Análisis funcional del gen aquaporina1 en respuesta a estrés oxidativo y antimonio en Leishmania (Viannia) brazilienis

dc.contributor.advisorTellez Meneses, Jair Alexander
dc.contributor.advisorContreras Rodriguez, Luis Ernesto
dc.contributor.authorRiaño Cocunubo, Leydi Johana
dc.contributor.researchgroupZajuna jwa samu (Semilla del conocimiento) del Cesarspa
dc.date.accessioned2025-03-17T20:07:41Z
dc.date.available2025-03-17T20:07:41Z
dc.date.issued2025-03-12
dc.descriptionilustraciones, diagramas, fotografías, tablasspa
dc.description.abstractLa leishmaniasis es una enfermedad parasitaria causada por protozoarios pertenecientes al género Leishmania. El tratamiento de primera línea para esta patología incluye el uso de antimoniales, ante los cuales el parásito ha desarrollado mecanismos de resistencia, en los que participa la aquaporina 1 (AQP1). En consecuencia, la implementación de estrategias robustas de edición génica para el análisis funcional de genes asociados con fenómenos de resistencia como AQP1 resulta necesario, permitiendo iniciar el desarrollo de potenciales nuevas estrategias de control. En este trabajo se analizó la participación del gen multicopia AQP1 en respuesta ante el estrés oxidativo y el antimonio trivalente en promastigotes de Leishmania (Viannia) braziliensis editados genéticamente por CRISPR/Cas9. La edición génica consistió en el diseño de plantillas para obtener un ARN guía (sgARN) contra el gen AQP1 y casetes de reparación con los marcadores mCherry y mNeonGreen, con el propósito de generar parásitos Knockout (KO). Las plantillas obtenidas mediante PCR se transfectaron por electroporación en promastigotes de L. braziliensis que expresan constitutivamente las proteínas Cas9 de Streptococcus pyogenes (SpCas9) y T7 ARN polimerasa (LbCas9/T7). La edición exitosa se evaluó por PCR diagnóstico y secuenciación de ADN, confirmándose la edición específica de todas las copias del gen AQP1 y, por lo tanto, la generación de parásitos KO-AQP1, usando el marcador mNeonGreen. El análisis de las curvas de crecimiento de los promastigotes editados KO-AQP1 no evidenció diferencias significativas en comparación con los parásitos control LbCas9/T7. Adicionalmente, los parásitos KO-AQP1 indicaron valores mayores de IC50 ante el peróxido de hidrógeno y el antimonio trivalente. De esta manera, la implementación de estrategias de edición génica robustas como CRISPR/Cas9 en parásitos de Leishmania, constituye un aporte novedoso para Colombia, permitiendo enfocar el análisis de genes multicopia relacionados con fenómenos de resistencia desde una perspectiva de edición de ADN dirigida, lo cual potenciaría el desarrollo de nuevas estrategias terapéuticas para el tratamiento de la leishmaniasis (Texto tomado de la fuente)spa
dc.description.abstractLeishmaniasis is a parasitic disease caused by protozoa belonging to the genus Leishmania. The first-line treatment for this pathology includes the use of antimonials, against which the parasite has developed resistance mechanisms, in which aquaporin 1 (AQP1) participates. Consequently, the implementation of robust gene editing strategies for the functional analysis of genes associated with resistance phenomena such as AQP1 is necessary to initiate the development of potential new control strategies. In this work we analyzed the involvement of the multicopy AQP1 gene in response to oxidative stress and trivalent antimony in Leishmania (Viannia) braziliensis promastigotes gene-edited by CRISPR/Cas9. Gene editing consisted in the design of templates to obtain a guide RNA (sgRNA) against the AQP1 gene and repair cassettes with the mCherry and mNeonGreen markers, with the purpose of generating knockout (KO) parasites. PCR-derived templates were transfected by electroporation into L. braziliensis promastigotes constitutively expressing Streptococcus pyogenes Cas9 (SpCas9) and T7 RNA polymerase (LbCas9/T7) proteins. Successful editing was assessed by diagnostic PCR and DNA sequencing, confirming specific editing of all copies of the AQP1 gene and, therefore, generation of KOAQP1 parasites, using the mNeonGreen marker. Analysis of the growth curves of the KOAQP1-edited promastigotes showed no significant differences compared to the LbCas9/T7 control parasites. Additionally, KO-AQP1 parasites showed higher IC50 values against hydrogen peroxide and trivalent antimony. Thus, the implementation of robust gene editing strategies such as CRISPR/Cas9 in Leishmania parasites constitutes a novel contribution for Colombia, allowing to focus the analysis of multicopy genes related to resistance phenomena from a perspective of targeted DNA editing, which would enhance the development of new therapeutic strategies for the treatment of leishmaniasis.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Microbiologíaspa
dc.description.researchareaEnfermedades infecciosasspa
dc.format.extentxv, 137 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87679
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.referencesAbdelkrim, Y. Z., Harigua-Souiai, E., Bassoumi-Jamoussi, I., Barhoumi, M., Banroques, J., Essafi-Benkhadir, K., Nilges, M., Blondel, A., Tanner, N. K., & Guizani, I. (2022). Enzymatic and Molecular Characterization of Anti-Leishmania Molecules That Differently Target Leishmania and Mammalian eIF4A Proteins, LieIF4A and eIF4AMus. Molecules, 27(18), Article 18. https://doi.org/10.3390/molecules27185890spa
dc.relation.referencesAdaui, V., Castillo, D., Zimic, M., Gutierrez, A., Decuypere, S., Vanaerschot, M., De Doncker, S., Schnorbusch, K., Maes, I., Van der Auwera, G., Maes, L., Llanos-Cuentas, A., Arevalo, J., & Dujardin, J.-C. (2011). Comparative Gene Expression Analysis throughout the Life Cycle of Leishmania braziliensis: Diversity of Expression Profiles among Clinical Isolates. PLoS Neglected Tropical Diseases, 5(5), e1021. https://doi.org/10.1371/journal.pntd.0001021spa
dc.relation.referencesAltamura, F., Rajesh, R., Catta-Preta, C. M. C., Moretti, N. S., & Cestari, I. (2020). The current drug discovery landscape for trypanosomiasis and leishmaniasis: Challenges and strategies to identify drug targets. Drug Development Research. https://doi.org/10.1002/ddr.21664spa
dc.relation.referencesAslett, M., Aurrecoechea, C., Berriman, M., Brestelli, J., Brunk, B. P., Carrington, M., Depledge, D. P., Fischer, S., Gajria, B., Gao, X., Gardner, M. J., Gingle, A., Grant, G., Harb, O. S., Heiges, M., Hertz-Fowler, C., Houston, R., Innamorato, F., Iodice, J., … Wang, H. (2010). TriTrypDB: A functional genomic resource for the Trypanosomatidae. Nucleic Acids Research, 38(Database issue), D457-D462. https://doi.org/10.1093/nar/gkp851spa
dc.relation.referencesAndrade, J. M., Baba, E. H., Machado-de-Avila, R. A., Chavez-Olortegui, C., Demicheli, C. P., Frézard, F., Monte-Neto, R. L., & Murta, S. M. F. (2016). Silver and Nitrate Oppositely Modulate Antimony Susceptibility through Aquaglyceroporin 1 in Leishmania (Viannia) Species. Antimicrobial Agents and Chemotherapy, 60(8), 4482-4489. https://doi.org/10.1128/AAC.00768-16spa
dc.relation.referencesAslett, M., Aurrecoechea, C., Berriman, M., Brestelli, J., Brunk, B. P., Carrington, M., Depledge, D. P., Fischer, S., Gajria, B., Gao, X., Gardner, M. J., Gingle, A., Grant, G., Harb, O. S., Heiges, M., Hertz-Fowler, C., Houston, R., Innamorato, F., Iodice, J., … Wang, H. (2010). TriTrypDB: A functional genomic resource for the Trypanosomatidae. Nucleic Acids Research, 38(Database issue), D457-D462. https://doi.org/10.1093/nar/gkp851spa
dc.relation.referencesBagher KHADEM ERFAN, M., MOHEBALI, M., KAZEMI-RAD, E., HAJJARAN, H., EDRISSIAN, G., MAMISHI, S., SAFFARi, M., RAOOFIAN, R., & HEIDARI, M. (2013). Downregulation of Calcineurin Gene Is Associated with Glucantime® Resiatance in Leishmania infantum. Iranian Journal of Parasitology, 8(3), 359-366.spa
dc.relation.referencesBalakirev, E. S., & Ayala, F. J. (2003). Pseudogenes: Are They “Junk” or Functional DNA? Annual Review of Genetics, 37(Volume 37, 2003), 123-151. https://doi.org/10.1146/annurev.genet.37.040103.103949spa
dc.relation.referencesBeneke, T., & Gluenz, E. (2020). Bar-seq strategies for the LeishGEdit toolbox. Molecular and Biochemical Parasitology, 239, 111295. https://doi.org/10.1016/j.molbiopara.2020.111295spa
dc.relation.referencesBeneke, T., & Gluenz, E. (2019). LeishGEdit: A Method for Rapid Gene Knockout and Tagging Using CRISPR-Cas9. En J. Clos (Ed.), Leishmania: Methods and Protocols (pp. 189-210). Springer New York. https://doi.org/10.1007/978-1-4939-9210-2_9spa
dc.relation.referencesBeneke, T., Madden, R., Makin, L., Valli, J., Sunter, J., & Gluenz, E. (2017). A CRISPR Cas9 high-throughput genome editing toolkit for kinetoplastids. Royal Society Open Science, 4(5), 170095. https://doi.org/10.1098/rsos.170095spa
dc.relation.referencesBeverley, S. M., & Clayton, C. E. (1993). Transfection of Leishmania and Trypanosoma brucei by electroporation. Methods in Molecular Biology (Clifton, N.J.), 21, 333-348. https://doi.org/10.1385/0-89603-239-6:333spa
dc.relation.referencesBienert, G. P., Møller, A. L. B., Kristiansen, K. A., Schulz, A., Møller, I. M., Schjoerring, J. K., & Jahn, T. P. (2007). Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. The Journal of Biological Chemistry, 282(2), 1183-1192. https://doi.org/10.1074/jbc.M603761200spa
dc.relation.referencesBoettcher, M., & McManus, M. T. (2015). Choosing the Right Tool for the Job: RNAi, TALEN, or CRISPR. Molecular Cell, 58(4), 575-585. https://doi.org/10.1016/j.molcel.2015.04.028spa
dc.relation.referencesBrotherton, M.-C., Bourassa, S., Leprohon, P., Légaré, D., Poirier, G. G., Droit, A., & Ouellette, M. (2013). Proteomic and Genomic Analyses of Antimony Resistant Leishmania infantum Mutant. PLOS ONE, 8(11), e81899. https://doi.org/10.1371/journal.pone.0081899spa
dc.relation.referencesCallahan, H. L., Portal, A. C., Devereaux, R., & Grogl, M. (1997). An axenic amastigote system for drug screening. Antimicrobial Agents and Chemotherapy, 41(4), 818-822.spa
dc.relation.referencesCardona-Arias, J. A., Vélez, I. D., & López-Carvajal, L. (2015). Efficacy of Thermotherapy to Treat Cutaneous Leishmaniasis: A Meta-Analysis of Controlled Clinical Trials. PLOS ONE, 10(5), e0122569. https://doi.org/10.1371/journal.pone.0122569spa
dc.relation.referencesCarrió, J., De Colmenares, M., Riera, C., Gállego, M., Arboix, M., & Portús, M. (2000). Leishmania infantum: Stage-specific activity of pentavalent antimony related with the assay conditions. Experimental Parasitology, 95(3), 209-214. https://doi.org/10.1006/expr.2000.4537spa
dc.relation.referencesCoelho, A. C., Beverley, S. M., & Cotrim, P. C. (2003). Functional genetic identification of PRP1, an ABC transporter superfamily member conferring pentamidine resistance in Leishmania major. Molecular and Biochemical Parasitology, 130(2), 83-90. https://doi.org/10.1016/S0166-6851(03)00162-2spa
dc.relation.referencesCojean, S., Houzé, S., Haouchine, D., Huteau, F., Lariven, S., Hubert, V., Michard, F., Bories, C., Pratlong, F., Le Bras, J., Loiseau, P. M., & Matheron, S. (2012). Leishmania Resistance to Miltefosine Associated with Genetic Marker. Emerging Infectious Diseases, 18(4), 704-706. https://doi.org/10.3201/eid1804.110841spa
dc.relation.referencesCroft, S. L., Sundar, S., & Fairlamb, A. H. (2006). Drug Resistance in Leishmaniasis. CLIN. MICROBIOL. REV., 19, 16.spa
dc.relation.referencesChakravarty, J., & Sundar, S. (2010). Drug Resistance in Leishmaniasis. Journal of Global Infectious Diseases, 2(2), 167. https://doi.org/10.4103/0974-777X.62887spa
dc.relation.referencesDenton, H., McGREGOR, J. C., & Coombs, G. H. (2004). Reduction of anti-leishmanial pentavalent antimonial drugs by a parasite-specific thiol-dependent reductase, TDR1. Biochemical Journal, 381(Pt 2), 405-412. https://doi.org/10.1042/BJ20040283spa
dc.relation.referencesDey, S., Papadopoulou, B., Haimeur, A., Roy, G., Grondin, K., Dou, D., Rosen, B. P., & Ouellette, M. (1994). High level arsenite resistance in Leishmania tarentolae is mediated by an active extrusion system. Molecular and Biochemical Parasitology, 67(1), 49-57. https://doi.org/10.1016/0166-6851(94)90095-7spa
dc.relation.referencesDoench, J. G., Hartenian, E., Graham, D. B., Tothova, Z., Hegde, M., Smith, I., Sullender, M., Ebert, B. L., Xavier, R. J., & Root, D. E. (2014). Rational design of highly active sgRNAs for CRISPR-Cas9–mediated gene inactivation. Nature Biotechnology, 32(12), 1262-1267. https://doi.org/10.1038/nbt.3026spa
dc.relation.referencesdo Monte-Neto, R. L., Coelho, A. C., Raymond, F., Légaré, D., Corbeil, J., Melo, M. N., Frézard, F., & Ouellette, M. (2011). Gene Expression Profiling and Molecular Characterization of Antimony Resistance in Leishmania amazonensis. PLoS Neglected Tropical Diseases, 5(5), e1167. https://doi.org/10.1371/journal.pntd.0001167spa
dc.relation.referencesDowning, T., Imamura, H., Decuypere, S., Clark, T. G., Coombs, G. H., Cotton, J. A., Hilley, J. D., de Doncker, S., Maes, I., Mottram, J. C., Quail, M. A., Rijal, S., Sanders, M., Schönian, G., Stark, O., Sundar, S., Vanaerschot, M., Hertz-Fowler, C., Dujardin, J.-C., & Berriman, M. (2011). Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance. Genome Research, 21(12), 2143-2156. https://doi.org/10.1101/gr.123430.111spa
dc.relation.referencesEngstler, M., & Beneke, T. (2023). Gene editing and scalable functional genomic screening in Leishmania species using the CRISPR/Cas9 cytosine base editor toolbox LeishBASEedit. eLife, 12, e85605. https://doi.org/10.7554/eLife.85605spa
dc.relation.referencesEnnes-Vidal, V., Vitório, B. da S., Menna-Barreto, R. F. S., Pitaluga, A. N., Gonçalves-da-Silva, S. A., Branquinha, M. H., Santos, A. L. S., & d’Avila-Levy, C. M. (2019). Calpains of Leishmania braziliensis: Genome analysis, differential expression, and functional analysis. Memórias Do Instituto Oswaldo Cruz, 114, e190147. https://doi.org/10.1590/0074-02760190147spa
dc.relation.referencesEspada, C. R., Quilles, J. C., Albuquerque-Wendt, A., Cruz, M. C., Beneke, T., Lorenzon, L. B., Gluenz, E., Cruz, A. K., & Uliana, S. R. B. (2021). Effective Genome Editing in Leishmania (Viannia) braziliensis Stably Expressing Cas9 and T7 RNA Polymerase. Frontiers in Cellular and Infection Microbiology, 11, 772311. https://doi.org/10.3389/fcimb.2021.772311spa
dc.relation.referencesFairlamb, A. H., & Cerami, A. (1992). METABOLISM AND FUNCTIONS OF TRYPANOTHIONE IN THE KINETOPLASTIDA. Annual Review of Microbiology, 46(1), 695-729. https://doi.org/10.1146/annurev.mi.46.100192.003403spa
dc.relation.referencesFernández, O. L., Diaz-Toro, Y., Ovalle, C., Valderrama, L., Muvdi, S., Rodríguez, I., Gomez, M. A., & Saravia, N. G. (2014). Miltefosine and Antimonial Drug Susceptibility of Leishmania Viannia Species and Populations in Regions of High Transmission in Colombia. PLoS Neglected Tropical Diseases, 8(5), e2871. https://doi.org/10.1371/journal.pntd.0002871spa
dc.relation.referencesGómez, J. L. G., & ETV-Zoonosis, E. (2019). INFORME DE EVENTO LEISHMANIASIS, COLOMBIA, 2020. 04, 23.spa
dc.relation.referencesGhorbal, M., Gorman, M., Macpherson, C. R., Martins, R. M., Scherf, A., & Lopez-Rubio, J.-J. (2014). Genome editing in the human malaria parasite Plasmodium falciparum using the CRISPR-Cas9 system. Nature Biotechnology, 32(8), 819-821. https://doi.org/10.1038/nbt.2925spa
dc.relation.referencesGourbal, B., Sonuc, N., Bhattacharjee, H., Legare, D., Sundar, S., Ouellette, M., Rosen, B. P., & Mukhopadhyay, R. (2004). Drug Uptake and Modulation of Drug Resistance in Leishmania by an Aquaglyceroporin. Journal of Biological Chemistry, 279(30), 31010-31017. https://doi.org/10.1074/jbc.M403959200spa
dc.relation.referencesIshemgulova, A., Hlaváčová, J., Majerová, K., Butenko, A., Lukeš, J., Votýpka, J., Volf, P., & Yurchenko, V. (2018). CRISPR/Cas9 in Leishmania mexicana: A case study of LmxBTN1. PLOS ONE, 13(2), e0192723. https://doi.org/10.1371/journal.pone.0192723spa
dc.relation.referencesJiang, Y., Roberts, S. C., Jardim, A., Carter, N. S., Shih, S., Ariyanayagam, M., Fairlamb, A. H., & Ullman, B. (1999). Ornithine Decarboxylase Gene Deletion Mutants of Leishmania donovani *. Journal of Biological Chemistry, 274(6), 3781-3788. https://doi.org/10.1074/jbc.274.6.3781spa
dc.relation.referencesHaldar, A. K., Sen, P., & Roy, S. (2011). Use of Antimony in the Treatment of Leishmaniasis: Current Status and Future Directions. Molecular Biology International, 2011, 1-23. https://doi.org/10.4061/2011/571242spa
dc.relation.referencesHefnawy, A., Berg, M., Dujardin, J.-C., & De Muylder, G. (2017). Exploiting Knowledge on Leishmania Drug Resistance to Support the Quest for New Drugs. Trends in Parasitology, 33(3), 162-174. https://doi.org/10.1016/j.pt.2016.11.003spa
dc.relation.referencesHendrickx, S., Guerin, P., Caljon, G., Croft, S., & Maes, L. (2018). Evaluating drug resistance in visceral leishmaniasis: The challenges. Parasitology, 145(4), 453-463. https://doi.org/10.1017/S0031182016002031spa
dc.relation.referencesHousden, B. E., & Perrimon, N. (2016). Comparing CRISPR and RNAi-based screening technologies. Nature Biotechnology, 34(6), 621-623. https://doi.org/10.1038/nbt.3599spa
dc.relation.referencesJinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science, 337(6096), 816-821. https://doi.org/10.1126/science.1225829spa
dc.relation.referencesKaur, G., & Rajput, B. (2014). Comparative analysis of the omics technologies used to study antimonial, amphotericin B, and pentamidine resistance in leishmania. Journal of Parasitology Research, 2014, 726328. https://doi.org/10.1155/2014/726328spa
dc.relation.referencesKrogh, A., Larsson, B., von Heijne, G., & Sonnhammer, E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: Application to complete genomes. Journal of Molecular Biology, 305(3), 567-580. https://doi.org/10.1006/jmbi.2000.4315spa
dc.relation.referencesLander, N., & Chiurillo, M. A. (2019). State-of-the-art CRISPR/Cas9 Technology for Genome Editing in Trypanosomatids. The Journal of eukaryotic microbiology, 66(6), 981-991. https://doi.org/10.1111/jeu.12747spa
dc.relation.referencesLabuhn, M., Adams, F. F., Ng, M., Knoess, S., Schambach, A., Charpentier, E. M., Schwarzer, A., Mateo, J. L., Klusmann, J.-H., & Heckl, D. (2018). Refined sgRNA efficacy prediction improves large- and small-scale CRISPR–Cas9 applications. Nucleic Acids Research, 46(3), 1375-1385. https://doi.org/10.1093/nar/gkx1268spa
dc.relation.referencesLachaud, L., Bourgeois, N., Kuk, N., Morelle, C., Crobu, L., Merlin, G., Bastien, P., Pagès, M., & Sterkers, Y. (2014). Constitutive mosaic aneuploidy is a unique genetic feature widespread in the Leishmania genus. Microbes and Infection, 16(1), 61-66. https://doi.org/10.1016/j.micinf.2013.09.005spa
dc.relation.referencesLeón, E., Ortiz, V., Pérez, A., Téllez, J., Díaz, G. J., Ramírez H, M. H., & Contreras R, L. E. (2023). Anti-SpCas9 IgY Polyclonal Antibodies Production for CRISPR Research Use. ACS Omega, 8(37), 33809-33818. https://doi.org/10.1021/acsomega.3c04273spa
dc.relation.referencesLye, L.-F., Owens, K., Shi, H., Murta, S. M. F., Vieira, A. C., Turco, S. J., Tschudi, C., Ullu, E., & Beverley, S. M. (2010). Retention and Loss of RNA Interference Pathways in Trypanosomatid Protozoans. PLOS Pathogens, 6(10), e1001161. https://doi.org/10.1371/journal.ppat.1001161spa
dc.relation.referencesMadusanka, R. K., Karunaweera, N. D., Silva, H., & Selvapandiyan, A. (2024). Antimony resistance and gene expression in Leishmania: Spotlight on molecular and proteomic aspects. Parasitology, 151(1), 1-14. https://doi.org/10.1017/S0031182023001129spa
dc.relation.referencesMandal, G., Govindarajan, V., Sharma, M., Bhattacharjee, H., & Mukhopadhyay, R. (2017). Drug Resistance in Leishmania (pp. 649-665). https://doi.org/10.1007/978-3-319-46718-4_42spa
dc.relation.referencesMandal, S., Maharjan, M., Singh, S., Chatterjee, M., & Madhubala, R. (2010). Assessing aquaglyceroporin gene status and expression profile in antimony-susceptible and -resistant clinical isolates of Leishmania donovani from India. Journal of Antimicrobial Chemotherapy, 65(3), 496-507. https://doi.org/10.1093/jac/dkp468spa
dc.relation.referencesMandal, G., Mandal, S., Sharma, M., Charret, K. S., Papadopoulou, B., Bhattacharjee, H., & Mukhopadhyay, R. (2015). Species-Specific Antimonial Sensitivity in Leishmania Is Driven by Post-Transcriptional Regulation of AQP1. PLOS Neglected Tropical Diseases, 9(2), e0003500. https://doi.org/10.1371/journal.pntd.0003500spa
dc.relation.referencesMaharjan, M., Singh, S., Chatterjee, M., & Madhubala, R. (2008). Role of Aquaglyceroporin (AQP1) Gene and Drug Uptake in Antimony-resistant Clinical Isolates of Leishmania donovani. The American Journal of Tropical Medicine and Hygiene, 79(1), 69-75. https://doi.org/10.4269/ajtmh.2008.79.69spa
dc.relation.referencesMarquis, N., Gourbal, B., Rosen, B. P., Mukhopadhyay, R., & Ouellette, M. (2005). Modulation in aquaglyceroporin AQP1 gene transcript levels in drug-resistant Leishmania. Molecular Microbiology, 57(6), 1690-1699. https://doi.org/10.1111/j.1365-2958.2005.04782.xspa
dc.relation.referencesMinet, C., Thévenon, S., Chantal, I., Solano, P., & Berthier, D. (2018). Mini-review on CRISPR-Cas9 and its potential applications to help controlling neglected tropical diseases caused by Trypanosomatidae. Infection, Genetics and Evolution, 63, 326-331. https://doi.org/10.1016/j.meegid.2018.02.030spa
dc.relation.referencesMir, A., Edraki, A., Lee, J., & Sontheimer, E. J. (2018). Type II-C CRISPR-Cas9 Biology, Mechanism, and Application. ACS Chemical Biology, 13(2), 357-365. https://doi.org/10.1021/acschembio.7b00855spa
dc.relation.referencesMittal, M. K., Rai, S., ASHUTOSH, RAVINDER, Gupta, S., Sundar, S., & Goyal, N. (2007). CHARACTERIZATION OF NATURAL ANTIMONY RESISTANCE IN LEISHMANIA DONOVANI ISOLATES. The American Journal of Tropical Medicine and Hygiene, 76(4), 681-688. https://doi.org/10.4269/ajtmh.2007.76.681spa
dc.relation.referencesMohapatra, S. (2014). Drug resistance in leishmaniasis: Newer developments. Tropical Parasitology, 4(1), 4-9. https://doi.org/10.4103/2229-5070.129142spa
dc.relation.referencesMonte-Neto, R., Laffitte, M.-C. N., Leprohon, P., Reis, P., Frézard, F., & Ouellette, M. (2015). Intrachromosomal Amplification, Locus Deletion and Point Mutation in the Aquaglyceroporin AQP1 Gene in Antimony Resistant Leishmania (Viannia) guyanensis. PLOS Neglected Tropical Diseases, 9(2), e0003476. https://doi.org/10.1371/journal.pntd.0003476spa
dc.relation.referencesMosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1-2), 55-63. https://doi.org/10.1016/0022-1759(83)90303-4spa
dc.relation.referencesMukherjee, A., Boisvert, S., Monte-Neto, R. L. do, Coelho, A. C., Raymond, F., Mukhopadhyay, R., Corbeil, J., & Ouellette, M. (2013). Telomeric gene deletion and intrachromosomal amplification in antimony-resistant eishmania. Molecular Microbiology, 88(1), 189-202.spa
dc.relation.referencesMukhopadhyay, R., Bhattacharjee, H., & Rosen, B. P. (2014). Aquaglyceroporins: Generalized metalloid channels. Biochimica Et Biophysica Acta, 1840(5), 1583-1591. https://doi.org/10.1016/j.bbagen.2013.11.021spa
dc.relation.referencesNeumann, L. S. M., Dias, A. H. S., & Skaf, M. S. (2020). Molecular Modeling of Aquaporins from Leishmania major. The Journal of Physical Chemistry B, 124(28), 5825-5836. https://doi.org/10.1021/acs.jpcb.0c03550spa
dc.relation.referencesOMS. (2012). Control de las leishmaniasis: Informe de una reunión del Comité de Expertos de la OMS sobre el Control de las Leishmaniasis, Ginebra, 22 a 26 de marzo de 2010. En Control of the leishmaniases: Report of a meeting of the WHO Expert Commitee on the Control of Leishmaniases, Geneva, 22-26 March 2010. Organización Mundial de la Salud. https://apps.who.int/iris/handle/10665/82766spa
dc.relation.referencesOPS. (2021, diciembre). LEISHMANIASIS Informe epidemiológico de las Américas. https://iris.paho.org/handle/10665.2/55344spa
dc.relation.referencesPatino, L. H., Muskus, C., & Ramírez, J. D. (2019). Transcriptional responses of Leishmania (Leishmania) amazonensis in the presence of trivalent sodium stibogluconate. Parasites & Vectors, 12(1), 348. https://doi.org/10.1186/s13071-019-3603-8spa
dc.relation.referencesPeng, D., Kurup, S. P., Yao, P. Y., Minning, T. A., & Tarleton, R. L. (2014). CRISPR-Cas9-Mediated Single-Gene and Gene Family Disruption in Trypanosoma cruzi. mBio, 6(1), 10.1128/mbio.02097-14. https://doi.org/10.1128/mbio.02097-14spa
dc.relation.referencesPeng, D., & Tarleton, R. (2015). EuPaGDT: A web tool tailored to design CRISPR guide RNAs for eukaryotic pathogens. Microbial Genomics, 1(4), e000033. https://doi.org/10.1099/mgen.0.000033spa
dc.relation.referencesPerez-Franco, J. E., Cruz-Barrera, M. L., Robayo, M. L., Lopez, M. C., Daza, C. D., Bedoya, A., Mariño, M. L., Saavedra, C. H., & Echeverry, M. C. (2016). Clinical and Parasitological Features of Patients with American Cutaneous Leishmaniasis that Did Not Respond to Treatment with Meglumine Antimoniate. PLOS Neglected Tropical Diseases, 10(5), e0004739. https://doi.org/10.1371/journal.pntd.0004739spa
dc.relation.referencesPonte-Sucre, A., Diaz, E., & Padrón-Nieves, M. (Eds.). (2013). Drug Resistance in Leishmania Parasites. Springer Vienna. https://doi.org/10.1007/978-3-7091-1125-3spa
dc.relation.referencesPonte-Sucre, A., Gamarro, F., Dujardin, J.-C., Barrett, M. P., López-Vélez, R., García-Hernández, R., Pountain, A. W., Mwenechanya, R., & Papadopoulou, B. (2017). Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLOS Neglected Tropical Diseases, 11(12), e0006052. https://doi.org/10.1371/journal.pntd.0006052spa
dc.relation.referencesPotvin, J.-E., Leprohon, P., Queffeulou, M., Sundar, S., & Ouellette, M. (2020). Mutations in an Aquaglyceroporin as a Proven Marker of Antimony Clinical Resistance in the Parasite Leishmania donovani. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 72(10), e526-e532. https://doi.org/10.1093/cid/ciaa1236spa
dc.relation.referencesQueffeulou, M., Leprohon, P., Fernandez-Prada, C., Ouellette, M., & Mejía-Jaramillo, A. M. (2024). CRISPR-Cas9 high-throughput screening to study drug resistance in Leishmania infantum. mBio, 15(7), e00477-24. https://doi.org/10.1128/mbio.00477-24spa
dc.relation.referencesRegli, I. B., Fernández, O. L., Martínez-Salazar, B., Gómez, M. A., Saravia, N. G., & Tacchini-Cottier, F. (2018). Resistance of Leishmania (Viannia) Panamensis to Meglumine Antimoniate or Miltefosine Modulates Neutrophil Effector Functions. Frontiers in Immunology, 9. https://doi.org/10.3389/fimmu.2018.03040spa
dc.relation.referencesRibeiro, J. M., Garriga, M., Potchen, N., Crater, A. K., Gupta, A., Ito, D., & Desai, S. A. (2018). Guide RNA selection for CRISPR-Cas9 transfections in Plasmodium falciparum. International Journal for Parasitology, 48(11), 825-832. https://doi.org/10.1016/j.ijpara.2018.03.009spa
dc.relation.referencesRomero, I., Téllez, J., Romanha, A. J., Steindel, M., & Grisard, E. C. (2015). Upregulation of Cysteine Synthase and Cystathionine β-Synthase Contributes to Leishmania braziliensis Survival under Oxidative Stress. Antimicrobial Agents and Chemotherapy, 59(8), 4770-4781. https://doi.org/10.1128/aac.04880-14spa
dc.relation.referencesRojas-Pirela, M., Andrade-Alviárez, D., Rojas, V., Kemmerling, U., Cáceres, A. J., Michels, P. A., Concepción, J. L., & Quiñones, W. (2020). Phosphoglycerate kinase: Structural aspects and functions, with special emphasis on the enzyme from Kinetoplastea. Open Biology, 10(11), 200302. https://doi.org/10.1098/rsob.200302spa
dc.relation.referencesSalari, S., Bamorovat, M., Sharifi, I., & Almani, P. G. N. (2022). Global distribution of treatment resistance gene markers for leishmaniasis. Journal of Clinical Laboratory Analysis, 36(8), e24599. https://doi.org/10.1002/jcla.24599spa
dc.relation.referencesSalazar, L. R. M., & Torres, C. P. (2009). Fisiología molecular de las aquaporinas. Revista de la Facultad de Medicina, 57(1), Article 1.spa
dc.relation.referencesSaravia, N. G., Navas, C., Segura, I., Valderrama, L., Valencia, A. Z., Escorcia, B., & Dianemcmahon-pratt. (s. f.). Heterogeneity, Geographic Distribution, and Pathogenicity of Serodemes of Leishmania Viannia in Colombia.spa
dc.relation.referencesSeifert, K., Pérez-Victoria, F. J., Stettler, M., Sánchez-Cañete, M. P., Castanys, S., Gamarro, F., & Croft, S. L. (2007). Inactivation of the miltefosine transporter, LdMT, causes miltefosine resistance that is conferred to the amastigote stage of Leishmania donovani and persists in vivo. International Journal of Antimicrobial Agents, 30(3), 229-235. https://doi.org/10.1016/j.ijantimicag.2007.05.007spa
dc.relation.referencesSezavar, M., Sharifi, I., Ghasemi Nejad Almani, P., Kazemi, B., Davoudi, N., Salari, S., Salarkia, E., Khosravi, A., & Bamorovat, M. (2021). The potential therapeutic role of PTR1 gene in non-healing anthroponotic cutaneous leishmaniasis due to Leishmania tropica. Journal of Clinical Laboratory Analysis, 35(3), e23670. https://doi.org/10.1002/jcla.23670spa
dc.relation.referencesShendure, J., & Ji, H. (2008). Next-generation DNA sequencing. Nature Biotechnology, 26(10), 1135-1145. https://doi.org/10.1038/nbt1486spa
dc.relation.referencesSharma, M. (2015). Regulatory mechanisms of Leishmania Aquaglyceroporin AQP1 [Doctor of Philosophy Biology, Florida International University]. https://doi.org/10.25148/etd.FIDC000197spa
dc.relation.referencesSharma, R., Avendaño Rangel, F., Reis-Cunha, J. L., Marques, L. P., Figueira, C. P., Borba, P. B., Viana, S. M., Beneke, T., Bartholomeu, D. C., & de Oliveira, C. I. (2022). Targeted Deletion of Centrin in Leishmania braziliensis Using CRISPR-Cas9-Based Editing. Frontiers in Cellular and Infection Microbiology, 11. https://doi.org/10.3389/fcimb.2021.790418spa
dc.relation.referencesSingh, G., Jayanarayan, K. G., & Dey, C. S. (2008). Arsenite Resistance in Leishmania and Possible Drug Targets. En H. K. Majumder (Ed.), Drug Targets in Kinetoplastid Parasites (pp. 1-8). Springer. https://doi.org/10.1007/978-0-387-77570-8_1spa
dc.relation.referencesSollelis, L., Ghorbal, M., MacPherson, C. R., Martins, R. M., Kuk, N., Crobu, L., Bastien, P., Scherf, A., Lopez-Rubio, J.-J., & Sterkers, Y. (2015). First efficient CRISPR-Cas9-mediated genome editing in Leishmania parasites. Cellular Microbiology, 17(10), 1405-1412. https://doi.org/10.1111/cmi.12456spa
dc.relation.referencesSong, F., & Stieger, K. (2017). Optimizing the DNA Donor Template for Homology-Directed Repair of Double-Strand Breaks. Molecular Therapy - Nucleic Acids, 7, 53-60. https://doi.org/10.1016/j.omtn.2017.02.006spa
dc.relation.referencesSundar, S., Chakravarty, J., & Meena, L. P. (2019). Leishmaniasis: Treatment, drug resistance and emerging therapies. Expert Opinion on Orphan Drugs, 7(1), 1-10. https://doi.org/10.1080/21678707.2019.1552853spa
dc.relation.referencesSundar, S., Thakur, B. B., Tandon, A. K., Agrawal, N. R., Mishra, C. P., Mahapatra, T. M., & Singh, V. P. (1994). Clinicoepidemiological study of drug resistance in Indian kala-azar. BMJ : British Medical Journal, 308(6924), 307.spa
dc.relation.referencesTamma, G., Valenti, G., Grossini, E., Donnini, S., Marino, A., Marinelli, R. A., & Calamita, G. (2018). Aquaporin Membrane Channels in Oxidative Stress, Cell Signaling, and Aging: Recent Advances and Research Trends. Oxidative Medicine and Cellular Longevity, 2018, 1501847. https://doi.org/10.1155/2018/1501847spa
dc.relation.referencesutz, D., & Renz, M. (1983). An optimized freeze-squeeze method for the recovery of DNA fragments from agarose gels. Analytical Biochemistry, 132(1), 14-19. https://doi.org/10.1016/0003-2697(83)90419-0spa
dc.relation.referencesTeixeira, D. E., Benchimol, M., Rodrigues, J. C. F., Crepaldi, P. H., Pimenta, P. F. P., & de Souza, W. (2013). The Cell Biology of Leishmania: How to Teach Using Animations. PLoS Pathogens, 9(10), e1003594. https://doi.org/10.1371/journal.ppat.1003594spa
dc.relation.referencesTéllez, J., Romero, I., Soares, M. J., Steindel, M., & Romanha, A. J. (2017). Knockdown of Host Antioxidant Defense Genes Enhances the Effect of Glucantime on Intracellular Leishmania braziliensis in Human Macrophages. Antimicrobial Agents and Chemotherapy, 61(7), e02099-16. https://doi.org/10.1128/AAC.02099-16spa
dc.relation.referencesTorres, D. C., Adaui, V., Ribeiro-Alves, M., Romero, G. A. S., Arévalo, J., Cupolillo, E., & Dujardin, J.-C. (2010). Targeted gene expression profiling in Leishmania braziliensis and Leishmania guyanensis parasites isolated from Brazilian patients with different antimonial treatment outcomes. Infection, Genetics and Evolution, 10(6), 727-733. https://doi.org/10.1016/j.meegid.2010.05.006spa
dc.relation.referencesUzcategui, N. L., Zhou, Y., Figarella, K., Ye, J., Mukhopadhyay, R., & Bhattacharjee, H. (2008). Alteration in glycerol and metalloid permeability by a single mutation in the extracellular C-loop of Leishmania major aquaglyceroporin LmAQP1. Molecular Microbiology, 70(6), 1477-1486. https://doi.org/10.1111/j.1365-2958.2008.06494.xspa
dc.relation.referencesVanin, E. F. (1984). Processed pseudogenes: Characteristics and evolution. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 782(3), 231-241. https://doi.org/10.1016/0167-4781(84)90057-5spa
dc.relation.referencesWyllie, S., Cunningham, M. L., & Fairlamb, A. H. (2004). Dual Action of Antimonial Drugs on Thiol Redox Metabolism in the Human Pathogen Leishmania donovani. Journal of Biological Chemistry, 279(38), 39925-39932. https://doi.org/10.1074/jbc.M405635200spa
dc.relation.referencesYagoubat, A., Corrales, R., Bastien, P., Lévêque, M., & Sterkers, Y. (2020). Gene Editing in Trypanosomatids: Tips and Tricks in the CRISPR-Cas9 Era. Trends in Parasitology, 36(9), 745-760. https://doi.org/10.1016/j.pt.2020.06.005spa
dc.relation.referencesZhang, W.-W., Lypaczewski, P., & Matlashewski, G. (2017). Optimized CRISPR-Cas9 Genome Editing for Leishmania and Its Use To Target a Multigene Family, Induce Chromosomal Translocation, and Study DNA Break Repair Mechanisms. MSphere, 2(1). https://doi.org/10.1128/mSphere.00340-16spa
dc.relation.referencesZhang, W.-W., & Matlashewski, G. (2015). CRISPR-Cas9-Mediated Genome Editing in Leishmania donovani. mBio, 6(4), e00861-15. https://doi.org/10.1128/mBio.00861-15spa
dc.relation.referencesZambrano, P. (2020). DOCUMENTO ELABORADO POR. 04, 16.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.decsAntimoniospa
dc.subject.decsAcuaporina 1spa
dc.subject.decsAquaporin 1eng
dc.subject.decsEstrés Oxidativospa
dc.subject.decsOxidative Stresseng
dc.subject.proposalLeishmaniasisspa
dc.subject.proposalLeishmania braziliensisspa
dc.subject.proposalEdición génicaspa
dc.subject.proposalAQP1spa
dc.subject.proposalCRISPRCas9spa
dc.subject.proposalAntimonio trivalentespa
dc.subject.proposalEstrés oxidativospa
dc.subject.proposalGene editingeng
dc.subject.proposalAntimonyeng
dc.subject.proposalOxidative stresseng
dc.titleAnálisis funcional del gen aquaporina1 en respuesta a estrés oxidativo y antimonio en Leishmania (Viannia) brazilienisspa
dc.title.translatedFunctional analysis of the aquaporin1 gene in response to oxidative stress and antimony in Leishmania (Viannia) brazilieniseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPersonal de apoyo escolarspa
dcterms.audience.professionaldevelopmentProveedores de ayuda financiera para estudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
dcterms.audience.professionaldevelopmentReceptores de fondos federales y solicitantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis Final Maestria Leydi Riano 2025.pdf
Tamaño:
4.31 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Microbiología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: