAN, H., EDRISSIAN, G., MAMISHI, S., SAFFARi, M., RAOOFIAN, R., & HEIDARI, M. (2013). Downregulation of Calcineurin Gene Is Associated with Glucantime® Resiatance in Leishmania infantum. Iranian Journal of Parasitology, 8(3), 359-366. | spa |
dc.relation.references | Balakirev, E. S., & Ayala, F. J. (2003). Pseudogenes: Are They “Junk” or Functional DNA? Annual Review of Genetics, 37(Volume 37, 2003), 123-151. https://doi.org/10.1146/annurev.genet.37.040103.103949 | spa |
dc.relation.references | Beneke, T., & Gluenz, E. (2020). Bar-seq strategies for the LeishGEdit toolbox. Molecular and Biochemical Parasitology, 239, 111295. https://doi.org/10.1016/j.molbiopara.2020.111295 | spa |
dc.relation.references | Beneke, T., & Gluenz, E. (2019). LeishGEdit: A Method for Rapid Gene Knockout and Tagging Using CRISPR-Cas9. En J. Clos (Ed.), Leishmania: Methods and Protocols (pp. 189-210). Springer New York. https://doi.org/10.1007/978-1-4939-9210-2_9 | spa |
dc.relation.references | Beneke, T., Madden, R., Makin, L., Valli, J., Sunter, J., & Gluenz, E. (2017). A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. Royal Society Open Science, 4(5), 170095. https://doi.org/10.1098/rsos.170095 | spa |
dc.relation.references | Beverley, S. M., & Clayton, C. E. (1993). Transfection of Leishmania and Trypanosoma brucei by electroporation. Methods in Molecular Biology (Clifton, N.J.), 21, 333-348. https://doi.org/10.1385/0-89603-239-6:333 | spa |
dc.relation.references | Bienert, G. P., Møller, A. L. B., Kristiansen, K. A., Schulz, A., Møller, I. M., Schjoerring, J. K., & Jahn, T. P. (2007). Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. The Journal of Biological Chemistry, 282(2), 1183-1192. https://doi.org/10.1074/jbc.M603761200 | spa |
dc.relation.references | Boettcher, M., & McManus, M. T. (2015). Choosing the Right Tool for the Job: RNAi, TALEN, or CRISPR. Molecular Cell, 58(4), 575-585. https://doi.org/10.1016/j.molcel.2015.04.028 | spa |
dc.relation.references | Brotherton, M.-C., Bourassa, S., Leprohon, P., Légaré, D., Poirier, G. G., Droit, A., & Ouellette, M. (2013). Proteomic and Genomic Analyses of Antimony Resistant Leishmania infantum Mutant. PLOS ONE, 8(11), e81899. https://doi.org/10.1371/journal.pone.0081899 | spa |
dc.relation.references | Callahan, H. L., Portal, A. C., Devereaux, R., & Grogl, M. (1997). An axenic amastigote system for drug screening. Antimicrobial Agents and Chemotherapy, 41(4), 818-822. | spa |
dc.relation.references | Cardona-Arias, J. A., Vélez, I. D., & López-Carvajal, L. (2015). Efficacy of Thermotherapy to Treat Cutaneous Leishmaniasis: A Meta-Analysis of Controlled Clinical Trials. PLOS ONE, 10(5), e0122569. https://doi.org/10.1371/journal.pone.0122569 | spa |
dc.relation.references | Carrió, J., De Colmenares, M., Riera, C., Gállego, M., Arboix, M., & Portús, M. (2000). Leishmania infantum: Stage-specific activity of pentavalent antimony related with the assay conditions. Experimental Parasitology, 95(3), 209-214. https://doi.org/10.1006/expr.2000.4537 | spa |
dc.relation.references | Coelho, A. C., Beverley, S. M., & Cotrim, P. C. (2003). Functional genetic identification of PRP1, an ABC transporter superfamily member conferring pentamidine resistance in Leishmania major. Molecular and Biochemical Parasitology, 130(2), 83-90. https://doi.org/10.1016/S0166-6851(03)00162-2 | spa |
dc.relation.references | Cojean, S., Houzé, S., Haouchine, D., Huteau, F., Lariven, S., Hubert, V., Michard, F., Bories, C., Pratlong, F., Le Bras, J., Loiseau, P. M., & Matheron, S. (2012). Leishmania Resistance to Miltefosine Associated with Genetic Marker. Emerging Infectious Diseases, 18(4), 704-706. https://doi.org/10.3201/eid1804.110841 | spa |
dc.relation.references | Croft, S. L., Sundar, S., & Fairlamb, A. H. (2006). Drug Resistance in Leishmaniasis. CLIN. MICROBIOL. REV., 19, 16. | spa |
dc.relation.references | Chakravarty, J., & Sundar, S. (2010). Drug Resistance in Leishmaniasis. Journal of Global Infectious Diseases, 2(2), 167. https://doi.org/10.4103/0974-777X.62887 | spa |
dc.relation.references | Denton, H., McGREGOR, J. C., & Coombs, G. H. (2004). Reduction of anti-leishmanial pentavalent antimonial drugs by a parasite-specific thiol-dependent reductase, TDR1. Biochemical Journal, 381(Pt 2), 405-412. https://doi.org/10.1042/BJ20040283 | spa |
dc.relation.references | Dey, S., Papadopoulou, B., Haimeur, A., Roy, G., Grondin, K., Dou, D., Rosen, B. P., & Ouellette, M. (1994). High level arsenite resistance in Leishmania tarentolae is mediated by an active extrusion system. Molecular and Biochemical Parasitology, 67(1), 49-57. https://doi.org/10.1016/0166-6851(94)90095-7 | spa |
dc.relation.references | Doench, J. G., Hartenian, E., Graham, D. B., Tothova, Z., Hegde, M., Smith, I., Sullender, M., Ebert, B. L., Xavier, R. J., & Root, D. E. (2014). Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation. Nature Biotechnology, 32(12), 1262-1267. https://doi.org/10.1038/nbt.3026 | spa |
dc.relation.references | do Monte-Neto, R. L., Coelho, A. C., Raymond, F., Légaré, D., Corbeil, J., Melo, M. N., Frézard, F., & Ouellette, M. (2011). Gene Expression Profiling and Molecular Characterization of Antimony Resistance in Leishmania amazonensis. PLoS Neglected Tropical Diseases, 5(5), e1167. https://doi.org/10.1371/journal.pntd.0001167 | spa |
dc.relation.references | Downing, T., Imamura, H., Decuypere, S., Clark, T. G., Coombs, G. H., Cotton, J. A., Hilley, J. D., de Doncker, S., Maes, I., Mottram, J. C., Quail, M. A., Rijal, S., Sanders, M., Schönian, G., Stark, O., Sundar, S., Vanaerschot, M., Hertz-Fowler, C., Dujardin, J.-C., & Berriman, M. (2011). Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Research, 21(12), 2143-2156. https://doi.org/10.1101/gr.123430.111 | spa |
dc.relation.references | Engstler, M., & Beneke, T. (2023). Gene editing and scalable functional genomic screening in Leishmania species using the CRISPR/Cas9 cytosine base editor toolbox LeishBASEedit. eLife, 12, e85605. https://doi.org/10.7554/eLife.85605 | spa |
dc.relation.references | Ennes-Vidal, V., Vitório, B. da S., Menna-Barreto, R. F. S., Pitaluga, A. N., Gonçalves-da-Silva, S. A., Branquinha, M. H., Santos, A. L. S., & d’Avila-Levy, C. M. (2019). Calpains of Leishmania braziliensis: Genome analysis, differential expression, and functional analysis. Memórias Do Instituto Oswaldo Cruz, 114, e190147. https://doi.org/10.1590/0074-02760190147 | spa |
dc.relation.references | Espada, C. R., Quilles, J. C., Albuquerque-Wendt, A., Cruz, M. C., Beneke, T., Lorenzon, L. B., Gluenz, E., Cruz, A. K., & Uliana, S. R. B. (2021). Effective Genome Editing in Leishmania (Viannia) braziliensis Stably Expressing Cas9 and T7 RNA Polymerase. Frontiers in Cellular and Infection Microbiology, 11, 772311. https://doi.org/10.3389/fcimb.2021.772311 | spa |
dc.relation.references | Fairlamb, A. H., & Cerami, A. (1992). METABOLISM AND FUNCTIONS OF TRYPANOTHIONE IN THE KINETOPLASTIDA. Annual Review of Microbiology, 46(1), 695-729. https://doi.org/10.1146/annurev.mi.46.100192.003403 | spa |
dc.relation.references | Fernández, O. L., Diaz-Toro, Y., Ovalle, C., Valderrama, L., Muvdi, S., Rodríguez, I., Gomez, M. A., & Saravia, N. G. (2014). Miltefosine and Antimonial Drug Susceptibility of Leishmania Viannia Species and Populations in Regions of High Transmission in Colombia. PLoS Neglected Tropical Diseases, 8(5), e2871. https://doi.org/10.1371/journal.pntd.0002871 | spa |
dc.relation.references | Gómez, J. L. G., & ETV-Zoonosis, E. (2019). INFORME DE EVENTO LEISHMANIASIS, COLOMBIA, 2020. 04, 23. | spa |
dc.relation.references | Ghorbal, M., Gorman, M., Macpherson, C. R., Martins, R. M., Scherf, A., & Lopez-Rubio, J.-J. (2014). Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nature Biotechnology, 32(8), 819-821. https://doi.org/10.1038/nbt.2925 | spa |
dc.relation.references | Gourbal, B., Sonuc, N., Bhattacharjee, H., Legare, D., Sundar, S., Ouellette, M., Rosen, B. P., & Mukhopadhyay, R. (2004). Drug Uptake and Modulation of Drug Resistance in Leishmania by an Aquaglyceroporin. Journal of Biological Chemistry, 279(30), 31010-31017. https://doi.org/10.1074/jbc.M403959200 | spa |
dc.relation.references | Ishemgulova, A., Hlaváčová, J., Majerová, K., Butenko, A., Lukeš, J., Votýpka, J., Volf, P., & Yurchenko, V. (2018). CRISPR/Cas9 in Leishmania mexicana: A case study of LmxBTN1. PLOS ONE, 13(2), e0192723. https://doi.org/10.1371/journal.pone.0192723 | spa |
dc.relation.references | Jiang, Y., Roberts, S. C., Jardim, A., Carter, N. S., Shih, S., Ariyanayagam, M., Fairlamb, A. H., & Ullman, B. (1999). Ornithine Decarboxylase Gene Deletion Mutants of Leishmania donovani *. Journal of Biological Chemistry, 274(6), 3781-3788. https://doi.org/10.1074/jbc.274.6.3781 | spa |
dc.relation.references | Haldar, A. K., Sen, P., & Roy, S. (2011). Use of Antimony in the Treatment of Leishmaniasis: Current Status and Future Directions. Molecular Biology International, 2011, 1-23. https://doi.org/10.4061/2011/571242 | spa |
dc.relation.references | Hefnawy, A., Berg, M., Dujardin, J.-C., & De Muylder, G. (2017). Exploiting Knowledge on Leishmania Drug Resistance to Support the Quest for New Drugs. Trends in Parasitology, 33(3), 162-174. https://doi.org/10.1016/j.pt.2016.11.003 | spa |
dc.relation.references | Hendrickx, S., Guerin, P., Caljon, G., Croft, S., & Maes, L. (2018). Evaluating drug resistance in visceral leishmaniasis: The challenges. Parasitology, 145(4), 453-463. https://doi.org/10.1017/S0031182016002031 | spa |
dc.relation.references | Housden, B. E., & Perrimon, N. (2016). Comparing CRISPR and RNAi-based screening technologies. Nature Biotechnology, 34(6), 621-623. https://doi.org/10.1038/nbt.3599 | spa |
dc.relation.references | Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science, 337(6096), 816-821. https://doi.org/10.1126/science.1225829 | spa |
dc.relation.references | Kaur, G., & Rajput, B. (2014). Comparative analysis of the omics technologies used to study antimonial, amphotericin B, and pentamidine resistance in leishmania. Journal of Parasitology Research, 2014, 726328. https://doi.org/10.1155/2014/726328 | spa |
dc.relation.references | Krogh, A., Larsson, B., von Heijne, G., & Sonnhammer, E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology, 305(3), 567-580. https://doi.org/10.1006/jmbi.2000.4315 | spa |
dc.relation.references | Lander, N., & Chiurillo, M. A. (2019). State-of-the-art CRISPR/Cas9 Technology for Genome Editing in Trypanosomatids. The Journal of eukaryotic microbiology, 66(6), 981-991. https://doi.org/10.1111/jeu.12747 | spa |
dc.relation.references | Labuhn, M., Adams, F. F., Ng, M., Knoess, S., Schambach, A., Charpentier, E. M., Schwarzer, A., Mateo, J. L., Klusmann, J.-H., & Heckl, D. (2018). Refined sgRNA efficacy prediction improves large- and small-scale CRISPR–Cas9 applications. Nucleic Acids Research, 46(3), 1375-1385. https://doi.org/10.1093/nar/gkx1268 | spa |
dc.relation.references | Lachaud, L., Bourgeois, N., Kuk, N., Morelle, C., Crobu, L., Merlin, G., Bastien, P., Pagès, M., & Sterkers, Y. (2014). Constitutive mosaic aneuploidy is a unique genetic feature widespread in the Leishmania genus. Microbes and Infection, 16(1), 61-66. https://doi.org/10.1016/j.micinf.2013.09.005 | spa |
dc.relation.references | León, E., Ortiz, V., Pérez, A., Téllez, J., Díaz, G. J., Ramírez H, M. H., & Contreras R, L. E. (2023). Anti-SpCas9 IgY Polyclonal Antibodies Production for CRISPR Research Use. ACS Omega, 8(37), 33809-33818. https://doi.org/10.1021/acsomega.3c04273 | spa |
dc.relation.references | Lye, L.-F., Owens, K., Shi, H., Murta, S. M. F., Vieira, A. C., Turco, S. J., Tschudi, C., Ullu, E., & Beverley, S. M. (2010). Retention and Loss of RNA Interference Pathways in Trypanosomatid Protozoans. PLOS Pathogens, 6(10), e1001161. https://doi.org/10.1371/journal.ppat.1001161 | spa |
dc.relation.references | Madusanka, R. K., Karunaweera, N. D., Silva, H., & Selvapandiyan, A. (2024). Antimony resistance and gene expression in Leishmania: Spotlight on molecular and proteomic aspects. Parasitology, 151(1), 1-14. https://doi.org/10.1017/S0031182023001129 | spa |
dc.relation.references | Mandal, G., Govindarajan, V., Sharma, M., Bhattacharjee, H., & Mukhopadhyay, R. (2017). Drug Resistance in Leishmania (pp. 649-665). https://doi.org/10.1007/978-3-319-46718-4_42 | spa |
dc.relation.references | Mandal, S., Maharjan, M., Singh, S., Chatterjee, M., & Madhubala, R. (2010). Assessing aquaglyceroporin gene status and expression profile in antimony-susceptible and -resistant clinical isolates of Leishmania donovani from India. Journal of Antimicrobial Chemotherapy, 65(3), 496-507. https://doi.org/10.1093/jac/dkp468 | spa |
dc.relation.references | Mandal, G., Mandal, S., Sharma, M., Charret, K. S., Papadopoulou, B., Bhattacharjee, H., & Mukhopadhyay, R. (2015). Species-Specific Antimonial Sensitivity in Leishmania Is Driven by Post-Transcriptional Regulation of AQP1. PLOS Neglected Tropical Diseases, 9(2), e0003500. https://doi.org/10.1371/journal.pntd.0003500 | spa |
dc.relation.references | Maharjan, M., Singh, S., Chatterjee, M., & Madhubala, R. (2008). Role of Aquaglyceroporin (AQP1) Gene and Drug Uptake in Antimony-resistant Clinical Isolates of Leishmania donovani. The American Journal of Tropical Medicine and Hygiene, 79(1), 69-75. https://doi.org/10.4269/ajtmh.2008.79.69 | spa |
dc.relation.references | Marquis, N., Gourbal, B., Rosen, B. P., Mukhopadhyay, R., & Ouellette, M. (2005). Modulation in aquaglyceroporin AQP1 gene transcript levels in drug-resistant Leishmania. Molecular Microbiology, 57(6), 1690-1699. https://doi.org/10.1111/j.1365-2958.2005.04782.x | spa |
dc.relation.references | Minet, C., Thévenon, S., Chantal, I., Solano, P., & Berthier, D. (2018). Mini-review on CRISPR-Cas9 and its potential applications to help controlling neglected tropical diseases caused by Trypanosomatidae. Infection, Genetics and Evolution, 63, 326-331. https://doi.org/10.1016/j.meegid.2018.02.030 | spa |
dc.relation.references | Mir, A., Edraki, A., Lee, J., & Sontheimer, E. J. (2018). Type II-C CRISPR-Cas9 Biology, Mechanism, and Application. ACS Chemical Biology, 13(2), 357-365. https://doi.org/10.1021/acschembio.7b00855 | spa |
dc.relation.references | Mittal, M. K., Rai, S., ASHUTOSH, RAVINDER, Gupta, S., Sundar, S., & Goyal, N. (2007). CHARACTERIZATION OF NATURAL ANTIMONY RESISTANCE IN LEISHMANIA DONOVANI ISOLATES. The American Journal of Tropical Medicine and Hygiene, 76(4), 681-688. https://doi.org/10.4269/ajtmh.2007.76.681 | spa |
dc.relation.references | Mohapatra, S. (2014). Drug resistance in leishmaniasis: Newer developments. Tropical Parasitology, 4(1), 4-9. https://doi.org/10.4103/2229-5070.129142 | spa |
dc.relation.references | Monte-Neto, R., Laffitte, M.-C. N., Leprohon, P., Reis, P., Frézard, F., & Ouellette, M. (2015). Intrachromosomal Amplification, Locus Deletion and Point Mutation in the Aquaglyceroporin AQP1 Gene in Antimony Resistant Leishmania (Viannia) guyanensis. PLOS Neglected Tropical Diseases, 9(2), e0003476. https://doi.org/10.1371/journal.pntd.0003476 | spa |
dc.relation.references | Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2), 55-63. https://doi.org/10.1016/0022-1759(83)90303-4 | spa |
dc.relation.references | Mukherjee, A., Boisvert, S., Monte-Neto, R. L. do, Coelho, A. C., Raymond, F., Mukhopadhyay, R., Corbeil, J., & Ouellette, M. (2013). Telomeric gene deletion and intrachromosomal amplification in antimony-resistant eishmania. Molecular Microbiology, 88(1), 189-202. | spa |
dc.relation.references | Mukhopadhyay, R., Bhattacharjee, H., & Rosen, B. P. (2014). Aquaglyceroporins: Generalized metalloid channels. Biochimica Et Biophysica Acta, 1840(5), 1583-1591. https://doi.org/10.1016/j.bbagen.2013.11.021 | spa |
dc.relation.references | Neumann, L. S. M., Dias, A. H. S., & Skaf, M. S. (2020). Molecular Modeling of Aquaporins from Leishmania major. The Journal of Physical Chemistry B, 124(28), 5825-5836. https://doi.org/10.1021/acs.jpcb.0c03550 | spa |
dc.relation.references | OMS. (2012). Control de las leishmaniasis: Informe de una reunión del Comité de Expertos de la OMS sobre el Control de las Leishmaniasis, Ginebra, 22 a 26 de marzo de 2010. En Control of the leishmaniases: Report of a meeting of the WHO Expert Commitee on the Control of Leishmaniases, Geneva, 22-26 March 2010. Organización Mundial de la Salud. https://apps.who.int/iris/handle/10665/82766 | spa |
dc.relation.references | OPS. (2021, diciembre). LEISHMANIASIS Informe epidemiológico de las Américas. https://iris.paho.org/handle/10665.2/55344 | spa |
dc.relation.references | Patino, L. H., Muskus, C., & Ramírez, J. D. (2019). Transcriptional responses of Leishmania (Leishmania) amazonensis in the presence of trivalent sodium stibogluconate. Parasites & Vectors, 12(1), 348. https://doi.org/10.1186/s13071-019-3603-8 | spa |
dc.relation.references | Peng, D., Kurup, S. P., Yao, P. Y., Minning, T. A., & Tarleton, R. L. (2014). CRISPR-Cas9-Mediated Single-Gene and Gene Family Disruption in Trypanosoma cruzi. mBio, 6(1), 10.1128/mbio.02097-14. https://doi.org/10.1128/mbio.02097-14 | spa |
dc.relation.references | Peng, D., & Tarleton, R. (2015). EuPaGDT: A web tool tailored to design CRISPR guide RNAs for eukaryotic pathogens. Microbial Genomics, 1(4), e000033. https://doi.org/10.1099/mgen.0.000033 | spa |
dc.relation.references | Perez-Franco, J. E., Cruz-Barrera, M. L., Robayo, M. L., Lopez, M. C., Daza, C. D., Bedoya, A., Mariño, M. L., Saavedra, C. H., & Echeverry, M. C. (2016). Clinical and Parasitological Features of Patients with American Cutaneous Leishmaniasis that Did Not Respond to Treatment with Meglumine Antimoniate. PLOS Neglected Tropical Diseases, 10(5), e0004739. https://doi.org/10.1371/journal.pntd.0004739 | spa |
dc.relation.references | Ponte-Sucre, A., Diaz, E., & Padrón-Nieves, M. (Eds.). (2013). Drug Resistance in Leishmania Parasites. Springer Vienna. https://doi.org/10.1007/978-3-7091-1125-3 | spa |
dc.relation.references | Ponte-Sucre, A., Gamarro, F., Dujardin, J.-C., Barrett, M. P., López-Vélez, R., García-Hernández, R., Pountain, A. W., Mwenechanya, R., & Papadopoulou, B. (2017). Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLOS Neglected Tropical Diseases, 11(12), e0006052. https://doi.org/10.1371/journal.pntd.0006052 | spa |
dc.relation.references | Potvin, J.-E., Leprohon, P., Queffeulou, M., Sundar, S., & Ouellette, M. (2020). Mutations in an Aquaglyceroporin as a Proven Marker of Antimony Clinical Resistance in the Parasite Leishmania donovani. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 72(10), e526-e532. https://doi.org/10.1093/cid/ciaa1236 | spa |
dc.relation.references | Queffeulou, M., Leprohon, P., Fernandez-Prada, C., Ouellette, M., & Mejía-Jaramillo, A. M. (2024). CRISPR-Cas9 high-throughput screening to study drug resistance in Leishmania infantum. mBio, 15(7), e00477-24. https://doi.org/10.1128/mbio.00477-24 | spa |
dc.relation.references | Regli, I. B., Fernández, O. L., Martínez-Salazar, B., Gómez, M. A., Saravia, N. G., & Tacchini-Cottier, F. (2018). Resistance of Leishmania (Viannia) Panamensis to Meglumine Antimoniate or Miltefosine Modulates Neutrophil Effector Functions. Frontiers in Immunology, 9. https://doi.org/10.3389/fimmu.2018.03040 | spa |
dc.relation.references | Ribeiro, J. M., Garriga, M., Potchen, N., Crater, A. K., Gupta, A., Ito, D., & Desai, S. A. (2018). Guide RNA selection for CRISPR-Cas9 transfections in Plasmodium falciparum. International Journal for Parasitology, 48(11), 825-832. https://doi.org/10.1016/j.ijpara.2018.03.009 | spa |
dc.relation.references | Romero, I., Téllez, J., Romanha, A. J., Steindel, M., & Grisard, E. C. (2015). Upregulation of Cysteine Synthase and Cystathionine β-Synthase Contributes to Leishmania braziliensis Survival under Oxidative Stress. Antimicrobial Agents and Chemotherapy, 59(8), 4770-4781. https://doi.org/10.1128/aac.04880-14 | spa |
dc.relation.references | Rojas-Pirela, M., Andrade-Alviárez, D., Rojas, V., Kemmerling, U., Cáceres, A. J., Michels, P. A., Concepción, J. L., & Quiñones, W. (2020). Phosphoglycerate kinase: Structural aspects and functions, with special emphasis on the enzyme from Kinetoplastea. Open Biology, 10(11), 200302. https://doi.org/10.1098/rsob.200302 | spa |
dc.relation.references | Salari, S., Bamorovat, M., Sharifi, I., & Almani, P. G. N. (2022). Global distribution of treatment resistance gene markers for leishmaniasis. Journal of Clinical Laboratory Analysis, 36(8), e24599. https://doi.org/10.1002/jcla.24599 | spa |
dc.relation.references | Salazar, L. R. M., & Torres, C. P. (2009). Fisiología molecular de las aquaporinas. Revista de la Facultad de Medicina, 57(1), Article 1. | spa |
dc.relation.references | Saravia, N. G., Navas, C., Segura, I., Valderrama, L., Valencia, A. Z., Escorcia, B., & Dianemcmahon-pratt. (s. f.). Heterogeneity, Geographic Distribution, and Pathogenicity of Serodemes of Leishmania Viannia in Colombia. | spa |
dc.relation.references | Seifert, K., Pérez-Victoria, F. J., Stettler, M., Sánchez-Cañete, M. P., Castanys, S., Gamarro, F., & Croft, S. L. (2007). Inactivation of the miltefosine transporter, LdMT, causes miltefosine resistance that is conferred to the amastigote stage of Leishmania donovani and persists in vivo. International Journal of Antimicrobial Agents, 30(3), 229-235. https://doi.org/10.1016/j.ijantimicag.2007.05.007 | spa |
dc.relation.references | Sezavar, M., Sharifi, I., Ghasemi Nejad Almani, P., Kazemi, B., Davoudi, N., Salari, S., Salarkia, E., Khosravi, A., & Bamorovat, M. (2021). The potential therapeutic role of PTR1 gene in non-healing anthroponotic cutaneous leishmaniasis due to Leishmania tropica. Journal of Clinical Laboratory Analysis, 35(3), e23670. https://doi.org/10.1002/jcla.23670 | spa |
dc.relation.references | Shendure, J., & Ji, H. (2008). Next-generation DNA sequencing. Nature Biotechnology, 26(10), 1135-1145. https://doi.org/10.1038/nbt1486 | spa |
dc.relation.references | Sharma, M. (2015). Regulatory mechanisms of Leishmania Aquaglyceroporin AQP1 [Doctor of Philosophy Biology, Florida International University]. https://doi.org/10.25148/etd.FIDC000197 | spa |
dc.relation.references | Sharma, R., Avendaño Rangel, F., Reis-Cunha, J. L., Marques, L. P., Figueira, C. P., Borba, P. B., Viana, S. M., Beneke, T., Bartholomeu, D. C., & de Oliveira, C. I. (2022). Targeted Deletion of Centrin in Leishmania braziliensis Using CRISPR-Cas9-Based Editing. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/fcimb.2021.790418 | spa |
dc.relation.references | Singh, G., Jayanarayan, K. G., & Dey, C. S. (2008). Arsenite Resistance in Leishmania and Possible Drug Targets. En H. K. Majumder (Ed.), Drug Targets in Kinetoplastid Parasites (pp. 1-8). Springer. https://doi.org/10.1007/978-0-387-77570-8_1 | spa |
dc.relation.references | Sollelis, L., Ghorbal, M., MacPherson, C. R., Martins, R. M., Kuk, N., Crobu, L., Bastien, P., Scherf, A., Lopez-Rubio, J.-J., & Sterkers, Y. (2015). First efficient CRISPR-Cas9-mediated genome editing in Leishmania parasites. Cellular Microbiology, 17(10), 1405-1412. https://doi.org/10.1111/cmi.12456 | spa |
dc.relation.references | Song, F., & Stieger, K. (2017). Optimizing the DNA Donor Template for Homology-Directed Repair of Double-Strand Breaks. Molecular Therapy - Nucleic Acids, 7, 53-60. https://doi.org/10.1016/j.omtn.2017.02.006 | spa |
dc.relation.references | Sundar, S., Chakravarty, J., & Meena, L. P. (2019). Leishmaniasis: Treatment, drug resistance and emerging therapies. Expert Opinion on Orphan Drugs, 7(1), 1-10. https://doi.org/10.1080/21678707.2019.1552853 | spa |
dc.relation.references | Sundar, S., Thakur, B. B., Tandon, A. K., Agrawal, N. R., Mishra, C. P., Mahapatra, T. M., & Singh, V. P. (1994). Clinicoepidemiological study of drug resistance in Indian kala-azar. BMJ : British Medical Journal, 308(6924), 307. | spa |
dc.relation.references | Tamma, G., Valenti, G., Grossini, E., Donnini, S., Marino, A., Marinelli, R. A., & Calamita, G. (2018). Aquaporin Membrane Channels in Oxidative Stress, Cell Signaling, and Aging: Recent Advances and Research Trends. Oxidative Medicine and Cellular Longevity, 2018, 1501847. https://doi.org/10.1155/2018/1501847 | spa |
dc.relation.references | utz, D., & Renz, M. (1983). An optimized freeze-squeeze method for the recovery of DNA fragments from agarose gels. Analytical Biochemistry, 132(1), 14-19. https://doi.org/10.1016/0003-2697(83)90419-0 | spa |
dc.relation.references | Teixeira, D. E., Benchimol, M., Rodrigues, J. C. F., Crepaldi, P. H., Pimenta, P. F. P., & de Souza, W. (2013). The Cell Biology of Leishmania: How to Teach Using Animations. PLoS Pathogens, 9(10), e1003594. https://doi.org/10.1371/journal.ppat.1003594 | spa |
dc.relation.references | Téllez, J., Romero, I., Soares, M. J., Steindel, M., & Romanha, A. J. (2017). Knockdown of Host Antioxidant Defense Genes Enhances the Effect of Glucantime on Intracellular Leishmania braziliensis in Human Macrophages. Antimicrobial Agents and Chemotherapy, 61(7), e02099-16. https://doi.org/10.1128/AAC.02099-16 | spa |
dc.relation.references | Torres, D. C., Adaui, V., Ribeiro-Alves, M., Romero, G. A. S., Arévalo, J., Cupolillo, E., & Dujardin, J.-C. (2010). Targeted gene expression profiling in Leishmania braziliensis and Leishmania guyanensis parasites isolated from Brazilian patients with different antimonial treatment outcomes. Infection, Genetics and Evolution, 10(6), 727-733. https://doi.org/10.1016/j.meegid.2010.05.006 | spa |
dc.relation.references | Uzcategui, N. L., Zhou, Y., Figarella, K., Ye, J., Mukhopadhyay, R., & Bhattacharjee, H. (2008). Alteration in glycerol and metalloid permeability by a single mutation in the extracellular C-loop of Leishmania major aquaglyceroporin LmAQP1. Molecular Microbiology, 70(6), 1477-1486. https://doi.org/10.1111/j.1365-2958.2008.06494.x | spa |
dc.relation.references | Vanin, E. F. (1984). Processed pseudogenes: Characteristics and evolution. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 782(3), 231-241. https://doi.org/10.1016/0167-4781(84)90057-5 | spa |
dc.relation.references | Wyllie, S., Cunningham, M. L., & Fairlamb, A. H. (2004). Dual Action of Antimonial Drugs on Thiol Redox Metabolism in the Human Pathogen Leishmania donovani. Journal of Biological Chemistry, 279(38), 39925-39932. https://doi.org/10.1074/jbc.M405635200 | spa |
dc.relation.references | Yagoubat, A., Corrales, R., Bastien, P., Lévêque, M., & Sterkers, Y. (2020). Gene Editing in Trypanosomatids: Tips and Tricks in the CRISPR-Cas9 Era. Trends in Parasitology, 36(9), 745-760. https://doi.org/10.1016/j.pt.2020.06.005 | spa |
dc.relation.references | Zhang, W.-W., Lypaczewski, P., & Matlashewski, G. (2017). Optimized CRISPR-Cas9 Genome Editing for Leishmania and Its Use To Target a Multigene Family, Induce Chromosomal Translocation, and Study DNA Break Repair Mechanisms. MSphere, 2(1). https://doi.org/10.1128/mSphere.00340-16 | spa |
dc.relation.references | Zhang, W.-W., & Matlashewski, G. (2015). CRISPR-Cas9-Mediated Genome Editing in Leishmania donovani. mBio, 6(4), e00861-15. https://doi.org/10.1128/mBio.00861-15 | spa |
dc.relation.references | Zambrano, P. (2020). DOCUMENTO ELABORADO POR. 04, 16. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 570 - Biología::576 - Genética y evolución | spa |
dc.subject.decs | Antimonio | spa |
dc.subject.decs | Acuaporina 1 | spa |
dc.subject.decs | Aquaporin 1 | eng |
dc.subject.decs | Estrés Oxidativo | spa |
dc.subject.decs | Oxidative Stress | eng |
dc.subject.proposal | Leishmaniasis | spa |
dc.subject.proposal | Leishmania braziliensis | spa |
dc.subject.proposal | Edición génica | spa |
dc.subject.proposal | AQP1 | spa |
dc.subject.proposal | CRISPRCas9 | spa |
dc.subject.proposal | Antimonio trivalente | spa |
dc.subject.proposal | Estrés oxidativo | spa |
dc.subject.proposal | Gene editing | eng |
dc.subject.proposal | Antimony | eng |
dc.subject.proposal | Oxidative stress | eng |
dc.title | Análisis funcional del gen aquaporina1 en respuesta a estrés oxidativo y antimonio en Leishmania (Viannia) brazilienis | spa |
dc.title.translated | Functional analysis of the aquaporin1 gene in response to oxidative stress and antimony in Leishmania (Viannia) brazilienis | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Personal de apoyo escolar | spa |
dcterms.audience.professionaldevelopment | Proveedores de ayuda financiera para estudiantes | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
dcterms.audience.professionaldevelopment | Receptores de fondos federales y solicitantes | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis Final Maestria Leydi Riano 2025.pdf
- Tamaño:
- 4.31 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Microbiología
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: