Obtención de furfural a partir de residuos del cultivo de café empleando materiales catalíticos de hierro soportado en óxido de silicio

dc.contributor.advisorGuerrero Fajardo, Carlos Alberto
dc.contributor.advisorCortéz Ortiz, William Geovanni
dc.contributor.authorSuárez Suárez, Kevin René
dc.date.accessioned2023-11-03T16:16:05Z
dc.date.available2023-11-03T16:16:05Z
dc.date.issued2023-11-02
dc.descriptionilustraciones, diagramas, fotografías, planosspa
dc.description.abstractLa industria cafetera en Colombia genera grandes cantidades de biomasa residual, la cual puede ser aprovechada en procesos de biorrefinería como por ejemplo la obtención de moléculas plataforma de alto valor agregado. En el presente estudio se evaluó la posibilidad de implementar residuos del cultivo de café en la producción de moléculas plataforma de alto valor agregado como el furfural a partir de materiales catalíticos de hierro soportado en óxido de silicio (Fe/SiO2) sintetizados por el método sol-gel. Se resalta que hasta la fecha no se reporta en la literatura la producción de furfural a partir de la cereza residual del café. Para la producción de furfural se utilizaron cuatro materiales catalíticos con cargas de 0,5 y 1,5 % de hierro calcinados a dos temperaturas diferentes, 450 y 750 °C. Como hipótesis se mantiene que la biomasa seleccionada cuenta con los carbohidratos estructurales suficientes para ser implementados en la producción de la molécula plataforma de interés, además de esto, se considera que los materiales catalíticos son activos y selectivos en la obtención de furfural. Los catalizadores fueron evaluados inicialmente con patrones de xilosa con concentración de 3,0 g por L de agua. Se determinó que el catalizador con mayor carga de hierro y calcinado a 750 °C presenta mayor conversión (54,76 %) y selectividad (40,09 %) hacia furfural. Posteriormente, empleando la cereza del café se aplicaron tratamientos de hidrólisis hidrotermal a 170 y 190 °C por 30 y 60 min. Los hidrolizados resultantes fueron implementados en la producción de furfural a 170 °C por 2 horas, en un reactor de diseño propio con atmósfera inerte, usando el catalizador que presenta mayor selectividad obteniendo 9,26 mg de furfural por g de cereza de café. Las condiciones de reacción fueron determinadas tomando en cuenta lo reportado en múltiples estudios. La evaluación del efecto de la temperatura, tiempo en el proceso y carga del metal de transición no fueron evaluadas ya que la cantidad disponible de catalizador era limitada y su síntesis es un proceso altamente costoso. Se destaca que, la actividad catalítica de los materiales de hierro se debe a la presencia de centros activos (ácidos de Lewis) correspondientes a Fe3+ los cuales promueven la isomerización de la xilosa a xilulosa, facilitando la deshidratación de la pentosa para la formación de furfural. Se concluye que el catalizador es activo y selectivo en el proceso de obtención furfural, a partir de residuos de cultivo café como precursor de moléculas de alto valor agregado como el furfural. (Texto tomado de la fuente)spa
dc.description.abstractThe coffee industry in Colombia generates large amounts of residual biomass, which can be used in biorefinery processes such as obtaining high value-added platform molecules. In the present study, the possibility of implementing coffee crop residues in the production of high value-added platform molecules such as furfural from iron catalytic materials supported on silicon oxide (Fe/SiO2) synthesized by the sol-gel method was evaluated. It should be noted that to date, the production of furfural from residual coffee cherry has not been reported in the literature. For the production of furfural, four catalytic materials with loadings of 0.5 and 1.5 % iron calcined at two different temperatures, 450 and 750 °C, were used. As a hypothesis it is maintained that the selected biomass has sufficient structural carbohydrates to be implemented in the production of the platform molecule of interest, in addition to this, it is considered that the catalytic materials are active and selective in obtaining furfural. The catalysts were initially evaluated with xylose standards with a concentration of 3.0 g per L of water. It was determined that the catalyst with higher iron loading and calcined at 750 °C presented higher conversion (54.76 %) and selectivity (40.09 %) towards furfural. Subsequently, using coffee cherry, hydrothermal hydrolysis treatments at 170 and 190 °C for 30 and 60 min were applied. The resulting hydrolysates were implemented in the production of furfural at 170 °C for 2 h, in a reactor of our own design with inert atmosphere, using the catalyst that presents greater selectivity, obtaining 9.26 mg of furfural per g of coffee cherry. The reaction conditions were determined taking into account those reported in multiple studies. The effect of temperature, time in the process and transition metal loading was not evaluated, since the available amount of catalyst was limited and its synthesis is a highly expensive process. It is highlighted that the catalytic activity of the iron materials is due to the presence of active centers (Lewis acids) corresponding to Fe3+ which promote the isomerization of xylose to xylulose, facilitating the dehydration of the pentose for the formation of furfural. It is concluded that the catalyst is active and selective in the process of obtaining furfural from coffee crop residues as a precursor of high value-added molecules such as furfural.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.description.researchareaGrupo de investigación Aprovechamiento Energético de Recursos Naturales –APRENA-spa
dc.format.extentxxi, 115 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84882
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.references[1] Organización Internacional del Café, “Informe de la OIC sobre desarrollo cafetero de 2019 Sumario,” 2019.spa
dc.relation.references[2] D. Gerente, “87 CONGRESO NACIONAL DE CAFETEROS IG INFORME,” 2019. [Online]. Available: www.federaciondecafeteros.org.spa
dc.relation.references[3] H. Escalante, J. Orduz, and H. Zapata, Atlas del potencial energético de la biomasa residual en Colombia. 2011.spa
dc.relation.references[4] N. Echavarría, N. Atehortúa, and O. Tobón, Manual de Gestión del Recurso Hídrico Sector Cafetero. 2016.spa
dc.relation.references[5] M. A. Hernández, M. Rodríguez Susa, and Y. Andres, “Use of coffee mucilage as a new substrate for hydrogen production in anaerobic co-digestion with swine manure,” Bioresour. Technol., vol. 168, pp. 112–118, 2014, doi: 10.1016/j.biortech.2014.02.101.spa
dc.relation.references[6] A. K. Neu, D. Pleissner, K. Mehlmann, R. Schneider, G. I. Puerta-Quintero, and J. Venus, “Fermentative utilization of coffee mucilage using Bacillus coagulans and investigation of down-stream processing of fermentation broth for optically pure l(+)-lactic acid production,” Bioresour. Technol., vol. 211, pp. 398–405, 2016, doi: 10.1016/j.biortech.2016.03.122.spa
dc.relation.references[7] S. Ríos and G. I. Puerta, “Composición Química Del Mucílago De Café, Según El Tiempo De Fermentación Y Refrigeración,” Cenicafé, vol. 2, no. 62, pp. 23–40, 2011.spa
dc.relation.references[8] C. M.N. and W. K.C., COFFEE: BOTANY, BIOCHEMISTRY AND PRODUCTION OF BEANS AND BEVERAGE. 1985.spa
dc.relation.references[9] S. Peleteiro, S. Rivas, J. L. Alonso, V. Santos, and J. C. Parajó, “Furfural production using ionic liquids: A review,” Bioresour. Technol., vol. 202, pp. 181–191, 2016, doi: 10.1016/j.biortech.2015.12.017.spa
dc.relation.references[10] S. Dutta, S. De, B. Saha, and M. I. Alam, “Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels,” Catal. Sci. Technol., vol. 2, no. 10, pp. 2025–2036, 2012, doi: 10.1039/c2cy20235b.spa
dc.relation.references[11] C. M. Cai, T. Zhang, R. Kumar, and C. E. Wyman, “Integrated furfural production as a renewable fuel and chemical platform from lignocellulosic biomass,” J. Chem. Technol. Biotechnol., vol. 89, no. 1, pp. 2–10, 2014, doi: 10.1002/jctb.4168.spa
dc.relation.references[12] R. Mariscal, P. Maireles-Torres, M. Ojeda, I. Sádaba, and M. López Granados, “Furfural: A renewable and versatile platform molecule for the synthesis of chemicals and fuels,” Energy Environ. Sci., vol. 9, no. 4, pp. 1144–1189, 2016, doi: 10.1039/c5ee02666k.spa
dc.relation.references[13] R. N. Ntimbani, S. Farzad, and J. F. Görgens, “Techno-economic assessment of one-stage furfural and cellulosic ethanol co-production from sugarcane bagasse and harvest residues feedstock mixture,” Ind. Crops Prod., vol. 162, no. January, 2021, doi: 10.1016/j.indcrop.2021.113272.spa
dc.relation.references[14] H. Li et al., “Effect of structural characteristics of corncob hemicelluloses fractionated by graded ethanol precipitation on furfural production,” Carbohydr. Polym., vol. 136, pp. 203–209, 2016, doi: 10.1016/j.carbpol.2015.09.045.spa
dc.relation.references[15] Y. Shao et al., “Cooperation between hydrogenation and acidic sites in Cu-based catalyst for selective conversion of furfural to γ -valerolactone,” Fuel, vol. 293, no. December 2020, p. 120457, 2021, doi: 10.1016/j.fuel.2021.120457.spa
dc.relation.references[16] T. Werpy and G. Petersen, “Top Value Added Chemicals from Biomass: Volume I -- Results of Screening for Potential Candidates from Sugars and Synthesis Gas. Office of Scientific and Technical Information (OSTI),” Off. Sci. Tech. Inf., p. 69, 2004, [Online]. Available: http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA436528.spa
dc.relation.references[17] W. Li et al., “Hf-based metal organic frameworks as bifunctional catalysts for the one-pot conversion of furfural to Γ-valerolactone,” Mol. Catal., vol. 472, no. May, pp. 17–26, 2019, doi: 10.1016/j.mcat.2019.04.010.spa
dc.relation.references[18] S. Richardson and K. Weaver, “Ionic Liquids and Their Interaction with Cellulose,” Chem. Rev, vol. 11, no. 4, pp. 6712–6728, 2009, doi: 10.1177/1477750916657663.spa
dc.relation.references[19] L. and J. M. Palmowski, “Influence of the size reduction of organic waste on their anaerobic digestion. Proceedings of the 2nd International Symposium on Anaerobic Digestion of Solid Waste,” no. July, p. Influence of the size reduction of organic waste o, 1999.spa
dc.relation.references[20] R. F. do N. V. de O. S. N. D. de Q. Melo, Uso de bioadsorventes lignocelulósicos na remoção de poluentes de efluentes aquosos, vol. 01, no. Coleção de Estudos da Pós-Graduação. 2014.spa
dc.relation.references[21] D. Fengel and G. Wegner, Wood Chemistry, Ultrastructure, Reactions. 1989.spa
dc.relation.references[22] J. P. Delgenes, R. Moletta, and J. M. Navarro, “Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis, and Candida shehatae,” Enzyme Microb. Technol., vol. 19, no. 3, pp. 220–225, 1996, doi: 10.1016/0141-0229(95)00237-5.spa
dc.relation.references[23] A. Brandt, J. Gräsvik, J. P. Hallett, and T. Welton, “Deconstruction of lignocellulosic biomass with ionic liquids,” Green Chem., vol. 15, no. 3, pp. 550–583, 2013, doi: 10.1039/c2gc36364j.spa
dc.relation.references[24] O. Bobleter, “Hydrothermal degradation of polymers derived from plants,” Prog. Polym. Sci., vol. 19, no. 5, pp. 797–841, 1994, doi: 10.1016/0079-6700(94)90033-7.spa
dc.relation.references[25] J. C. Parajo, G. Garrote, and H. Domı, “Mild autohydrolysis : an environmentally friendly technology for xylooligosaccharide production from wood,” J. Chem. Technol. Biotechnol., vol. 74, no. January, pp. 1101–1109, 1999.spa
dc.relation.references[26] BEALL FC and EICKNER HW, “Thermal Degradation of Wood Components. a Review of the Literature,” U S For. Prod Lab, Res Pap FPL 130, no. May, 1970.spa
dc.relation.references[27] O. Yemiş and G. Mazza, “Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction,” Bioresour. Technol., vol. 102, no. 15, pp. 7371–7378, 2011, doi: 10.1016/j.biortech.2011.04.050.spa
dc.relation.references[28] L. Mao, L. Zhang, N. Gao, and A. Li, “Seawater based furfural production via corncob hydrolysis catalyzed by FeCl3 in acetic acid steam,” Green Chem., no. 207890, pp. 1–19, 2013.spa
dc.relation.references[29] P. Bhaumik and P. L. Dhepe, “Solid acid catalyzed synthesis of furans from carbohydrates,” Catal. Rev. - Sci. Eng., vol. 58, no. 1, pp. 36–112, 2016, doi: 10.1080/01614940.2015.1099894.spa
dc.relation.references[30] L. Zhang, H. Yu, P. Wang, and Y. Li, “Production of furfural from xylose, xylan and corncob in gamma-valerolactone using FeCl3·6H2O as catalyst,” Bioresour. Technol., vol. 151, pp. 355–360, 2014, doi: 10.1016/j.biortech.2013.10.099.spa
dc.relation.references[31] H. B. Sharma, S. Panigrahi, A. K. Sarmah, and B. K. Dubey, “Properties of mesoporous Al-SBA-15 from one-pot hydrothermal synthesis with different aluminium precursors and catalytic performances in xylose conversion to furfural,” Sci. Total Environ., p. 135907, 2019, doi: 10.1016/j.micromeso.2021.110999.spa
dc.relation.references[32] M. R. Nimlos, X. Qian, M. Davis, M. E. Himmel, and D. K. Johnson, “Energetics of xylose decomposition as determined using quantum mechanics modeling,” J. Phys. Chem. A, vol. 110, no. 42, pp. 11824–11838, 2006, doi: 10.1021/jp0626770.spa
dc.relation.references[33] G. Marcotullio and W. De Jong, “Furfural formation from D-xylose: The use of different halides in dilute aqueous acidic solutions allows for exceptionally high yields,” Carbohydr. Res., vol. 346, no. 11, pp. 1291–1293, 2011, doi: 10.1016/j.carres.2011.04.036.spa
dc.relation.references[34] K. . J. Zeitsch, The chemistry and technology of furfural and its many by-products. Elsevier B.V., 2000.spa
dc.relation.references[35] M. Kabbour and R. Luque, “Furfural as a platform chemical: From production to applications,” in Biomass, Biofuels, Biochemicals: Recent Advances in Development of Platform Chemicals, A. PANDEY, Ed. Elsevier B.V., 2019, pp. 283–297.spa
dc.relation.references[36] Q. Wang et al., “Rapid and simultaneous production of furfural and cellulose-rich residue from sugarcane bagasse using a pressurized phosphoric acid-acetone-water system,” Chem. Eng. J., vol. 334, no. October 2017, pp. 698–706, 2018, doi: 10.1016/j.cej.2017.10.089.spa
dc.relation.references[37] X. Li, Q. Liu, C. Luo, X. Gu, L. Lu, and X. Lu, “Kinetics of Furfural Production from Corn Cob in γ-Valerolactone Using Dilute Sulfuric Acid as Catalyst,” ACS Sustain. Chem. Eng., vol. 5, no. 10, pp. 8587–8593, 2017, doi: 10.1021/acssuschemeng.7b00950.spa
dc.relation.references[38] X. Zhang, Y. Bai, X. Cao, and R. Sun, “Pretreatment of Eucalyptus in biphasic system for furfural production and accelerated enzymatic hydrolysis,” Bioresour. Technol., vol. 238, pp. 1–6, 2017, doi: 10.1016/j.biortech.2017.04.011.spa
dc.relation.references[39] X. Lyu, “Furfural and hydrogen production from corncob via tandem chemical and electrochemical approach,” Bioresour. Technol. Reports, vol. 15, 2021, doi: 10.1016/j.biteb.2021.100790.spa
dc.relation.references[40] C. Sener, A. H. Motagamwala, D. M. Alonso, and J. A. Dumesic, “Enhanced Furfural Yields from Xylose Dehydration in the Γ-Valerolactone/Water Solvent System at Elevated Temperatures,” ChemSusChem, vol. 11, no. 14, pp. 2321–2331, 2018, doi: 10.1002/cssc.201800730.spa
dc.relation.references[41] L. Zhang, L. Tian, R. Sun, C. Liu, Q. Kou, and H. Zuo, “Transformation of corncob into furfural by a bifunctional solid acid catalyst,” Bioresour. Technol., vol. 276, no. November 2018, pp. 60–64, 2019, doi: 10.1016/j.biortech.2018.12.094.spa
dc.relation.references[42] X. Li et al., “Conversion of waste lignocellulose to furfural using sulfonated carbon microspheres as catalyst,” Waste Manag., vol. 108, pp. 119–126, 2020, doi: 10.1016/j.wasman.2020.04.039.spa
dc.relation.references[43] J. Zhang, L. Lin, and S. Liu, “Efficient production of furan derivatives from a sugar mixture by catalytic process,” Energy and Fuels, vol. 26, no. 7, pp. 4560–4567, 2012, doi: 10.1021/ef300606v.spa
dc.relation.references[44] Q. Zhang, C. Wang, J. Mao, S. Ramaswamy, X. Zhang, and F. Xu, “Insights on the efficiency of bifunctional solid organocatalysts in converting xylose and biomass into furfural in a GVL-water solvent,” Ind. Crops Prod., vol. 138, no. June, p. 111454, 2019, doi: 10.1016/j.indcrop.2019.06.017.spa
dc.relation.references[45] S. L. Hu, H. Cheng, R. Y. Xu, J. S. Huang, P. J. Zhang, and J. N. Qin, “Conversion of xylose into furfural over Cr/Mg hydrotalcite catalysts,” Mol. Catal., vol. 538, no. 10, 2023, doi: 10.1016/j.mcat.2023.113009.spa
dc.relation.references[46] L. Carballo, “Introducción a la catálisis heterogénea,” 2002.spa
dc.relation.references[47] R. Schlögl, Heterogeneous catalysis, vol. 54, no. 11. 2015.spa
dc.relation.references[48] C. Alberto, G. Fajardo, Y. N. Guyen, C. Courson, and A. Roger, “Catalizadores Fe/SiO2 para la oxidación selectiva de metano hasta formaldehído,” vol. 26, no. 2, pp. 37–44, 2006.spa
dc.relation.references[49] N. T. Tinh et al., “Optimization of synthesis conditions of furfural from sugarcane bagasse using magnetic iron oxide nanoparticles/sulfonated graphene oxide as a catalyst,” Diam. Relat. Mater., vol. 136, no. May, p. 110024, 2023, doi: 10.1016/j.diamond.2023.110024.spa
dc.relation.references[50] C. Wu et al., “Conversion of Xylose into Furfural Catalyzed by Bifunctional Acidic Ionic Liquid Immobilized on the Surface of Magnetic γ-Al2O3,” Catal. Letters, vol. 147, no. 4, pp. 953–963, 2017, doi: 10.1007/s10562-017-1982-z.spa
dc.relation.references[51] A. Rusanen, R. Kupila, K. Lappalainen, J. Kärkkäinen, T. Hu, and U. Lassi, “Conversion of xylose to furfural over lignin-based activated carbon-supported iron catalysts,” Catalysts, vol. 10, no. 8, 2020, doi: 10.3390/catal10080821.spa
dc.relation.references[52] M. Rojas, Diseño y síntesis de materiales “a medida” mediante el método sol-gel, Primera ed. Madrid: Librería UNED, 2012.spa
dc.relation.references[53] T. Zhang et al., “Efficient transformation of corn stover to furfural using p-hydroxybenzenesulfonic acid-formaldehyde resin solid acid,” Bioresour. Technol., vol. 264, no. May, pp. 261–267, 2018, doi: 10.1016/j.biortech.2018.05.081.spa
dc.relation.references[54] Y. Liu, C. Ma, C. Huang, Y. Fu, and J. Chang, “Efficient Conversion of Xylose into Furfural Using Sulfonic Acid-Functionalized Metal-Organic Frameworks in a Biphasic System,” Ind. Eng. Chem. Res., vol. 57, no. 49, pp. 16628–16634, 2018, doi: 10.1021/acs.iecr.8b04070.spa
dc.relation.references[55] T. T. V. Tran et al., “Highly productive xylose dehydration using a sulfonic acid functionalized KIT-6 catalyst,” Fuel, vol. 236, no. September 2018, pp. 1156–1163, 2019, doi: 10.1016/j.fuel.2018.09.089.spa
dc.relation.references[56] S. Xu et al., “Efficient production of furfural from xylose and wheat straw by bifunctional chromium phosphate catalyst in biphasic systems,” Fuel Process. Technol., vol. 175, no. March, pp. 90–96, 2018, doi: 10.1016/j.fuproc.2018.04.005.spa
dc.relation.references[57] H. Li et al., “A modified biphasic system for the dehydration of d-xylose into furfural using SO42-/TiO2-ZrO2/La 3+ as a solid catalyst,” Catal. Today, vol. 234, pp. 251–256, 2014, doi: 10.1016/j.cattod.2013.12.043.spa
dc.relation.references[58] Q. Jia et al., “Production of furfural from xylose and hemicelluloses using tin-loaded sulfonated diatomite as solid acid catalyst in biphasic system,” Bioresour. Technol. Reports, vol. 6, no. February, pp. 145–151, 2019, doi: 10.1016/j.biteb.2019.03.001.spa
dc.relation.references[59] K. Yan, G. Wu, T. Lafleur, and C. Jarvis, “Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals,” Renew. Sustain. Energy Rev., vol. 38, pp. 663–676, 2014, doi: 10.1016/j.rser.2014.07.003.spa
dc.relation.references[60] R. Weingarten, J. Cho, W. C. Conner, and G. W. Huber, “Kinetics of furfural production by dehydration of xylose in a biphasic reactor with microwave heating,” Green Chem., vol. 12, no. 8, pp. 1423–1429, 2010, doi: 10.1039/c003459b.spa
dc.relation.references[61] E. I. Gürbüz, J. M. R. Gallo, D. M. Alonso, S. G. Wettstein, W. Y. Lim, and J. A. Dumesic, “Conversion of hemicellulose into furfural using solid acid catalysts in γ-valerolactone,” Angew. Chemie - Int. Ed., vol. 52, no. 4, pp. 1270–1274, 2013, doi: 10.1002/anie.201207334.spa
dc.relation.references[62] W. Wang, J. Ren, H. Li, A. Deng, and R. Sun, “Direct transformation of xylan-type hemicelluloses to furfural via SnCl4 catalysts in aqueous and biphasic systems,” Bioresour. Technol., vol. 183, pp. 188–194, 2015, doi: 10.1016/j.biortech.2015.02.068.spa
dc.relation.references[63] W. Daengprasert, P. Boonnoun, N. Laosiripojana, M. Goto, and A. Shotipruk, “Application of sulfonated carbon-based catalyst for solvothermal conversion of cassava waste to hydroxymethylfurfural and furfural,” Ind. Eng. Chem. Res., vol. 50, no. 13, pp. 7903–7910, 2011, doi: 10.1021/ie102487w.spa
dc.relation.references[64] E. I. Gürbüz, S. G. Wettstein, and J. A. Dumesic, “Conversion of hemicellulose to furfural and levulinic acid using biphasic reactors with alkylphenol solvents,” ChemSusChem, vol. 5, no. 2, pp. 383–387, 2012, doi: 10.1002/cssc.201100608.spa
dc.relation.references[65] E. Nikolla, Y. Román-Leshkov, M. Moliner, and M. E. Davis, “‘One-pot’ synthesis of 5-(hydroxymethyl)furfural from carbohydrates using tin-beta zeolite,” ACS Catal., vol. 1, no. 4, pp. 408–410, 2011, doi: 10.1021/cs2000544.spa
dc.relation.references[66] A. Deng et al., “A feasible process for furfural production from the pre-hydrolysis liquor of corncob via biochar catalysts in a new biphasic system,” Bioresour. Technol., vol. 216, pp. 754–760, 2016, doi: 10.1016/j.biortech.2016.06.002.spa
dc.relation.references[67] G. Marcotullio and W. De Jong, “Chloride ions enhance furfural formation from D-xylose in dilute aqueous acidic solutions,” Green Chem., vol. 12, no. 10, pp. 1739–1746, 2010, doi: 10.1039/b927424c.spa
dc.relation.references[68] Z. Liu, E. Shi, F. Ma, and K. Jiang, “An integrated biorefinery process for co-production of xylose and glucose using maleic acid as efficient catalyst,” Bioresour. Technol., vol. 325, no. 481, p. 124698, 2021, doi: 10.1016/j.biortech.2021.124698.spa
dc.relation.references[69] L. Zhang, H. Yu, P. Wang, H. Dong, and X. Peng, “Conversion of xylan, d-xylose and lignocellulosic biomass into furfural using AlCl3 as catalyst in ionic liquid,” Bioresour. Technol., vol. 130, pp. 110–116, 2013, doi: 10.1016/j.biortech.2012.12.018.spa
dc.relation.references[70] B. Hames, R. Ruiz, C. Scarlata, A. Sluiter, J. Sluiter, and D. Templeton, “Preparation of Samples for Compositional Analysis: Laboratory Analytical Procedure (LAP); Issue Date 08/08/2008,” no. August, 2008.spa
dc.relation.references[71] ASTM, “Standard Practice for Preparation of Biomass for Compositional Analysis 1,” Annu. B. ASTM Stand., vol. 01, no. Reapproved 2007, pp. 6–9, 2011, doi: 10.1520/E1757-01R07.2.spa
dc.relation.references[72] A. Sluiter et al., “Determination of total solids in biomass and total dissolved solids in liquid process samples,” Natl. Renew. Energy Lab., no. March, pp. 3–5, 2008, doi: NREL/TP-510-42621.spa
dc.relation.references[73] A. Sluiter, B. Hames, R. Ruiz, C. Scarlata, J. Sluiter, and D. Templeton, “Determination of Ash in Biomass Laboratory Analytical Procedure ( LAP ) Issue Date : 7 / 17 / 2005 Determination of Ash in Biomass Laboratory Analytical Procedure ( LAP ),” no. January, 2008.spa
dc.relation.references[74] P. J. Van Soest, J. B. Robertson, and B. A. Lewis, “Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition,” J. Dairy Sci., vol. 74, no. 10, pp. 3583–3597, 1991, doi: 10.3168/jds.S0022-0302(91)78551-2.spa
dc.relation.references[75] G. Licitra, T. M. Hernandez, and P. J. Van Soest, “Feedbunk management evaluation techniques,” Anim. Feed Sci. Technol., vol. 57, pp. 347–358, 1996.spa
dc.relation.references[76] A. International, AOAC: Official Methods of Analysis (Volume 1), vol. 1, no. Volume 1. 1990.spa
dc.relation.references[77] Astm, “Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter,” ASTM D 240-92 (reapproved 1997), pp. 144–151, 1997, doi: 10.1520/D0240-19.2.spa
dc.relation.references[78] W. Conshohocken, “Standard Test Method for Sulfate Ion in Water 1,” vol. 90, no. April 2002, pp. 1–5, 1995, doi: 10.1520/D0516-16.2.spa
dc.relation.references[79] W. G. Cortés Ortiz et al., “Partial oxidation of methane and methanol on FeOx-, MoOx- and FeMoOx -SiO2 catalysts prepared by sol-gel method: A comparative study,” Mol. Catal., vol. 491, no. May, p. 110982, 2020, doi: 10.1016/j.mcat.2020.110982.spa
dc.relation.references[80] X. Li, L. Zhang, S. Wang, and Y. Wu, “Recent Advances in Aqueous-Phase Catalytic Conversions of Biomass Platform Chemicals Over Heterogeneous Catalysts,” Front. Chem., vol. 7, no. February, pp. 1–21, 2020, doi: 10.3389/fchem.2019.00948.spa
dc.relation.references[81] M. J. C. Molina, M. L. Granados, A. Gervasini, and P. Carniti, “Exploitment of niobium oxide effective acidity for xylose dehydration to furfural,” Catal. Today, vol. 254, pp. 90–98, 2015, doi: 10.1016/j.cattod.2015.01.018.spa
dc.relation.references[82] R. K. Mishra, V. B. Kumar, A. Victor, I. N. Pulidindi, and A. Gedanken, “Selective production of furfural from the dehydration of xylose using Zn doped CuO catalyst,” Ultrason. Sonochem., vol. 56, no. July 2018, pp. 55–62, 2019, doi: 10.1016/j.ultsonch.2019.03.015.spa
dc.relation.references[83] T. V. dos Santos, D. O. da Silva Avelino, D. B. A. Pryston, M. R. Meneghetti, and S. M. P. Meneghetti, “Tin, molybdenum and tin-molybdenum oxides: Influence of Lewis and Bronsted acid sites on xylose conversion,” Catal. Today, vol. 394–396, no. February, pp. 125–132, 2022, doi: 10.1016/j.cattod.2021.10.018.spa
dc.relation.references[84] J. E. Ortiz García, D. E. González Morales, Y. Mejía Agudelo, L. S. García-Alzate, and X. Cifuentes-Wchima, “Evaluación de la biomasa residual (cereza) de café como sustrato para el cultivo del hongo comestible Pleurotus ostreatus,” Rev. ION, vol. 33, no. 1, pp. 93–102, 2020, doi: 10.18273/revion.v33n1-2020009.spa
dc.relation.references[85] N. Fierro-Cabrales, A. Contreras-Oliva, O. González-Ríos, E. S. Rosas-Mendoza, and V. Morales-Ramos, “CARACTERIZACIÓN QUÍMICA Y NUTRIMENTAL DE LA PULPA DE CAFÉ ( Coffea arabica L.) = CHEMICAL AND NUTRITIONAL CHARACTERIZATION OF COFFEE PULP ( Coffea arabica L.),” Agroproductividad, vol. 11, no. 4, pp. 9–13, 2018, [Online]. Available: http://revista-agroproductividad.org/index.php/agroproductividad/article/view/261.spa
dc.relation.references[86] R. P. Munirwan, A. Mohd Taib, M. R. Taha, N. Abd Rahman, and M. Munirwansyah, “Utilization of coffee husk ash for soil stabilization: A systematic review,” Phys. Chem. Earth, vol. 128, no. September, p. 103252, 2022, doi: 10.1016/j.pce.2022.103252.spa
dc.relation.references[87] S. I. Mussatto, E. M. S. Machado, S. Martins, and J. A. Teixeira, “Production, Composition, and Application of Coffee and Its Industrial Residues,” Food Bioprocess Technol., vol. 4, no. 5, pp. 661–672, 2011, doi: 10.1007/s11947-011-0565-z.spa
dc.relation.references[88] T. R. L. A. Veiga, J. T. Lima, A. L. de A. Dessimoni, M. F. F. Pego, J. R. Soares, and P. F. Trugilho, “Caracterização de diferentes biomassas vegetais para produção de biocarvões,” Cerne, vol. 23, no. 4, pp. 529–536, 2017, doi: 10.1590/01047760201723042373.spa
dc.relation.references[89] N. de la C. Tobón Arroyave, A. F. Cerón Cárdenas, and L. F. Garcés Giraldo, “Análisis y modelamiento de la granulometría en la cáscara del café (Coffea arabica L.) variedad Castillo,” Prod. + Limpia, vol. 10, no. 2, pp. 80–91, 2015, doi: 10.22507/pml.v10n2a7.spa
dc.relation.references[90] N. Tangmankongworakoon, “An approach to produce biochar from coffee residue for fuel and soil amendment purpose,” Int. J. Recycl. Org. Waste Agric., vol. 8, no. 0123456789, pp. 37–44, 2019, doi: 10.1007/s40093-019-0267-5.spa
dc.relation.references[91] W. T. Tsai, S. C. Liu, and C. H. Hsieh, “Preparation and fuel properties of biochars from the pyrolysis of exhausted coffee residue,” J. Anal. Appl. Pyrolysis, vol. 93, pp. 63–67, 2012, doi: 10.1016/j.jaap.2011.09.010.spa
dc.relation.references[92] R. García, C. Pizarro, A. G. Lavín, and J. L. Bueno, “Characterization of Spanish biomass wastes for energy use,” Bioresour. Technol., vol. 103, no. 1, pp. 249–258, 2012, doi: 10.1016/j.biortech.2011.10.004.spa
dc.relation.references[93] J. A. Suárez, C. A. Luengo, F. F. Felfli, G. Bezzon, and P. A. Beatón, “Thermochemical properties of cuban biomass,” Energy Sources, vol. 22, no. 10, pp. 851–857, 2000, doi: 10.1080/00908310051128156.spa
dc.relation.references[94] S. Marx, R. Venter, S. K. Karmee, J. Louw, and C. Truter, “Biofuels from spent coffee grounds: comparison of processing routes,” Biofuels, no. July, pp. 1–7, 2020, doi: 10.1080/17597269.2020.1793538.spa
dc.relation.references[95] A. S. Noushabadi, A. Dashti, F. Ahmadijokani, J. Hu, and A. H. Mohammadi, “Estimation of higher heating values (HHVs) of biomass fuels based on ultimate analysis using machine learning techniques and improved equation,” Renew. Energy, vol. 179, pp. 550–562, 2021, doi: 10.1016/j.renene.2021.07.003.spa
dc.relation.references[96] A. Dashti, A. S. Noushabadi, M. Raji, A. Razmi, S. Ceylan, and A. H. Mohammadi, “Estimation of biomass higher heating value (HHV) based on the proximate analysis: Smart modeling and correlation,” Fuel, vol. 257, no. August, p. 115931, 2019, doi: 10.1016/j.fuel.2019.115931.spa
dc.relation.references[97] S.-Y. Jeong and J.-W. Lee, “Hydrothermal treatment,” in Pretreatmen of biomass processes and technologies, Elsevier B.V., 2015, pp. 1–6.spa
dc.relation.references[98] A. T. W. M. Hendriks and G. Zeeman, “Pretreatments to enhance the digestibility of lignocellulosic biomass,” Bioresour. Technol., vol. 100, no. 1, pp. 10–18, 2009, doi: 10.1016/j.biortech.2008.05.027.spa
dc.relation.references[99] S. Y. Jeong and J. W. Lee, “Hydrothermal Treatment,” Pretreat. Biomass Process. Technol., pp. 61–74, 2015, doi: 10.1016/B978-0-12-800080-9.00005-0.spa
dc.relation.references[100] Gunjan, L. Chopra, and Manikanika, “Extraction of cellulose from agro waste – A short review,” Mater. Today Proc., no. xxxx, 2023, doi: 10.1016/j.matpr.2023.04.378.spa
dc.relation.references[101] B. C. Saha, “Hemicellulose bioconversion,” J. Ind. Microbiol. Biotechnol., vol. 30, no. 5, pp. 279–291, 2003, doi: 10.1007/s10295-003-0049-x.spa
dc.relation.references[102] J. Rao, Z. Lv, G. Chen, and F. Peng, “Hemicellulose: Structure, Chemical Modification, and Application,” Prog. Polym. Sci., vol. 140, p. 101675, 2023, doi: 10.1016/j.progpolymsci.2023.101675.spa
dc.relation.references[103] Z. Qi et al., “Highly Efficient Conversion of Xylose to Furfural in a Water-MIBK System Catalyzed by Magnetic Carbon-Based Solid Acid,” Ind. Eng. Chem. Res., vol. 59, no. 39, pp. 17046–17056, 2020, doi: 10.1021/acs.iecr.9b06349.spa
dc.relation.references[104] J. Gao et al., “Nitrogen doped carbon solid acid for improving its catalytic transformation of xylose and agricultural biomass residues to furfural,” Mol. Catal., vol. 535, no. December 2022, p. 112890, 2023, doi: 10.1016/j.mcat.2022.112890.spa
dc.relation.references[105] R. Ji et al., “Core-shell catalyst WO3@mSiO2-SO3H interfacial synergy catalyzed the preparation of furfural from xylose,” Mol. Catal., vol. 530, no. April, 2022, doi: 10.1016/j.mcat.2022.112592.spa
dc.relation.references[106] A. F. Aldana, J. A. Bustillo, J. C. Urueta, and A. J. Bula, “Computational fluid dynamics of the soybean oil hydrolysis under subcritical water conditions in a stirred-tank reactor,” Inf. Tecnol., vol. 29, no. 5, pp. 47–59, 2018, doi: 10.4067/S0718-07642018000500047.spa
dc.relation.references[107] J. Sun, Z. Xu, W. Li, and X. Shen, “Effect of nano-SiO2 on the early hydration of alite-sulphoaluminate cement,” Nanomaterials, vol. 7, no. 5, pp. 1–15, 2017, doi: 10.3390/nano7050102.spa
dc.relation.references[108] Y. Liang, J. Ouyang, H. Wang, W. Wang, P. Chui, and K. Sun, “Synthesis and characterization of core-shell structured SiO 2 @YVO 4 :Yb 3+ ,Er 3+ microspheres,” Appl. Surf. Sci., vol. 258, no. 8, pp. 3689–3694, 2012, doi: 10.1016/j.apsusc.2011.12.006.spa
dc.relation.references[109] A. Alayat, D. N. Mcllroy, and A. G. McDonald, “Effect of synthesis and activation methods on the catalytic properties of silica nanospring (NS)-supported iron catalyst for Fischer-Tropsch synthesis,” Fuel Process. Technol., vol. 169, no. June 2017, pp. 132–141, 2018, doi: 10.1016/j.fuproc.2017.09.011.spa
dc.relation.references[110] X. Zhang, Y. Niu, X. Meng, Y. Li, and J. Zhao, “Structural evolution and characteristics of the phase transformations between α-Fe2O3, Fe3O4 and γ-Fe2O3 nanoparticles under reducing and oxidizing atmospheres,” CrystEngComm, vol. 15, no. 40, pp. 8166–8172, 2013, doi: 10.1039/c3ce41269e.spa
dc.relation.references[111] Z. Yang, M. Luo, Q. Liu, and B. Shi, “In situ XRD and Raman Investigation of the Activation Process over K–Cu–Fe/SiO2 Catalyst for Fischer–Tropsch Synthesis Reaction,” Catal. Letters, vol. 150, no. 8, pp. 2437–2445, 2020, doi: 10.1007/s10562-020-03147-6.spa
dc.relation.references[112] S. Sobhanardakani, A. Jafari, R. Zandipak, and A. Meidanchi, “Removal of heavy metal (Hg(II) and Cr(VI)) ions from aqueous solutions using Fe2O3@SiO2 thin films as a novel adsorbent,” Process Saf. Environ. Prot., vol. 120, pp. 348–357, 2018, doi: 10.1016/j.psep.2018.10.002.spa
dc.relation.references[113] W. G. Cortes Ortiz, “Obtención de metanol a partir de la oxidación selectiva de metano empleando materiales catalíticos de hierro y molibdeno soportados en óxido de silicio,” p. 234, 2020, [Online]. Available: https://repositorio.unal.edu.co/handle/unal/77809.spa
dc.relation.references[114] I. Ramalla, R. K. Gupta, and K. Bansal, “Effect on superhydrophobic surfaces on electrical porcelain insulator, improved technique at polluted areas for longer life and reliability,” Int. J. Eng. Technol., vol. 4, no. 4, p. 509, 2015, doi: 10.14419/ijet.v4i4.5405.spa
dc.relation.references[115] A. Nikmah, A. Taufiq, and A. Hidayat, “Synthesis and Characterization of Fe3O4/SiO2 nanocomposites,” IOP Conf. Ser. Earth Environ. Sci., vol. 276, no. 1, 2019, doi: 10.1088/1755-1315/276/1/012046.spa
dc.relation.references[116] R. Ellerbrock, M. Stein, and J. Schaller, “Comparing amorphous silica, short-range-ordered silicates and silicic acid species by FTIR,” Sci. Rep., vol. 12, no. 1, pp. 1–8, 2022, doi: 10.1038/s41598-022-15882-4.spa
dc.relation.references[117] E. A. Paukshtis, M. A. Yaranova, I. S. Batueva, and B. S. Bal’zhinimaev, “A FTIR study of silanol nests over mesoporous silicate materials,” Microporous Mesoporous Mater., vol. 288, no. June, 2019, doi: 10.1016/j.micromeso.2019.109582.spa
dc.relation.references[118] M. D. L. Ángeles and L. Lascano, “Precipitación controlada Materiales y métodos,” Epn, no. 1, pp. 91–99, 2008, [Online]. Available: http://bibdigital.epn.edu.ec/handle/15000/5547.spa
dc.relation.references[119] J. Gao et al., “Chemical Speciation and Interaction Mechanism of U in ‘Shewanella putrefaciens-Mineral-U’ System,” Water. Air. Soil Pollut., vol. 232, no. 8, pp. 1–8, 2021, doi: 10.1007/s11270-021-05283-0.spa
dc.relation.references[120] D. Van Quy et al., “Synthesis of silica-coated magnetic nanoparticles and application in the detection of pathogenic viruses,” J. Nanomater., vol. 2013, 2013, doi: 10.1155/2013/603940.spa
dc.relation.references[121] N. S. F. Trotte, M. T. G. Aben-Athar, and N. M. F. Carvalho, “Yerba mate tea extract: A green approach for the synthesis of silica supported iron nanoparticles for dye degradation,” J. Braz. Chem. Soc., vol. 27, no. 11, pp. 2093–2104, 2016, doi: 10.5935/0103-5053.20160100.spa
dc.relation.references[122] D. Fu et al., “Probing the structure evolution of iron-based Fischer-tropsch to produce olefins by operando Raman spectroscopy,” ChemCatChem, vol. 7, no. 5, pp. 752–756, 2015, doi: 10.1002/cctc.201402980.spa
dc.relation.references[123] J. Hrubý et al., “Deposition of Tetracoordinate Co(II) Complex with Chalcone Ligands on Graphene,” Molecules, vol. 25, no. 21, 2020, doi: 10.3390/molecules25215021.spa
dc.relation.references[124] G. Xu, Z. Tu, X. Hu, M. Li, X. Zhang, and Y. Wu, “Ionic buffering biphase systems as catalysts and solvents for efficient dehydration of xylose and hemicellulose to furfural,” J. Mol. Liq., vol. 381, no. April, p. 121836, 2023, doi: 10.1016/j.molliq.2023.121836.spa
dc.relation.references[125] N. Zhou et al., “Conversion of xylose into furfural over MC-SnOx and NaCl catalysts in a biphasic system,” J. Clean. Prod., vol. 311, no. February, p. 127780, 2021, doi: 10.1016/j.jclepro.2021.127780.spa
dc.relation.references[126] V. Choudhary, S. I. Sandler, and D. G. Vlachos, “Conversion of xylose to furfural using Lewis and Brønsted acid catalysts in aqueous media,” ACS Catal., vol. 2, no. 9, pp. 2022–2028, 2012, doi: 10.1021/cs300265d.spa
dc.relation.references[127] T. Yang, Y. H. Zhou, S. Z. Zhu, H. Pan, and Y. B. Huang, “Insight into Aluminum Sulfate-Catalyzed Xylan Conversion into Furfural in a Γ-Valerolactone/Water Biphasic Solvent under Microwave Conditions,” ChemSusChem, vol. 10, no. 20, pp. 4066–4079, 2017, doi: 10.1002/cssc.201701290.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.lembCatalizadoresspa
dc.subject.lembCatalystseng
dc.subject.lembCatalysiseng
dc.subject.lembCatalisisspa
dc.subject.lembActivación químicaspa
dc.subject.lembActivation (Chemistry)eng
dc.subject.proposalXilosaspa
dc.subject.proposalSol-gelspa
dc.subject.proposalCatálisis heterogéneaspa
dc.subject.proposalFurfuralspa
dc.subject.proposalBiomasaspa
dc.subject.proposalResiduos de caféspa
dc.subject.proposalXyloseeng
dc.subject.proposalSol-geleng
dc.subject.proposalHeterogeneous catalysiseng
dc.subject.proposalFurfuraleng
dc.subject.proposalBiomasseng
dc.subject.proposalCoffee residueseng
dc.titleObtención de furfural a partir de residuos del cultivo de café empleando materiales catalíticos de hierro soportado en óxido de siliciospa
dc.title.translatedObtaining furfural from coffee crop residues using iron catalytic materials supported on silicon oxide.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleObtención de furfural a partir de residuos del cultivo de café empleando materiales catalíticos de hierro soportado en óxido de siliciospa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1031127909.2023.pdf
Tamaño:
4.96 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: